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Abstract001

To answer complex real-world questions, it002
is crucial to retrieve and integrate relevant003
information step-by-step to generate well-004
grounded responses. However, existing meth-005
ods struggle to effectively distill step-specific006
reasoning abilities, as they do not account007
for the varying amount of information ac-008
cessed at each reasoning step. To address009
this limitation, we propose Step-wise Knowl-010
edge Distillation for Enhancing Reasoning011
Ability in Multi-Step Retrieval-Augmented012
LM (STEPER). STEPER leverages step-wise013
datasets and reasoning difficulty-aware train-014
ing to enhance reasoning abilities essential for015
multi-step retrieval-augmented LM. Moreover,016
STEPER is adaptable to various multi-step017
retrieval-augmented LM frameworks, includ-018
ing reasoning path-based retrieval and ques-019
tion decomposition-based approaches. Exten-020
sive experiments demonstrate that STEPER out-021
performs existing methods on multi-hop QA022
datasets, with an 8B model achieving perfor-023
mance on par with a 70B teacher model.024

1 Introduction025

Large language models (LLMs) have demonstrated026

strong reasoning abilities across various tasks (Rae027

et al., 2021; Hoffmann et al., 2022; Chowdhery028

et al., 2023), leveraging Chain-of-Thought prompt-029

ing (CoT). However, these reasoning abilities are030

primarily observed in large models (Wei et al.,031

2022; Chung et al., 2024), requiring substantial032

inference cost. Therefore, Knowledge Distillation033

(KD) methods have been introduced to effectively034

transfer these abilities to smaller models (Hsieh035

et al., 2023; Mitra et al., 2023; Lee et al., 2024).036

Beyond mathematical problem-solving tasks,037

reasoning ability is also essential in retrieval-038

augmented LMs, which retrieve relevant informa-039

tion and generate accurate responses based on the040

retrieval results. Existing KD approaches train a041

student model to mimic the teacher’s reasoning042

process, often using CoT prompting to generate ra- 043

tionales that guide the student through intermediate 044

reasoning steps (Luo et al., 2023; Yu et al., 2023). 045

However, these methods struggle with complex 046

real-world tasks that require multi-step retrieval for 047

effective reasoning. 048

To answer complex questions, a model must de- 049

velop multiple reasoning abilities. For example, 050

consider a doctor diagnosing a patient with an- 051

kle pain. The reasoning process can be broken 052

down into three stages: (1) Reasoning Initialization, 053

where the doctor identifies potential diseases based 054

on symptoms; (2) Reasoning Expansion, where 055

additional tests, such as an X-ray to check for frac- 056

tures and an ultrasound for muscle damage, are 057

conducted; and (3) Reasoning Aggregation, where 058

all the information is reviewed to make a final diag- 059

nosis and treatment plan. To solve complex prob- 060

lems, a model needs to learn step-by-step reasoning 061

and adapt to the varying amount of information re- 062

quired at each stage. 063

Existing KD methods are limited in these scenar- 064

ios, as they fail to account for reasoning abilities 065

and the varying amounts of information required 066

at each step (Kang et al., 2023; Luo et al., 2023; 067

Yu et al., 2023; Li et al., 2024). In general, these 068

methods train the student model to generate the 069

entire reasoning path from accumulated retrieval 070

results, without considering the differences in the 071

information available at each step. As shown in 072

Figure 1, the vanilla-KD model fails to initialize 073

the reasoning path properly, attempting to generate 074

the entire path in the First-step with minimal infor- 075

mation, which limits its performance in multi-step 076

retrieval settings. 077

To address this limitation, we propose Step-wise 078

Knowledge Distillation for Enhancing Reasoning 079

Ability in Multi-Step Retrieval-Augmented LM 080

(STEPER). STEPER constructs a step-wise dataset 081

using a teacher multi-step retrieval-augmented LM, 082

enabling the model to learn reasoning abilities spe- 083
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Jim Halsey guided the career of the musician who hosted 
the country variety show "The Tonight Show Starring 

Johnny Carson" is not correct.
Jim Halsey guided the career of the musician who hosted 

the country variety show "Pop! Goes the Country". 
So the answer is: Pop

vanilla-KD

Vanilla-KD fails to generate reasoning initialization!

Jim Halsey guided the career of the musician Roy Clark. 
Roy Clark hosted the country variety show "Hee Haw". 

Hee Haw was an American television variety show. 
Thus, the answer is: Hee Haw. 

So the answer is: Hee Haw.

StepER

StepER generates appropriate rationale for each step!

Question: Jim Halsey guided the career of the musician who hosted what country variety show?     Ground truth: Hee Haw

(a)

(b)

Figure 1: Comparison of vanilla-KD and STEPER. In (a), we show the conceptual differences in training data. First-
step data represents initial reasoning based on retrieved passages, Mid-step data includes intermediate reasoning
steps, and Final-step data corresponds to the step where the model generates the final answer. In (b), we provide
answer examples from the vanilla-KD and STEPER models. vanilla-KD generates an answer in one step, often
resulting in errors, while STEPER expands reasoning step by step to produce the correct answer.

