
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ONLINE LAPLACIAN-BASED REPRESENTATION LEARN-
ING IN REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Representation learning plays a crucial role in reinforcement learning, especially
in complex environments with high-dimensional and unstructured states. Effec-
tive representations can enhance the efficiency of learning algorithms by improv-
ing sample efficiency and generalization across tasks. This paper considers the
Laplacian-based framework for representation learning, where the eigenvectors of
the Laplacian matrix of the underlying transition graph are leveraged to encode
meaningful features from raw sensory observations of the states. Despite the
promising algorithmic advances in this framework, it remains an open question
whether the Laplacian-based representations can be learned online and with theo-
retical guarantees along with policy learning. To answer this question, we study
online Laplacian-based representation learning, where the graph-based representa-
tion is updated simultaneously while the policy is updated by the reinforcement
learning algorithm. We design an online optimization formulation by introducing
the Asymmetric Graph Drawing Objective (AGDO) and provide a theoretical anal-
ysis of the convergence of running online projected gradient descent on AGDO
under mild assumptions. Specifically, we show that if the policy learning algorithm
induces a bounded drift on the policy, running online projected gradient descent
on AGDO exhibits ergodic convergence. Our extensive simulation studies empiri-
cally validate the guarantees of convergence to the true Laplacian representation.
Furthermore, we provide insights into the compatibility of different reinforcement
learning algorithms with online representation learning.

1 INTRODUCTION

Representation learning is an important part of machine learning that involves learning compact
and useful representations of data. The quality of these representations significantly impacts the
performance and efficiency of machine learning algorithms (Bengio et al., 2013). In reinforcement
learning (RL), agents often deal with complex environments characterized by high-dimensional and
unstructured states. This makes representation learning important for discovering and encoding
meaningful features from raw sensory inputs. The main goal of RL is to learn an optimal strategy
(policy) that maps each state to an action, aiming to maximize the expected reward based on the
dynamics of the environment. Learning a good representation can improve the sample efficiency of
value-function approximation algorithms (Farebrother et al., 2023), a major family of RL algorithms,
and enhance generalizations across different tasks (Yuan & Lu, 2022). In addition, representation
learning has found applications in reward shaping (Wu et al., 2018), learning options with larger
coverage (Machado et al., 2017a; Jinnai et al., 2019; Chen et al., 2024), and transfer learning
(Gimelfarb et al., 2021; Barreto et al., 2017).

A graph representation is often used to learn a representation, i.e., a low-dimensional embedding,
of the states (Mahadevan & Maggioni, 2007; Wu et al., 2018). States of an environment can be
viewed as nodes of a graph, and the transition probability between states under a given policy can
be viewed as weighted edges between these nodes. States that are closely connected in the graph
are expected to have similar representations in the embedding space. One representation that retains
this property is the eigenvectors of the graph Laplacian. Formally, the d-eigenvectors of the graph
Laplacian corresponding to the d-smallest eigenvalues are used to construct an embedding function
that maps a state to a vector in Rd. We refer to those d-eigenvectors as the d-smallest eigenvectors
for the remainder of this paper.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Constructing the graph and performing eigendecomposition on the Laplacian is only feasible in the
tabular settings where the number of states is small. Therefore, Wu et al. (2018) proposed a scalable
method to compute the smallest eigenvectors by solving an unconstrained version of the graph drawing
objective (Koren, 2005) which is suitable for large and continuous state-spaces. However, the graph
drawing objective does not have a unique minimizer, rather the rotations of the smallest eigenvectors
are also its minimizers. To tackle this challenge, Wang et al. (2021) propose the generalized graph
drawing objective which breaks the symmetry and only has the smallest eigenvectors as a unique
minimizer. Gomez et al. (2023) show that under gradient descent dynamics, the unconstrained
version of the generalized graph drawing objective has permutations of the smallest eigenvectors as
equilibrium points. They propose the augmented Lagrangian Laplacian objective (ALLO) which has
the smallest eigenvectors and the corresponding eigenvalues as the stable equilibrium under stochastic
gradient descent-ascent dynamics.

The Laplacian-based representation can be computed or learned for a given policy according to
its induced Markov chain. However, in RL the policy updates during the training phase as new
data comes in, which will in turn necessitate recomputation of the representation. To avoid this
complexity, in practice, the Laplacian-based representation is learned for a uniformly random policy
in a pretraining phase and then used throughout training. Nevertheless, that fixed representation
may not be effective for the policies encountered during RL. Recently, Klissarov & Machado (2023)
showed that learning the representation in an online manner while simultaneously updating the
policy can improve exploration and increase the total reward. In Figure 1, we illustrate an example,
comparing the representations of a uniform policy and a non-uniform policy, that further underscores
the need for adapting the representation. The non-uniform policy shows that some cells, despite
being far from the target in terms of Euclidean distance, are actually closer in the embedding space
than neighboring cells. This suggests that using the current representation to design rewards could
offer a better signal for improving the policy. Klissarov & Machado (2023) proposed online deep
Laplacian-based options for temporally extended exploration where a set of policies (also known as
options) are trained to select exploratory actions using an estimated Laplacian representation of the
current overall policy. They provide an extensive empirical analysis of how learning options while
updating the representation increases the received rewards; however, the theoretical analysis of online
representation learning while updating the policy has remained an open question.

Figure 1: The Laplacian represen-
tation of a uniform policy (left) and
a non-uniform policy(right). The
color represents the entry corre-
sponding to each state in the 2nd
eigenvector of the Laplacian. The
bordered cell is the target.

Motivated by that, we design an online optimization formulation by introducing the Asymmetric
Graph Drawing Objective (AGDO), a simplified version of ALLO that does not involve dual variables.
We prove that the only stable equilibrium for AGDO is the d-smallest eigenvectors under gradient
descent dynamics. Furthermore, we establish through theory and experiments that optimizing the
online version of AGDO converges to a stationary point under the assumption of bounded drift.

2 LITERATURE REVIEW

In this section, we review existing studies and research directions in representation learning for
reinforcement learning, focusing on topics closely linked to this study.

Proto-Value Functions. Mahadevan (2005) introduced proto-value functions, a set of basis func-
tions that are independent of the reward function. These functions are defined as the eigenfunctions
of the normalized Laplacian of the graph generated by a random walk over the state space. This
representation has been demonstrated to reduce the number of samples required for training linear
value function approximators (Mahadevan & Maggioni, 2007). The process of generating the graph

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

involves collecting samples from the environment and connecting neighboring states with edges.
However, this method does not adequately account for the stochastic nature of transitions and re-
quires a discrete state space. In continuous state settings, Mahadevan (2012) proposes using the
Nyström method to interpolate the values of eigenfunctions at unseen states based on visited states.
Additionally, Xu et al. (2014) suggests enhancing representative state selection by applying K-means
clustering to collected samples and constructing a graph from the resulting centroids.

Laplacian Representation Using the Graph Drawing Objective. Wu et al. (2018) formulated a
linear operator that represents the graph over the state-space generated by a fixed policy, capturing the
stochastic nature of transitions, and is applicable to continuous state spaces. They demonstrated that
obtaining the eigenfunctions of the graph Laplacian, typically solved via the graph drawing objective
(Koren, 2005), can be achieved through stochastic optimization using collected samples without ex-
plicitly constructing the graph. Additionally, they illustrated a method to recover these eigenfunctions
up to orthonormal rotation by training a neural network. For precise eigenfunction recovery, Wang
et al. (2021) introduced the generalized graph drawing objective, which breaks the symmetry inherent
in the traditional graph drawing objective. Despite the constrained generalized objective ensuring the
uniqueness of Laplacian eigenfunctions, Gomez et al. (2023) demonstrated that stochastic optimiza-
tion using the unconstrained objective—employed in neural network training—does not necessarily
converge to these eigenfunctions. Consequently, they proposed the augmented Lagrangian Laplacian
objective, which exhibits the eigenvectors of the Laplacian as the unique stable equilibrium. Other
equilibrium points correspond to permutations of the eigenvectors.

Learning the Laplacian representation with any of these objectives is conducted under a fixed
policy, typically a uniformly random policy in practice. Klissarov & Machado (2023) introduced
online deep covering eigenoptions, an online algorithm that concurrently learns the Laplacian
representation and options (Sutton, 1998), a well-established formulation of temporally extended
actions in Markov Decision Processes (MDPs). They demonstrated that the online version of DCEO
achieves performance comparable to a two-stage variant of the algorithm, where the representation is
learned under a fixed uniform policy.

Successor Features. The deep successor representation, introduced by Kulkarni et al. (2016) as
an extension of the successor representation (Dayan, 1993), decomposes the value function into
a successor feature function and a reward predictor function. The successor function encodes the
discounted expected value of representations of all future states within a given horizon. Leveraging
concepts from TD learning and Deep Q-networks (Mnih et al., 2015), both the representation and the
successor feature function can be learned simultaneously with neural networks. Successor features
have found diverse applications, such as sub-goal states generation in sparse reward environments
(Kulkarni et al., 2016), transfer learning (Barreto et al., 2017; Gimelfarb et al., 2021), and options
discovery (Machado et al., 2017b; 2023). Notably, Machado et al. (2017b) demonstrated a connection
between the eigenvalues and eigenvectors of the successor representation matrix and the eigenvalues
and eigenvectors of the normalized Laplacian defined as proto-value functions.

