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Abstract

Biological pathways, like protein-protein interactions and metabolic networks, are1

vital for understanding diseases and drug development. Some databases such as2

KEGG are designed to store and map these pathways. However, many bioinformat-3

ics methods face limitations due to database constraints, and certain deep learning4

models struggle with the complexities of biochemical reactions involving large5

molecules and diverse enzymes. Importantly, the thorough exploration of biological6

pathways demands a deep understanding of scientific literature and past research.7

Despite this, recent advancements in Large Language Models (LLMs), especially8

ChatGPT, show promise. We first restructured data from KEGG and augmented9

it with molecule structural and functional information sourced from UniProt and10

PubChem. Our study evaluated LLMs, particularly GPT-3.5-turbo and Galactica, in11

predicting biochemical reactions and pathways using our constructed data. We also12

assessed its ability to predict novel pathways, not covered in its training dataset,13

using findings from recently published studies. While GPT demonstrated strengths14

in pathway mapping, Galactica encountered challenges. This research emphasizes15

the potential of merging LLMs with biology, suggesting a harmonious blend of16

human expertise and AI in decoding biological systems.17

1 Introduction18

Biological pathways, including protein–protein interaction networks, metabolic networks, and gene19

regulatory networks, are intricate systems of proteins and molecules interacting in processes like20

signaling [24]. Investigating these pathways is essential for understanding disease mechanisms21

and drug development. Techniques like GSEA [25] and SPIA [26] aid this exploration. Databases22

like KEGG [13] have also been developed to collate and visualize these networks systematically.23

However, identifying pathways from genome-inferred proteins and enzymes is limited by database24

completeness, complicating data integration from varied sources.25

Recent advancement in deep learning offers new tools for scientific research. Among these tools,26

Large language models (LLMs) have been revolutionizing in the domain of Natural Language27

Processing (NLP). Their fantastic generalization ability is obtained by pretraining on extensive28

textual datasets. ChatGPT, released by OpenAI in November 2022 [22], exemplifies the capabilities29

of such models. ChatGPT’s aptitude for understanding scientific texts has seen its application in30

interpreting protein sequences and molecular structures like SMILES, aiding in tasks such as molecule31

editing [18] and chemistry-focused projects [6]. Other models,such as SciBERT [5], BioLM [17],32

and Galactica [27], have been developed explicitly for processing scientific literature and typically of33

a smaller scale.34

Existing deep learning methods mainly utilize chemical structure in the format of graph [8, 28] or35

SMILES [20] to predict chemical reactions. Predicting biochemical reactions poses a more complex36

set of challenges compared to chemical reactions. A significant factor is the involvement of large37



molecules, which often participate in these reactions. These large molecules introduce an additional38

layer of complexity due to their diverse structures and functionalities, necessitating a more nuanced39

approach for accurate prediction. Besides, the outcome of biochemical reactions is also significantly40

influenced by the variety of enzymes involved. Different enzymes have the potential to catalyze the41

same set of reactants to yield diverse products, following unique pathways and mechanisms. This42

variability and diversity necessitate a comprehensive understanding of enzyme specificity and the43

conditions under which they operate. Yet, LLMs can integrate data from diverse sources, offering44

nuanced insights into pathway interactions. Given their training in vast data repositories and their45

ability of reasoning, they may deduce interactions based on existing knowledge or even pioneer46

groundbreaking hypotheses about pathways, which helps experimental design in wet-lab.47

Consequently, our research seeks to assess the capabilities of LLMs for pathway predictions. We have48

formulated three primary tasks for our assessment in Figure 1: (1) Biochemical Reaction Prediction:49

Given reactants and enzymes, the task is to predict the products. (2) Metabolism Pathway Prediction:50

This involves predicting the complete metabolic pathway given the initial reactants and enzymes,51

where each step is similar to the biochemical reaction prediction. (3) Regulatory Pathway Prediction:52

