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Abstract

Video-to-audio (V2A) generation is important for video editing and post-processing,
enabling the creation of semantics-aligned audio for silent video. However, most
existing methods focus on generating short-form audio for short video segment
(less than 10 seconds), while giving little attention to the scenario of long-form
video inputs. For current UNet-based diffusion V2A models, an inevitable problem
when handling long-form audio generation is the inconsistencies within the final
concatenated audio. In this paper, we first highlight the importance of long-form
V2A. Besides, we propose LoVA, a novel model for Long-form Video-to-Audio
generation. Based on Diffusion Transformer (DiT) architecture, LoVA proves to be
more effective at generating long-form audio compared to existing autoregressive
models and UNet-based diffusion models. Extensive experiments demonstrate
that LoVA achieves comparable performance on 10-second V2A benchmark and
outperforms all other baselines on a benchmark with long-form video input.

1 Introduction

Video-to-Audio (V2A) generation, which aims to create synchronized and realistic sound effects
for silent videos, finds widespread use in the creation of video and audio content [1]. However,
current V2A methods generate fixed-length audios through autoregressive approaches truncated to a
maximum length [13, 21, 26], or fixed-length noise denoising by UNet-based diffusions [20, 29, 28].
Despite their success in generating fixed-length short audios, the challenge of creating audio for
variable-length, long-form videos exceeding 10 seconds in real-world scenarios remains unexplored.
Our work aims to address this short-to-long duration gap in the V2A domain.

When adapted to long-form V2A, current autoregressive and UNet-based diffusion models both
exhibit limitations. As depicted in Figure 1(b): (1) Autoregressive models regard audio as a series of
audio frames (i.e., tokens). This one-by-one generation leads to low efficiency for long sequences. It
also yields lower audio quality compared to diffusion models due to frame discretization [28]. (2)
UNet-based diffusion models struggle with long-range relation modeling, with generation performance
being constrained by the length of the training data [12], a limitation confirmed by prior studies [3, 30,
9] and our experimental results (Section. 4.2). To better accommodate long-form V2A, these models
split long videos into shorter clips, equivalent to their pretraining data length, generate audio for each
clip, and then concatenate them to form the final long audio. However, such splitting process can
result in inconsistencies, i.e., with distinct sounds from the same video. This is evident in Figure 1(a)
with results from DiffFoley [20], TiVA [28], and FoleyCrafter [29], where short 8s/10s audio clips
exhibit clear mel-spectrogram boundaries and structural differences, thereby reducing the audio
quality. Thus, balancing efficiency, consistency, and quality in long-form V2A remains a significant
challenge for existing methods.
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Figure 1: (a) Long-form V2A example. Current (8s/10s) UNet-based diffusion V2A models (DiffFo-
ley, TiVA, FoleyCrafter) exhibit inconsistency when generating long-form (30s) audio, as indicated
by clear mel-spectrogram boundaries and structural variances. In contrast, our LoVA produces
consistent results akin to the ground truth. (b) Comparison of three distinct long-form V2A methods.
From bottom to top: autoregressive methods, UNet-based diffusions, DiT-based diffusions (our
LoVA), characterized by inefficient one-by-one generation manner, inconsistent fixed-length splits
generation, and our parallel processing of arbitrary-length sequences respectively. (c) Overview of
LoVA. Capable of accepting videos of any length, it samples and denoises on the corresponding
length of the latent noise sequence and then decodes it to generate audio of any length.

To address this challenge, we introduce LoVA, a Long-form Video-to-Audio generation model adept
well at handling long-duration problem. As depicted in Figure 1(b), the expected long-form V2A
model should possess the capabilities of: (1) maintaining the variable-length audio as a sequence of
lossless frames to ensure quality; (2) modeling the full sequence interactions among frames, rather
than the localized interactions learned by convolutional UNets, to ensure consistency when extending
to long sequences; (3) generating multiple frames in parallel for efficiency.