Contrastive Learning in Reinforcement Learning. Contrastive learning is a machine learning
method used for learning representations that distinguish between similar and dissimilar pairs of data
points using a contrastive loss function. Formally, an encoder is tasked with mapping data points to
a latent representation where similar points are closely positioned in the latent space. For instance,
Laskin et al. (2020) introduced the contrastive unsupervised representations for reinforcement learning
algorithm, where they train an encoder network using a contrastive loss with pairs of images randomly
augmented from the same source image. The learned representation is subsequently utilized to train
a deep reinforcement learning agent. Furthermore, augmented temporal contrast was developed by
Stooke et al. (2021), which involves selecting similar sample pairs from samples that are separated by
a short time distance. This approach is closely related to the Laplacian approach to representation
learning, as states that are connected in the graph have a higher probability of appearing in consecutive
samples than disconnected states.

In this work, we focus on extending the Laplacian-based representation learing, which has been
shown in recent literature to be effective in learning options with high coverage Machado et al.
(2017a); Jinnai et al. (2019); Klissarov & Machado (2023); Chen et al. (2024), to the online setting.
While empirical results, such as those by Klissarov & Machado (2023), have demonstrated that online

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

representation learning is effective and promising, a thorough theoretical analysis of the convergence
and accuracy of these learned representations in the online setting is still lacking. Therefore, our
work seeks to address this gap by developing a theoretical framework that ensures the stability and
accuracy of Laplacian representations in an online learning context.

3 PRELIMINARIES

In this section, we provide the necessary background to introduce the problem and present the
proposed formulation and its theoretical analysis. We begin by introducing Markov decision processes
within the context of reinforcement learning. Next, we highlight the closely related, existing methods
of learning the Laplacian representation.

Notation We use ⟨v, u⟩ to denote the dot product between two vectors v and y. For a vector x,
the L2 norm, denoted ∥x∥, is defined as ∥x∥ =

√∑
i |xi|2. The L2 norm of a matrix, is defined as

∥A∥ = sup
x̸=0

∥Ax∥
∥x∥ and is equivalent to the spectral norm defined as the largest singular value of the

matrix. Finally, the L∞ norm, denoted ∥A∥∞, is the maximum absolute row sum of the matrix, i.e.,
∥A∥∞ = maxi

∑
j |aij |.

Reinforcement Learning. In the reinforcement learning setting, an agent interacts with an en-
vironment, which is modeled as a Markov decision process (MDP). A reward agnostic MDP
is represented by the tuple (S,A, T , µ0) where S is the finite state space, A is the finite ac-
tions space, T : S × A → ∆(S) is the transition probability, and µ0 ∈ ∆(S) is the ini-
tial state probability distribution. We consider the environment to be reward-agnostic and that
the agent has a policy π : S → ∆(A) from which actions are samples each time step. The
policy induces a Markov chain from the MDP defined by the transition probability Pπ where
Pπ(s, s′) = P(st+1 = s′|st = s, T , π) =

∑
a∈A π(a|s)T (s′|s, a). We assume that the induced

Markov chain has a unique stationary distribution ρπ ∈ ∆(S). We formally define this in Assumption
1.

Laplacian Representation. A graph is defined by a set of nodes V and an adjacency matrix
W ∈ R|V|×|V |. For two nodes ν, ν′, Wν,ν′ is non-zero if and only if there exists an edge from ν to ν′.
The Laplacian matrix L is defined as L = D −W where the degree matrix D is a diagonal matrix
with Dν,ν =

∑|V|
j=1 Wν,j . The Laplacian encodes a lot of useful information about the underlying

graph. For example, the second to the largest eigenvalue also known as the Fiedler value determines
the algebraic connectivity of the graph (Fiedler, 1973).

In the tabular setting, under a fixed policy π, an MDP can be represented as a graph, where V = S
and the adjacency matrix Wπ is defined as f(Pπ) where f maps Pπ to a symmetric matrix. More
generally, consider the following formulation given by Wu et al. (2018):

• A Hilbert SpaceHπ is R|S| with the inner product between two elements u, v ∈ Hπ defined
as ⟨u, v⟩Hπ =

∑
s∈S u(s)v(s)ρπ(s).

• A linear operator A : Hπ → Hπ is defined as Au(s) =
∑

s′∈S A(s, s′)u(s′)ρπ(s′).
• The self adjoint operator Wπ : Hπ → Hπ is defined as

Wπ(s, s′) =
1

2

Pπ(s, s′)

ρπ(s′)
+

1

2

Pπ(s′, s)

ρπ(s)
(1)

• The Laplacian Lπ is defined as Lπ = I−Wπ .

• With a slight abuse of notation we define Aρπ :
(
R|S|, ⟨., .⟩

)
→
(
R|S|, ⟨., .⟩

)
as a matrix

whose entries are defined as Aρπ (s, s′) = A(s, s′)ρπ(s′) for some operator A : Hπ → Hπ .
Note that for a vector u ∈ R|S| the matrix multiplication Aρπu is equivalent to Au.

We denote the d-smallest eigenvectors of Lπ as eπ1 , e
π
2 , . . . , e

π
d . The Laplacian embedding function

ϕπ : S → Rd embeds a state s to the d-dimensional vector whose i-th element correspond to the s-th
element of eπi , i.e. ϕ(s) = [eπ1 [s], e

π
2 [s], . . . , e

π
d [s]]

⊺.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Learning the Laplacian Representation. Optimizing the graph drawing objective (GDO) (Koren,
2005) retrieves the smallest d-eigenvectors up to orthonormal rotation. The graph drawing objective
is defined as

min
u∈Rd|S|

d∑
i=1

⟨ui, L
πui⟩;

s.t. ⟨uj , uk⟩ = δjk, 1 ≤ k ≤ j ≤ d,

(2)

where δjk is the Kronecker delta. The unconstrained approximation of GDO is defined as

min
u∈Rd|S|

d∑
i=1

⟨ui, L
πui⟩+ b

d∑
j=1

d∑
k=1

(⟨uj , uk⟩ − δjk)
2
, (3)

where b is a hyper-parameter.

One advantage of using the graph drawing objective is that the unconstrained approximation of the
graph drawing objective can be optimized by stochastic gradient descent using samples collected
from the environment without constructing the graph or the Laplacian (Wu et al., 2018). Formally,
if the inner product is defined in terms of ρπ, the loss can be defined as

∑d
i=1⟨ui, L

πui⟩Hπ =

Es∼ρπ,s′∼Pπ(.|s)[
∑d

i=1(ui(s)− ui(s
′))2].

The generalized graph drawing objective proposed by Wang et al. (2021) breaks the symmetry in the
graph drawing objective and has the set of the smallest d-eigenvectors as a unique minimizer.

The generalized graph drawing objective (GGDO) is defined as

min
u∈Rd|S|

d∑
i=1

ci⟨ui, L
πui⟩

such that ⟨uj , uk⟩ = δjk, 1 ≤ k ≤ j ≤ d

(4)

and the unconstrained approximation of GGDO is defined as

min
u∈Rd|S|

d∑
i=1

ci⟨ui, L
πui⟩+ b

d∑
j=1

d∑
k=1

min(cj , ck) (⟨uj , uk⟩ − δjk)
2 (5)

The unconstrained GGDO is guaranteed to have a unique equilibrium point only in the limit b→∞.
However, for other values, rotations of the smallest d-eigenvectors can still be an equilibrium point.
The augmented Lagrangian Laplacian objective (ALLO) suggested by (Gomez et al., 2023) is a
dual objective that has a unique stable equilibrium point of the smallest d-eigenvalues and the
corresponding smallest d-eigenvectors. Other unstable equilibrium points correspond to permutations
of the eigenvectors and eigenvalues. The ALLO is defined as follows

max
β

min
u∈Rd|S|

d∑
i=1

⟨ui, L
πui⟩+

d∑
j=1

j∑
k=1

βjk (⟨uj , [[uk]]⟩ − δjk) + b

d∑
j=1

j∑
k=1

(⟨uj , [[uk]]⟩ − δjk)
2 (6)

where [[.]] is the stop gradient operator, and whatever is inside the operator is treated as a constant when
computing the gradient. The stop gradient operator has the same effect on breaking the symmetry as
the introduction of the constant hyper-parameters in GGDO.

4 ONLINE LEARNING OF THE LAPLACIAN REPRESENTATION

We first formulate the problem of learning the Laplacian representation while simultaneously updating
the policy. We then provide theoretical bounds for the convergence of the learned representation.

4.1 PROBLEM DEFINITION

We formulate the problem of learning the Laplacian representation while the policy is updating as
a sequence of GDOs varying in time. To break the symmetry in GDO we apply the stop gradient
operator similar to ALLO. We assume the policy π0 is initialized randomly and some learning

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

algorithm updates the policy in T discrete time steps producing a policy πt after each update.
Learning the Laplacian representation can then be represented by the sequence of objectives as
follows

min
u∈C(t)

L(t)(u) =

min
u∈C(t)

d∑
i=1

⟨ui, L
(t)ui⟩H(t) + b

d∑
j=1

j−1∑
k=1

(⟨uj , [[uk]]⟩H(t))
2
+

b

2

d∑
i=1

(⟨ui, ui⟩H(t) − 1)
2

(7)

where C(t) ⊂ Rd|S| is a convex and closed set. We write Lπt andHπt as L(t) andH(t) for simpler
notation. In addition, we assume that b > 0. We refer to this objective as the asymmetric graph
drawing objective (AGDO).1

Note that for a fixed policy, AGDO is a special case of ALLO with β = 0. Another similarity
between AGDO and ALLO is that AGDO can be viewed as solving ALLO with added regularization

for the dual parameters β. Adding a regularization term −Γ
∑d

j=1

∑j
k=1

β2
jk

2 to equation 6 yields a

closed form solution for maximization over β with β∗
jk(u) =

⟨uj ,[[uk]]⟩H(t)−δjk
Γ . Substituting reduces

equation 6 to

min
u∈Rd|S|

d∑
i=1

⟨ui, L
(t)ui⟩H(t) + (b+

1

2Γ
)

d∑
j=1

j∑
k=1

(⟨uj , [[uk]]⟩H(t) − δjk)
2 (8)

which is the same as ALLO (β = 0) with b replaced with b+ 1
2Γ which is also a constant hyperpa-

rameter.

