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ABSTRACT

Representation learning plays a crucial role in reinforcement learning, especially
in complex environments with high-dimensional and unstructured states. Effec-
tive representations can enhance the efficiency of learning algorithms by improv-
ing sample efficiency and generalization across tasks. This paper considers the
Laplacian-based framework for representation learning, where the eigenvectors of
the Laplacian matrix of the underlying transition graph are leveraged to encode
meaningful features from raw sensory observations of the states. Despite the
promising algorithmic advances in this framework, it remains an open question
whether the Laplacian-based representations can be learned online and with theo-
retical guarantees along with policy learning. To answer this question, we study
online Laplacian-based representation learning, where the graph-based representa-
tion is updated simultaneously while the policy is updated by the reinforcement
learning algorithm. We design an online optimization formulation by introducing
the Asymmetric Graph Drawing Objective (AGDO) and provide a theoretical anal-
ysis of the convergence of running online projected gradient descent on AGDO
under mild assumptions. Specifically, we show that if the policy learning algorithm
induces a bounded drift on the policy, running online projected gradient descent
on AGDO exhibits ergodic convergence. Our extensive simulation studies empiri-
cally validate the guarantees of convergence to the true Laplacian representation.
Furthermore, we provide insights into the compatibility of different reinforcement
learning algorithms with online representation learning.

1 INTRODUCTION

Representation learning is an important part of machine learning that involves learning compact
and useful representations of data. The quality of these representations significantly impacts the
performance and efficiency of machine learning algorithms (Bengio et al., 2013). In reinforcement
learning (RL), agents often deal with complex environments characterized by high-dimensional and
unstructured states. This makes representation learning important for discovering and encoding
meaningful features from raw sensory inputs. The main goal of RL is to learn an optimal strategy
(policy) that maps each state to an action, aiming to maximize the expected reward based on the
dynamics of the environment. Learning a good representation can improve the sample efficiency of
value-function approximation algorithms (Farebrother et al., 2023), a major family of RL algorithms,
and enhance generalizations across different tasks (Yuan & Lu, 2022). In addition, representation
learning has found applications in reward shaping (Wu et al., 2018), learning options with larger
coverage (Machado et al., 2017a; Jinnai et al., 2019; Chen et al., 2024), and transfer learning
(Gimelfarb et al., 2021; Barreto et al., 2017).

A graph representation is often used to learn a representation, i.e., a low-dimensional embedding,
of the states (Mahadevan & Maggioni, 2007; Wu et al., 2018). States of an environment can be
viewed as nodes of a graph, and the transition probability between states under a given policy can
be viewed as weighted edges between these nodes. States that are closely connected in the graph
are expected to have similar representations in the embedding space. One representation that retains
this property is the eigenvectors of the graph Laplacian. Formally, the d-eigenvectors of the graph
Laplacian corresponding to the d-smallest eigenvalues are used to construct an embedding function
that maps a state to a vector in Rd. We refer to those d-eigenvectors as the d-smallest eigenvectors
for the remainder of this paper.
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Constructing the graph and performing eigendecomposition on the Laplacian is only feasible in the
tabular settings where the number of states is small. Therefore, Wu et al. (2018) proposed a scalable
method to compute the smallest eigenvectors by solving an unconstrained version of the graph drawing
objective (Koren, 2005) which is suitable for large and continuous state-spaces. However, the graph
drawing objective does not have a unique minimizer, rather the rotations of the smallest eigenvectors
are also its minimizers. To tackle this challenge, Wang et al. (2021) propose the generalized graph
drawing objective which breaks the symmetry and only has the smallest eigenvectors as a unique
minimizer. Gomez et al. (2023) show that under gradient descent dynamics, the unconstrained
version of the generalized graph drawing objective has permutations of the smallest eigenvectors as
equilibrium points. They propose the augmented Lagrangian Laplacian objective (ALLO) which has
the smallest eigenvectors and the corresponding eigenvalues as the stable equilibrium under stochastic
gradient descent-ascent dynamics.

The Laplacian-based representation can be computed or learned for a given policy according to
its induced Markov chain. However, in RL the policy updates during the training phase as new
data comes in, which will in turn necessitate recomputation of the representation. To avoid this
complexity, in practice, the Laplacian-based representation is learned for a uniformly random policy
in a pretraining phase and then used throughout training. Nevertheless, that fixed representation
may not be effective for the policies encountered during RL. Recently, Klissarov & Machado (2023)
showed that learning the representation in an online manner while simultaneously updating the
policy can improve exploration and increase the total reward. In Figure 1, we illustrate an example,
comparing the representations of a uniform policy and a non-uniform policy, that further underscores
the need for adapting the representation. The non-uniform policy shows that some cells, despite
being far from the target in terms of Euclidean distance, are actually closer in the embedding space
than neighboring cells. This suggests that using the current representation to design rewards could
offer a better signal for improving the policy. Klissarov & Machado (2023) proposed online deep
Laplacian-based options for temporally extended exploration where a set of policies (also known as
options) are trained to select exploratory actions using an estimated Laplacian representation of the
current overall policy. They provide an extensive empirical analysis of how learning options while
updating the representation increases the received rewards; however, the theoretical analysis of online
representation learning while updating the policy has remained an open question.

Figure 1: The Laplacian represen-
tation of a uniform policy (left) and
a non-uniform policy(right). The
color represents the entry corre-
sponding to each state in the 2nd
eigenvector of the Laplacian. The
bordered cell is the target.

Motivated by that, we design an online optimization formulation by introducing the Asymmetric
Graph Drawing Objective (AGDO), a simplified version of ALLO that does not involve dual variables.
We prove that the only stable equilibrium for AGDO is the d-smallest eigenvectors under gradient
descent dynamics. Furthermore, we establish through theory and experiments that optimizing the
online version of AGDO converges to a stationary point under the assumption of bounded drift.

2 LITERATURE REVIEW

In this section, we review existing studies and research directions in representation learning for
reinforcement learning, focusing on topics closely linked to this study.

Proto-Value Functions. Mahadevan (2005) introduced proto-value functions, a set of basis func-
tions that are independent of the reward function. These functions are defined as the eigenfunctions
of the normalized Laplacian of the graph generated by a random walk over the state space. This
representation has been demonstrated to reduce the number of samples required for training linear
value function approximators (Mahadevan & Maggioni, 2007). The process of generating the graph
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involves collecting samples from the environment and connecting neighboring states with edges.
However, this method does not adequately account for the stochastic nature of transitions and re-
quires a discrete state space. In continuous state settings, Mahadevan (2012) proposes using the
Nyström method to interpolate the values of eigenfunctions at unseen states based on visited states.
Additionally, Xu et al. (2014) suggests enhancing representative state selection by applying K-means
clustering to collected samples and constructing a graph from the resulting centroids.

Laplacian Representation Using the Graph Drawing Objective. Wu et al. (2018) formulated a
linear operator that represents the graph over the state-space generated by a fixed policy, capturing the
stochastic nature of transitions, and is applicable to continuous state spaces. They demonstrated that
obtaining the eigenfunctions of the graph Laplacian, typically solved via the graph drawing objective
(Koren, 2005), can be achieved through stochastic optimization using collected samples without ex-
plicitly constructing the graph. Additionally, they illustrated a method to recover these eigenfunctions
up to orthonormal rotation by training a neural network. For precise eigenfunction recovery, Wang
et al. (2021) introduced the generalized graph drawing objective, which breaks the symmetry inherent
in the traditional graph drawing objective. Despite the constrained generalized objective ensuring the
uniqueness of Laplacian eigenfunctions, Gomez et al. (2023) demonstrated that stochastic optimiza-
tion using the unconstrained objective—employed in neural network training—does not necessarily
converge to these eigenfunctions. Consequently, they proposed the augmented Lagrangian Laplacian
objective, which exhibits the eigenvectors of the Laplacian as the unique stable equilibrium. Other
equilibrium points correspond to permutations of the eigenvectors.

Learning the Laplacian representation with any of these objectives is conducted under a fixed
policy, typically a uniformly random policy in practice. Klissarov & Machado (2023) introduced
online deep covering eigenoptions, an online algorithm that concurrently learns the Laplacian
representation and options (Sutton, 1998), a well-established formulation of temporally extended
actions in Markov Decision Processes (MDPs). They demonstrated that the online version of DCEO
achieves performance comparable to a two-stage variant of the algorithm, where the representation is
learned under a fixed uniform policy.