cific to each step. First-step data helps the model084

initiate reasoning based on initial retrieval results,085

Mid-step data facilitates reasoning expansion, and086

Final-step data supports reasoning aggregation.087

This approach allows the model to acquire rea-088

soning capabilities for complex questions while089

considering the information required at each step.090

To further enhance reasoning ability learning,091

we introduce reasoning difficulty-aware training.092

Initially, the model focuses on tasks that are suit-093

able for learning, gradually increasing the focus on094

more challenging tasks as training progresses. This095

adaptive approach allows the model to effectively096

learn reasoning abilities, optimizing the learning097

process according to its current state. As shown in098

Figure 1, a model trained with StepER successfully099

identifies the artist, the show hosted by the artist,100

the country where it aired, and ultimately produces101

the correct answer.102

STEPER offers several advantages for answer-103

ing complex questions. First, it outperforms vanilla-104

KD methods, with experiments showing an average105

accuracy improvement of approximately 9.5%. G-106

Eval results confirm that step-wise is crucial for107

enhancing reasoning abilities. Second, STEPER108

is flexible and can be applied to various multi-109

step retrieval-augmented LM frameworks. Further,110

STEPER is model-scalable, achieving performance111

comparable to a 70B teacher model with a 8B112

model. 113

Our main contributions are as follows: (1) We 114

categorize the essential reasoning abilities required 115

for multi-retrieval settings and demonstrate the 116

need for methods to enhance each ability. (2) We 117

propose STEPER, a method that leverages step- 118

wise data and reasoning difficulty-aware training 119

to effectively learn the necessary reasoning abili- 120

ties. (3) Through extensive analysis, we show that 121

STEPER outperforms existing KD approaches, im- 122

proving both overall performance and scalability 123

across various model sizes. 124

2 Related Work 125

Retrieval-Augmented LM Retrieval-augmented 126

LM has significantly improved performance in 127

knowledge-intensive tasks such as Open-Domain 128

Question Answering (Lewis et al., 2020; Guu et al., 129

2020). This model typically consists of a retriever 130

that selects relevant documents and a generator that 131

constructs responses based on the retrieved infor- 132

mation (Borgeaud et al., 2022; Izacard et al., 2023; 133

Shi et al., 2023). To answer based on documents 134

most relevant to the question, Kim et al. (2024), 135

Xu et al. (2023) have explored approaches that 136

refine retrieved documents before generation, by 137

summarizing evidence. However, Jiang et al. (2024) 138

shows that improving the quality of retrieval results 139

alone remains insufficient for multi-hop QA tasks, 140
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indicating the need for more effective methods to141

facilitate complex reasoning in question answering.142

Multi-Step Retrieval-Augmented LM To ad-143

dress the limitations of single-step retrieval in144

handling complex queries, multi-step retrieval-145

augmented LMs have been introduced (Trivedi146

et al., 2022a; Shao et al., 2023; Jeong et al.,147

2024). These models iteratively retrieve informa-148

tion throughout the reasoning process. Trivedi et al.149

(2022a), Shao et al. (2023) leverage previously gen-150

erated rationales as queries for subsequent retrieval,151

while Press et al. (2022) decomposes the original152

question into sub-questions and answers them in-153

dependently.154

KD for Retrieval-Augmented LM Several stud-155

ies have explored the use of teacher-generated156

rationales to improve the training of retrieval-157

augmented language models (Xu et al., 2024). In158

addition to simply utilizing teacher rationales, re-159

cent studies have been proposed to enhance search160

result quality using rationales (Kang et al., 2023)161

or to improve answer generation by reflecting the162

relevance between the retrieved passages and the163

question (Luo et al., 2023; Yu et al., 2023). How-164

ever, these methods primarily focus on single-step165

retrieval settings, which limits their performance in166

multi-hop question answering tasks.167

Recently, Asai et al. (2023) has been introduced168

to enhance the training of multi-step retrieval-169

augmented LMs by learning when to retrieve and170

which documents to incorporate into responses.171

This approach focuses on integrating high-quality172

search results into answers but overlooks the step-173

wise reasoning abilities needed for complex ques-174

tions and requires additional models for training,175

increasing the cost.176

3 Preliminaries177

We formalize retrieval-augmented generation178

(RAG) in the context of multi-step reasoning.179

Specifically, let q denote the original input question,180

and let the reasoning process proceed over S steps.181

During the first S − 1 steps, the model produces182

intermediate reasoning outputs {r1, r2, . . . , rS−1}183

and in the Final-step, it generates the answer, de-184

noted by rS = a.185

Single-Step RAG In the single-step RAG, the186

model accesses an external knowledge source only187

once before generating both its reasoning chain188

and final answer. Let P1 be the top-K passages189

retrieved from the knowledge source given the orig- 190

inal question q. The generation process is then fac- 191

torized as 192

P
(
R | q, P1

)
· P

(
a | q, P1, R

)
. (1) 193

Here, the model first generates the intermediate rea- 194

soning steps R conditioned on {q, P1}, and then 195

produces the final answer a based on {q, P1, R}. 196

Although this approach simplifies the pipeline, pre- 197

vious works have demonstrated that it is inadequate 198

for complex multi-hop queries that require addi- 199

tional (Trivedi et al., 2022a; Jeong et al., 2024; Gao 200

et al., 2023; Shao et al., 2023; Jiang et al., 2023). 201

Multi-Step RAG Multi-step RAG extends single- 202

step RAG by iteratively retrieving new passages 203

over multiple steps. At step s, let qs be a step 204

search query, which is constructed based on the 205

partial chain of reasoning R<s = {r1, . . . , rs−1}. 206

Using qs to query the external knowledge source, 207

we retrieve the top-K relevant passages Ps. We 208

denote by P≤s =
⋃s

i=1 Pi the collection of all pas- 209

sages retrieved up to step s. For S total steps, the 210

generation process is factorized as 211[
S−1∏
s=1

P
(
rs | q, P≤s, R<s

)]
·P

(
a | q, P≤S , R<S

)
,

(2) 212

By repeatedly retrieving and integrating new ev- 213

idence, Multi-step RAG is naturally suited to ad- 214

dress complex or multi-hop questions. 215

4 STEPER Framework 216

We propose a novel framework, STEPER, to en- 217

hance the step-specific reasoning abilities of stu- 218

dent models. 219

4.1 Data Construction 220

According to equation (2), the accessible informa- 221

tion in the Multi-Step RAG changes as the steps 222

progress, and accordingly the reasoning ability re- 223

quired by the model varies (see Figure 1). We cate- 224

gorize these reasoning abilities into three groups: 225

(a) reasoning initialization, (b) reasoning expan- 226

sion, and (c) reasoning aggregation. To enable the 227

student to learn these three reasoning skills from a 228

teacher, we construct a step-wise dataset, denoted 229

as Dstepwise, from the original dataset D. Given a 230

complex QA dataset D = {(q(i), a(i))}ni=1, where 231

each q(i) is a question and a(i) is its correct answer, 232

we construct a stepwise dataset Dsteps in which ev- 233

ery sample explicitly records multiple intermediate 234

reasoning steps with each accessible information. 235
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Figure 2: STEPER framework. This illustration conceptually depicts the construction of training data and the student
model’s learning process. A teacher LM constructs a step-wise dataset, and the student model effectively acquires
the necessary reasoning abilities for multi-step retrieval-augmented LM through reasoning difficulty-aware training
using step-wise data.