We lay the assumptions for our theoretical analysis.

Assumption 1. For each policy πt the induced Markov chain is ergodic and has a unique stationary
distribution with non-zero entries, i.e min

t
min
s∈S

ρπt(s) = ρmin > 0.

Assumption 2. For two consecutive time steps t and t + 1, the policies πt and πt+1, satisfy
max
s∈S

∑
a∈A |πt(a|s) − πt+1(a|s)| ≤ δ

(t)
π . Additionally, the bound δ

(t)
π on the policy drift satisfies∑T

t=0 δ
(t)
π = O(f(T)) for some sub-linear function f .

Assumption 1 guarantees that the induced probability measure ρ(t) assigns a non-zero value to every
state. Note that going from ρ(t)(s) = 0 to ρ(t+1)(s) > 0 is equivalent to adding a node to the graph
which would make the dimensions of the spaces inconsistent. A more general assumption can be
made that ρ(t+1) is absolutely continuous with respect to ρ(t), i.e. ρ(t)(s) = 0 =⇒ ρ(t+1)(s) = 0,
in which case, the same analysis can be done to the set S ′ = {s ∈ S : ρ(t+1)(s) ̸= 0}. Assumption 2
assumes the drift in the policy caused by the policy learning algorithm is bounded. This bounded
drift assumption is valid for many policy learning algorithms in RL, such as trust region policy
optimization (TRPO) (Schulman, 2015) and proximal policy optimization (PPO) (Schulman et al.,
2017). In addition, we require the learning algorithm to converge to some policy such that the total
drift is sub-linear in T .

4.2 CONVERGENCE ANALYSIS OF AGDO

We first define the function g
(t)
i : Rd|S| → R|S|, which is the gradient of equation 7 with respect to

ui taking into account the stop gradient operator, as

g(t)ui
(u) =

2L(t)ui + 2b
i−1∑
j=1

⟨ui, [[uj]]⟩H(t) [[uj]] + 2b (⟨ui, ui⟩H(t) − 1)ui

⊙ ρ (9)

1Here we have a slightly different application of the stop gradient operator than the objective proposed by
Gomez et al. (2023). The penalty term for the norm of ui does not have the stop gradient operator which does
not change the gradient but ensures the term is propagated to the Hessian for the stability analysis. We provide
more discussion in A.2

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where ⊙ is the Hadamard product. The vectors ui are updated using the update equation

u
(t+1)
i ← ProjC(t)(u

(t)
i − ηg(t)ui

(u(t))) = u
(t)
i − ηG(t)

ui
(u

(t)
i) (10)

where η > 0 is the learning rate, ProjC(t) is the projection to C(t), and G
(t)
ui is the gradient map defined

as G(t)
ui (ui) =

1
η (ui − ProjC(t)(u

(t)
i − ηg

(t)
ui (u

(t))).

We show in Lemma 1 that for a fixed policy, if C(t) = Rd|S|, the equilibrium points of performing
gradient descent to minimize the function L(t) defined in equation 7 correspond to permutations of
the eigenvectors. We defer all detailed proofs to Appendix A.

Lemma 1. If C(t) = Rd|S|, u∗(t) is an equilibrium point of minimizing L(t) in equation 7 under

gradient descent dynamics, iff u∗(t)
i = e

(t)
σ(i)mi, and ⟨u∗(t)

i , u
∗(t)
i ⟩H(t) = mi

(
1−

λ
(t)

σ(i)

b

)
for some

permutation σ : S → S where mi ∈ {0, 1}, i.e. zero or more vectors u∗(t)
i can be zero.

This result is similar to Lemma 2 derived by Gomez et al. (2023) with the norm of the vectors being
different and the fact that vectors can be zero. However, we show in Theorem 1 that only the identity
permutation with non-zero vectors corresponds to a stable equilibrium under proper selection of
hyperparameters.

Theorem 1. The only stable equilibrium point from Lemma 1 minimizing the objective L(t) in
equation 7 under gradient descent dynamics is the one corresponding to the identity permutation
with none of the vectors being zero, under an appropriate selection of the barrier coefficient b, if the
highest eigenvalue multiplicity is 1.

4.3 CONVERGENCE ANALYSIS OF ONLINE AGDO

In this section, we present a theoretical analysis of the convergence of the online PGD algorithm. We
first begin by establishing certain properties of the PGD algorithm.

We consider the case where the vectors u(t)
i are constrained such that their norm inH(t) is bounded.

We define C(t) as C(t) = {u ∈ Rd|S| : ⟨ui, ui⟩H(t) ≤ 2}. This set has two interesting properties.
First, it includes all equilibrium points for all b > 1 (as established in Lemma 1). Second, the gradient
function g(t) defined in equation 9 is Lipchitz continuous over C(t). The following result establishes
this property.

Proposition 1. The loss function Lt defined in equation 7 is α-smooth with Lipschitz continuous
gradient g(t) such that

∥g(t)(u)− g(t)(u′)∥ ≤ α∥u− u′∥ (11)

for any u ∈ C(t) with α = 2 + 14b+ 4bd.

Next, we present some preliminary results, which we will later use in the convergence analysis. In
Lemma 2, we characterize the drift in the policy-induced Markov chain, the Laplacian operator, and
the loss function.

Lemma 2. Under Assumptions 1 and 2, for any u ∈ R|S|, we have the following:

(a) ∥P (t+1) − P (t)∥∞ ≤ δ
(t)
π

(b) ∥ρ(t+1) − ρ(t)∥∞ ≤ δ
(t)
ρ = κ(t)δ

(t)
π

(c) ∥(ρ(t+1) ⊗ 1)⊙ L
(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙ L
(t)

ρ(t)∥ ≤ δ
(t)
L =

√
|S|
(
δ
(t)
π + δ

(t)
ρ

)
+ δ

(t)
ρ

(d)
∣∣Lt+1(u)− Lt(u)

∣∣ ≤ δ
(t)
L =

2dδ
(t)
L

ρmin
+

8bδ
(t)
ρ

ρ2min

;∀u ∈ C(t)

where κ(t) is a condition number on the induced Markov chain by π(t).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Note that Lemma 2(b) follows directly from previous work on the perturbation analysis of stationary
distributions of Markov chains (Haviv & Van der Heyden, 1984; Funderlic & Meyer Jr, 1986;
Cho & Meyer, 2000). For example, Cho & Meyer (2000) gives the following condition number
κ(t) = 1

2max
j

max
i̸=j

mij

mjj
, where mij is the mean first passage time from state i to state j and mjj is the

mean return time to state j. For other possible options of condition numbers, review the comparative
study by Cho & Meyer (2001).

Algorithm 1 Online PGD of AGDO

1: Input: Initial policy π0, learning rate η, initial vector u(0), policy learning algorithm A
2: for t = 1 to T do
3: Interact with the environment and add transitions to the replay buffer
4: u

(t+1)
i ← ProjC(t)(u

(t)
i − ηg

(t)
ui (u

(t)))
5: Get πt by updating πt−1 using A
6: end for

Finally, we show in Theorem 2 that running online projected gradient descent on AGDO achieves
ergodic convergence.

Theorem 2. Under Assumptions 1 and 2, running Algorithm 1 on the sequence of losses as defined

in equation 7 for T time steps, with a constant learning rate η =
1

α
, we have,

Et∼Uniform{1,2,...,T}

[
∥G(t)(u(t))∥2

]
≤ 2α

T

(
L(1)(u(1))− L∗ +

T∑
t=1

δ
(t)
L

)
= O

(
f(T)

T

)
(12)

where L∗ is the minimum value L(t) can take. Moreover, the OPGD algorithm (Algorithm 1) under
the time-varying loss function (equation 7) asymptotically converges to the critical point.

5 EMPIRICAL ANALYSIS

We evaluate the accuracy of the proposed method in the fixed policy setting and the online setting.
We evaluate the importance of different components of the algorithm as well.

Experiments Setup We consider the grid world environments shown in Figure 5. For each
experiment, a fixed target location is sampled uniformly at random and the agent receives a reward of
+1 if the agent reaches the location. At the start of each episode or when the agent reaches the target,
the new agent location is sampled uniformly at random. We consider a maximum episode length of
1000 steps. We follow the same setting as Gomez et al. (2023), where we set d = 11 and use the
(x, y) coordinates as input to the encoder network, a fully connected neural network with 3 layers
of size 256 each. We start training the encoder and the agent after collecting 104 samples and run
the experiment until 2× 105 samples have been collected. We use a fixed value of 5 for the barrier
coefficient. The encoder network is trained using an Adam optimizer with a learning rate of 10−3.
For each collected sample, 10 batches are sampled to update the encoder. For training the agent, we
use proximal policy optimization (PPO) (Schulman et al., 2017) as the training algorithm with an
initial clipping parameter 0.2 unless otherwise specified. We add an entropy regularization term to
discourage deterministic policies. To simulate assumption 2, we schedule the clipping parameter to
decrease from 0.2 to 0.01 starting from step 105 until the end of the training. For the full experimental
setup, please refer to Appendix B. In all figures, we report the average cosine similarity of all
dimensions of the eigenvectors averaged across 5 seeds with the 95% confidence interval highlighted.