Thus, we introduce DiT into the V2A domain and model the denoising process on noisy latent
audio frames, termed as LoVA. For long-form V2A problems, LoVA simply extracts extended video
features and prepares correspondingly longer sequences of noisy audio frames for denoised lengthy
audio generation, akin to a consistent frog croak over a 30s video as depicted in Figure 1(a).

Furthermore, due to the absence research in the long-form V2A domain, we have established a
long-form V2A evaluation based on a variable-length long video dataset UnAV100 [8], as an addition
to the current standard short-form evaluation. We conducted extensive experiments on this long-form
evaluation to validate the performance of different methods, as well as their duration-extending
characteristics in long-form V2A. Overall, our main contributions are as follows:

• We first introduce the long-form generation problem in the V2A field and establish an evaluation
framework for long-form V2A as a complement to existing V2A evaluations.

• We first employ DiT into V2A area and propose a new model, LoVA, which is better suited for
generating long-form audio than existing methods.

• We conducted extensive experiments on standard short-form and newly established long-form
evaluation, validating the SOTA results achieved by LoVA. We also draw some duration-extending
characteristics for different V2A methods. Demo samples for different V2A methods are available
at https://ceaglex.github.io/LoVA.github.io/.

2 Method

The long-form V2A task aims to generate an audio sequence a of equivalent duration from any
given long video v. We introduce LoVA, a Latent Diffusion Transformer designed for this task. As
depicted in Figure 1(c), LoVA preprocesses long-form video into features, applies denoising on a
noise sequence of corresponding length, and eventually generates long-form audio through VAE
decoding. We will sequentially elucidate the preliminary knowledge of Latent Diffusion Model
(LDM) [24], the Architecture of LoVA and its training in the following subsections.
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2.1 Preliminary: V2A LDMs

Given audio-video pairs (a, v), the typical V2A LDM compresses a into latent variables z (i.e.,z0
) using a VAE encoder , and encodes v into conditional video features c. A diffusion process then
introduces Gaussian noise ϵ to the clean latent z0 based on timestep t and predefined noise schedule
ᾱ1, ..., ᾱt, ..., ᾱT : zt =

√
ᾱtz0 +

√
1− ᾱtϵ, ϵ ∼ N(0, 1).

During the denoising process, LDM aims to recover z0 from zT by progressively estimating the
added noise at each timestep t, given the condition c and input noisy data zt : ϵ̂t = D(zt, c, t).

The training objective is to minimize the L2 loss between the added noise ϵ and the predicted noise ϵ̂t
at each step t : L = ||ϵ̂t − ϵ||2.

2.2 Architecture of LoVA

As shown in Figure 1(c), LoVA has three components: an audio VAE V , a video encoder CLIP and
a DiT-based denoiser D.

(1) Audio VAE: LoVA employs a 1D-Conv-based VAE [6, 12] to compress the audio waveform
a ∈ [n, T ], where n and T are the audio channels and time length. The resultant latent data is
z0 = V (a) ∈ [n, T ′, h], with T ′ and h denoting the compressed time length and latent space size.

(2) Video Encoder: Numerous previous works [26, 28] have demonstrated the effectiveness of
CLIP [23] in V2A task. For a video composed of a sequence of frames v : [f1, . . . , fi, . . . , fN ], LoVA
also uses the CLIP visual encoder to extract features from each video frame and concatenate them to
form the video condition c : c = Concat([CLIP(f1), . . . ,CLIP(fi), . . . ,CLIP(fN )]) ∈ [N,hC ],
where N is the frame number and hC is the CLIP hidden size.

(3) DiT Denoiser: Diffusion Transformer (DiT) [22] is a novel diffusion structure that integrates
the denoising diffusion models [11] with the Transformer architecture [27]. Timestep t is embeded
and appended at the beginning of the input sequence zt . Conditional input c is processed by cross-
attention layers in DiT block. Conditioned on timestep t and video features c, DiT denoiser takes zt
as input tokens to estimate noise at each timestep.