The objective is to predict the complete regulatory relationships within a pathway given stimuli.53

These tasks are framed within the context of identifying the relationships between the input elements54

and predicting the likely outputs, providing a basis for understanding the underlying probabilistic55

distributions of biochemical reactions and pathways. To accomplish these tasks, we systematically56

restructured relevant data from KEGG through the API, incorporating important functional and57

structural information retrieved from UniProt [1] and PubChem [16]. We utilized data encompassing58

11,944 reactions, 480 metabolism pathway modules, and 1,356 regulatory pathways from KEGG.59

Our analysis centers on evaluating the performance of GPT-3.5-turbo and Galactica in predicting the60

outcomes of biochemical reactions based on enzymes and in reconstructing complete pathways or61

regulatory networks from initial stimuli and enzymes. The results suggest GPT exhibits promising62

potential in mapping comprehensive pathways documented in KEGG. When introduced to novel63

scenarios beyond its training scope, GPT is adept at outlining various plausible downstream pathway64

progressions. This capability not only provides valuable insights but also charts out prospective65

research trajectories for scientists. However, GPT’s current limitation lies in its inability to predict66

the precise targets involved in the pathway.67

To sum up, our contributions are: (1) We curated and assembled 11,944 reaction and 1,836 pathway68

data from KEGG, enriched with molecular structural and functional insights from UniProt and69

PubChem, for easier accessibility; (2) We initiated the exploration of the capabilities of large70

language models for predicting biological pathways. It is important to note that LLMs are designed71

to be knowledgeable across a vast spectrum of fields. This enables them to synthesize information72

from diverse areas and offer insights that might be challenging for individual researchers to arrive at.73

Our findings lay both the strengths and limitations of LLMs, charting a path for further refinements.74

2 Dataset Construction75

Our primary data source was the KEGG database [13]. To assess the efficacy of LLM in predicting76

biochemical reactions, we compiled a set of 11,944 reactions from KEGG. The constituents of these77

reactions can be either compounds or glycans. For compounds, their corresponding SMILES were78

fetched from PubChem using the CAS numbers provided by KEGG. In the case of glycans, we79

gathered monosaccharide compositions directly from KEGG. It’s worth noting that the enzymes80

responsible for these reactions are occasionally specified. For every unique EC number, we also81

sourced functional, activity, and sequence information from UniProt when a UniProt ID was available.82

We consolidated all this data into a structured JSON file.83

Additionally, 480 KEGG metabolism pathway modules are collected from the KEGG database84

through the API. Each of these modules represents a segment of a more intricate pathway, depicted85

through manually created pathway maps. These maps encapsulate molecular interactions, reactions,86

and relational networks, predominantly encompassing metabolic pathways and cellular processes. We87

have structured each module based on consecutive reactions. The reactants, products, and associated88

enzymes for each of these reactions are also archived in a JSON file. Since each metabolism pathway89

is composed of several reactions, the detailed information can be retrieved from the previously90

constructed reaction data. For each reaction within a pathway, we identified its parent reactions as91

well as any external reactants that are not products of any preceding reactions.92
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Figure 1: An illustration of biochemical reactions, metabolism pathways, and regulatory pathways. (a) In
biochemical reaction prediction, product[1] is predicted; (b) In metabolism pathway prediction, all the inner
products[2] are predicted; (c) In the regulatory pathway, the regulated components[4] and the regulatory
relationship[3] are predicted.

Figure 2: Visualization of three metabolism pathway prediction methods: (a) Auto-regressive prediction, where
the LLM predicts subsequent steps based on prior predictions; (b) Auto-regressive prediction with ground truth
reactants, where the LLM is provided the true reactants at each step; and (c) One-time prediction, where the
LLM is supplied with complete reactions from the first half of the pathway to predict the remaining pathway.