Eigenvalue Accuracy (Fixed Setting) We start by comparing the performance of AGDO to ALLO
in the fixed uniform policy setting. In Figure 2, we show that the average cosine similarity of AGDO
and ALLO is almost identical for the same initial seeds. This result is similar to the analysis by
Gomez et al. (2023) that showed that ALLO with β = 0 achieved similar results to ALLO.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

C
os

in
e

Si
m

ila
ri

ty

AGDO
ALLO

(a) GridRoom-1

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

C
os

in
e

Si
m

ila
ri

ty

AGDO
ALLO

(b) GridMaze-11

Figure 2: Average cosine similarity between the true Laplacian representation and the learned
representation using AGDO and ALLO for a fixed uniform policy.

Eigenvalue Accuracy (Online Setting) Figure 3 shows the results of optimizing both AGDO and
ALLO in an online setting where the agent’s policy is updated with the PPO loss. Similar to the
fixed setting, the results of AGDO and ALLO are almost identical for the same set of seeds. In
addition, for all environments, the average similarity trends upward as the training steps increase.
For environments with a large number of states (GridRoom-1 and GridRoom-4) we notice that the
accuracy is slightly lower at earlier stages of the training, which is coherent with our theoretical
analysis (see Lemma 2 and Theorem 2) that the drift increases with the number of states, resulting in
slower convergence. However, this can be mitigated by imposing stricter bounds on the drift in the
policy learning algorithm.

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

C
os

in
e

Si
m

ila
ri

ty

GridRoom-1
GridRoom-4
GridMaze-9
GridMaze-11

(a) AGDO

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

C
os

in
e

Si
m

ila
ri

ty

GridRoom-1
GridRoom-4
GridMaze-9
GridMaze-11

(b) ALLO

Figure 3: Average cosine similarity between the true Laplacian representation and the learned
representation using AGDO and ALLO for a ppo policy.

Ablation Study In this study, we aim to analyze three points; (1) the importance of the drift bound
assumption, (2) the effect of the number of encoder update steps per sample collected, and (3) the
effect of noise caused by sampling from the replay buffer when the policy was different.

To assert the importance of the bounded drift assumption, we compare running PPO with different
initial clipping parameters, vanilla policy gradient (VPG) Sutton et al. (1999), and deep Q-network
(DQN) Mnih et al. (2015). First note that VPG is equivalent to PPO without clipping. We can see
in Figure 4a that the lower the clipping value is, i.e. the drift bound between policies is smaller,
the higher the accuracy for the learned representation is. However, a small drift might affect the
performance of the learned policy. In addition, for DQN the change in the policy distribution can
be drastic for an ϵ−greedy policy with a small ϵ whenever the Q-network changes the estimated
optimal action in a state. As for the new estimated optimal action, the probability will shift from ϵ

|A|
to 1− ϵ. This explains why the accuracy of the learned representation for DQN is much lower than
the on-policy methods. We conclude that the bounded drift assumption is necessary for learning an
accurate representation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

In figure 4b, we analyze the effect of increasing the number of steps. We vary the number of update
steps per sample between 1 and 20. While an increase in the number of steps is expected to enhance
accuracy, our findings indicate that this is not observed. We hypothesize that this discrepancy is due
to the presence of noise, caused by sampling from the replay buffer.

To confirm the previous hypothesis, we test in Figure 4c the effect of varying the replay buffer size.
Recall that estimating the AGDO loss in equation 7 is done through sampling steps from the replay
buffer. In the online setting, the buffer would include steps from previous policies with different
stationary and transition distributions which would introduce bias to our loss estimate. However, a
small buffer size would also increase the variance of the estimate. This is confirmed by the results,
as for a buffer that holds only one episode we see a worse performance than a buffer that holds 20
episodes. On the other hand, increasing the buffer size drastically also causes accuracy to drop as the
samples used have a different distribution which can be seen for buffers with sizes 50 and 400.

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

C
os

in
e

Si
m

ila
ri

ty

PPO 0.01-0.01
PPO 0.2-0.01
DQN
VPG

(a) Effect of drift

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

C
os

in
e

Si
m

ila
ri

ty

Steps=1
Steps=5
Steps=10
Steps=20

(b) Effect of number of update steps

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

C
os

in
e

Si
m

ila
ri

ty

Episodes=1
Episodes=20
Episodes=50
Episodes=400

(c) Effect of number of replay buffer size

Figure 4: Analysis of different aspects of online AGDO. (a) The effect of bounded drift on the
accuracy of the learned. (b) The effect of the number of update steps per sample collected. (c) The
effect of the number of episodes in the replay buffer.

6 CONCLUSION

In this paper, we studied online Laplacian-based representation learning and demonstrated that it
can be effectively integrated with reinforcement learning, enabling simultaneous updates of both
representation and policy. Our theoretical analysis, under mild assumptions, shows that running the
online projected gradient descent on the Asymmetric Graph Drawing Objective achieves ergodic
convergence, ensuring that the learned representations are aligned with the underlying dynamics.
Additionally, our empirical studies reinforce these findings and give insight into the compatibility of
reinforcement learning algorithms with online representation learning. Our work opens new avenues
for enhancing representation learning in complex environments and lays out the assumptions needed
for its success. Future research could explore the adaptability of the proposed framework to various
learning methods such as linear value function approximators and options learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Andre Barreto, Will Dabney, Remi Munos, Jonathan J Hunt, Tom Schaul, Hado P van
Hasselt, and David Silver. Successor features for transfer in reinforcement learn-
ing. In Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
350db081a661525235354dd3e19b8c05-Abstract.html.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

Jiayu Chen, Vaneet Aggarwal, and Tian Lan. A unified algorithm framework for unsupervised dis-
covery of skills based on determinantal point process. Advances in Neural Information Processing
Systems, 36, 2024.

Carmen Chicone. Ordinary differential equations with applications. Springer, 2006.

Grace E Cho and Carl D Meyer. Markov chain sensitivity measured by mean first passage times.
Linear Algebra and its Applications, 316(1-3):21–28, 2000.

Grace E Cho and Carl D Meyer. Comparison of perturbation bounds for the stationary distribution of
a markov chain. Linear Algebra and its Applications, 335(1-3):137–150, 2001.

Peter Dayan. Improving generalization for temporal difference learning: The successor representation.
Neural computation, 5(4):613–624, 1993.

Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin, Pablo Samuel
Castro, and Marc G Bellemare. Proto-value networks: Scaling representation learning with
auxiliary tasks. arXiv preprint arXiv:2304.12567, 2023.

Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak mathematical journal, 23(2):
298–305, 1973.

Robert E Funderlic and CD Meyer Jr. Sensitivity of the stationary distribution vector for an ergodic
markov chain. Linear Algebra and its Applications, 76:1–17, 1986.

Michael Gimelfarb, Andre Barreto, Scott Sanner, and Chi-Guhn Lee. Risk-aware
transfer in reinforcement learning using successor features. In Advances in Neu-
ral Information Processing Systems, volume 34, pp. 17298–17310. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
90610aa0e24f63ec6d2637e06f9b9af2-Abstract.html.

Diego Gomez, Michael Bowling, and Marlos C Machado. Proper Laplacian representation learning.
arXiv preprint arXiv:2310.10833, 2023.

Moshe Haviv and Ludo Van der Heyden. Perturbation bounds for the stationary probabilities of a
finite markov chain. Advances in Applied Probability, 16(4):804–818, 1984.

Yuu Jinnai, Jee Won Park, Marlos C Machado, and George Konidaris. Exploration in reinforcement
learning with deep covering options. In International Conference on Learning Representations,
2019.

Martin Klissarov and Marlos C. Machado. Deep Laplacian-based options for temporally-extended
exploration. In Proceedings of the 40th International Conference on Machine Learning, pp.
17198–17217. PMLR, July 2023. URL https://proceedings.mlr.press/v202/
klissarov23a.html.

Yehuda Koren. Drawing graphs by eigenvectors: theory and practice. Computers & Mathematics
with Applications, 49(11-12):1867–1888, 2005.

Tejas D Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J Gershman. Deep successor
reinforcement learning. arXiv preprint arXiv:1606.02396, 2016.

11

https://proceedings.neurips.cc/paper/2017/hash/350db081a661525235354dd3e19b8c05-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/350db081a661525235354dd3e19b8c05-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/90610aa0e24f63ec6d2637e06f9b9af2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/90610aa0e24f63ec6d2637e06f9b9af2-Abstract.html
https://proceedings.mlr.press/v202/klissarov23a.html
https://proceedings.mlr.press/v202/klissarov23a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: Contrastive unsupervised repre-
sentations for reinforcement learning. In Proceedings of the 37th International Conference on
Machine Learning, pp. 5639–5650. PMLR, November 2020. URL https://proceedings.
mlr.press/v119/laskin20a.html.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. A Laplacian framework for option
discovery in reinforcement learning. In International Conference on Machine Learning, pp.
2295–2304. PMLR, 2017a.

Marlos C Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray
Campbell. Eigenoption discovery through the deep successor representation. arXiv preprint
arXiv:1710.11089, 2017b.

Marlos C Machado, Andre Barreto, Doina Precup, and Michael Bowling. Temporal abstraction in
reinforcement learning with the successor representation. Journal of Machine Learning Research,
24(80):1–69, 2023.