Reasoning Initialization For each question q(i),236

we retrieve a first passages P (i)
1 by querying an ex-237

ternal knowledge source with q(i). We then prompt238

the teacher model T to produce the initial reason-239

ing step r
(i)
1 from

(
q(i), P

(i)
1

)
. We retain the initial240

reasoning step r1 and then proceed to the next step.241

Reasoning Expansion Based upon the initial ra-242

tionale, we prompt the teacher model T to gen-243

erate the next reasoning step. Specifically, at step244

s > 1, we retrieve additional passages P (i)
s using245

qs as a step search query. Then, the cumulative in-246

formation
(
q(i), P

(i)
≤s , R

(i)
≤s−1

)
is provided as input,247

from which T produces the next reasoning step r
(i)
s .248

Each expansion step is designed to elaborate exist-249

ing reasoning by integrating new evidence while250

maintaining coherence with previous contexts. This251

iterative process continues up to a maximum of252

S− 1 steps. If at any point r(i)s includes the answer253

flag (e.g., beginning with “So the answer is:”),254

we record the reasoning chain constructed up to255

that step and terminate the expansion step early.256

Reasoning Aggregation Upon reaching the last257

step S, we prompt T to aggregate all previous258

reasoning steps and passages. Concretely, T is in-259

structed to append a concluding statement like “So260

the answer is:” and explicitly provide a(i).261

Filtering Dataset After generating all reason-262

ing steps for each (q(i), a(i)), we filter out samples263

where the teacher’s final statement does not match264

the ground truth a(i), ensuring that Dsteps only con-265

tains the correct reasoning processes. Ultimately, 266

every sample in Dsteps illustrates how T (i) initial- 267

izes reasoning from limited context, (ii) expands 268

partial reasoning with newly retrieved evidence, 269

and (iii) aggregates all partial results into a final 270

answer. 271

4.2 Learning Objectives 272

Multi-task Learning We train the student model 273

M on the stepwise dataset Dsteps to distill multi- 274

step reasoning abilities. Formally, we minimize the 275

following objective: 276

L =
1

3n

n∑
i=1

[
ℓ
(
M(q(i), P

(i)
≤1), R

(i)
≤1

)︸ ︷︷ ︸
(a) reasoning initialization

+
S−1∑
s=2

ℓ
(
M(q(i), P

(i)
≤s), R

(i)
≤s

)
︸ ︷︷ ︸

(b) reasoning expansion

+ ℓ
(
M(q(i), P

(i)
≤S), (R

(i)
<S ||a

(i))
)︸ ︷︷ ︸

(c) reasoning aggregation

]
,

(3) 277

where ℓ(·, ·) is the cross-entropy between predicted 278

and target tokens, n is the total number of samples, 279

and || in (c) denotes string concatenation. 280

Reasoning Difficulty-Aware Training Since 281

each task has a different difficulty level, the model 282

should prioritize learning the reasoning abilities 283

that are most suitable for its current training 284

stage (Liang and Zhang, 2020; Guo et al., 2018; 285

Murugesan and Carbonell, 2017). To achieve this, 286
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we apply an adaptive weighting scheme (Kendall287