Successor Features. The deep successor representation, introduced by Kulkarni et al. (2016) as
an extension of the successor representation (Dayan, 1993), decomposes the value function into
a successor feature function and a reward predictor function. The successor function encodes the
discounted expected value of representations of all future states within a given horizon. Leveraging
concepts from TD learning and Deep Q-networks (Mnih et al., 2015), both the representation and the
successor feature function can be learned simultaneously with neural networks. Successor features
have found diverse applications, such as sub-goal states generation in sparse reward environments
(Kulkarni et al., 2016), transfer learning (Barreto et al., 2017; Gimelfarb et al., 2021), and options
discovery (Machado et al., 2017b; 2023). Notably, Machado et al. (2017b) demonstrated a connection
between the eigenvalues and eigenvectors of the successor representation matrix and the eigenvalues
and eigenvectors of the normalized Laplacian defined as proto-value functions.

Contrastive Learning in Reinforcement Learning. Contrastive learning is a machine learning
method used for learning representations that distinguish between similar and dissimilar pairs of data
points using a contrastive loss function. Formally, an encoder is tasked with mapping data points to
a latent representation where similar points are closely positioned in the latent space. For instance,
Laskin et al. (2020) introduced the contrastive unsupervised representations for reinforcement learning
algorithm, where they train an encoder network using a contrastive loss with pairs of images randomly
augmented from the same source image. The learned representation is subsequently utilized to train
a deep reinforcement learning agent. Furthermore, augmented temporal contrast was developed by
Stooke et al. (2021), which involves selecting similar sample pairs from samples that are separated by
a short time distance. This approach is closely related to the Laplacian approach to representation
learning, as states that are connected in the graph have a higher probability of appearing in consecutive
samples than disconnected states.

In this work, we focus on extending the Laplacian-based representation learing, which has been
shown in recent literature to be effective in learning options with high coverage Machado et al.
(2017a); Jinnai et al. (2019); Klissarov & Machado (2023); Chen et al. (2024), to the online setting.
While empirical results, such as those by Klissarov & Machado (2023), have demonstrated that online
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representation learning is effective and promising, a thorough theoretical analysis of the convergence
and accuracy of these learned representations in the online setting is still lacking. Therefore, our
work seeks to address this gap by developing a theoretical framework that ensures the stability and
accuracy of Laplacian representations in an online learning context.

3 PRELIMINARIES

In this section, we provide the necessary background to introduce the problem and present the
proposed formulation and its theoretical analysis. We begin by introducing Markov decision processes
within the context of reinforcement learning. Next, we highlight the closely related, existing methods
of learning the Laplacian representation.

Notation We use ⟨v, u⟩ to denote the dot product between two vectors v and y. For a vector x,
the L2 norm, denoted ∥x∥, is defined as ∥x∥ =

√∑
i |xi|2. The L2 norm of a matrix, is defined as

∥A∥ = sup
x̸=0

∥Ax∥
∥x∥ and is equivalent to the spectral norm defined as the largest singular value of the

matrix. Finally, the L∞ norm, denoted ∥A∥∞, is the maximum absolute row sum of the matrix, i.e.,
∥A∥∞ = maxi

∑
j |aij |.

Reinforcement Learning. In the reinforcement learning setting, an agent interacts with an en-
vironment, which is modeled as a Markov decision process (MDP). A reward agnostic MDP
is represented by the tuple (S,A, T , µ0) where S is the finite state space, A is the finite ac-
tions space, T : S × A → ∆(S) is the transition probability, and µ0 ∈ ∆(S) is the ini-
tial state probability distribution. We consider the environment to be reward-agnostic and that
the agent has a policy π : S → ∆(A) from which actions are samples each time step. The
policy induces a Markov chain from the MDP defined by the transition probability Pπ where
Pπ(s, s′) = P(st+1 = s′|st = s, T , π) =

∑
a∈A π(a|s)T (s′|s, a). We assume that the induced

Markov chain has a unique stationary distribution ρπ ∈ ∆(S). We formally define this in Assumption
1.

Laplacian Representation. A graph is defined by a set of nodes V and an adjacency matrix
W ∈ R|V|×|V |. For two nodes ν, ν′, Wν,ν′ is non-zero if and only if there exists an edge from ν to ν′.
The Laplacian matrix L is defined as L = D −W where the degree matrix D is a diagonal matrix
with Dν,ν =

∑|V|
j=1 Wν,j . The Laplacian encodes a lot of useful information about the underlying

graph. For example, the second to the largest eigenvalue also known as the Fiedler value determines
the algebraic connectivity of the graph (Fiedler, 1973).

In the tabular setting, under a fixed policy π, an MDP can be represented as a graph, where V = S
and the adjacency matrix Wπ is defined as f(Pπ) where f maps Pπ to a symmetric matrix. More
generally, consider the following formulation given by Wu et al. (2018):

• A Hilbert SpaceHπ is R|S| with the inner product between two elements u, v ∈ Hπ defined
as ⟨u, v⟩Hπ =

∑
s∈S u(s)v(s)ρπ(s).

• A linear operator A : Hπ → Hπ is defined as Au(s) =
∑

s′∈S A(s, s′)u(s′)ρπ(s′).
• The self adjoint operator Wπ : Hπ → Hπ is defined as

Wπ(s, s′) =
1

2

Pπ(s, s′)

ρπ(s′)
+

1

2

Pπ(s′, s)

ρπ(s)
(1)

• The Laplacian Lπ is defined as Lπ = I−Wπ .

• With a slight abuse of notation we define Aρπ :
(
R|S|, ⟨., .⟩

)
→
(
R|S|, ⟨., .⟩

)
as a matrix

whose entries are defined as Aρπ (s, s′) = A(s, s′)ρπ(s′) for some operator A : Hπ → Hπ .
Note that for a vector u ∈ R|S| the matrix multiplication Aρπu is equivalent to Au.

We denote the d-smallest eigenvectors of Lπ as eπ1 , e
π
2 , . . . , e

π
d . The Laplacian embedding function

ϕπ : S → Rd embeds a state s to the d-dimensional vector whose i-th element correspond to the s-th
element of eπi , i.e. ϕ(s) = [eπ1 [s], e

π
2 [s], . . . , e

π
d [s]]

⊺.
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Learning the Laplacian Representation. Optimizing the graph drawing objective (GDO) (Koren,
2005) retrieves the smallest d-eigenvectors up to orthonormal rotation. The graph drawing objective
is defined as

min
u∈Rd|S|

d∑
i=1

⟨ui, L
πui⟩;

s.t. ⟨uj , uk⟩ = δjk, 1 ≤ k ≤ j ≤ d,

(2)

where δjk is the Kronecker delta. The unconstrained approximation of GDO is defined as

min
u∈Rd|S|

d∑
i=1

⟨ui, L
πui⟩+ b

d∑
j=1

d∑
k=1

(⟨uj , uk⟩ − δjk)
2
, (3)

where b is a hyper-parameter.

One advantage of using the graph drawing objective is that the unconstrained approximation of the
graph drawing objective can be optimized by stochastic gradient descent using samples collected
from the environment without constructing the graph or the Laplacian (Wu et al., 2018). Formally,
if the inner product is defined in terms of ρπ, the loss can be defined as

∑d
i=1⟨ui, L

πui⟩Hπ =

Es∼ρπ,s′∼Pπ(.|s)[
∑d

i=1(ui(s)− ui(s
′))2].

The generalized graph drawing objective proposed by Wang et al. (2021) breaks the symmetry in the
graph drawing objective and has the set of the smallest d-eigenvectors as a unique minimizer.

The generalized graph drawing objective (GGDO) is defined as

min
u∈Rd|S|

d∑
i=1

ci⟨ui, L
πui⟩

such that ⟨uj , uk⟩ = δjk, 1 ≤ k ≤ j ≤ d

(4)

and the unconstrained approximation of GGDO is defined as

min
u∈Rd|S|

d∑
i=1

ci⟨ui, L
πui⟩+ b

d∑
j=1

d∑
k=1

min(cj , ck) (⟨uj , uk⟩ − δjk)
2 (5)

The unconstrained GGDO is guaranteed to have a unique equilibrium point only in the limit b→∞.
However, for other values, rotations of the smallest d-eigenvectors can still be an equilibrium point.
The augmented Lagrangian Laplacian objective (ALLO) suggested by (Gomez et al., 2023) is a
dual objective that has a unique stable equilibrium point of the smallest d-eigenvalues and the
corresponding smallest d-eigenvectors. Other unstable equilibrium points correspond to permutations
of the eigenvectors and eigenvalues. The ALLO is defined as follows

max
β

min
u∈Rd|S|

d∑
i=1

⟨ui, L
πui⟩+

d∑
j=1

j∑
k=1

βjk (⟨uj , [[uk]]⟩ − δjk) + b

d∑
j=1

j∑
k=1

(⟨uj , [[uk]]⟩ − δjk)
2 (6)

where [[.]] is the stop gradient operator, and whatever is inside the operator is treated as a constant when
computing the gradient. The stop gradient operator has the same effect on breaking the symmetry as
the introduction of the constant hyper-parameters in GGDO.