Sridhar Mahadevan. Proto-value functions: Developmental reinforcement learning. In Proceedings
of the 22nd international conference on Machine learning - ICML ’05, pp. 553–560, Bonn,
Germany, 2005. ACM Press. ISBN 978-1-59593-180-1. doi: 10.1145/1102351.1102421. URL
http://portal.acm.org/citation.cfm?doid=1102351.1102421.

Sridhar Mahadevan. Representation policy iteration. arXiv preprint arXiv:1207.1408, 2012.

Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A Laplacian framework for learning
representation and control in markov decision processes. Journal of Machine Learning Research,
8(10), 2007.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

John Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. In Proceedings of the 38th International Conference on Machine
Learning, pp. 9870–9879. PMLR, July 2021. URL https://proceedings.mlr.press/
v139/stooke21a.html.

Richard S Sutton. Between mdps and semi-mdps: Learning, planning, and representing knowledge at
multiple temporal scales. 1998.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Kaixin Wang, Kuangqi Zhou, Qixin Zhang, Jie Shao, Bryan Hooi, and Jiashi Feng. Towards better
Laplacian representation in reinforcement learning with generalized graph drawing. In Proceedings
of the 38th International Conference on Machine Learning, pp. 11003–11012. PMLR, July 2021.
URL https://proceedings.mlr.press/v139/wang21ae.html.

Yifan Wu, George Tucker, and Ofir Nachum. The Laplacian in RL: Learning representations with
efficient approximations. arXiv preprint arXiv:1810.04586, 2018.

Xin Xu, Zhenhua Huang, Daniel Graves, and Witold Pedrycz. A clustering-based graph Laplacian
framework for value function approximation in reinforcement learning. IEEE Transactions on
Cybernetics, 44(12):2613–2625, December 2014. ISSN 2168-2275. doi: 10.1109/TCYB.2014.
2311578.

Haoqi Yuan and Zongqing Lu. Robust task representations for offline meta-reinforcement learning
via contrastive learning. In Proceedings of the 39th International Conference on Machine Learning,
pp. 25747–25759. PMLR, June 2022. URL https://proceedings.mlr.press/v162/
yuan22a.html.

12

https://proceedings.mlr.press/v119/laskin20a.html
https://proceedings.mlr.press/v119/laskin20a.html
http://portal.acm.org/citation.cfm?doid=1102351.1102421
https://proceedings.mlr.press/v139/stooke21a.html
https://proceedings.mlr.press/v139/stooke21a.html
https://proceedings.mlr.press/v139/wang21ae.html
https://proceedings.mlr.press/v162/yuan22a.html
https://proceedings.mlr.press/v162/yuan22a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROOFS

A.1 PROOF OF LEMMA 1

Proof. For an equilibrium point

g(t)ui
(u∗(t)) =

2L(t)ui + 2b

i−1∑
j=1

⟨ui, uj⟩H(t)uj + 2b (⟨ui, ui⟩H(t) − 1)ui

⊙ ρ = 0,

and since ρmin > 0, we can divide each element of the vectors on both sides by ρ(s) and we get,

g(t)ui
(u∗(t)) = 2L(t)ui + 2b

i−1∑
j=1

⟨ui, uj⟩H(t)uj + 2b (⟨ui, ui⟩H(t) − 1)ui = 0,

We proceed by induction. For the base case with i = 1, we have

g(t)ui
(u∗(t)) = 2L(t)u

∗(t)
1 + 2b

(
⟨u∗(t)

1 , u
∗(t)
1 ⟩H(t) − 1

)
u
∗(t)
1 = 0

Hence, either u
∗(t)
1 = e

(t)
σ(1); for some permutation σ : S → S and −2λ(t)

σ(1) =

2b
(
⟨u∗(t)

1 , u
∗(t)
1 ⟩H(t) − 1

)
(i.e., ⟨e(t)σ(1), e

(t)
σ(1)⟩H(t) = 1−

λ
(t)

σ(1)

b) or u∗(t)
1 = 0.

Suppose now that either u∗(t)
j = e

(t)
σ(j) and ⟨e(t)σ(j), e

(t)
σ(j)⟩H(t) = 1−

λ
(t)

σ(j)

b or u∗(t)
j = 0 for all j < i

then the gradient becomes

g(t)ui
(u∗(t)) = 2L(t)u

∗(t)
i + 2b

(
⟨u∗(t)

i , u
∗(t)
i ⟩H(t) − 1

)
u
∗(t)
i +

2b

i−1∑
j=1

⟨u∗(t)
i , e

(t)
σ(j)⟩H(t)e

(t)
σ(j)1u

∗(t)
j ̸=0

= 0

Since the eigenvectors form a basis, let u∗(t)
i =

∑|S|
k=1 cike

(t)
σ(k). The gradient then becomes

g(t)ui
(u∗(t)) =

|S|∑
k=1

(
2λ

(t)
σ(k) + 2b

(
⟨u∗(t)

i , u
∗(t)
i ⟩H(t) − 1

))
cike

(t)
σ(k)

+ 2b

i−1∑
j=1

⟨u∗(t)
i , e

(t)
σ(j)⟩H(t)e

(t)
σ(j)1u

∗(t)
j ̸=0

= 0.

(13)

Since the eigenvectors form a basis, all coefficients must be zero. For j < i and u
∗(t)
j ̸= 0, we have:(

2λ
(t)
σ(j) + 2b

(
⟨u∗(t)

i , u
∗(t)
i ⟩H(t) − 1

))
cij + 2b⟨u∗(t)

i , e
(t)
σ(j)⟩H(t) = 0 (14)

Now note that

cij =
⟨u∗(t)

i , e
(t)
σ(j)⟩H(t)

⟨e(t)σ(j), e
(t)
σ(j)⟩H(t)

.

Equation 14 then becomes2λ
(t)
σ(j) + 2b

(
⟨u∗(t)

i , u
∗(t)
i ⟩H(t) − 1

)
⟨e(t)σ(j), e

(t)
σ(j)⟩H(t)

+ 2b

 ⟨u∗(t)
i , e

(t)
σ(j)⟩H(t) = 0

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Reordering the terms, we have:2λ
(t)
σ(j) + 2b

(
⟨u∗(t)

i , u
∗(t)
i ⟩H(t) − 1 + ⟨e(t)σ(j), e

(t)
σ(j)⟩H(t)

)
⟨e(t)σ(j), e

(t)
σ(j)⟩H(t)

 ⟨u∗(t)
i , e

(t)
σ(j)⟩H(t) = 0.

Substituting ⟨e(t)σ(j), e
(t)
σ(j)⟩H(t) = 1−

λ
(t)

σ(j)

b , we have:2b⟨u∗(t)
i , u

∗(t)
i ⟩H(t)

⟨e(t)σ(j), e
(t)
σ(j)⟩H(t)

 ⟨u∗(t)
i , e

(t)
σ(j)⟩H(t) = 0,

which implies that either ⟨u∗(t)
i , e

(t)
σ(j)⟩H(t) = cij = 0 or

2b⟨u∗(t)
i ,u

∗(t)
i ⟩H(t)

⟨e(t)
σ(j)

,e
(t)

σ(j)
⟩H(t)

= 0, but the second

condition is only true if u∗(t)
i = 0 which implies that ⟨u∗(t)

i , e
(t)
σ(j)⟩H(t) is always zero. For k ≥ i in

equation 13 or u∗(t)
k = 0 (

2λ
(t)
σ(k) + 2b

(
⟨u∗(t)

i , u
∗(t)
i ⟩H(t) − 1

))
cik = 0

which implies that either cik = 0 or ⟨u∗(t)
i , u

∗(t)
i ⟩H(t) = 1−

λ
(t)

σ(k)

b . Note that cik and cij can both be
simultaneously non-zero only if λ(t)

σ(k) = λ
(t)
σ(j), i.e, u∗(t)

i is a linear combination of eigenvectors for

the same eigenvalue. Thus, we conclude that either u∗(t)
i = e

(t)
σ(i) and ⟨e(t)σ(i), e

(t)
σ(i)⟩H(t) = 1−

λ
(t)

σ(i)

b

or u∗(t)
i = 0. For non-zero, u∗(t)

i it is required that b > λ
(t)
σ(i).

A.2 PROOF OF THEOREM 1

Proof. Let

g(t)(u) =


g
(t)
1 (u)

g
(t)
2 (u)

...
g
(t)
d (u)

 , (15)

where g
(t)
1 is defined in equation 9.

We start by computing the Jacobian of g(t) while applying the stop gradient operator. The matrix
J(t) = J(g(t)) is defined such that each row of the matrix corresponds to the gradient of an entry
of g(t). We choose to apply the stop gradient operator when computing the Jacobian as optimizing
the loss functions with the stop gradient operator is analogous to solving for ui’s sequentially while
fixing uj where j < i as shown by Gomez et al. (2023). Analyzing the stability of those sequential
losses would not include a cross gradient term between ui and uj .