et al., 2017; Chen et al., 2021), allowing the model288

to focus on adequate tasks while dynamically ad-289

justing learning priorities at each training step. The290

difficulty of each task is represented as a trainable291

parameter σ. In Equation (3), (a), (b), and (c) cor-292

respond to Linit, Lexp, and Lagg respectively, then293

the final objective is then formulated as:294

Lfinal =
∑

j∈{init, exp, agg}

( 1

2σ2
j

Lj + log σj

)
, (4)295

where log σj functions as a regularization term.296

The model is adaptively trained so that tasks requir-297

ing more challenging reasoning are guided to have298

higher σ values, whereas less demanding tasks are299

guided to have lower σ values, enabling the model300

to dynamically reweight its training focus based on301

the difficulty of each task, leading to more effective302

multi-step reasoning.303

5 Experiments304

5.1 Experimental Setup305

Backbone Model We use Llama3.1-Instruct306

70B (Dubey et al., 2024) as our teacher model T ,307

with Llama3.1-Instruct 8B as the student model M.308

Unless otherwise specified, all baseline methods309

employ Llama3.1-Instruct.310

Datasets and Metrics We evaluate on three311

widely used multi-hop QA benchmarks that involve312

complex queries: 2WikiMultiHopQA (2Wiki) (Ho313

et al., 2020), HotpotQA (Yang et al., 2018), and314

MuSiQue (Trivedi et al., 2022b) that are recog-315

nized for requiring more complex and multi-step316

reasoning (Welbl et al., 2018; Yang et al., 2018).317

We report Exact Match (EM), F1, and Accuracy318

(Acc), where Acc measures whether the ground-319

truth answer is present in the model’s generated320

text.321

Baselines We compare a wide range of retrieval-322

augmented generation (RAG) methods that cover323

both few-shot in-context learning (ICL) and knowl-324

edge distillation, while varying the number of re-325

trieval times (0, 1, or multiple).326

In ICL, we include a non-retrieval few-shot base-327

line for reference, since LLMs already encode a328

large amount of knowledge (Zhao et al., 2023).329

Next, We evaluate vanilla-RAG (Lewis et al., 2020),330

where a retriever retrieves relevant documents and a331

generator produces the answer conditioned on this332

retrieved context. We compare SuRE (Kim et al., 333

2024), an advanced variant that retrieves and sum- 334

marizes before verifying the final prediction. For 335

multi-step retrieval in ICL, we compare two ways 336

of updating the step search query: one in which 337

the query is updated with previously generated con- 338

text, as in ITER-RETGEN (Shao et al., 2023) and 339

IRCOT (Trivedi et al., 2022a), and another where 340

the model decomposes the original question into 341

multiple sub-queries, as in Self-Ask (Press et al., 342

2022) and ReAct (Yao et al., 2023). 343

In knowledge distillation, SAIL (Luo et al., 344

2023) and CoN (Yu et al., 2023) distill context 345

filtering strategies, helping the student identify ir- 346

relevant passages. KARD (Kang et al., 2023) dis- 347

tills the teacher’s reasoning while leveraging its 348

rationale to improve retrieval. We refer to vanilla- 349

KD, trained to generate the full reasoning path se- 350

quentially from all retrieved documents until the 351

final answer. We compare Self-RAG (Asai et al., 352

2023), which learns when to retrieve and reflect 353

the outputs in a multi-step setting. STEPER utilizes 354

IRCOT-style reasoning-path-based retrieval in our 355

experiments. 356

Implementation Details We follow the corpus 357

selection and data preprocessing setup from the 358

previous work Trivedi et al. (2022a). For passage 359

retrieval, we adopt an off-the-shelf retriever BM25 360

(Robertson and Zaragoza, 2009) with a maximum 361

of S = 5 retrieval steps, retrieving the top-K = 4 362

passages at each step. We train the models using a 363

learning rate of 5× 10−6 for total 2 epochs, along 364

with a cosine scheduler and linear warmup. Ex- 365

periments run on 4×A100 GPUs with DeepSpeed 366

ZeRO Stage 3 and gradient checkpointing to reduce 367

memory consumption. 368

5.2 Main Results 369

Table 1 shows the performance of various ap- 370

proaches on 2Wiki, HotpotQA, and MuSiQue 371

with Llama3.1-Instruct. We first note that single- 372

time retrieval methods struggle to address complex 373

queries, and even recent improvements (Kim et al., 374

2024) exhibit a noticeable gap compared to multi- 375

time retrieval. In addition, an accuracy gap persists 376

between 8B and 70B models under multi-step RAG 377

ICL, highlighting the importance of model size in 378

complex reasoning tasks. 379

STEPER stands out as it delivers the best per- 380

formance among knowledge distillation methods, 381

achieving a 9.5% average accuracy improvement 382

5



Ret. times 2Wiki HotpotQA MuSiQue Avg.

EM F1 Acc EM F1 Acc EM F1 Acc EM F1 Acc

In-Context Learning

No Llama3.1 8B 29.83 35.59 33.69 29.18 38.76 35.01 8.68 17.91 13.22 22.56 30.75 27.31
Llama3.1 70B 45.47 51.09 47.89 40.61 51.25 45.86 16.19 25.94 23.28 34.09 42.76 39.01
gpt-4o-mini 25.51 40.80 27.09 28.15 41.25 35.81 11.84 24.03 15.89 21.83 35.36 26.26
gpt-4o 52.26 65.88 53.70 40.69 57.24 48.05 21.62 35.22 28.50 38.19 52.78 43.42

Single vanilla-RAG 8B 35.97 43.10 38.88 38.25 49.08 46.15 11.18 20.91 22.57 28.46 37.69 35.86
vanilla-RAG 70B 51.01 57.80 53.83 45.25 56.30 52.93 19.84 30.79 31.58 38.70 48.29 46.08
SuRE 70B 25.20 41.34 41.20 30.60 48.23 41.00 11.60 22.00 19.40 22.46 37.19 33.86

Multi ITER-RETGEN3 70B 44.60 50.92 46.20 48.20 60.12 53.40 24.20 33.17 30.00 39.00 48.07 43.20
ITER-RETGEN4 70B 44.20 50.54 45.60 49.40 60.92 54.60 24.80 32.98 30.40 39.46 48.14 43.53
ITER-RETGEN5 70B 44.00 50.35 45.60 49.40 60.51 54.80 24.00 31.92 29.60 39.13 47.59 43.33
IRCOT 8B 41.80 49.94 44.80 43.40 53.82 50.80 17.20 27.57 28.40 34.13 43.77 41.33
IRCOT 70B 60.16 67.06 62.37 49.60 61.31 57.23 24.30 35.29 34.74 44.68 54.55 51.45
Self-Ask 8B 38.80 47.41 43.00 40.80 52.00 48.20 15.83 23.58 23.85 31.81 41.00 38.35
Self-Ask 70B 57.80 66.44 61.00 50.60 62.60 59.40 25.20 36.68 33.80 44.53 55.24 51.40
ReAct 8B 40.20 49.50 43.00 33.60 43.96 39.60 14.80 24.73 21.20 29.53 39.40 34.60
ReAct 70B 59.40 68.58 61.60 46.00 59.89 53.40 28.20 39.46 35.60 44.53 55.98 50.20

Knowledge Distillation

Single SAIL 47.90 54.06 49.50 44.56 56.30 51.41 6.41 16.34 10.62 32.96 42.23 37.18
KARD 47.80 54.48 51.40 43.80 54.59 53.00 14.60 25.54 24.60 35.40 44.87 43.00
CoN 45.66 53.93 48.89 42.46 53.34 51.00 16.36 26.85 25.86 34.96 44.70 41.91

Multi Self-RAG 41.15 46.99 42.82 36.85 44.88 41.26 9.16 17.19 12.80 29.05 36.35 32.29
vanilla-KD 60.06 65.55 62.16 46.40 57.28 54.80 20.92 32.46 30.13 42.46 51.76 49.03
STEPER 63.60 69.45 66.00 51.00 62.80 61.00 23.59 36.13 34.07 46.06 56.12 53.69

Table 1: Overall experimental results with Llama3.1-Instruct as the base model. All listed models (SAIL, KARD,
CoN, Self-RAG, and vanilla-KD) are trained with Llama3.1-Instruct 8B under the Knowledge Distillation criteria.
Averages (Avg.) are computed across three datasets: 2Wiki, HotpotQA, and MuSiQue. The number for ITER-
RETGEN represents the maximum number of retrieval steps.