Moreover, we utilized 1,356 KEGG networks, which we recognize as regulatory pathways that93

encompass protein-protein interactions. These regulatory pathways prioritize variations in molecular94

interaction and reaction networks, manifesting as network variation maps. Examples include gene95

expression profiles, protein-protein interaction networks, and perturbations in molecular networks96

related to diseases and drugs. To articulate a regulatory pathway in textual form, we adhered to97

KEGG’s notational conventions, outlining the regulatory relationships between two components.98

We follow the KEGG instructions and translate the symbols used in describing the molecular99

interactions as: -| inhibition; => expression; == complex formation; // missing interaction or reaction;100

-> Activation or Enzymatic reaction or transport process; – Substrate binding to enzyme or transporter;101

» Enzyme-enzyme relation of successive reactions; =| repression.102

The detailed information we retrieved from the database is illustrated in Figure 3.103

3 Prompt Design and Preliminary Results104

We used the GPT-3.5-turbo (175 B parameters) and Galactica base model (1.3 B parameters) as our105

primary models. The detailed prompts are given in Table 2 in Appendix C.106

3



3.1 Reaction107

Since single reactions are the basic units of a complex pathway, we first assessed a total of 11,756108

individual biochemical reactions. However, we excluded those KEGG reactions for which the API109

retrieval did not provide a list of reactants. If the KEGG entry includes the "ENZYME" section,110

we incorporate the enzyme information. For predictions made using Galactica, we employed the111

Question Answering mode: Question: prompt \n\nAnswer:, with the base prompt mirroring that of112

GPT.113

Evaluation Predictions were manually assessed by aligning them with the actual products. A114

prediction is correct if it matches either the name or the SMILES representation of every product,115

recognizing that certain products might lack a SMILES notation, such as proteins. The results are116

shown in Table1 1117

3.2 Metabolism Pathway118

We assessed a total of 131 KEGG pathway modules among the 480 collected modules. For each119

module, we designated the reactants of the initial reaction as the stimuli that initiate the pathway.120

We applied three different ways to run the experiments, which are also visualized in Figure 2: (1)121

Using an autoregressive approach, we allowed the large language model to predict subsequent122

reactions. This meant that its earlier predicted parents reactions were continuously fed back into the123

model, serving as the prior state of the pathway. The model also needs to decide which products124

participate in the following reaction. The results are labeled as metabolism_pathway_auto; (2)125

Similar to the first method, we also conducted experiments where the models were provided with126

ground truth reactants at each step, rather than relying on their prior predictions, which are labeled as127

metabolism_pathway_auto_true; (3) For each module, we provide the complete initial half of the128

ground truth reactions directly to the model and task it with predicting the remaining reactions. The129

outcomes of this approach are presented in the metabolism_pathway_one-time column in Table 1.130

Given that Galactica lacks conversational memory, for the first two methods, we compiled its131

predictions for all reaction precursors of a reaction and then supplied these to Galactica, prompting it132

to forecast the following step using a similar Question Answering framework.133

Evaluation Considering that the pathway is complex to evaluate, we adopted an additional GPT-134

3.5-turbo as the evaluator to assess the congruence between the predicted pathway/network and the135

ground truth. In the third method, we have observed that by supplying the reactions, GPT occasionally136

directly recognizes the entire pathway without the need for explicit prediction. This phenomenon137

could explain the significantly higher accuracy observed in the metabolism_pathway_one-time results.138

Baseline We employed DAVID bioinformatics resources [12] as a baseline method, which, given139

enzymes, identifies the pathways in which these enzymes participate, ranked by p-values, by searching140

existing databases like KEGG. Since this tool only supports website interaction and the results need141

to be manually checked, we tested it with 20 selected metabolism pathways, on which GPT-3.5-turbo142

has a 50% predicting accuracy. We input all the enzymes listed by KEGG and verified whether143

the corresponding KEGG pathway was returned by the tool. The results are also presented in144