(4) Learned Embedding Layers: To further assist the model in learning the relationship between the
audio sequence and video frames when extending to long-form V2A generation, we add a learnable
positional embedding layer PEc to the video condition and PEz to the audio latent sequence.

c = c+ PEc([1, ..., i, ..., N ]) ∈ [N,hC ],

zt = zt + PEz([1, ..., i, ..., T
′]) ∈ [T ′, h]

(1)

2.3 Training and Inference of LoVA

In the optimization phase of LoVA, the Audio VAE and Video Encoder are maintained frozen, as
per [6, 23]. The DiT Denoiser, including all blocks, PEc, PEz , and time embeddings, undergoes
training. The training is governed by the L2 Loss. During inference, LoVA can accommodate videos
of arbitrary lengths, handling variable-length video conditions and noisy latent sequences through the
extension of PEc and PEz . Finally, variable-length audio is obtained through VAE decoding.

3 Experimental Settings

3.1 Implementation Details

We implement a two-phase training approach: pre-training with short-form data and then fine-tuning
with long-form data, referred to as LoVA (w/o tuning) and LoVA (w/ tuning) respectively. LoVA
(w/o tuning) utilizes AudioSet-balanced [7] and VGGSound [2] datasets, encompassing 20,280 and
180,379 10-second videos respectively. LoVA (w/ tuning) adds learned positional embedding layers
PEc and PEz as described in 2.2(4). Besides the two dataset included before, it also employs the
UnAV100 dataset [8], made up of 6,489 videos ranging from 10 to 60 seconds. More training details
can be found at A.1. To assess LoVA’s performance in short-form V2A generation, we use the
VGGSound [2] test set of 15,273 10-second videos. For long-form V2A generation evaluation, we
utilize the UnAV100 [8] test set, comprising 2,167 cases with an average duration of 42.1s.
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3.2 Baselines

We implement the public code of five baselines to replicate the results.: SpecVQGAN [13],
IM2WAV [26], DiffFoley [20], TiVA [28], and FoleyCrafter [29], in which the first two are auto-
regressive models while the other three are diffusion-based models. To ensure a fair comparison, we
adapt all of them for long-form V2A generation. Modification details can be found at A.2.

3.3 Metrics

Following previous works [13, 18, 19, 20, 26], we apply Fréchet Audio Distance (FAD) [15],
Inception Score (IS) [25], and mean KL-divergence (MKL) to evaluate the quality of generated audio.
Since these audio classifiers are trained on 10-second audio data, we modify them to the long-form
version as described in A.3.

4 Experimental Results

4.1 Comparison with SOTA models

Table 1: Comparison of LoVA with baselines on VGGSound and UnAV100 benchmark. We employ
multiple classifiers (VGGish, PaSST, and PANN) to evaluate audio quality. The best score is
highlighted with bold type and the second best score is in underline.

VGGSound UnAV100

Sampling FAD↓ KL↓ KL↓ IS↑ IS↑ FAD↓ KL↓ KL↓ IS↑ IS↑ Num.
Method Rate (kHz) (VGG) (PANN) (PaSST) (PANN) (PaSST) (VGG) (PANN) (PaSST) (PANN) (PaSST) Infer.↓
AutoRegressive

SpecVQGAN 22.05 6.26 3.16 3.12 4.00 3.77 9.21 2.28 2.17 2.84 2.52 1.00
IM2WAV 16 5.77 2.28 2.24 5.77 5.19 6.99 1.10 1.05 4.32 4.28 4.64

Diffusion

DiffFoley 16 6.10 2.76 2.88 8.12 9.56 7.74 1.22 1.28 4.42 5.02 5.70
FoleyCrafter 16 2.34 2.29 2.28 8.53 9.83 2.82 1.06 1.05 6.91 7.47 4.64
TiVA 16 1.05 2.13 2.00 9.31 8.02 6.36 1.48 1.54 3.11 2.77 4.64

LoVA (w/o tuning) 44.1 1.70 2.06 2.10 9.69 9.87 2.44 1.05 1.06 7.69 7.94 1.00
LoVA (w/ tuning) 44.1 1.70 2.06 2.10 9.73 9.91 2.42 1.05 1.07 7.71 7.96 1.00