over vanilla-KD and outperforming all baselines383

on 2Wiki and HotpotQA. These results underscore384

how STEPER effectively inherits step-wise reason-385

ing abilities from the teacher model, enabling a386

smaller student model to close the gap in reasoning387

performance.388

6 Analysis389

6.1 Effectiveness of Step Data in Enhancing390

Reasoning Abilities391

We conduct an experiment to evaluate the effec-392

tiveness of step data in enhancing reasoning abil-393

ities required for multi-step retrieval-augmented394

LM. We categorize the necessary reasoning abili-395

ties into three types for evaluation: (1) Reasoning396

Initialization, (2) Reasoning Expansion, and (3)397

Reasoning Aggregation, as described in Section 4.398

To evaluate these abilities, we perform binary clas-399

sification for each criterion using GPT-4, evalu-400

ated on the HotpotQA test dataset. The detailed401

prompt used for evaluation is provided in the Ap-402

pendix C. We train the models using various step403

data configurations, specifically: Vanilla-KD (S=5),404

Vanilla-KD+First-step (S=1,5), Vanilla-KD+First-405

Figure 3: GPT evaluation results (Reasoning Initializa-
tion, Reasoning Expansion, and Reasoning Aggrega-
tion) on the HotpotQA for various step data configura-
tions (vanilla-KD, +First-step, +First and First Mid-step,
and STEPER). STEPER, which utilizes all available
step data, achieves the highest performance across all
evaluation criteria, demonstrating the effectiveness of
step-wise training for multi-step retrieval.

step+First Mid-step (S=1,2,5), and STEPER (all 406

step data), with a maximum of S = 5 retrieval 407
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steps.408

Vanilla-KD relies solely on Final-step data and409

struggles to capture detailed intermediate reason-410

ing. In contrast, adding First-step data strengthens411

the ability to initiate reasoning (Reasoning Initial-412

ization). By offering a clear starting point for multi-413

step reasoning, the model can more effectively iden-414

tify and focus on relevant information at the begin-415

ning of the reasoning process. Furthermore, incor-416

porating the First-step data and First Mid-step data417

improves the expansion process (Reasoning Expan-418

sion), enabling the model to elaborate on its initial419

line of reasoning before arriving at the final conclu-420

sion. Finally, STEPER, which jointly leverages all421

step data, outperforms all other models, confirming422

that step-wise data enhances the reasoning abilities423

required for multi-step retrieval settings.424

6.2 Effectiveness of Difficulty-Aware Adaptive425

Weighting Strategy426

Strategy HotpotQA MuSiQue

EM F1 Acc EM F1 Acc

Uniform (λ = 1, 1, 1) 50.40 61.57 58.40 21.67 33.28 33.58
Weight First (λ = 1.5, 1, 0.5) 49.10 61.63 57.70 21.04 31.24 32.46
Weight Last (λ = 0.5, 1, 1.5) 48.80 60.78 58.00 21.91 33.85 33.37
Difficulty-Aware (Ours) 51.00 62.80 61.00 23.59 36.13 34.07

Table 2: Comparison of our Difficulty-Aware adaptive
weighting strategy against several fixed-weight base-
lines. The table illustrates how adaptively learning σj

with λj =
1

2σ2
j

to control the relative difficulty of each
task leads to consistent improvements on both Hot-
potQA and MuSiQue, thereby enabling a more balanced
and effective multi-step reasoning process.

As introduced in Equation (4), our overall loss427

consists of three partial losses {Linit, Lexp, Lagg},428

each scaled by 1
2σ2

j
. Specifically, We set λj =

1
2σ2

j
.429

adaptively control the relative difficulty of each430

task. Table 2 compares this Difficulty-Aware strat-431

egy against several fixed-weight baselines. Notably,432

we observe consistent improvements on both Hot-433

potQA and MuSiQue. This indicates that adaptively434

learning σj based on task difficulty leads to a more435

balanced and effective multi-step reasoning pro-436

cess.437

6.3 Applicability to Another Multi-time438

Retrieval Approach439

We further investigate the generality of our step-440

wise knowledge distillation by integrating STEPER441

with Self-Ask, another multi-time retrieval frame-442

work where each step search query is generated443

from a decomposition of the original question. As444

shown in Table 3, STEPER consistently shows a445

Model
HotpotQA MuSiQue

EM F1 Acc EM F1 Acc

Self-Ask 8B 40.80 52.50 48.20 15.83 23.58 23.85
vanilla-KD 47.60 60.11 56.40 26.90 38.92 37.00
STEPER 49.80 62.33 57.80 28.20 40.52 38.80
Self-Ask 70B 50.60 62.60 59.40 25.20 36.68 33.80

Table 3: Evaluation results for Self-Ask on HotpotQA
and MusiQue on Llama3.1-Instruct. We compare the
teacher model (Self-Ask 70B) with student models (8B)
distilled through either vanilla-KD or STEPER.

Figure 4: Model scalability of STEPER on Qwen2.5-
Instruct. We compare models of varying sizes (0.5B,
1.5B, 3B, 7B) and show how STEPER scales effectively
while maintaining strong multi-time reasoning perfor-
mance.

1–2% performance gain over vanilla-KD on both 446

HotpotQA and MuSiQue, highlighting the effec- 447

tiveness of explicitly distilling intermediate ratio- 448

nales at each retrieval step rather than rather than re- 449

lying solely on supervision from the Final-step data. 450

In addition, STEPER achieves substantial improve- 451

ments over the Self-Ask 8B baseline, boosting its 452

accuracy by 9.6% on HotpotQA and by 14.95% on 453

MuSiQue. Consequently, these results demonstrate 454

that our approach can integrate seamlessly with 455

various multi-step retrieval-augmented LMs. 456

6.4 Model Scalability 457

Figure 4 shows that STEPER consistently achieves 458

the highest accuracy across all Qwen2.5-Instruct 459

model sizes (0.5B, 1.5B, 3B, and 7B) (Yang et al., 460

2024) on HotpotQA. Notably, the 3B STEPER 461

model nearly matches the performance of the 462

Qwen2.5-Instruct 72B teacher, while the 7B STE- 463

PER even surpasses it. Furthermore, 3B STEPER 464

outperforms the 7B vanilla-KD, and 1.5B STEPER 465

surpasses the 3B vanilla-KD, indicating that STE- 466

PER can effectively bridge model-scale gaps by dis- 467

tilling step-wise reasoning abilities. These findings 468

underscore the practicality of STEPER in resource- 469

constrained scenarios, where smaller models can 470
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Figure 5: Accuracy (%) versus Latency (s) of StepER
on Qwen2.5-Instruct. Marker size indicates model pa-
rameter count. STEPER models achieve superior perfor-
mance with lower latency than larger models, offering
the best trade-off between efficiency and effectiveness.