Table 1.Given that we tested KEGG data and the system directly fetches data from KEGG, its145

performance is notably superior.146

3.3 Regulatory Pathway147

We examined 353 regulatory pathways taken from the KEGG network section, encompassing protein148

interactions and signaling pathways. As with previous evaluations, the initial stimulus, whether149

a protein or another compound, was provided to the model. To represent it in textual form, we150

followed KEGG’s notational standards, detailing the regulatory relationships between two entities,151

which is included as background information as shown in the prompts in Table 2 in Appendix C.152

Correspondingly, three types of experiments are performed, which are similar to the examples153

given in Figure 2, while it no longer predicts the products but the regulated objects and regulatory154

relationships. (1) For autoregressive generation, we provided the initial step, noting that a single155

stimulus could be part of various regulatory pathways. The model then anticipates the subsequent156
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Table 1: Accuracy(%) of GPT-3.5-turbo and Galactica (base)

Model Reaction Metabolism Pathway Regulatory Pathway

David BR – 95% 100%

auto auto_true one-time auto auto_true one-time

GPT-3.5-turbo 24.06% 24.62% 25.38% 42.31% 20.11% 39.94% 26.85%
Galactica (base) 1.08% 0% 0% 0% 0% 0% 0%

interaction based on its prior prediction. Similarly, for Galactica prediction, we collected all the157

predictions of precursor steps as the knowledge and let it predict the next step; The results are under158

column regulatory_pathway_auto in in Table 1; (2) In parallel, we also executed experiments where159

models were given the true previous step to predict subsequent regulations, which are labeled as160

regulatory_pathway_auto_true in Table 1; (3) For each pathway, we provide the initial half of the161

ground truth steps directly to the models and task them with predicting the remaining steps. The162

results are presented in the regulatory_pathway_one-time column.163

Evaluation Similarly, we adopted an additional GPT-3.5-turbo as the evaluator to assess the congru-164

ence between the predicted pathway/network and the ground truth.165

Baseline Similar to the metabolism pathway, we tested David Bioinformatics Resources with 20166

selected regulatory pathways, on which GPT-3.5-turbo has a 50% predicting accuracy. We input all167

the proteins involved in each pathway and verified whether the corresponding KEGG pathway was168

returned by the tool. The results are presented in Table 1.169

3.4 Case Studies170

To evaluate GPT’s potential in novel biological pathway prediction, we tested it on two papers that171

were published in 2023, after GPT-3.5-turbo was released.172

Case 1 Embryos from various metazoan lineages can induce a state of transcriptional dormancy,173

allowing development to pause in response to adverse environmental conditions. Collignon et174

al. [10] elaborate on the mechanics of this process, the Mettl3 mediating N6-methyladenosine175

RNA methylation directly destabilizes the mRNA of N-Myc, the transcriptional amplifier, causing176

suppression of global nascent transcription. This pathway together with the Mettl3 regulating the177

destabilization of global mRNA leads to a developmental pause.178

To assess the capabilities of GPT-3.5-turbo in understanding and predicting this biological process,179

we presented the following prompt:180

Under adverse environmental conditions, embryonic stem cells from metazoan lineages enter181

reversible states of developmental pausing, or diapause. There is a pathway starting with Mettl3182

regulating the process, predict the pathway starting with Mettl3.183

The response generated by GPT can be referenced in Appendix D.1. Notably, the third point184

highlighted by GPT accurately indicates that Mettl3 facilitates the addition of m6A modifications to185

mRNA molecules. However, it doesn’t explicitly mention the modification of N-Myc mRNA.186

Case 2 Another study [2] shows that E4ligase, yeast Ufd2 and human UBE4B (the human homolog187

of Ufd2) move to mitochondria and ubiquitylate mitofusins, thereby inhibiting mitochondrial fusion188

under environmental stress conditions. This progress leads to mitochondrial fragmentation. Based on189

this fact, we formed the following prompt for GPT:190

In human cells, under the stress of heat shock, UBE4B translocates to mitochondria, predict191

the following reaction in this pathway.192

The response generated by GPT can be referenced in Appendix D.2. The second point mentions193

that UBE4B will interact with Mitochondrial Proteins related to mitochondria maintenance, repair,194

and quality control, while it doesn’t give specific targets. In a real situation, scientists might be then195

interested in knowing which proteins in mitochondria can interact with UBE4B. We further asked196