To evaluate the performance of LoVA on long-form V2A generation, we compare LoVA with
baselines on the UnAV100 dataset. As shown in Table 2, being trained on the same 10-second data
without any fine-tuning, LoVA outperforms all other baselines on 4 out of 5 metrics, with the fewest
Num.Infer. It proves the effectiveness of DiT model in long-form V2A tasks. Utilizing DiT, LoVA
generates high sampling rate audio that is 6 times longer than current UNet-based LDMs. Besides,
being fine-tuned on the long-form dataset, LoVA (w/ tuning) achieves the best performance regarding
most metrics. We also do extensive subjective experiment to evaluate different models’ performance
on long-form V2A dataset, the results aligns with the autonomous evaluation and can be found at A.4.
This remarkable performance underscores LoVA’s superiority in handling long-form V2A generation.

To evaluate the performance of LoVA for the short-form V2A generation, we conduct experiments on
the VGGSound test set. As shown in Table 2, LoVA achieves comparable or even better performance
than existing state-of-the-art V2A models. In summary, LoVA shows the best results in both short-
form and long-form V2A generation across most evaluation metrics.

4.2 Comparison between Different Diffusion Denoiser

We conduct ablation studies to validate the effectiveness of DiT in long-form V2A generation. Similar
to LoVA, some previous UNet-based diffusion models, like FoleyCrafter [29], can also generate
long-form audio by modifying the shape of the latent space. On the UnAV100 benchmark, we cut
the video into clips with different durations and generate audio for each clip individually. Then we
obtain the long-form audio by concatenating all generated audio clips. FoleyCrafter is adapted to
different clip durations by resizing the latent space.
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Figure 2: Comparison of long-form audio generation ability between UNet and DiT structure. The
experimennt is carried on UnAV100 test dataset. Different splitting duration means different video
segment durations, as well as different generated sequence lengths per inference.

As shown in Fig 2, as the clips duration increases, the FAD and KL metrics degenerate. The best
scores are achieved when the splitting duration is set to 10 seconds, which aligns with the training
data on which FoleyCrafter were trained. However, for DiT-based LoVA (w/o tuning), metrics do
not show obvious degenerative phenomenon as the duration increases. It should be stressed that
FoleyCrafter and LoVA are all trained on 10-second data only, but performs differently on long-form
audio generation. This difference highlights a critical limitation of the UNet structure when it extends
to long-form audio, while proves DiT’s effectiveness to handle long audio sequence.

4.3 Model’s ability on temporal alignment

Table 2: Comparison of LoVA with baselines on temporal metrics. We randomly select 4500 samples
from VGGSound and 1000 samples from UnAV100 to evaluate models’ performance on temporal
alignment. The best score is highlighted with bold type and the second best score is in underline.

VGGSound UnAV100
OnsetAcc↑ OnsetSyncAp↑ WDis↓ OnsetAcc↑ OnsetSyncAp↑ WDis↓

With Additional Temporal Information Predictor
FoleyCrafter 22.7 54.8 3.98 16.7 51.2 2.74
TiVA 24.1 60.0 3.82 13.4 42.9 2.87
Without Additional Temporal Information Predictor
SpecVQGAN 21.2 54.0 4.38 11.7 55.4 3.61
IM2WAV 21.7 54.2 4.18 13.0 53.8 2.83
DiffFoley 20.7 48.7 4.21 11.8 50.1 3.46
LoVA (w/o tuning) 26.6 49.3 4.12 17.0 45.8 3.36
LoVA (w/ tuning) 26.8 49.3 3.94 16.7 46.3 3.28

We use Onset Acc, Onset Sync AP and W-Distance to evaluate temporal alignment ability, in line
with [28, 4]. It’s clear to see that models with additional temporal information predictor shows better
synchronization performance. For those without additional information, LoVA achieves relatively
better performance. Besides, the incorporating of learned positional embedding on both latent
sequence and condition frames make up for weaknesses of the original fixed positional embedding
that is only added on latent sequence. The improvement is obvious especially in W-Distance metric,
which has better correlation with human evaluation[28].