achieve performance levels comparable to much471

larger counterparts (Sanh, 2019; Liu et al., 2024).472

6.5 Trade-off Between Latency and Accuracy473

We measure the latency as the average inference474

time per sample on HotpotQA with Qwen2.5-475

Instruct models. Figure 5 illustrates the trade-off476

between inference latency and accuracy for differ-477

ent models, where the marker size indicates the478

model’s parameter count. STEPER-7B surpasses479

70B-scale models in terms of accuracy, yet requires480

only a fraction of their latency. Thus, our evalua-481

tion confirms that STEPER-7B stands out as the482

most efficient and effective model, delivering the483

best trade-off between latency and accuracy.484

6.6 Out-of-Domain Adaptation485

To evaluate the transferability of our approach, we486

conducted out-of-domain experiments by training487

the model on one dataset and testing it on an-488

other. We use the 2Wiki (2W), HotpotQA (HQ), and489

MuSiQue (MQ) datasets. Figure 6 shows the perfor-490

mance accuracy of the two methods, STEPER and491

vanilla-KD, across four domain adaptation scenar-492

ios: HQ→2W, HQ→MQ, MQ→2W, and MQ→HQ.493

STEPER consistently outperforms vanilla-KD494

across all four domain adaptation scenarios. In495

each case, STEPER exhibits higher accuracy than496

vanilla-KD, with gains ranging from 1% to 4%.497

This indicates that distilling the teacher’s step-wise498

reasoning ability offers better transferability to out-499

of-domain tasks than relying solely on the aggre-500

gation step as in vanilla-KD. Overall, these results501

suggest that learning step-specific reasoning abili-502

ties not only enhances in-domain reasoning but also503

leads to stronger generalization to unseen datasets.504

Figure 6: Out-of-domain adaptation results for STEPER
versus vanilla-KD across four domain transfer scenarios:
HQ→2W, HQ→MQ, MQ→2W, and MQ→HQ. STEPER consis-
tently outperforms vanilla-KD, demonstrating stronger
cross-domain generalization.

6.7 Qualitatively Analysis 505

Table 4 shows a HotpotQA example illustrating the 506

difference in answers between vanilla-KD and Ste- 507

pER. While vanilla-KD correctly identifies ‘Comic 508

Book Girl 19’ and the university, it incorrectly an- 509

swers with ‘Savannah, Georgia,’ failing to align 510

with the question about the university’s European 511

location. In contrast, StepER identifies all relevant 512

information about ‘Comic Book Girl 19’, the uni- 513

versity, and its European location, providing the 514

correct answer. Vanilla-KD learns without consid- 515

ering each reasoning ability, leading to the failure 516

to extract key information relevant to the question. 517

On the other hand, STEPER learns reasoning abil- 518

ities at each step, allowing the model to generate 519

the correct answer progressively. 520

7 Conclusion 521

We propose STEPER, a framework for learning 522

the reasoning abilities required for multi-retrieval 523

augmented LMs. By categorizing reasoning abili- 524

ties into initialization, expansion, and aggregation, 525

we treat each as a separate task and use step data 526

for multi-task learning. We further introduce rea- 527

soning difficulty-aware training, dynamically ad- 528

justing task importance as learning progresses. Ex- 529

tensive experiments show that STEPER improves 530

reasoning abilities and outperforms existing meth- 531

ods across various model sizes and multi-step re- 532

trieval settings. Given its adaptability, STEPER can 533

enhance performance in diverse domains. Future 534

work will explore its generalizability across various 535

tasks. 536
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Limitations537

We propose STEPER, a method for effectively538

learning the reasoning abilities required for multi-539

step retrieval-augmented LMs, which demon-540

strates strong performance across several multi-hop541

datasets. Given the nature of knowledge distillation542

(KD), where the student model learns from the543

teacher model’s rationale, it is crucial to filter the544

training dataset to prevent propagating errors from545

the teacher model to the student. In this study, we546

use a filtering method based solely on whether the547

final answer is correct. However, since errors can548

occur in the reasoning path even when the final an-549

swer is correct, future work may focus on filtering550

based on the correctness of the reasoning path at551

each step to further enhance performance. Addition-552

ally, incorporating parameter-efficient fine-tuning553

methods could lead to more efficient learning.554

Ethical Considerations555

We used publicly available datasets, including556

2WikiMultiHotpotQA, HotpotQA, and MuSiQue.557

For models, we employed publicly released558

LLaMA-3.1-Instruct, Qwen-2.5-Instruct, GPT-4o,559

and GPT-4o-mini. Therefore, we do not anticipate560

significant ethical concerns from our work.561
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A Additional Experimental Setups789

A.1 Datasets790

We use publicly available multi-hop datasets mentioned in IRCOT. The characteristics of each dataset are791

as follows:792

• 2WikiMultiHopQA: A dataset constructed using Wikipedia documents and a knowledge graph,793

requiring a two-hop reasoning process to answer questions.794

• HotpotQA: A dataset where annotators created questions and answers based on multiple Wikipedia795

articles.796

• MuSiQue: A dataset formed by combining multiple single-hop questions into multi-hop questions797

requiring 2 to 4 hops.798

Following the experimental setup of IRCOT, we construct a corpus by merging the labeled documents799

in each dataset. We randomly sample 50,000 instances from the training data of each dataset. Since800

MuSiQue contains fewer than 50,000 training instances, we use its entire training set. After filtering, the801

final number of training samples used is 33,584 for 2WikiMultiHopQA, 30,572 for HotpotQA, and 5,515802

for MuSiQue. For validation and testing, we randomly sample 500 instances from the original validation803

set of each dataset to construct the validation and test datasets.804

A.2 Baselines805

We employ the following models for our experiments. Detailed prompts for each model are provided in806

Section C807

• Few-shot In-Context Learning808

1. No Retrieval: The LLM generates answers by directly using the question as a prompt.809

2. Single-Step Retrieval: The question is used as a query to search the corpus once. The top-k810

retrieved documents are prepended to the question as input. In the case of SuRE, ...811

3. Multi-Step Retrieval: Multiple retrieval steps are performed according to each model’s method-812

ology to generate the final answer. For Self-Ask and ReAct, we follow the prompts provided in813