GPT about the details:197
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You mentioned that UBE4B can interact with other mitochondria proteins involved in mito-198

chondrial quality control, maintenance, and repair. Can you give some possible proteins in199

detail?200

The complete answer is given in Appendix D.2. The sixth point mentions that UBE4B could201

potentially influence the Mfn1 and Mfn2 ubiquitination, resulting in an impact on the mitochondria202

fusion. This is what the paper suggests and thus it can be considered as a successful prediction.203

4 Conclusion204

In our study, we combined traditional biology with advanced artificial intelligence, specifically205

focusing on models like GPT-3.5-turbo and Galactica, to explore their potential in biological pathway206

prediction and analysis. Our results show that GPT can effectively understand and predict complex207

biochemical interactions, often with a level of accuracy comparable to well-established databases208

like KEGG. However, they sometimes struggled with specifics, indicating areas that need further209

improvement. However, Galactica is less effective in handling the long biology description and given210

comprehensive pathway predictions.211

Our real-world tests, using recent scientific publications, highlighted both the strengths and limitations212

of these models in predicting novel pathways. Leveraging GPT’s capacity to amalgamate vast data213

from diverse sources, it stands as a specialist across multiple biology disciplines, offering holistic214

predictions on pathways. This serves as a brainstorming tool for scientists, assisting in refining their215

research focus. However, given its occasionally broad outputs, human intervention remains pivotal to216

discern and extract the most insightful information from its analyses.217

In summary, our findings support the idea that LLMs can be a powerful tool to complement traditional218

biology research. However, human expertise remains essential to ensure the accuracy and relevance219

of LLMs predictions. As we move forward, the collaboration between human experts and AI will be220

crucial for gaining deeper insights into biological systems.221
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A Related Works309

Chemical and biochemical reactions prediction The field of forward chemical reaction prediction310

predominantly focuses on predicting the resultant products from given reactants. The majority of311

existing methods amalgamate established templates or patterns with various innovative techniques312

such as machine learning [7], graph-based idealized molecular orbitals [15], and neural networks [29].313

Another significant avenue in this domain is retrosynthesis prediction, which is dedicated to inferring314

chemical reactants from known products. According to a comprehensive outline by Vignesh Ram315

Somnath et al.[23], machine learning and deep learning models applicable in this context can be316

broadly classified into Template-based[9], Template-free [30], and Semi-Template-based models [23].317

However, the complexity escalates when it comes to biochemical reactions, which frequently involve318

large molecules and a myriad of enzymes. A noteworthy attempt to address this was made by319

BNICE [11], employing a method wherein enzymatic catalysis rules were manually constructed320

based on their Enzyme Commission numbers. Nonetheless, the approach faces inherent limitations321

due to the extensive variety and abundance of enzymes in biological systems.322

Biological pathway analysis In the realm of bioinformatics, a prevalent approach for identifying323

pathways involves comparing the given proteins or enzymes, which can be deduced from the324

genome, against similar pathways in existing databases. Notable examples of this approach include325

PathoLogic [14], PathPred [19], and DAVID bioinformatics resources [12]. Recently, there are also326

some work in leveraging deep learning for predicting the types of metabolic pathways molecules327

might follow, based on their structural attributes [3] [4]. Nevertheless, the exploration and application328

of deep learning for comprehensive pathway prediction remain relatively untapped fields, presenting329

ample opportunities for discovery and advancement.330

LLMs in pathway prediction In a previous study, Gilchan Park et al.[21] assessed the capabilities of331

several prominent large language models, such as Galactica, LLaMA, Alpaca, RST, BioGPT-Large,332

and BioMedLM, for recognizing protein interactions, pathways, and gene regulatory relations. Their333

dataset, sourced from the STRING, KEGG, and INDRA databases, facilitated tasks where these334