To determine the stability of the equilibrium points, we analyze eigenvalues of the Jacobian evaluated
at them (Chicone, 2006). Let mi = 1

u
∗(t)
i ̸=0

, and ρ
(t)
diag a diagonal matrix where ρ(t)diag(s, s) = ρ(t)(s)

then

J
(t)
ij (u

(t)) = (∇ui
g(t)uj

(u)⊤)⊤
2L

(t)

ρ(t) ⊙ (ρ(t) ⊗ 1) + 2b
(
⟨u(t)

i , u
(t)
i ⟩H(t) − 1

)
ρ
(t)
diag+

2b

(
2(u

(t)
i ⊙ ρ(t))⊗ (u

(t)
i ⊙ ρ(t)) +

i−1∑
k=1

(u
(t)
k ⊙ ρ(t))⊗ (u

(t)
k ⊙ ρ(t))

) , if i = j

0 , otherwise

(16)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Substituting the equilibrium points with the form derived in Lemma 1, i.e u
∗(t)
i = e

(t)
σ(i)mi,

⟨u(t)
i , u

(t)
i ⟩H(t) =

(
1−

λ
(t)

σ(i)

b

)
mi, and ⟨u(t)

i , u
(t)
j ⟩H(t) = 0 for i ̸= j we get,

J
(t)
ij (u

∗(t)) = (∇ui
g(t)uj

(u
∗(t)
i)⊤)⊤

=



2L
(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)− 2λ
(t)
σ(i)ρ

(t)
diagmi + 2bρ

(t)
diag(mi − 1)+

4b(e
(t)
σ(i) ⊙ ρ(t))⊗ (e

(t)
σ(i) ⊙ ρ(t))mi+

2b

i−1∑
k=1

(e
(t)
σ(k) ⊙ ρ(t))⊗ (e

(t)
σ(k) ⊙ ρ(t))mk

, if i = j

0 , otherwise

(17)

Note that J(t) is a triangular block matrix and its eigenvalues are the union of the diagonal
blocks. We proceed to analyze the conditions for the block matrices to be positive definite, i.e
when ⟨vi,J(t)

ii (u
∗(t))vi⟩ is greater than zero ∀vi ∈ {v ∈ R|S| : v ̸= 0}. Since the Lapla-

cian operator is self-adjoint, the eigenvectors form a basis for R|S| , we can represent each vi
as a linear combination of eigenvectors. Let vi =

∑|S|
k=1 cike

(t)
σ(k) in ⟨vi,J(t)

ii (u
∗(t))vi⟩ we get

⟨
∑|S|

k=1 cike
(t)
σ(k),J

(t)
ii (u

∗(t))
∑|S|

k=1 cike
(t)
σ(k)⟩.

We first compute J
(t)
ii (u

∗(t))
∑|S|

k=1 cke
(t)
σ(k) by replacing Jii(u

∗(t))(t) with equation 17, we get

J
(t)
ii (u

∗(t))

|S|∑
k=1

cke
(t)
σ(k) =

(
2L

(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)− 2λ
(t)
σ(i)ρ

(t)
diagmi + 2bρ

(t)
diag(mi − 1)

) |S|∑
k=1

cike
(t)
σ(k)+4b(e

(t)
σ(i) ⊙ ρ(t))⊗ (e

(t)
σ(i) ⊙ ρ(t))mi + 2b

i−1∑
j=1

(e
(t)
σ(j) ⊙ ρ(t))⊗ (e

(t)
σ(j) ⊙ ρ(t))mk

 |S|∑
k=1

cike
(t)
σ(k)

(18)

Note that (
(e

(t)
σ(j) ⊙ ρ(t))⊗ (e

(t)
σ(j) ⊙ ρ(t))

)
e
(t)
σ(k) = 0 ∀k ̸= j

and (
(e

(t)
σ(j) ⊙ ρ(t))⊗ (e

(t)
σ(j) ⊙ ρ(t))

)
e
(t)
σ(j) = ⟨e

(t)
σ(j), e

(t)
σ(j)⟩H(t)(e

(t)
σ(j) ⊙ ρ(t))

=

1−
λ
(t)
σ(j)

b

 (e
(t)
σ(j) ⊙ ρ(t)).

Also note that 2L
(t)

ρ(t) ⊙ (ρ(t) ⊗ 1) is a matrix with
(
2L

(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)
)
(s, s′) =

L(s, s′)ρ(t)(s′)ρ(t)(s), and therefore for any x ∈ R|S|

(
2L

(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)
)
x = 2(Lx)⊙ ρ(t). (19)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Substituting in equation 18 we get,

J
(t)
ii (u

∗(t))

|S|∑
k=1

cke
(t)
σ(k) =

|S|∑
j=1

(
2
(
λ
(t)
σ(j) − λ

(t)
σ(i)mi

)
+ 2b(mi − 1)

)
cij(e

(t)
σ(j) ⊙ ρ(t))

+ 4bcii(e
(t)
σ(i) ⊙ ρ(t))mi − 4ciiλ

(t)
σ(i)(e

(t)
σ(i) ⊙ ρ(t))mi

+

i−1∑
j=1

2bcij(e
(t)
σ(j) ⊙ ρ(t))mj −

i−1∑
j=1

2cijλ
(t)
σ(j)(e

(t)
σ(j) ⊙ ρ(t))mj

(20)

Now we reduced J
(t)
ii (u

∗(t))
∑|S|

k=1 cke
(t)
σ(k) to a linear combination (e

(t)
σ(1) ⊙ ρ(t), e

(t)
σ(2) ⊙

ρ(t), ..., e
(t)
σ(|S|)⊙ρ(t)) with some coefficients (a1, a2, ..., a|S|). Since ⟨cije(t)σ(j), akcike

(t)
σ(k)⊙ρ(t)⟩ =

akcikcij⟨e(t)σ(j), e
(t)
σ(k)⟩H(t) and ⟨e(t)σ(j), e

(t)
σ(k)⟩H(t) = 0 for j ̸= k we have

⟨
|S|∑
k=1

cike
(t)
σ(k),J

(t)
ii (u

∗(t))

|S|∑
k=1

cike
(t)
σ(k)⟩ =

|S|∑
k=1

akc
2
ik⟨e

(t)
σ(k), e

(t)
σ(k)⟩H(t) (21)

Since ⟨e(t)σ(k), e
(t)
σ(k)⟩H(t) > 0 and c2ik ≥ 0, ak must be positive ∀k for J(t)

ii (u
∗(t)) to be positive

definite. We group the conditions from equation 20 that are required to be positive below
2b(mi +mj − 1)− 2λ

(t)
σ(i)mi + 2λ

(t)
σ(j)(1−mj) ∀1 ≤ j < i ≤ d

6bmi + 2λ
(t)
σ(i) − 6λ

(t)
σ(i)mi − 2b ∀1 ≤ i ≤ d

2(λ
(t)
σ(j) − λ

(t)
σ(i)mi) + 2b (mi − 1) ∀1 ≤ i < j ≤ |S|.

(22)

If any u
∗(t)
i = 0, then the third condition becomes 2λ(t)

σ(j) − 2b which is always negative under the
selection of hyperparameters discussed in Lemma 1, hence it is unstable. For equilibrium points
where all u∗(t)

i are non-zero, i.e mi = 1∀ i, the conditions becomes
2b− 2λ

(t)
σ(i) ∀1 ≤ j < i ≤ d

4b− 4λ
(t)
σ(i) ∀1 ≤ i ≤ d

2(λ
(t)
σ(j) − λ

(t)
σ(i)) ∀1 ≤ i < j ≤ |S|.

(23)

The third condition indicates that 2(λ(t)
σ(j)−λ

(t)
σ(i)) has to be positive which is only true for the identity

permutation and if the maximum eigenvalue multiplicity of the Laplacian is 1. The second and first
conditions imply that b− λ

(t)
σ(i) must be positive which is true when b > λ

(t)
σ(i)∀ 1 ≤ i ≤ |S| which is

already a requirement of Lemma 1.

A.3 PROOF OF PROPOSITION 1

Proof. To show that the gradient function g(t) is Lipchitz continuous we proceed to show that the
Spectral norm of the Jacobian is bounded ∀u ∈ C(t). Notice that the Jacobian defined in equation 16
is a block triangular matrix, hence its singular values are the combined singular values of the block
matrices J(t)

ii (u), and ∥J(t)(u)∥ = maxi∥J(t)
ii (u)∥. By the triangle inequality we have,

∥J(t)
ii (u)∥ ≤

∥∥∥2L(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)
∥∥∥+ ∥∥∥2b(⟨u(t)

i , u
(t)
i ⟩H(t) − 1

)
ρ
(t)
diag

∥∥∥+∥∥∥∥∥4b(u(t)
i ⊙ ρ(t))⊗ (u

(t)
i ⊙ ρ(t)) + 2b

i−1∑
k=1

∥∥∥∥∥∥∥∥(u(t)
k ⊙ ρ(t))⊗ (u

(t)
k ⊙ ρ(t))

∥∥∥
(24)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We start by bounding the first term, by equation 19 we know that for any vector x ∈ R|S|,(
2L

(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)
)
x = 2(Lx)⊙ ρ(t). For any x ∈ R|S| with ∥x∥ = 1

∥∥∥(L(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)
)
x
∥∥∥ =

∥∥∥(Lx)⊙ ρ(t)
∥∥∥ =

√
⟨(Lx)⊙ ρ(t), (Lx)⊙ ρ(t)⟩

=

√∑
s∈S

((Lx)(s))2ρ(t)(s)2 ≤
√∑

s∈S
((Lx)(s))2ρ(t)(s)

=
√
⟨(Lx), (Lx)⟩H(t) = ∥Lx∥H(t) ≤ ∥L∥H(t) ∥x∥H(t) ≤ ∥L∥H(t) .