ITER-RETGEN.814

• Knowledge Distillation815

1. Single-Step Retrieval: In the case of SAIL, we follow the original approach using a RoBERTa816

entailment classification model to assess the relevance between retrieved documents and the817

question. Based on this relevance score, the retrieved results are formatted according to SAIL’s818

specifications and combined with the question as input. KARD fine-tunes smaller language819

models to produce rationales by leveraging augmented knowledge from an external knowledge820

base, assisted by a neural reranker. CoN employs a dedicated prompt for document selection to821

filter out irrelevant passages and thereby enhance reasoning performance. The student models822

are then distilled with the teacher’s noise-filtering signal.823

2. Multi-Step Retrieval: For Self-RAG, we build the critic model and generator using the824

Llama3.1-Instruct model, which we then use during inference. For vanilla-KD, only the Final-825

step data from the constructed step-wise training dataset is used for training.826

B Additional Experiments827

B.1 Qualitative Analysis828

Table 4 presents a HotpotQA example that highlights the difference in responses between vanilla-KD829

and STEPER. In the case of vanilla-KD, the model successfully answers questions about the identity of830

‘Comic Book Girl 19’ and the university from which she graduated. However, despite being asked about831
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Question: In what european city is a location of the college from which the woman known as Comic Book
Girl 19 received her degree? Answer: Lacoste, France
Retrieved document #1:
Wikipedia Title: Comic Book Girl 19
Danika Lee Massey, also known as Comic Book Girl 19 or CBG19, is a YouTube personality known for her
commentaries on comics, films, books, and television shows. She has a degree in sequential art from the
Savannah College of Art and Design.
Retrieved document #2:
Wikipedia Title: Savannah College of Art and Design
Savannah College of Art and Design (SCAD), is a private, nonprofit, accredited university with locations in
Savannah, Georgia; Atlanta, Georgia; Hong Kong; and Lacoste, France.
(Other retrieved documents are omitted.)
vanilla-KD: The woman known as Comic Book Girl 19 received her degree from the Savannah College of
Art and Design. The Savannah College of Art and Design is located in Savannah, Georgia. Savannah, Georgia
is in the United States. So the answer is: Savannah, Georgia
STEPER(Ours): The woman known as Comic Book Girl 19 received her degree from the Savannah College
of Art and Design. The Savannah College of Art and Design is located in Savannah, Georgia, United States.
However, the Savannah College of Art and Design also has locations in Hong Kong and Lacoste, France. So
the answer is: Lacoste, France

Table 4: Qualitative Analysis. In comparison to vanilla-KD, our StepER demonstrates the ability to expand reasoning
and extract more relevant information from the question, resulting in a more accurate answer, as shown in the
HotpotQA example.

{knowledge}
Q: Answer the following question by reasoning step-by-step.
{Question}
A:

Table 5: QA prompt for IRCOT.

the university’s European location, the model incorrectly provides the location of a university in another 832

country. This highlights that vanilla-KD fails to incorporate the reasoning abilities required for each step, 833

which is crucial in a multi-retrieval setting. In contrast, STEPER successfully identifies all the relevant 834

details about ‘Comic Book Girl 19,’ the university, and its European location, resulting in the correct 835

answer. Vanilla-KD’s failure to consider reasoning abilities at each step prevents it from extracting key 836

information necessary to answer the question. On the other hand, STEPER’s multi-step approach enables 837

it to progressively extract and combine reasoning abilities, ultimately generating the correct response. 838

C Prompts 839
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{knowledge}
Q: Answer the following question by reasoning step-by-step.
Are both Kurram Garhi and Trojkrsti located in the same country?
A: Kurram Garhi is located in the country of Pakistan. Trojkrsti is located in the country of Republic of Macedonia. Thus, they
are not in the same country. So the answer is: no.

{knowledge}
Q: Answer the following question by reasoning step-by-step.
When did the director of film Laughter In Hell die?
A: The film Laughter In Hell was directed by Edward L. Cahn. Edward L. Cahn died on August 25, 1963. So the answer is:
August 25, 1963.

{knowledge}
Q: Answer the following question by reasoning step-by-step.
What is the cause of death of Grand Duke Alexei Alexandrovich Of Russia’s mother?
A: The mother of Grand Duke Alexei Alexandrovich of Russia is Maria Alexandrovna. Maria Alexandrovna died from
tuberculosis. So the answer is: tuberculosis.

{knowledge}
Q: Answer the following question by reasoning step-by-step.
Are the directors of films The Sun of the Sleepless and Nevada (1927 film) both from the same country?
A: The director of Sun of the Sleepless is Temur Babluani. The director of Nevada (1927 film) is John Waters. John Waters is
from the country of America. Temur Babluani is from the country of Georgia. Thus, John Walters and Temur Babluani are not
from the same country. So the answer is: no.

{knowledge}
Q: Answer the following question by reasoning step-by-step.
When was the director of film P.S. Jerusalem born?
A: P.S. Jerusalem was directed by Danae Elon. Danae Elon was born on December 23, 1970. So the answer is: December 23,
1970.

{knowledge}
Q: Answer the following question by reasoning step-by-step.
When did the director of film Hypocrite (Film) die?
A: The film Hypocrite was directed by Miguel Morayta. Miguel Morayta died on 19 June 2013. So the answer is: 19 June 2013.

{knowledge}
Q: Answer the following question by reasoning step-by-step.
Where did the director of film Maddalena (1954 Film) die?
A: The film Maddalena is directed by Augusto Genina. Augusto Genina died in Rome. So the answer is: Rome.

Table 6: 7-Shot Demonstrations for IRCOT on 2WikiMultiHopQA.
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{knowledge}
Q: Answer the following question by reasoning step-by-step. Nobody Loves You was written by John Lennon and released on
what album that was issued by Apple Records, and was written, recorded, and released during his 18 month separation from
Yoko Ono?
A: The album issued by Apple Records, and written, recorded, and released during John Lennon’s 18 month separation from
Yoko Ono is Walls and Bridges. Nobody Loves You was written by John Lennon on Walls and Bridges album. So the answer is:
Walls and Bridge

{knowledge}
Q: Answer the following question by reasoning step-by-step.
When did the director of film Laughter In Hell die?
A: The film Laughter In Hell was directed by Edward L. Cahn. Edward L. Cahn died on August 25, 1963. So the answer is:
August 25, 1963.