LLMs were challenged to predict biological knowledge about protein interactions, identify genes335

participating in specific pathways, and discern regulatory relationships between genes. Their findings336

indicate that the latest state-of-the-art LLMs show potential in elucidating biological knowledge.337

Nonetheless, this study primarily examines the relationship predictions between pairs of proteins338

or genes. This approach overlooks the frequently encountered and intricate scenarios where a339

comprehensive pathway needs to be discerned based on pre-existing knowledge of stimuli and340

reactants.341

B Dataset structure342

Figure 3: Organized Data Dtructure
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C Prompts343

The prompts are shown in Table 2

Table 2: Prompts
Experiment Setup Prompts Initial Steps Following Steps
Reaction You are an expert in biology and bio-

chemistry.
What are the products
of the reaction [REAC-
TANT 1] (SMILES)
+ [REACTANT 2]
(SMILES) + ..., under
the catalysis of the
following enzymes:
[ENZYME 1], whose
function is described as
...?

–

Metabolism Pathway You are an expert in biology and bio-
chemistry. Your job is to predict all
the reactions in a biological pathway
when cells are exposed to [INITIAL
REACTANTS], which has in total k
reactions.

Predict the starting re-
action i in this pathway,
which takes the follow-
ing reactants: [REAC-
TANTS].

After reaction i, pre-
dict the following re-
action i+1 in this path-
way catalyzed by the
following enzymes:
[ENZYME 1], whose
function is described
as ...

Regularoty Pathway Your job is to predict all the steps
in a molecular interaction/reaction
network when cells are exposed to
[COMPOUNDS], which has in total
k steps. Possible interactions are A
inhibits B; A cause the expression
of B; A has an unknown relation-
ship with B; Aactivates or, through
an enzymatic reaction, results in B;
A binds to B; A has an relation of
successive reactions with B; A re-
presses B; A forms a complex with
B. Cases when components within a
bracket are separated by comma in-
dicate any of them can be involved
in this step. Cases when components
within a bracket are connected by +
indicate they work together in this
step.

In the initial step i, ...,
Some structural or func-
tional information about
the involved components
are known: the SMILES
of [COMPOUND] is ...;
the efficacy of [DRUG]
is...; the composition
of [GLYCAN] is...; the
function of [ENZYME]
is described as ...

Given step i, predict
step i+1.

344

D Case Studies345

This section provides complete answers from GPT in case studies 3.4.346

D.1347

Question Under adverse environmental conditions, embryonic stem cells from metazoan lineages348

enter reversible states of developmental pausing, or diapause. There is a pathway starting with Mettl3349

regulating the process, predict the pathway starting with Mettl3.350

Answer Mettl3 (Methyltransferase-like 3) is an RNA methyltransferase that plays a role in RNA351

modification, specifically N6-methyladenosine (m6A) methylation. It has been implicated in various352
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cellular processes, including stem cell differentiation. In the context of embryonic stem cells entering353

reversible states of developmental pausing or diapause under adverse environmental conditions, here’s354

a prediction of the pathway starting with Mettl3:355

1. Environmental Stress: Adverse environmental conditions, such as nutrient scarcity, oxidative356

stress, or other external challenges, trigger a stress response in embryonic stem cells.357