Therefore, ∥∥∥(2L(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)
)
u
∥∥∥ =

∥∥∥2(Lu)⊙ ρ(t)
∥∥∥ ≤ 2 ∥L∥H(t) = 2. (25)

For the second term, since ∥ρ(t)diag∥ ≤ 1 and ⟨u(t)
i , u

(t)
i ⟩H(t) ≤ 2, we have∥∥∥2b(⟨u(t)

i , u
(t)
i ⟩H(t) − 1

)
ρ
(t)
diag

∥∥∥ ≤ 2b
∥∥∥⟨u(t)

i , u
(t)
i ⟩H(t)ρ

(t)
diag

∥∥∥+ 2b
∥∥∥ρ(t)diag

∥∥∥ ≤ 4b+ 2b = 6b. (26)

For the remaining terms, note that for any x ∈ R|S| with ∥x∥ = 1,∥∥∥((u(t)
i ⊙ ρ(t))⊗ (u

(t)
i ⊙ ρ(t))

)
x
∥∥∥ =

∥∥∥⟨ui, x⟩H(t)(u
(t)
i ⊙ ρ(t))

∥∥∥ ≤ ∥x∥∥ui∥2H(t) ≤ 2. (27)

Combining equations 25, 26, and 27 in equation 24 we get

∥J(t)
ii (u)∥ ≤ α = 2 + 14b+ 4bd.

A.4 PROOF OF LEMMA 2

Proof for Lemma 2 (a)

Proof. We denote A(i, :) as the i-th row of the matrix A.∥∥∥P (t+1) − P (t)
∥∥∥
∞

= max
s∈S

∥∥∥P (t+1)(s, :)− P (t)(s, :)
∥∥∥
1

= max
s∈S

∥∥∥∥∥∑
a∈A

(π(t+1)(a|s)− π(t)(a|s))T (s, a, :)

∥∥∥∥∥
1

(i)
≤ max

s∈S

∑
a∈A

∣∣∣π(t+1)(a|s)− π(t)(a|s)
∣∣∣ ∥T (s, a, :)∥1

(ii)
= max

s∈S

∑
a∈A

∣∣∣π(t+1)(a|s)− π(t)(a|s)
∣∣∣ = δ(t)π ,

where (i) is by the triangle inequality, and (ii) from the fact that ∥T (s, a, :)∥1 = 1.

Proof for Lemma 2 (c)

Proof. First note that the elements of the matrix (ρ(t) ⊗ 1)⊙ L
(t)

ρ(t) are defined as

(ρ(t) ⊗ 1)⊙ L
(t)

ρ(t)(s, s
′) = ρ(t)(s)1s=s′ − ρ(t)(s)W (t)(s, s′)ρ(t)(s′)

= ρ(t)(s)1s=s′ −
1

2
P (t)(s, s′)ρ(t)(s)− 1

2
P (t)(s′, s)ρ(t)(s′).

Hence, by applying the triangle inequality, we have

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

∥∥∥(ρ(t+1) ⊗ 1)⊙ L
(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙ L
(t)

ρ(t)

∥∥∥
=
∥∥∥ρ(t+1)

diag − ρ
(t)
diag − (ρ(t+1) ⊗ 1)⊙W

(t+1)

ρ(t+1) + (ρ(t) ⊗ 1)⊙W
(t)

ρ(t)

∥∥∥
≤
∥∥∥ρ(t+1)

diag − ρ
(t)
diag

∥∥∥+ ∥∥∥(ρ(t+1) ⊗ 1)⊙W
(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙W
(t)

ρ(t)

∥∥∥
≤ δ(t)ρ +

∥∥∥(ρ(t+1) ⊗ 1)⊙W
(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙W
(t)

ρ(t)

∥∥∥
≤ δ(t)ρ +

1

2

∥∥∥(ρ(t+1) ⊗ 1)⊙ P (t+1) − (ρ(t) ⊗ 1)⊙ P (t)
∥∥∥

+
1

2

∥∥∥∥((ρ(t+1) ⊗ 1)⊙ P (t+1) − (ρ(t) ⊗ 1)⊙ P (t)
)⊤∥∥∥∥

And since ∥A⊤∥ = ∥A∥ we have∥∥∥(ρ(t+1) ⊗ 1)⊙ L
(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙ L
(t)

ρ(t)

∥∥∥
≤ δ(t)ρ +

∥∥∥(ρ(t+1) ⊗ 1)⊙ P (t+1) − (ρ(t) ⊗ 1)⊙ P (t)
∥∥∥ (28)

Now we proceed to bound the second term, adding and subtracting (ρ(t+1) ⊗ 1)⊙ P (t) and applying
the triangle inequality we have∥∥∥(ρ(t+1) ⊗ 1)⊙ P (t+1) − (ρ(t) ⊗ 1)⊙ P (t)

∥∥∥
≤
∥∥∥(ρ(t+1) ⊗ 1)⊙ (P (t+1) − P (t))

∥∥∥+ ∥∥∥((ρ(t+1) ⊗ 1)− ρ(t) ⊗ 1))⊙ P (t)
∥∥∥

(i)
≤
√
|S|max

s∈S

∥∥∥ρ(t+1)(s)
(
P (t+1)(s, :)− P (t)(s, :)

)∥∥∥
1

+
√
|S|max

s∈S

∥∥∥(ρ(t+1)(s)− ρ(t)(s)
)
P (t)(s, :)

∥∥∥
1

=
√
|S|
∥∥∥ρ(t+1)

∥∥∥
∞

max
s∈S

∥∥∥P (t+1)(s, :)− P (t)(s, :)
∥∥∥
1

+
√
|S|
∥∥∥ρ(t+1) − ρ(t)

∥∥∥
∞

max
s∈S

∥∥∥P (t)(s, :)
∥∥∥
1

(ii)
≤
√
|S|
(
δ(t)π + δ(t)ρ

)
where (i) stems from the identity ∥A∥ ≤

√
n∥A∥∞ for the n × n matrix A and (ii) follows from∥∥ρ(t+1)

∥∥
∞ ≤ 1,

∥∥P (t)(s, :)
∥∥
1
= 1, and Lemma 2(a).

Proof for Lemma 2 (d)

Proof. Recall that the loss function is given by:

L(t)(u) =

d∑
i=1

⟨ui, L
(t)ui⟩H(t) + b

d∑
j=1

j−1∑
k=1

(⟨uj , [[uk]]⟩H(t))
2
+

b

2

d∑
i=1

(⟨ui, ui⟩H(t) − 1)
2 (29)

We are interested in finding a bound for the difference:

∆L(t)(u) = |L(t+1)(u)− L(t)(u)|. (30)

The first term in the loss function is:
d∑

i=1

⟨ui, L
(t)ui⟩H(t) . (31)

Substituting the inner product and applying the triangle inequality, we have the following:

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

∣∣∣∣∣
d∑

i=1

⟨ui, L
(t+1)ui⟩H(t+1) −

d∑
i=1

⟨ui, L
(t)ui⟩H(t)

∣∣∣∣∣ ≤
d∑

i=1

∣∣∣((u⊤
i ⊙ ρ(t+1)⊤)L

(t+1)

ρ(t+1)(ui)− (u⊤
i ⊙ ρ(t)

⊤
)L

(t)

ρ(t)(ui)
)∣∣∣ . (32)

The above expression can be re-written as follows:

d∑
i=1

∣∣∣(u⊤
i

(
(ρ(t+1) ⊗ 1)⊙ L

(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙ L
(t)

ρ(t)

)
ui

)∣∣∣ . (33)

From Lemma 2(c),
∥∥∥(ρ(t+1) ⊗ 1)⊙ L

(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙ L
(t)

ρ(t)

∥∥∥ ≤ δ
(t)
L . Thus, we have:

d∑
i=1

∣∣∣(u⊤
i

(
(ρ(t+1) ⊗ 1)⊙ L

(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙ L
(t)

ρ(t)

)
ui

)∣∣∣ ≤ δ
(t)
L

d∑
i=1

∥ui∥2 (34)

The difference in the regularization terms is:∣∣∣∣∣∣b
d∑

j=1

j−1∑
k=1

(
(⟨uj , [[uk]]⟩H(t+1))

2 − (⟨uj , [[uk]]⟩H(t))
2
)
+

b

2

d∑
j=1

(
(⟨uj , uj⟩H(t+1) − 1)

2 − (⟨uj , uj⟩H(t) − 1)
2
)∣∣∣∣∣∣ .

(35)

Using the rule x2 − y2 = (x+ y) · (x− y) and applying the triangle inequality, we can rewrite the
above expression as follows:

b

d∑
j=1

j−1∑
k=1

|⟨uj , [[uk]]⟩H(t+1) + ⟨uj , [[uk]]⟩H(t) | |⟨uj , [[uk]]⟩H(t+1) − ⟨uj , [[uk]]⟩H(t) |+

b

2

d∑
j=1

|⟨uj , uj⟩H(t+1) + ⟨uj , uj⟩H(t) − 2| |(⟨uj , uj⟩H(t+1) − ⟨uj , uj⟩H(t))|

≤b
d∑

j=1

j−1∑
k=1

|⟨uj , [[uk]]⟩H(t+1) + ⟨uj , [[uk]]⟩H(t) | |(⟨uj , [[uk]]⟩H(t+1) − ⟨uj , [[uk]]⟩H(t))|+

b

2

d∑
j=1

|⟨uj , uj⟩H(t+1) + ⟨uj , uj⟩H(t) | |(⟨uj , uj⟩H(t+1) − ⟨uj , uj⟩H(t))|

(36)

Note that
|⟨uj , [[uk]]⟩H(t+1) + ⟨uj , [[uk]]⟩H(t) | ≤ 2∥uj∥ · ∥[[uk]]∥ (37)

and that

|⟨uj , [[uk]]⟩H(t+1) − ⟨uj , [[uk]]⟩H(t) | =

∣∣∣∣∣∑
s∈S

uj(s)(ρ
(t+1)(s)− ρ(t)(s))[[uk]](s)