{knowledge}
Q: Answer the following question by reasoning step-by-step. Who was born first, James D Grant, who uses the pen name of Lee
Child, or Bernhard Schlink?
A: James D Grant, who uses the pen name of Lee Child, was born in 1954. Bernhard Schlink was born in 1944. Thus, Bernhard
Schlink was born first. So the answer is: Bernhard Schlink.

{knowledge}
Q: Answer the following question by reasoning step-by-step. Which band formed first, Sponge Cola or Hurricane No. 1?
A: Sponge Cola band was formed in 1998. Hurricane No. 1 was formed in 1996. Thus, Hurricane No. 1 band formed the first. So
the answer is: Hurricane No. 1.

{knowledge}
Q: Answer the following question by reasoning step-by-step. In which state of Australia will you find the themed lands Ocean
parade and DreamWorks Experience both within the Dreamworld theme park complex on the Gold Coast?
A: The themed land of Ocean parade is in the state of Queensland in Australia. The themed land of The DreamWorks Experience
is in the state of Queensland in Australia. Thus, both Ocean parade and The DreamWorks Experience are in the state of
Queensland. So the answer is: Queensland.

{knowledge}
Q: Answer the following question by reasoning step-by-step. Mister Magoo’s Christmas Carol was produced by the same studio
that produced a film that featured the only animated-film role by who?
A: Mister Magoo’s Christmas Carol was produced by United Productions of America studio. United Productions of America
studio produced a film Gay Purr-we, which features the voice of Judy Garland in her only animated-film role. So the answer is:
Judy Garland.

{knowledge}
Q: Answer the following question by reasoning step-by-step. How many awards did the "A Girl Like Me" singer win at the
American Music Awards of 2012?
A: The singer of "A Girl Like Me" singer is Rihanna. In the American Music Awards of 2012, Rihana won one award. So the
answer is: one.

Table 7: 7-Shot Demonstrations for IRCOT on HotpotQA.
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{knowledge}
Q: Answer the following question by reasoning step-by-step. What is the headquarters for the organization who sets the standards
for ISO 21500?
A: The standards for ISO 21500 were set by International Organization for Standardization. The International Organization for
Standardization has headquarters in Geneva. So the answer is: Geneva.

{knowledge}
Q: Answer the following question by reasoning step-by-step. When did Britain withdraw from the country containing Hoora?
A: Hoora is in the country of Bahrain. Britain withdrew from Bahrain in 1971. So the answer is: 1971.

{knowledge}
Q: Answer the following question by reasoning step-by-step. When did Britain withdraw from the country where the village of
Wadyan is found?
A: Wadyan is in the country of Bahrain. Britain withdraw from Bahrain in 1971. So the answer is: 1971.

{knowledge}
Q: Answer the following question by reasoning step-by-step. What shares a border with Rivière-Verte in the province WRSU-FM
broadcasts in?
A: WRSU-FM was licensed to broadcast to New Brunswick. Rivière-Verte, New Brunswick shares border with Edmundston. So
the answer is: Edmundston.

{knowledge}
Q: Answer the following question by reasoning step-by-step. What genre is the record label of the performer of So Long, See
You Tomorrow associated with?
A: The performer of So Long, See You Tomorrow is Bombay Bicycle Club. The record label of Bombay Bicycle Club is Island
Records. The genre of Island Records is jazz. So the answer is: jazz.

{knowledge}
Q: Answer the following question by reasoning step-by-step. What is the genre of the record label of the band that performed on
the Crush Tour?
A: The Crush Tour is performed by the band Bon Jovi. The record label of Bon Jovi is Island Records. The genre of Island
Records is jazz. So the answer is: jazz.

{knowledge}
Q: Answer the following question by reasoning step-by-step. How many countries in Pacific National University’s continent are
recognized by the organization that mediated the truce ending the Iran-Iraq war?
A: Pacific National University is located in Khabarovsk, Russia Khabarovsk, Russian is in the continent of Asia. The entity that
mediated the truce which ended the Iran-Iraq War is the UN. The number of member states that UN recognises in Asia is 53. So
the answer is: 53.

Table 8: 7-Shot Demonstrations for IRCOT on MuSiQue.
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You will be given a reasoning task with passage(s), a question, gold answer(s), and generated answer from
model.
Your task is to evaluate the generated answer as either 0 or 1 based on the following criteria.
Consider the passages when making your evaluation.
You must answer the evaluation form using json format.

Evaluation Criteria:
1. Reasoning Initialization: Evaluate how well the generated answer starts the reasoning path based on the
given passages and question. Does the first sentence provide a logical and relevant foundation for the rest
of the reasoning? Consider the following:
- If the first reasoning step provides a necessary foundation for expanding the reasoning, evaluate it
positively.
- If the first reasoning path is irrelevant or diverges from addressing the question directly, evaluate it
negatively regardless of whether the answer is correct or incorrect.
2. Reasoning Expansion: Assess how well the generated answer extracts and applies relevant information
from the passages to address the question. Does each subsequent sentence logically expand upon the first
sentence to develop the reasoning effectively? Consider the following:
- If the model correctly extracts key information and logically expands upon it to support the reasoning,
evaluate positively.
- If relevant information exists in the passages but is ignored or misused, evaluate negatively.
3. Reasoning Aggregation: Assess the alignment between the reasoning path and the final answer. Does
the reasoning path logically lead to the final answer and ensure its correctness based on the provided
reasoning? Consider the following:
- If both the reasoning path and the final answer are logically consistent, correct, and directly address the
question, evaluate it positively.
- If the reasoning path contains correct intermediate steps but the final answer is logically inconsistent or
incorrect, evaluate it negatively.
- If the reasoning path is incorrect but the final answer happens to be correct, also evaluate it negatively.

Evaluation Form:
- Reasoning Initialization: {{0 / 1}}
- Reasoning Expansion: {{0 / 1}}
- Reasoning Aggregation: {{0 / 1}}

Question:
{question}
Gold Answer List:
{gold_answer_list}
Passages:
{passage}
Generated Answer:
{generated_answer}

Table 9: GPT evalutation prompt for assessing reasoning abilities
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