2. Mettl3 Activation: In response to the environmental stress, Mettl3 activity may be modulated.358

Mettl3 is known to be involved in the regulation of RNA stability and translation efficiency359

through m6A methylation.360

3. m6A Modification: Mettl3 catalyzes the addition of m6A modifications to specific RNA361

molecules, including mRNAs and non-coding RNAs.362

4. Altered Transcriptome: m6A modifications can influence the stability, translation, and363

splicing of target RNAs. In the context of environmental stress, m6A modifications mediated364

by Mettl3 could lead to changes in the transcriptome of embryonic stem cells.365

5. Regulation of RNA Stability: m6A modifications can enhance the stability of specific366

transcripts, allowing the cell to preserve essential genes for future use during or after the367

stress period.368

6. Translation Regulation: Mettl3-mediated m6A modifications can also affect the translation369

efficiency of target mRNAs. Some transcripts may be preferentially translated to produce370

proteins that are needed for stress adaptation.371

7. Induction of Developmental Pausing or Diapause: The changes in the transcriptome influ-372

enced by Mettl3-mediated m6A modifications may include the regulation of genes associated373

with the developmental pausing or diapause state. This can lead to the induction of reversible374

states where the stem cells temporarily halt their differentiation and growth.375

8. Cellular Adaptation: During the period of developmental pausing or diapause, embryonic376

stem cells adapt to the adverse conditions. They conserve energy, maintain stemness, and377

reduce metabolic demands.378

9. Monitoring of Stress Resolution: While in a paused state, stem cells continually monitor the379

environmental conditions for signs of improvement. If conditions become favorable again,380

the cells can exit the pausing state and resume normal development.381

10. Exit from Diapause: When the adverse environmental conditions subside, Mettl3 and other382

regulatory factors may reverse the m6A modifications on key transcripts, allowing the stem383

cells to exit the diapause state.384

11. Resumption of Differentiation and Growth: Upon exiting diapause, embryonic stem cells385

can reinitiate their differentiation programs and resume growth and development.386

It’s important to note that this is a generalized prediction based on the known functions of Mettl3 and387

the concept of reversible developmental pausing or diapause in stem cells. The specific targets of388

Mettl3 and the regulatory mechanisms involved can vary depending on the type of environmental389

stress and the specific cellular context. To gain more detailed insights, it’s advisable to refer to390

specific research studies or literature related to Mettl3’s role in stem cell biology and stress responses.391

D.2392

Question In human cells, under the stress of heat shock, UBE4B translocates to mitochondria, predict393

the following reaction in this pathway.394

Answer When UBE4B (Ubiquitin-Conjugating Enzyme E2 Variant 4B) translocates to mitochondria395

in response to heat shock stress in human cells, it suggests a specific response to mitochondrial396

dysfunction or damage. Predicting the "i+1" reaction in this pathway involves considering the397

immediate downstream consequences of UBE4B’s localization to mitochondria:398

1. Translocation of UBE4B: Under heat shock stress, UBE4B translocates from its typical399

cellular location to the mitochondria.400

2. Interaction with Mitochondrial Proteins: Upon reaching the mitochondria, UBE4B may401

interact with specific mitochondrial proteins, particularly those involved in mitochondrial402

quality control, maintenance, and repair.403
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3. Ubiquitination of Mitochondrial Proteins: UBE4B, being an E3 ubiquitin ligase or working404

in conjunction with other E3 ligases, may ubiquitinate target proteins within the mitochon-405

dria. This ubiquitination could serve as a signal for the degradation or modification of these406

mitochondrial proteins.407

4. Activation of Mitophagy: The ubiquitination of mitochondrial proteins can trigger mi-408

tophagy, a selective form of autophagy aimed at removing damaged or dysfunctional409

mitochondria. This is an essential process for maintaining mitochondrial health.410

5. Mitochondrial Proteostasis: UBE4B’s translocation and subsequent ubiquitination of mito-411

chondrial proteins may also be involved in maintaining mitochondrial proteostasis, ensuring412

that misfolded or damaged proteins are properly processed or eliminated.413

6. Stress Response Activation: UBE4B’s translocation to mitochondria and its involvement in414

mitochondrial quality control may activate cellular stress responses, such as the unfolded415

protein response (UPR) or the heat shock response. These responses can help the cell cope416

with mitochondrial stress and prevent further damage.417

7. Mitochondrial Function Modulation: Depending on the specific mitochondrial proteins418

targeted by UBE4B, mitochondrial function may be modulated. This can include changes in419

energy production, ROS generation, and the overall health of the mitochondria.420