4 ONLINE LEARNING OF THE LAPLACIAN REPRESENTATION

We first formulate the problem of learning the Laplacian representation while simultaneously updating
the policy. We then provide theoretical bounds for the convergence of the learned representation.

4.1 PROBLEM DEFINITION

We formulate the problem of learning the Laplacian representation while the policy is updating as
a sequence of GDOs varying in time. To break the symmetry in GDO we apply the stop gradient
operator similar to ALLO. We assume the policy π0 is initialized randomly and some learning

5
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algorithm updates the policy in T discrete time steps producing a policy πt after each update.
Learning the Laplacian representation can then be represented by the sequence of objectives as
follows

min
u∈C(t)

L(t)(u) =

min
u∈C(t)

d∑
i=1

⟨ui, L
(t)ui⟩H(t) + b

d∑
j=1

j−1∑
k=1

(⟨uj , [[uk]]⟩H(t))
2
+

b

2

d∑
i=1

(⟨ui, ui⟩H(t) − 1)
2

(7)

where C(t) ⊂ Rd|S| is a convex and closed set. We write Lπt andHπt as L(t) andH(t) for simpler
notation. In addition, we assume that b > 0. We refer to this objective as the asymmetric graph
drawing objective (AGDO).1

Note that for a fixed policy, AGDO is a special case of ALLO with β = 0. Another similarity
between AGDO and ALLO is that AGDO can be viewed as solving ALLO with added regularization

for the dual parameters β. Adding a regularization term −Γ
∑d

j=1

∑j
k=1

β2
jk

2 to equation 6 yields a

closed form solution for maximization over β with β∗
jk(u) =

⟨uj ,[[uk]]⟩H(t)−δjk
Γ . Substituting reduces

equation 6 to

min
u∈Rd|S|

d∑
i=1

⟨ui, L
(t)ui⟩H(t) + (b+

1

2Γ
)

d∑
j=1

j∑
k=1

(⟨uj , [[uk]]⟩H(t) − δjk)
2 (8)

which is the same as ALLO (β = 0) with b replaced with b+ 1
2Γ which is also a constant hyperpa-

rameter.

We lay the assumptions for our theoretical analysis.

Assumption 1. For each policy πt the induced Markov chain is ergodic and has a unique stationary
distribution with non-zero entries, i.e min

t
min
s∈S

ρπt(s) = ρmin > 0.

Assumption 2. For two consecutive time steps t and t + 1, the policies πt and πt+1, satisfy
max
s∈S

∑
a∈A |πt(a|s) − πt+1(a|s)| ≤ δ

(t)
π . Additionally, the bound δ

(t)
π on the policy drift satisfies∑T

t=0 δ
(t)
π = O(f(T )) for some sub-linear function f .

Assumption 1 guarantees that the induced probability measure ρ(t) assigns a non-zero value to every
state. Note that going from ρ(t)(s) = 0 to ρ(t+1)(s) > 0 is equivalent to adding a node to the graph
which would make the dimensions of the spaces inconsistent. A more general assumption can be
made that ρ(t+1) is absolutely continuous with respect to ρ(t), i.e. ρ(t)(s) = 0 =⇒ ρ(t+1)(s) = 0,
in which case, the same analysis can be done to the set S ′ = {s ∈ S : ρ(t+1)(s) ̸= 0}. Assumption 2
assumes the drift in the policy caused by the policy learning algorithm is bounded. This bounded
drift assumption is valid for many policy learning algorithms in RL, such as trust region policy
optimization (TRPO) (Schulman, 2015) and proximal policy optimization (PPO) (Schulman et al.,
2017). In addition, we require the learning algorithm to converge to some policy such that the total
drift is sub-linear in T .

4.2 CONVERGENCE ANALYSIS OF AGDO

We first define the function g
(t)
i : Rd|S| → R|S|, which is the gradient of equation 7 with respect to

ui taking into account the stop gradient operator, as

g(t)ui
(u) =

2L(t)ui + 2b
i−1∑
j=1

⟨ui, [[uj ]]⟩H(t) [[uj ]] + 2b (⟨ui, ui⟩H(t) − 1)ui

⊙ ρ (9)

1Here we have a slightly different application of the stop gradient operator than the objective proposed by
Gomez et al. (2023). The penalty term for the norm of ui does not have the stop gradient operator which does
not change the gradient but ensures the term is propagated to the Hessian for the stability analysis. We provide
more discussion in A.2
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where ⊙ is the Hadamard product. The vectors ui are updated using the update equation

u
(t+1)
i ← ProjC(t)(u

(t)
i − ηg(t)ui

(u(t))) = u
(t)
i − ηG(t)

ui
(u

(t)
i ) (10)

where η > 0 is the learning rate, ProjC(t) is the projection to C(t), and G
(t)
ui is the gradient map defined

as G(t)
ui (ui) =

1
η (ui − ProjC(t)(u

(t)
i − ηg

(t)
ui (u

(t))).

We show in Lemma 1 that for a fixed policy, if C(t) = Rd|S|, the equilibrium points of performing
gradient descent to minimize the function L(t) defined in equation 7 correspond to permutations of
the eigenvectors. We defer all detailed proofs to Appendix A.

Lemma 1. If C(t) = Rd|S|, u∗(t) is an equilibrium point of minimizing L(t) in equation 7 under

gradient descent dynamics, iff u∗(t)
i = e

(t)
σ(i)mi, and ⟨u∗(t)

i , u
∗(t)
i ⟩H(t) = mi

(
1−

λ
(t)

σ(i)

b

)
for some

permutation σ : S → S where mi ∈ {0, 1}, i.e. zero or more vectors u∗(t)
i can be zero.

This result is similar to Lemma 2 derived by Gomez et al. (2023) with the norm of the vectors being
different and the fact that vectors can be zero. However, we show in Theorem 1 that only the identity
permutation with non-zero vectors corresponds to a stable equilibrium under proper selection of
hyperparameters.

Theorem 1. The only stable equilibrium point from Lemma 1 minimizing the objective L(t) in
equation 7 under gradient descent dynamics is the one corresponding to the identity permutation
with none of the vectors being zero, under an appropriate selection of the barrier coefficient b, if the
highest eigenvalue multiplicity is 1.

4.3 CONVERGENCE ANALYSIS OF ONLINE AGDO

In this section, we present a theoretical analysis of the convergence of the online PGD algorithm. We
first begin by establishing certain properties of the PGD algorithm.

We consider the case where the vectors u(t)
i are constrained such that their norm inH(t) is bounded.

We define C(t) as C(t) = {u ∈ Rd|S| : ⟨ui, ui⟩H(t) ≤ 2}. This set has two interesting properties.
First, it includes all equilibrium points for all b > 1 (as established in Lemma 1). Second, the gradient
function g(t) defined in equation 9 is Lipchitz continuous over C(t). The following result establishes
this property.

Proposition 1. The loss function Lt defined in equation 7 is α-smooth with Lipschitz continuous
gradient g(t) such that

∥g(t)(u)− g(t)(u′)∥ ≤ α∥u− u′∥ (11)

for any u ∈ C(t) with α = 2 + 14b+ 4bd.

Next, we present some preliminary results, which we will later use in the convergence analysis. In
Lemma 2, we characterize the drift in the policy-induced Markov chain, the Laplacian operator, and
the loss function.

Lemma 2. Under Assumptions 1 and 2, for any u ∈ R|S|, we have the following:

(a) ∥P (t+1) − P (t)∥∞ ≤ δ
(t)
π

(b) ∥ρ(t+1) − ρ(t)∥∞ ≤ δ
(t)
ρ = κ(t)δ

(t)
π

(c) ∥(ρ(t+1) ⊗ 1)⊙ L
(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙ L
(t)

ρ(t)∥ ≤ δ
(t)
L =

√
|S|
(
δ
(t)
π + δ

(t)
ρ

)
+ δ

(t)
ρ

(d)
∣∣Lt+1(u)− Lt(u)

∣∣ ≤ δ
(t)
L =

2dδ
(t)
L

ρmin
+

8bδ
(t)
ρ

ρ2min

;∀u ∈ C(t)

where κ(t) is a condition number on the induced Markov chain by π(t).
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Note that Lemma 2(b) follows directly from previous work on the perturbation analysis of stationary
distributions of Markov chains (Haviv & Van der Heyden, 1984; Funderlic & Meyer Jr, 1986;
Cho & Meyer, 2000). For example, Cho & Meyer (2000) gives the following condition number
κ(t) = 1

2max
j

max
i̸=j

mij

mjj
, where mij is the mean first passage time from state i to state j and mjj is the

mean return time to state j. For other possible options of condition numbers, review the comparative
study by Cho & Meyer (2001).