∣∣∣∣∣
≤ ∥uj∥ · ∥[[uk]]∥ · ∥ρ(t+1) − ρ(t)∥∞ ≤ ∥uj∥ · ∥[[uk]]∥ · δ(t)ρ

(38)

where δ
(t)
ρ is defined in Lemma 2(b).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Combining the bounds for both the first and second parts, the total bound on L(t+1)(u)− L(t)(u) is:

|L(t+1)(u)− L(t)(u)| ≤ δ
(t)
L

d∑
i=1

∥ui∥2 + b

d∑
j=1

j∑
k=1

(
2∥uj∥2∥[[uk]]∥2δ(t)ρ

)
. (39)

We have |L(t+1)(u)− L(t)(u)| ≤ δ
(t)
L , where δ

(t)
L is given by

δ
(t)
L = δ

(t)
L

d∑
i=1

∥ui∥2 + b

d∑
j=1

j∑
k=1

(
2∥uj∥2∥[[uk]]∥2δ(t)ρ

)
. (40)

We know that ∥ui∥2 ≤ 2/ρmin. Substituting this, we have

δ
(t)
L =

2dδ
(t)
L

ρmin
+

8bδ
(t)
ρ

ρ2min

. (41)

Note: From Lemma 2(b) and Lemma 2(c), we have δ
(t)
L ≤ C1δ

(t)
π and δ

(t)
ρ ≤ C2δ

(t)
π , for some

constants C1, C2. Thus, we have |L(t+1)(u)− L(t)(u)| ≤ δ
(t)
L = (C1 + C2)δ

(t)
π . This implies that

the drift in the loss function decreases with the decrease in the drift between the policies πt and πt+1.

A.5 PROOF OF THEOREM 2

Proof. Recall that the update rule for projected gradient descent in equation 10 is given by:

u
(t+1)
i ← u

(t)
i − ηG(t)

ui
(u

(t)
i),

We need to prove that the gradient norm ∥g(t)(ut)∥ asymptotically approaches zero as t→∞, which
would ensure the convergence to a critical point. In order to prove this, we will establish that the sum
of the squared gradients remains finite over time, despite the loss function being time-varying.

Recall the following assumptions:

• The gradient of the time-varying loss function L(t)(u) is Lipschitz continuous with constant
α > 0 for all t, that is,

∥g(t)(u1)−∇ug
(t)(u2)∥ ≤ α∥u1 − u2∥, ∀u1, u2.

• From Lemma 2, we have the change in the loss function from time t to time t+1 is bounded
by a constant δL, i.e.,

∥L(t+1)(u)− L(t)(u)∥ ≤ δ
(t)
L , ∀u.

• Additionally, it is easy to see that the loss function L(t)(u) is bounded from below by a
constant L∗, i.e.,

L(t)(u) ≥ L∗, ∀u, t.

The descent lemma for a time-varying loss function with Lipschitz continuous gradients and learning
rate η is given by:

L(t+1)(u(t+1)) ≤ L(t+1)(u(t))− η∥G(t)(u(t))∥2 + η2

2
α∥G(t)(u(t))∥2.

This can be rewritten as:

L(t+1)(u(t+1)) ≤ L(t)(u(t))− η∥G(t)(u(t))∥2 + η2

2
α∥G(t)(u(t))∥2 + δ

(t)
L ,

where δ
(t)
L represents the drift that accounts for the time-variation in the loss function between time t

and t+ 1. Rearranging this inequality, we obtain:

L(t+1)(u(t+1)) ≤ L(t)(u(t))−
(
η − η2

2
α

)
∥G(t)(u(t))∥2 + δ

(t)
L .

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

To ensure that the loss function decreases at each time step, except for the small drift δL, we require
that:

η − η2

2
α > 0.

This gives the condition on the learning rate:

η <
2

α
.

Thus, the learning rate must satisfy η ≤ 2
α .

At each step, we can bound the change in the loss function as follows:

L(t)(u(t))− L(t+1)(u(t+1)) ≥
(
η − η2

2
α

)
∥G(t)(u(t))∥2 − δ

(t)
L .

Summing this inequality over t = 1, 2, . . . , T , we get:
T∑

t=1

(
L(t)(u(t))− L(t+1)(u(t+1))

)
≥

T∑
t=1

((
η − η2

2
α

)
∥G(t)(u(t))∥2 − δ

(t)
L

)
.

The left-hand side of this inequality is a telescoping sum, so it simplifies to:

L(1)(u(1))− L(T+1)(u(T+1)) ≥
T∑

t=1

((
η − η2

2
α

)
∥G(t)(u(t))∥2 − δ

(t)
L

)
.

Rearranging, we get:
T∑

t=1

∥G(t)(u(t))∥2 ≤ L
(1)(u(1))− L(T+1)(u(T+1))

η − η2

2 α
+

∑T
t=1 δ

(t)
L

η − η2

2 α
.

Since the loss function L(t)(u) is bounded from below by L∗, we have:

L(1)(u(1))− L∗ ≥
T∑

t=1

((
η − η2

2
α

)
∥G(t)(u(t))∥2 − δ

(t)
L

)
.

We can further simplify this to:
T∑

t=1

∥G(t)(u(t))∥2 ≤ L
(1)(u(1))− L∗

η − η2

2 α
+

∑T
t=1 δ

(t)
L

η − η2

2 α
. (42)

Dividing both sides by T , we get

Et∼Uniform{1,2,...,T}

[
∥G(t)(u(t))∥2

]
≤ L

(1)(u(1))− L∗

T
(
η − η2

2 α
) +

∑T
t=1 δ

(t)
L

T
(
η − η2

2 α
) . (43)

Setting η = 1
α , we have

Et∼Uniform{1,2,...,T}

[
∥G(t)(u(t))∥2

]
≤ 2α

T

(
L(1)(u(1))− L∗ +

T∑
t=1

δ
(t)
L

)
. (44)

From Assumption 2, we have that the asymptotic sum of the squared gradients

lim
T→∞

∞∑
t=1

∥G(t)(u(t))∥2 remains finite, i.e., lim
T→∞

T∑
t=1

∥G(t)(u(t))∥2 <∞. Therefore, we have:

lim
t→∞

∥G(t)(u(t))∥ = 0.

This shows that the gradients asymptotically approach zero over time, proving that the projected
gradient descent algorithm applied to the time-varying loss function converges asymptotically to a
critical point.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) GridRoom-1 (b) GridRoom-4 (c) GridMaze-9 (d) GridMaze-11

Figure 5: Environments tested in experiments where the grey areas are walls.

B EXPERIMENTS SETUP

For each environment, a fixed target is sampled uniformly at random, at the beginning of the training
process. Upon reaching the target or at the beginning of an episode, the next state is sampled
uniformly at random. The matrix P̂ (t), used to compute the Laplacian L̂(t), is defined using a
weighted sum between the actual P (t) and the initial distribution, as suggested by Wu et al. (2018) to
handle episodic Markov Decision Processes (MDPs). To compute the true Laplacian representation,
we perform eigen decomposition on the matrix L̂

(t)

ρ(t) , which is equivalent to applying the Laplacian

operator in the spaceH(t).

We provide hyper-parameters for the Asymmetric Graph Drawing Objective (AGDO), Proximal
Policy Optimization (PPO), and Deep-Q Network (DQN) in Table 1.

Table 1: Hyper-parameters for AGDO, PPO, and DQN.

Hyper-Parameter AGDO PPO DQN
d 11 - -
Replay Max Episodes 20 - -
Updates per Episodic Step 5 - -
Total Training Steps 200,000 - -
Maximum Episode Length 10,000 - -
Learning Rate 0.001 3× 10−4 3× 10−4

Optimizer Adam Adam Adam
Barrier Coefficient 5 - -
Encoder Network Hidden Dimensions [256, 256, 256] - -
Batch Size 256 256 256
Replay Buffer Size - 500 steps 50,000 steps
Update Every - 500 steps 1 step
Training Batches per Update - 10 1
Actor and Critic Hidden Dimensions - [64, 64] -
Q-Network Hidden Dimensions - - [64, 64]
Discount Factor - 0.99 0.99
Entropy Coefficient - 0.01 -
Initial Clip Ratio - 0.2 -
Final Clip Ratio - 0.01 -
Initial Epsilon - - 1
Final Epsilon - - 0.1

Finally, we report the rewards achieved by the learning agents presented in section 5 in Figure 6.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0

50

100

150

200

To
ta

l R
ew

ar
d

GridRoom-1
GridRoom-4
GridMaze-9
GridMaze-11

(a) Rewards for agents in Figure 3

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0

10

20

30

40

50

60

70

To
ta

l R
ew

ar
d

PPO 0.01-0.01
PPO 0.2-0.01
DQN
VPG

(b) Rewards for agents in Figure 4a

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0

10

20

30

40

50

60

70

To
ta

l R
ew

ar
d

Steps=1
Steps=5
Steps=10
Steps=20

(c) Rewards for agents in Figure 4b

0.0 0.5 1.0 1.5 2.0
Environment Steps ×105

0

10

20

30

40

50

60

70

To
ta

l R
ew

ar
d

Episodes=1
Episodes=20
Episodes=50
Episodes=400

(d) Rewards for agents in Figure 4c

Figure 6: Average reward obtained by agents trained in section 5.

23

	Introduction
	Literature Review
	Preliminaries
	Online Learning of the Laplacian Representation
	Problem Definition
	Convergence Analysis of AGDO
	Convergence Analysis of Online AGDO

	Empirical Analysis
	Conclusion
	Proofs
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Lemma 2
	Proof of Theorem 2

	Experiments Setup