8. Cellular Consequences: The downstream consequences of UBE4B translocation to mito-421

chondria can have a significant impact on cellular homeostasis. Mitochondrial health is422

crucial for energy production and various cellular processes, so disturbances in this system423

can affect cell viability and function.424

9. Adaptive or Cell Death Pathways: Depending on the extent of mitochondrial damage and425

the success of stress responses, the cell may adapt to the stress or, in severe cases, undergo426

programmed cell death (apoptosis) to prevent further harm to the organism.427

It’s important to note that the specific mitochondrial proteins targeted by UBE4B and the precise428

downstream effects can vary depending on the cell type, the severity of the heat shock, and the context429

of the stress response. This prediction provides a general overview of the pathway’s progression430

following UBE4B translocation to mitochondria in response to heat shock stress. For detailed insights,431

it’s advisable to refer to specific research studies or literature related to UBE4B’s role in mitochondrial432

quality control and cellular stress responses.433

Question You mentioned that UBE4B can interact with other mitochondria proteins involved in434

mitochondrial quality control, maintenance, and repair. Can you give some possible proteins in435

detail?436

Answer UBE4B is an E3 ubiquitin ligase known to interact with various proteins involved in different437

cellular processes, including mitochondrial quality control, maintenance, and repair. While I can438

provide some examples of potential proteins that UBE4B might interact with within the context of439

mitochondria, please note that these interactions can be complex and context-dependent. Here are440

some possible proteins:441

1. Parkin (PARK2): Parkin is an E3 ubiquitin ligase that plays a crucial role in mitophagy,442

the process by which damaged or dysfunctional mitochondria are targeted for degradation.443

UBE4B could potentially interact with Parkin to regulate mitophagy or the ubiquitination of444

mitochondrial proteins.445

2. PINK1 (PTEN-induced kinase 1): PINK1 is a mitochondrial kinase involved in monitoring446

mitochondrial health. It accumulates on the surface of damaged mitochondria and recruits447

Parkin to promote mitophagy. UBE4B might interact with PINK1 or modulate its activity in448

response to heat shock stress.449

3. Hsp70 and Hsp90 Chaperones: Heat shock proteins, such as Hsp70 and Hsp90, are involved450

in protein folding and refolding, particularly during stress conditions like heat shock. UBE4B451

could interact with these chaperones to facilitate the refolding or degradation of misfolded452

mitochondrial proteins.453

4. Mitochondrial Import Machinery: Proteins involved in the import of mitochondrial pro-454

teins might interact with UBE4B during the translocation process. For example, TOM455

(Translocase of the Outer Mitochondrial Membrane) and TIM (Translocase of the Inner456
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Mitochondrial Membrane) complexes facilitate the import of proteins into mitochondria.457

UBE4B may interact with these complexes or their associated chaperones to regulate mito-458

chondrial protein import.459

5. Mitochondrial Proteases: Proteases within the mitochondria, such as Lon protease and460

ClpXP protease, are responsible for degrading damaged or misfolded proteins. UBE4B may461

interact with these proteases to target specific substrates for degradation.462

6. Mfn1 and Mfn2 (Mitofusins): These proteins are involved in mitochondrial fusion, a process463

that can help mitigate mitochondrial damage by mixing the contents of healthy and damaged464

mitochondria. UBE4B could potentially influence the ubiquitination status of Mfn1 and465

Mfn2, impacting mitochondrial fusion.466

It’s important to emphasize that these interactions are hypothetical and based on the known functions467

of UBE4B and the proteins listed above. The specific interactions and roles of UBE4B in mitochon-468

drial quality control during heat shock stress would require experimental investigation to determine469

their precise mechanisms and significance in the context of cellular stress responses.470
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