Algorithm 1 Online PGD of AGDO

1: Input: Initial policy π0, learning rate η, initial vector u(0), policy learning algorithm A
2: for t = 1 to T do
3: Interact with the environment and add transitions to the replay buffer
4: u

(t+1)
i ← ProjC(t)(u

(t)
i − ηg

(t)
ui (u

(t)))
5: Get πt by updating πt−1 using A
6: end for

Finally, we show in Theorem 2 that running online projected gradient descent on AGDO achieves
ergodic convergence.

Theorem 2. Under Assumptions 1 and 2, running Algorithm 1 on the sequence of losses as defined

in equation 7 for T time steps, with a constant learning rate η =
1

α
, we have,

Et∼Uniform{1,2,...,T}

[
∥G(t)(u(t))∥2

]
≤ 2α

T

(
L(1)(u(1))− L∗ +

T∑
t=1

δ
(t)
L

)
= O

(
f(T )

T

)
(12)

where L∗ is the minimum value L(t) can take. Moreover, the OPGD algorithm (Algorithm 1) under
the time-varying loss function (equation 7) asymptotically converges to the critical point.

5 EMPIRICAL ANALYSIS

We evaluate the accuracy of the proposed method in the fixed policy setting and the online setting.
We evaluate the importance of different components of the algorithm as well.

Experiments Setup We consider the grid world environments shown in Figure 5. For each
experiment, a fixed target location is sampled uniformly at random and the agent receives a reward of
+1 if the agent reaches the location. At the start of each episode or when the agent reaches the target,
the new agent location is sampled uniformly at random. We consider a maximum episode length of
1000 steps. We follow the same setting as Gomez et al. (2023), where we set d = 11 and use the
(x, y) coordinates as input to the encoder network, a fully connected neural network with 3 layers
of size 256 each. We start training the encoder and the agent after collecting 104 samples and run
the experiment until 2× 105 samples have been collected. We use a fixed value of 5 for the barrier
coefficient. The encoder network is trained using an Adam optimizer with a learning rate of 10−3.
For each collected sample, 10 batches are sampled to update the encoder. For training the agent, we
use proximal policy optimization (PPO) (Schulman et al., 2017) as the training algorithm with an
initial clipping parameter 0.2 unless otherwise specified. We add an entropy regularization term to
discourage deterministic policies. To simulate assumption 2, we schedule the clipping parameter to
decrease from 0.2 to 0.01 starting from step 105 until the end of the training. For the full experimental
setup, please refer to Appendix B. In all figures, we report the average cosine similarity of all
dimensions of the eigenvectors averaged across 5 seeds with the 95% confidence interval highlighted.

Eigenvalue Accuracy (Fixed Setting) We start by comparing the performance of AGDO to ALLO
in the fixed uniform policy setting. In Figure 2, we show that the average cosine similarity of AGDO
and ALLO is almost identical for the same initial seeds. This result is similar to the analysis by
Gomez et al. (2023) that showed that ALLO with β = 0 achieved similar results to ALLO.
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(a) GridRoom-1
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(b) GridMaze-11

Figure 2: Average cosine similarity between the true Laplacian representation and the learned
representation using AGDO and ALLO for a fixed uniform policy.

Eigenvalue Accuracy (Online Setting) Figure 3 shows the results of optimizing both AGDO and
ALLO in an online setting where the agent’s policy is updated with the PPO loss. Similar to the
fixed setting, the results of AGDO and ALLO are almost identical for the same set of seeds. In
addition, for all environments, the average similarity trends upward as the training steps increase.
For environments with a large number of states (GridRoom-1 and GridRoom-4) we notice that the
accuracy is slightly lower at earlier stages of the training, which is coherent with our theoretical
analysis (see Lemma 2 and Theorem 2) that the drift increases with the number of states, resulting in
slower convergence. However, this can be mitigated by imposing stricter bounds on the drift in the
policy learning algorithm.
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Figure 3: Average cosine similarity between the true Laplacian representation and the learned
representation using AGDO and ALLO for a ppo policy.

Ablation Study In this study, we aim to analyze three points; (1) the importance of the drift bound
assumption, (2) the effect of the number of encoder update steps per sample collected, and (3) the
effect of noise caused by sampling from the replay buffer when the policy was different.

To assert the importance of the bounded drift assumption, we compare running PPO with different
initial clipping parameters, vanilla policy gradient (VPG) Sutton et al. (1999), and deep Q-network
(DQN) Mnih et al. (2015). First note that VPG is equivalent to PPO without clipping. We can see
in Figure 4a that the lower the clipping value is, i.e. the drift bound between policies is smaller,
the higher the accuracy for the learned representation is. However, a small drift might affect the
performance of the learned policy. In addition, for DQN the change in the policy distribution can
be drastic for an ϵ−greedy policy with a small ϵ whenever the Q-network changes the estimated
optimal action in a state. As for the new estimated optimal action, the probability will shift from ϵ

|A|
to 1− ϵ. This explains why the accuracy of the learned representation for DQN is much lower than
the on-policy methods. We conclude that the bounded drift assumption is necessary for learning an
accurate representation.
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In figure 4b, we analyze the effect of increasing the number of steps. We vary the number of update
steps per sample between 1 and 20. While an increase in the number of steps is expected to enhance
accuracy, our findings indicate that this is not observed. We hypothesize that this discrepancy is due
to the presence of noise, caused by sampling from the replay buffer.

To confirm the previous hypothesis, we test in Figure 4c the effect of varying the replay buffer size.
Recall that estimating the AGDO loss in equation 7 is done through sampling steps from the replay
buffer. In the online setting, the buffer would include steps from previous policies with different
stationary and transition distributions which would introduce bias to our loss estimate. However, a
small buffer size would also increase the variance of the estimate. This is confirmed by the results,
as for a buffer that holds only one episode we see a worse performance than a buffer that holds 20
episodes. On the other hand, increasing the buffer size drastically also causes accuracy to drop as the
samples used have a different distribution which can be seen for buffers with sizes 50 and 400.
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(a) Effect of drift
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(b) Effect of number of update steps
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(c) Effect of number of replay buffer size

Figure 4: Analysis of different aspects of online AGDO. (a) The effect of bounded drift on the
accuracy of the learned. (b) The effect of the number of update steps per sample collected. (c) The
effect of the number of episodes in the replay buffer.

6 CONCLUSION

In this paper, we studied online Laplacian-based representation learning and demonstrated that it
can be effectively integrated with reinforcement learning, enabling simultaneous updates of both
representation and policy. Our theoretical analysis, under mild assumptions, shows that running the
online projected gradient descent on the Asymmetric Graph Drawing Objective achieves ergodic
convergence, ensuring that the learned representations are aligned with the underlying dynamics.
Additionally, our empirical studies reinforce these findings and give insight into the compatibility of
reinforcement learning algorithms with online representation learning. Our work opens new avenues
for enhancing representation learning in complex environments and lays out the assumptions needed
for its success. Future research could explore the adaptability of the proposed framework to various
learning methods such as linear value function approximators and options learning.
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A PROOFS

A.1 PROOF OF LEMMA 1

Proof. For an equilibrium point

g(t)ui
(u∗(t)) =

2L(t)ui + 2b

i−1∑
j=1

⟨ui, uj⟩H(t)uj + 2b (⟨ui, ui⟩H(t) − 1)ui

⊙ ρ = 0,

and since ρmin > 0, we can divide each element of the vectors on both sides by ρ(s) and we get,

g(t)ui
(u∗(t)) = 2L(t)ui + 2b

i−1∑
j=1

⟨ui, uj⟩H(t)uj + 2b (⟨ui, ui⟩H(t) − 1)ui = 0,

We proceed by induction. For the base case with i = 1, we have

g(t)ui
(u∗(t)) = 2L(t)u

∗(t)
1 + 2b

(
⟨u∗(t)

1 , u
∗(t)
1 ⟩H(t) − 1

)
u
∗(t)
1 = 0

Hence, either u
∗(t)
1 = e

(t)
σ(1); for some permutation σ : S → S and −2λ(t)

σ(1) =

2b
(
⟨u∗(t)

1 , u
∗(t)
1 ⟩H(t) − 1

)
(i.e., ⟨e(t)σ(1), e

(t)
σ(1)⟩H(t) = 1−

λ
(t)

σ(1)

b ) or u∗(t)
1 = 0.