5 Conclusion

In this paper, we identify the significant gap between current V2A models and real-world V2A
applications, particularly in generating long-form audio. To address this, we introduce a new task
termed long-form video-to-audio generation. We also introduce LoVA, a DiT-based V2A generation
model, which is tailored for long-form V2A generation tasks. Experimental results indicate that LoVA
shows SOTA performance than previous models on both the 10-second VGGSound and long-form
UnAV100 benchmarks, excelling in audio quality, sampling rate, and supported duration.
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A Appendix

A.1 Implementation Details

Throughout both phases, the weights of Audio VAE and Video Encoder remain frozen [6, 23]. For the
pre-training phase, the DiT Denoiser, PEc, PEz , and time embedding undergo training. During the
fine-tuning phase, updates are only applied to PEz , PEc, and the final DiT block. ...........Beside, We
sample our audio at 44.1kHz and video frames at 8 FPS. In the inference stage, we set the guidance
scale to 5.0, and employ the DPM++ 3M SDE sampler [14] to execute denoising over 150 steps.

A.2 Baselines

For the autoregressive baseline SpecVQGAN, we use the long-form video as input, adjust the
generated sequence length, and obtain aligned long-form audio. For the three diffusion-based
baselines, we divide the original video into short-form fixed-length clips(8 seconds or 10 seconds
consistent with their training settings), generate corresponding audio separately, and then concatenate
the generated audio segments. It should be mentioned that for IM2WAV we use the same divide-
generate-concatenate procedure due to its slow inference speed.

A.3 Metrics

To ensure a fair comparison and eliminate the effect of different sampling rate, we downsample
the generated audio from LoVA’s to 16kHz and then resample them to the required sampling rate
of classifiers (16kHz for VGGish [10], 32kHz for PaSST [17] and PANN [16]). Since these audio
classifiers are trained on 10-second audio data, they cannot be directly applied to the evaluation of
long-form audio. Thus for the evaluation of long-form V2A, we segment the generated audio into
10-second clips with 5-second overlapping windows. For FAD, we average features from all audio
clips to get the final feature of long-form audio. For IS and MKL, following previous works [5],
we get the mean results of classification logits and then apply a softmax. Besides, we introduce the
number of inferences per audio (Num.Infer.) as a indicator of potential

A.4 Subjective Evaluation

We randomly select 40 videos from UnAV100 test set for human evaluation. Evaluators are asked
to give a 5-level Likert scale on 4 aspects: Overall quality (Overall), Sound Quality (SoundQua),
Semantic Relevance (SemRel) and Consistency. A higher score denote better performance.

Table 3: Subjective evaluation results for different models. Each entry comprises the mean score
from 40 evaluators, followed by the 95% confidence interval. Bold typeface indicates the highest
score for each metric, while underlined values represent the second-highest scores.

Method Overall ↑ SoundQua ↑ SemRel ↑ Consistency ↑
DiffFoley 2.79 ± 0.12 2.89 ± 0.14 3.02 ± 0.12 2.94 ± 0.14
FoleyCrafter 2.93 ± 0.13 3.15 ± 0.15 3.06 ± 0.14 3.13 ± 0.15
IM2WAV 2.93 ± 0.10 2.81 ± 0.14 3.12 ± 0.10 3.21 ± 0.13
TiVA 2.76 ± 0.13 3.50 ± 0.13 2.78 ± 0.11 2.79 ± 0.13

LoVA (w/o tuning) 3.45 ± 0.10 3.42 ± 0.13 3.55 ± 0.12 3.81 ± 0.14
LoVA (w/ tuning) 3.51 ± 0.11 3.42 ± 0.13 3.56 ± 0.12 3.82 ± 0.13

As shown in table 3, LoVA model achieves best result on human evaluation. It outperforms other
models in Semantic Relevance, Consistency, and Overall Quality, while ranking second in Sound
Quality. These findings largely corroborate the automatic evaluation results, suggesting that LoVA
and its Dit structure are well-suited for long-form V2A tasks.
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