Suppose now that either u∗(t)
j = e

(t)
σ(j) and ⟨e(t)σ(j), e

(t)
σ(j)⟩H(t) = 1−

λ
(t)

σ(j)

b or u∗(t)
j = 0 for all j < i

then the gradient becomes

g(t)ui
(u∗(t)) = 2L(t)u

∗(t)
i + 2b

(
⟨u∗(t)

i , u
∗(t)
i ⟩H(t) − 1

)
u
∗(t)
i +

2b

i−1∑
j=1

⟨u∗(t)
i , e

(t)
σ(j)⟩H(t)e

(t)
σ(j)1u

∗(t)
j ̸=0

= 0

Since the eigenvectors form a basis, let u∗(t)
i =

∑|S|
k=1 cike

(t)
σ(k). The gradient then becomes

g(t)ui
(u∗(t)) =

|S|∑
k=1

(
2λ

(t)
σ(k) + 2b

(
⟨u∗(t)

i , u
∗(t)
i ⟩H(t) − 1

))
cike

(t)
σ(k)

+ 2b

i−1∑
j=1

⟨u∗(t)
i , e

(t)
σ(j)⟩H(t)e

(t)
σ(j)1u

∗(t)
j ̸=0

= 0.

(13)

Since the eigenvectors form a basis, all coefficients must be zero. For j < i and u
∗(t)
j ̸= 0, we have:(

2λ
(t)
σ(j) + 2b

(
⟨u∗(t)

i , u
∗(t)
i ⟩H(t) − 1

))
cij + 2b⟨u∗(t)

i , e
(t)
σ(j)⟩H(t) = 0 (14)

Now note that

cij =
⟨u∗(t)

i , e
(t)
σ(j)⟩H(t)

⟨e(t)σ(j), e
(t)
σ(j)⟩H(t)

.

Equation 14 then becomes2λ
(t)
σ(j) + 2b

(
⟨u∗(t)

i , u
∗(t)
i ⟩H(t) − 1

)
⟨e(t)σ(j), e

(t)
σ(j)⟩H(t)

+ 2b

 ⟨u∗(t)
i , e

(t)
σ(j)⟩H(t) = 0
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Reordering the terms, we have:2λ
(t)
σ(j) + 2b

(
⟨u∗(t)

i , u
∗(t)
i ⟩H(t) − 1 + ⟨e(t)σ(j), e

(t)
σ(j)⟩H(t)

)
⟨e(t)σ(j), e

(t)
σ(j)⟩H(t)

 ⟨u∗(t)
i , e

(t)
σ(j)⟩H(t) = 0.

Substituting ⟨e(t)σ(j), e
(t)
σ(j)⟩H(t) = 1−

λ
(t)

σ(j)

b , we have:2b⟨u∗(t)
i , u

∗(t)
i ⟩H(t)

⟨e(t)σ(j), e
(t)
σ(j)⟩H(t)

 ⟨u∗(t)
i , e

(t)
σ(j)⟩H(t) = 0,

which implies that either ⟨u∗(t)
i , e

(t)
σ(j)⟩H(t) = cij = 0 or

2b⟨u∗(t)
i ,u

∗(t)
i ⟩H(t)

⟨e(t)
σ(j)

,e
(t)

σ(j)
⟩H(t)

= 0, but the second

condition is only true if u∗(t)
i = 0 which implies that ⟨u∗(t)

i , e
(t)
σ(j)⟩H(t) is always zero. For k ≥ i in

equation 13 or u∗(t)
k = 0 (

2λ
(t)
σ(k) + 2b

(
⟨u∗(t)

i , u
∗(t)
i ⟩H(t) − 1

))
cik = 0

which implies that either cik = 0 or ⟨u∗(t)
i , u

∗(t)
i ⟩H(t) = 1−

λ
(t)

σ(k)

b . Note that cik and cij can both be
simultaneously non-zero only if λ(t)

σ(k) = λ
(t)
σ(j), i.e, u∗(t)

i is a linear combination of eigenvectors for

the same eigenvalue. Thus, we conclude that either u∗(t)
i = e

(t)
σ(i) and ⟨e(t)σ(i), e

(t)
σ(i)⟩H(t) = 1−

λ
(t)

σ(i)

b

or u∗(t)
i = 0. For non-zero, u∗(t)

i it is required that b > λ
(t)
σ(i).

A.2 PROOF OF THEOREM 1

Proof. Let

g(t)(u) =


g
(t)
1 (u)

g
(t)
2 (u)

...
g
(t)
d (u)

 , (15)

where g
(t)
1 is defined in equation 9.

We start by computing the Jacobian of g(t) while applying the stop gradient operator. The matrix
J(t) = J(g(t)) is defined such that each row of the matrix corresponds to the gradient of an entry
of g(t). We choose to apply the stop gradient operator when computing the Jacobian as optimizing
the loss functions with the stop gradient operator is analogous to solving for ui’s sequentially while
fixing uj where j < i as shown by Gomez et al. (2023). Analyzing the stability of those sequential
losses would not include a cross gradient term between ui and uj .

To determine the stability of the equilibrium points, we analyze eigenvalues of the Jacobian evaluated
at them (Chicone, 2006). Let mi = 1

u
∗(t)
i ̸=0

, and ρ
(t)
diag a diagonal matrix where ρ(t)diag(s, s) = ρ(t)(s)

then

J
(t)
ij (u

(t)) = (∇ui
g(t)uj

(u)⊤)⊤
2L

(t)

ρ(t) ⊙ (ρ(t) ⊗ 1) + 2b
(
⟨u(t)

i , u
(t)
i ⟩H(t) − 1

)
ρ
(t)
diag+

2b

(
2(u

(t)
i ⊙ ρ(t))⊗ (u

(t)
i ⊙ ρ(t)) +

i−1∑
k=1

(u
(t)
k ⊙ ρ(t))⊗ (u

(t)
k ⊙ ρ(t))

) , if i = j

0 , otherwise

(16)
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Substituting the equilibrium points with the form derived in Lemma 1, i.e u
∗(t)
i = e

(t)
σ(i)mi,

⟨u(t)
i , u

(t)
i ⟩H(t) =

(
1−

λ
(t)

σ(i)

b

)
mi, and ⟨u(t)

i , u
(t)
j ⟩H(t) = 0 for i ̸= j we get,

J
(t)
ij (u

∗(t)) = (∇ui
g(t)uj

(u
∗(t)
i )⊤)⊤

=



2L
(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)− 2λ
(t)
σ(i)ρ

(t)
diagmi + 2bρ

(t)
diag(mi − 1)+

4b(e
(t)
σ(i) ⊙ ρ(t))⊗ (e

(t)
σ(i) ⊙ ρ(t))mi+

2b

i−1∑
k=1

(e
(t)
σ(k) ⊙ ρ(t))⊗ (e

(t)
σ(k) ⊙ ρ(t))mk

, if i = j

0 , otherwise

(17)

Note that J(t) is a triangular block matrix and its eigenvalues are the union of the diagonal
blocks. We proceed to analyze the conditions for the block matrices to be positive definite, i.e
when ⟨vi,J(t)

ii (u
∗(t))vi⟩ is greater than zero ∀vi ∈ {v ∈ R|S| : v ̸= 0}. Since the Lapla-

cian operator is self-adjoint, the eigenvectors form a basis for R|S| , we can represent each vi
as a linear combination of eigenvectors. Let vi =

∑|S|
k=1 cike

(t)
σ(k) in ⟨vi,J(t)

ii (u
∗(t))vi⟩ we get

⟨
∑|S|

k=1 cike
(t)
σ(k),J

(t)
ii (u

∗(t))
∑|S|

k=1 cike
(t)
σ(k)⟩.

We first compute J
(t)
ii (u

∗(t))
∑|S|

k=1 cke
(t)
σ(k) by replacing Jii(u

∗(t))(t) with equation 17, we get

J
(t)
ii (u

∗(t))

|S|∑
k=1

cke
(t)
σ(k) =

(
2L

(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)− 2λ
(t)
σ(i)ρ

(t)
diagmi + 2bρ

(t)
diag(mi − 1)

) |S|∑
k=1

cike
(t)
σ(k)+4b(e

(t)
σ(i) ⊙ ρ(t))⊗ (e

(t)
σ(i) ⊙ ρ(t))mi + 2b

i−1∑
j=1

(e
(t)
σ(j) ⊙ ρ(t))⊗ (e

(t)
σ(j) ⊙ ρ(t))mk

 |S|∑
k=1

cike
(t)
σ(k)

(18)

Note that (
(e

(t)
σ(j) ⊙ ρ(t))⊗ (e

(t)
σ(j) ⊙ ρ(t))

)
e
(t)
σ(k) = 0 ∀k ̸= j

and (
(e

(t)
σ(j) ⊙ ρ(t))⊗ (e

(t)
σ(j) ⊙ ρ(t))

)
e
(t)
σ(j) = ⟨e

(t)
σ(j), e

(t)
σ(j)⟩H(t)(e

(t)
σ(j) ⊙ ρ(t))

=

1−
λ
(t)
σ(j)

b

 (e
(t)
σ(j) ⊙ ρ(t)).

Also note that 2L
(t)

ρ(t) ⊙ (ρ(t) ⊗ 1) is a matrix with
(
2L

(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)
)
(s, s′) =

L(s, s′)ρ(t)(s′)ρ(t)(s), and therefore for any x ∈ R|S|

(
2L

(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)
)
x = 2(Lx)⊙ ρ(t). (19)
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Substituting in equation 18 we get,

J
(t)
ii (u

∗(t))

|S|∑
k=1

cke
(t)
σ(k) =

|S|∑
j=1

(
2
(
λ
(t)
σ(j) − λ

(t)
σ(i)mi

)
+ 2b(mi − 1)

)
cij(e

(t)
σ(j) ⊙ ρ(t))

+ 4bcii(e
(t)
σ(i) ⊙ ρ(t))mi − 4ciiλ

(t)
σ(i)(e

(t)
σ(i) ⊙ ρ(t))mi

+

i−1∑
j=1

2bcij(e
(t)
σ(j) ⊙ ρ(t))mj −

i−1∑
j=1

2cijλ
(t)
σ(j)(e

(t)
σ(j) ⊙ ρ(t))mj

(20)

Now we reduced J
(t)
ii (u

∗(t))
∑|S|

k=1 cke
(t)
σ(k) to a linear combination (e

(t)
σ(1) ⊙ ρ(t), e

(t)
σ(2) ⊙

ρ(t), ..., e
(t)
σ(|S|)⊙ρ(t)) with some coefficients (a1, a2, ..., a|S|). Since ⟨cije(t)σ(j), akcike

(t)
σ(k)⊙ρ(t)⟩ =

akcikcij⟨e(t)σ(j), e
(t)
σ(k)⟩H(t) and ⟨e(t)σ(j), e

(t)
σ(k)⟩H(t) = 0 for j ̸= k we have

⟨
|S|∑
k=1

cike
(t)
σ(k),J

(t)
ii (u

∗(t))

|S|∑
k=1

cike
(t)
σ(k)⟩ =

|S|∑
k=1

akc
2
ik⟨e

(t)
σ(k), e

(t)
σ(k)⟩H(t) (21)

Since ⟨e(t)σ(k), e
(t)
σ(k)⟩H(t) > 0 and c2ik ≥ 0, ak must be positive ∀k for J(t)

ii (u
∗(t)) to be positive

definite. We group the conditions from equation 20 that are required to be positive below
2b(mi +mj − 1)− 2λ

(t)
σ(i)mi + 2λ

(t)
σ(j)(1−mj) ∀1 ≤ j < i ≤ d

6bmi + 2λ
(t)
σ(i) − 6λ

(t)
σ(i)mi − 2b ∀1 ≤ i ≤ d

2(λ
(t)
σ(j) − λ

(t)
σ(i)mi) + 2b (mi − 1) ∀1 ≤ i < j ≤ |S|.

(22)

If any u
∗(t)
i = 0, then the third condition becomes 2λ(t)

σ(j) − 2b which is always negative under the
selection of hyperparameters discussed in Lemma 1, hence it is unstable. For equilibrium points
where all u∗(t)

i are non-zero, i.e mi = 1∀ i, the conditions becomes
2b− 2λ

(t)
σ(i) ∀1 ≤ j < i ≤ d

4b− 4λ
(t)
σ(i) ∀1 ≤ i ≤ d

2(λ
(t)
σ(j) − λ

(t)
σ(i)) ∀1 ≤ i < j ≤ |S|.

(23)

The third condition indicates that 2(λ(t)
σ(j)−λ

(t)
σ(i)) has to be positive which is only true for the identity

permutation and if the maximum eigenvalue multiplicity of the Laplacian is 1. The second and first
conditions imply that b− λ

(t)
σ(i) must be positive which is true when b > λ

(t)
σ(i)∀ 1 ≤ i ≤ |S| which is

already a requirement of Lemma 1.

A.3 PROOF OF PROPOSITION 1

Proof. To show that the gradient function g(t) is Lipchitz continuous we proceed to show that the
Spectral norm of the Jacobian is bounded ∀u ∈ C(t). Notice that the Jacobian defined in equation 16
is a block triangular matrix, hence its singular values are the combined singular values of the block
matrices J(t)

ii (u), and ∥J(t)(u)∥ = maxi∥J(t)
ii (u)∥. By the triangle inequality we have,

∥J(t)
ii (u)∥ ≤

∥∥∥2L(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)
∥∥∥+ ∥∥∥2b(⟨u(t)

i , u
(t)
i ⟩H(t) − 1

)
ρ
(t)
diag

∥∥∥+∥∥∥∥∥4b(u(t)
i ⊙ ρ(t))⊗ (u

(t)
i ⊙ ρ(t)) + 2b

i−1∑
k=1

∥∥∥∥∥∥∥∥(u(t)
k ⊙ ρ(t))⊗ (u

(t)
k ⊙ ρ(t))

∥∥∥
(24)
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We start by bounding the first term, by equation 19 we know that for any vector x ∈ R|S|,(
2L

(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)
)
x = 2(Lx)⊙ ρ(t). For any x ∈ R|S| with ∥x∥ = 1

∥∥∥(L(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)
)
x
∥∥∥ =

∥∥∥(Lx)⊙ ρ(t)
∥∥∥ =

√
⟨(Lx)⊙ ρ(t), (Lx)⊙ ρ(t)⟩

=

√∑
s∈S

((Lx)(s))2ρ(t)(s)2 ≤
√∑

s∈S
((Lx)(s))2ρ(t)(s)

=
√
⟨(Lx), (Lx)⟩H(t) = ∥Lx∥H(t) ≤ ∥L∥H(t) ∥x∥H(t) ≤ ∥L∥H(t) .

Therefore, ∥∥∥(2L(t)

ρ(t) ⊙ (ρ(t) ⊗ 1)
)
u
∥∥∥ =

∥∥∥2(Lu)⊙ ρ(t)
∥∥∥ ≤ 2 ∥L∥H(t) = 2. (25)

For the second term, since ∥ρ(t)diag∥ ≤ 1 and ⟨u(t)
i , u

(t)
i ⟩H(t) ≤ 2, we have∥∥∥2b(⟨u(t)

i , u
(t)
i ⟩H(t) − 1

)
ρ
(t)
diag

∥∥∥ ≤ 2b
∥∥∥⟨u(t)

i , u
(t)
i ⟩H(t)ρ

(t)
diag

∥∥∥+ 2b
∥∥∥ρ(t)diag

∥∥∥ ≤ 4b+ 2b = 6b. (26)

For the remaining terms, note that for any x ∈ R|S| with ∥x∥ = 1,∥∥∥((u(t)
i ⊙ ρ(t))⊗ (u

(t)
i ⊙ ρ(t))

)
x
∥∥∥ =

∥∥∥⟨ui, x⟩H(t)(u
(t)
i ⊙ ρ(t))

∥∥∥ ≤ ∥x∥∥ui∥2H(t) ≤ 2. (27)

Combining equations 25, 26, and 27 in equation 24 we get

∥J(t)
ii (u)∥ ≤ α = 2 + 14b+ 4bd.

A.4 PROOF OF LEMMA 2

Proof for Lemma 2 (a)

Proof. We denote A(i, :) as the i-th row of the matrix A.∥∥∥P (t+1) − P (t)
∥∥∥
∞

= max
s∈S

∥∥∥P (t+1)(s, :)− P (t)(s, :)
∥∥∥
1

= max
s∈S

∥∥∥∥∥∑
a∈A

(π(t+1)(a|s)− π(t)(a|s))T (s, a, :)

∥∥∥∥∥
1

(i)
≤ max

s∈S

∑
a∈A

∣∣∣π(t+1)(a|s)− π(t)(a|s)
∣∣∣ ∥T (s, a, :)∥1

(ii)
= max

s∈S

∑
a∈A

∣∣∣π(t+1)(a|s)− π(t)(a|s)
∣∣∣ = δ(t)π ,

where (i) is by the triangle inequality, and (ii) from the fact that ∥T (s, a, :)∥1 = 1.

Proof for Lemma 2 (c)

Proof. First note that the elements of the matrix (ρ(t) ⊗ 1)⊙ L
(t)

ρ(t) are defined as

(ρ(t) ⊗ 1)⊙ L
(t)

ρ(t)(s, s
′) = ρ(t)(s)1s=s′ − ρ(t)(s)W (t)(s, s′)ρ(t)(s′)

= ρ(t)(s)1s=s′ −
1

2
P (t)(s, s′)ρ(t)(s)− 1

2
P (t)(s′, s)ρ(t)(s′).

Hence, by applying the triangle inequality, we have
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∥∥∥(ρ(t+1) ⊗ 1)⊙ L
(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙ L
(t)

ρ(t)

∥∥∥
=
∥∥∥ρ(t+1)

diag − ρ
(t)
diag − (ρ(t+1) ⊗ 1)⊙W

(t+1)

ρ(t+1) + (ρ(t) ⊗ 1)⊙W
(t)

ρ(t)

∥∥∥
≤
∥∥∥ρ(t+1)

diag − ρ
(t)
diag

∥∥∥+ ∥∥∥(ρ(t+1) ⊗ 1)⊙W
(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙W
(t)

ρ(t)

∥∥∥
≤ δ(t)ρ +

∥∥∥(ρ(t+1) ⊗ 1)⊙W
(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙W
(t)

ρ(t)

∥∥∥
≤ δ(t)ρ +

1

2

∥∥∥(ρ(t+1) ⊗ 1)⊙ P (t+1) − (ρ(t) ⊗ 1)⊙ P (t)
∥∥∥

+
1

2

∥∥∥∥((ρ(t+1) ⊗ 1)⊙ P (t+1) − (ρ(t) ⊗ 1)⊙ P (t)
)⊤∥∥∥∥

And since ∥A⊤∥ = ∥A∥ we have∥∥∥(ρ(t+1) ⊗ 1)⊙ L
(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙ L
(t)

ρ(t)

∥∥∥
≤ δ(t)ρ +

∥∥∥(ρ(t+1) ⊗ 1)⊙ P (t+1) − (ρ(t) ⊗ 1)⊙ P (t)
∥∥∥ (28)

Now we proceed to bound the second term, adding and subtracting (ρ(t+1) ⊗ 1)⊙ P (t) and applying
the triangle inequality we have∥∥∥(ρ(t+1) ⊗ 1)⊙ P (t+1) − (ρ(t) ⊗ 1)⊙ P (t)

∥∥∥
≤
∥∥∥(ρ(t+1) ⊗ 1)⊙ (P (t+1) − P (t))

∥∥∥+ ∥∥∥((ρ(t+1) ⊗ 1)− ρ(t) ⊗ 1))⊙ P (t)
∥∥∥

(i)
≤
√
|S|max

s∈S

∥∥∥ρ(t+1)(s)
(
P (t+1)(s, :)− P (t)(s, :)

)∥∥∥
1

+
√
|S|max

s∈S

∥∥∥(ρ(t+1)(s)− ρ(t)(s)
)
P (t)(s, :)

∥∥∥
1

=
√
|S|
∥∥∥ρ(t+1)

∥∥∥
∞

max
s∈S

∥∥∥P (t+1)(s, :)− P (t)(s, :)
∥∥∥
1

+
√
|S|
∥∥∥ρ(t+1) − ρ(t)

∥∥∥
∞

max
s∈S

∥∥∥P (t)(s, :)
∥∥∥
1

(ii)
≤
√
|S|
(
δ(t)π + δ(t)ρ

)
where (i) stems from the identity ∥A∥ ≤

√
n∥A∥∞ for the n × n matrix A and (ii) follows from∥∥ρ(t+1)

∥∥
∞ ≤ 1,

∥∥P (t)(s, :)
∥∥
1
= 1, and Lemma 2(a).

Proof for Lemma 2 (d)

Proof. Recall that the loss function is given by:

L(t)(u) =

d∑
i=1

⟨ui, L
(t)ui⟩H(t) + b

d∑
j=1

j−1∑
k=1

(⟨uj , [[uk]]⟩H(t))
2
+

b

2

d∑
i=1

(⟨ui, ui⟩H(t) − 1)
2 (29)

We are interested in finding a bound for the difference:

∆L(t)(u) = |L(t+1)(u)− L(t)(u)|. (30)

The first term in the loss function is:
d∑

i=1

⟨ui, L
(t)ui⟩H(t) . (31)

Substituting the inner product and applying the triangle inequality, we have the following:
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∣∣∣∣∣
d∑

i=1

⟨ui, L
(t+1)ui⟩H(t+1) −

d∑
i=1

⟨ui, L
(t)ui⟩H(t)

∣∣∣∣∣ ≤
d∑

i=1

∣∣∣((u⊤
i ⊙ ρ(t+1)⊤)L

(t+1)

ρ(t+1)(ui)− (u⊤
i ⊙ ρ(t)

⊤
)L

(t)

ρ(t)(ui)
)∣∣∣ . (32)

The above expression can be re-written as follows:

d∑
i=1

∣∣∣(u⊤
i

(
(ρ(t+1) ⊗ 1)⊙ L

(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙ L
(t)

ρ(t)

)
ui

)∣∣∣ . (33)

From Lemma 2(c),
∥∥∥(ρ(t+1) ⊗ 1)⊙ L

(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙ L
(t)

ρ(t)

∥∥∥ ≤ δ
(t)
L . Thus, we have:

d∑
i=1

∣∣∣(u⊤
i

(
(ρ(t+1) ⊗ 1)⊙ L

(t+1)

ρ(t+1) − (ρ(t) ⊗ 1)⊙ L
(t)

ρ(t)

)
ui

)∣∣∣ ≤ δ
(t)
L

d∑
i=1

∥ui∥2 (34)

The difference in the regularization terms is:∣∣∣∣∣∣b
d∑

j=1

j−1∑
k=1

(
(⟨uj , [[uk]]⟩H(t+1))

2 − (⟨uj , [[uk]]⟩H(t))
2
)
+

b

2

d∑
j=1

(
(⟨uj , uj⟩H(t+1) − 1)

2 − (⟨uj , uj⟩H(t) − 1)
2
)∣∣∣∣∣∣ .

(35)

Using the rule x2 − y2 = (x+ y) · (x− y) and applying the triangle inequality, we can rewrite the
above expression as follows:

b

d∑
j=1

j−1∑
k=1

|⟨uj , [[uk]]⟩H(t+1) + ⟨uj , [[uk]]⟩H(t) | |⟨uj , [[uk]]⟩H(t+1) − ⟨uj , [[uk]]⟩H(t) |+

b

2

d∑
j=1

|⟨uj , uj⟩H(t+1) + ⟨uj , uj⟩H(t) − 2| |(⟨uj , uj⟩H(t+1) − ⟨uj , uj⟩H(t))|

≤b
d∑

j=1

j−1∑
k=1

|⟨uj , [[uk]]⟩H(t+1) + ⟨uj , [[uk]]⟩H(t) | |(⟨uj , [[uk]]⟩H(t+1) − ⟨uj , [[uk]]⟩H(t))|+

b

2

d∑
j=1

|⟨uj , uj⟩H(t+1) + ⟨uj , uj⟩H(t) | |(⟨uj , uj⟩H(t+1) − ⟨uj , uj⟩H(t))|

(36)

Note that
|⟨uj , [[uk]]⟩H(t+1) + ⟨uj , [[uk]]⟩H(t) | ≤ 2∥uj∥ · ∥[[uk]]∥ (37)

and that

|⟨uj , [[uk]]⟩H(t+1) − ⟨uj , [[uk]]⟩H(t) | =

∣∣∣∣∣∑
s∈S

uj(s)(ρ
(t+1)(s)− ρ(t)(s))[[uk]](s)

∣∣∣∣∣
≤ ∥uj∥ · ∥[[uk]]∥ · ∥ρ(t+1) − ρ(t)∥∞ ≤ ∥uj∥ · ∥[[uk]]∥ · δ(t)ρ

(38)

where δ
(t)
ρ is defined in Lemma 2(b).
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Combining the bounds for both the first and second parts, the total bound on L(t+1)(u)− L(t)(u) is:

|L(t+1)(u)− L(t)(u)| ≤ δ
(t)
L

d∑
i=1

∥ui∥2 + b

d∑
j=1

j∑
k=1

(
2∥uj∥2∥[[uk]]∥2δ(t)ρ

)
. (39)

We have |L(t+1)(u)− L(t)(u)| ≤ δ
(t)
L , where δ

(t)
L is given by

δ
(t)
L = δ

(t)
L

d∑
i=1

∥ui∥2 + b

d∑
j=1

j∑
k=1

(
2∥uj∥2∥[[uk]]∥2δ(t)ρ

)
. (40)

We know that ∥ui∥2 ≤ 2/ρmin. Substituting this, we have

δ
(t)
L =

2dδ
(t)
L

ρmin
+

8bδ
(t)
ρ

ρ2min

. (41)

Note: From Lemma 2(b) and Lemma 2(c), we have δ
(t)
L ≤ C1δ

(t)
π and δ

(t)
ρ ≤ C2δ

(t)
π , for some

constants C1, C2. Thus, we have |L(t+1)(u)− L(t)(u)| ≤ δ
(t)
L = (C1 + C2)δ

(t)
π . This implies that

the drift in the loss function decreases with the decrease in the drift between the policies πt and πt+1.

A.5 PROOF OF THEOREM 2

Proof. Recall that the update rule for projected gradient descent in equation 10 is given by:

u
(t+1)
i ← u

(t)
i − ηG(t)

ui
(u

(t)
i ),

We need to prove that the gradient norm ∥g(t)(ut)∥ asymptotically approaches zero as t→∞, which
would ensure the convergence to a critical point. In order to prove this, we will establish that the sum
of the squared gradients remains finite over time, despite the loss function being time-varying.

Recall the following assumptions:

• The gradient of the time-varying loss function L(t)(u) is Lipschitz continuous with constant
α > 0 for all t, that is,

∥g(t)(u1)−∇ug
(t)(u2)∥ ≤ α∥u1 − u2∥, ∀u1, u2.

• From Lemma 2, we have the change in the loss function from time t to time t+1 is bounded
by a constant δL, i.e.,

∥L(t+1)(u)− L(t)(u)∥ ≤ δ
(t)
L , ∀u.

• Additionally, it is easy to see that the loss function L(t)(u) is bounded from below by a
constant L∗, i.e.,

L(t)(u) ≥ L∗, ∀u, t.

The descent lemma for a time-varying loss function with Lipschitz continuous gradients and learning
rate η is given by:

L(t+1)(u(t+1)) ≤ L(t+1)(u(t))− η∥G(t)(u(t))∥2 + η2

2
α∥G(t)(u(t))∥2.

This can be rewritten as:

L(t+1)(u(t+1)) ≤ L(t)(u(t))− η∥G(t)(u(t))∥2 + η2

2
α∥G(t)(u(t))∥2 + δ

(t)
L ,

where δ
(t)
L represents the drift that accounts for the time-variation in the loss function between time t

and t+ 1. Rearranging this inequality, we obtain:

L(t+1)(u(t+1)) ≤ L(t)(u(t))−
(
η − η2

2
α

)
∥G(t)(u(t))∥2 + δ

(t)
L .
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To ensure that the loss function decreases at each time step, except for the small drift δL, we require
that:

η − η2

2
α > 0.

This gives the condition on the learning rate:

η <
2

α
.

Thus, the learning rate must satisfy η ≤ 2
α .

At each step, we can bound the change in the loss function as follows:

L(t)(u(t))− L(t+1)(u(t+1)) ≥
(
η − η2

2
α

)
∥G(t)(u(t))∥2 − δ

(t)
L .

Summing this inequality over t = 1, 2, . . . , T , we get:
T∑

t=1

(
L(t)(u(t))− L(t+1)(u(t+1))

)
≥

T∑
t=1

((
η − η2

2
α

)
∥G(t)(u(t))∥2 − δ

(t)
L

)
.

The left-hand side of this inequality is a telescoping sum, so it simplifies to:

L(1)(u(1))− L(T+1)(u(T+1)) ≥
T∑

t=1

((
η − η2

2
α

)
∥G(t)(u(t))∥2 − δ

(t)
L

)
.

Rearranging, we get:
T∑

t=1

∥G(t)(u(t))∥2 ≤ L
(1)(u(1))− L(T+1)(u(T+1))

η − η2

2 α
+

∑T
t=1 δ

(t)
L

η − η2

2 α
.

Since the loss function L(t)(u) is bounded from below by L∗, we have:

L(1)(u(1))− L∗ ≥
T∑

t=1

((
η − η2

2
α

)
∥G(t)(u(t))∥2 − δ

(t)
L

)
.

We can further simplify this to:
T∑

t=1

∥G(t)(u(t))∥2 ≤ L
(1)(u(1))− L∗

η − η2

2 α
+

∑T
t=1 δ

(t)
L

η − η2

2 α
. (42)

Dividing both sides by T , we get

Et∼Uniform{1,2,...,T}

[
∥G(t)(u(t))∥2

]
≤ L

(1)(u(1))− L∗

T
(
η − η2

2 α
) +

∑T
t=1 δ

(t)
L

T
(
η − η2

2 α
) . (43)

Setting η = 1
α , we have

Et∼Uniform{1,2,...,T}

[
∥G(t)(u(t))∥2

]
≤ 2α

T

(
L(1)(u(1))− L∗ +

T∑
t=1

δ
(t)
L

)
. (44)

From Assumption 2, we have that the asymptotic sum of the squared gradients

lim
T→∞

∞∑
t=1

∥G(t)(u(t))∥2 remains finite, i.e., lim
T→∞

T∑
t=1

∥G(t)(u(t))∥2 <∞. Therefore, we have:

lim
t→∞

∥G(t)(u(t))∥ = 0.

This shows that the gradients asymptotically approach zero over time, proving that the projected
gradient descent algorithm applied to the time-varying loss function converges asymptotically to a
critical point.
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(a) GridRoom-1 (b) GridRoom-4 (c) GridMaze-9 (d) GridMaze-11

Figure 5: Environments tested in experiments where the grey areas are walls.

B EXPERIMENTS SETUP

For each environment, a fixed target is sampled uniformly at random, at the beginning of the training
process. Upon reaching the target or at the beginning of an episode, the next state is sampled
uniformly at random. The matrix P̂ (t), used to compute the Laplacian L̂(t), is defined using a
weighted sum between the actual P (t) and the initial distribution, as suggested by Wu et al. (2018) to
handle episodic Markov Decision Processes (MDPs). To compute the true Laplacian representation,
we perform eigen decomposition on the matrix L̂

(t)

ρ(t) , which is equivalent to applying the Laplacian

operator in the spaceH(t).

We provide hyper-parameters for the Asymmetric Graph Drawing Objective (AGDO), Proximal
Policy Optimization (PPO), and Deep-Q Network (DQN) in Table 1.

Table 1: Hyper-parameters for AGDO, PPO, and DQN.

Hyper-Parameter AGDO PPO DQN
d 11 - -
Replay Max Episodes 20 - -
Updates per Episodic Step 5 - -
Total Training Steps 200,000 - -
Maximum Episode Length 10,000 - -
Learning Rate 0.001 3× 10−4 3× 10−4

Optimizer Adam Adam Adam
Barrier Coefficient 5 - -
Encoder Network Hidden Dimensions [256, 256, 256] - -
Batch Size 256 256 256
Replay Buffer Size - 500 steps 50,000 steps
Update Every - 500 steps 1 step
Training Batches per Update - 10 1
Actor and Critic Hidden Dimensions - [64, 64] -
Q-Network Hidden Dimensions - - [64, 64]
Discount Factor - 0.99 0.99
Entropy Coefficient - 0.01 -
Initial Clip Ratio - 0.2 -
Final Clip Ratio - 0.01 -
Initial Epsilon - - 1
Final Epsilon - - 0.1

Finally, we report the rewards achieved by the learning agents presented in section 5 in Figure 6.
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(a) Rewards for agents in Figure 3
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(b) Rewards for agents in Figure 4a
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(c) Rewards for agents in Figure 4b
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(d) Rewards for agents in Figure 4c

Figure 6: Average reward obtained by agents trained in section 5.
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