
Vote for Nearest Neighbors Meta-Pruning of Self-Supervised Networks

Haiyan Zhao 1 Tianyi Zhou 2 3 Guodong Long 1 Jing Jiang 1 Chengqi Zhang 1

Abstract
Pruning plays an essential role in deploying deep
neural nets (DNNs) to the hardware of limited
memory or computation. However, current
high-quality iterative pruning can create a terrible
carbon footprint when compressing a large DNN
for a wide variety of devices and tasks. Can we
reuse the pruning results on previous tasks to ac-
celerate the pruning for a new task? Can we find a
better initialization for a new task? We study this
“nearest neighbors meta-pruning” problem by
first investigating different choices of pre-trained
models for pruning under limited iterations. Our
empirical study reveals several advantages of the
self-supervision pre-trained model when pruned
for multiple tasks. We further study the overlap
of pruned models for similar tasks and how the
overlap changes for different layers. Inspired
by these discoveries, we develop a simple but
strong baseline “Meta-Vote Pruning (MVP)” that
significantly reduces the pruning iterations for
a new task by initializing a sub-network from
the pruned models of tasks similar to it. In
experiments, we demonstrate the advantages
of MVP by extensive empirical studies and
comparisons with popular pruning methods.

1. Introduction
Deep learning often requires to train an over-parameterized
model and directly deploying them to edge devices can eas-
ily violate the hardware limits on memory and computation.
Network pruning (Han et al., 2016; Tian et al., 2020; Li
et al., 2020; Chin et al., 2020) has been widely studied to
compress neural nets by removing redundant connections
and nodes. Numerous empirical results have verified that

*Equal contribution 1Australian Artificial Intelligence Institute,
University of Technology Sydney 2University of Washington, Seat-
tle 3University of Maryland, College Park. Correspondence to:
Haiyan Zhao <Haiyan.Zhao-2@student.uts.edu.au>, Tianyi Zhou
<tianyizh@uw.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

pruning can compress the original network to much smaller
sub-networks that still enjoy comparable performance.

In a variety of practical applications, a pre-trained network
usually needs to be pruned and customized for a wide
variety of devices and tasks. Running an iterative pruning
algorithm for every device or task from a large pre-trained
network can create enormous carbon footprint overload and
waste a lot of computational power. Can we reuse the prun-
ing results achieved on previous tasks as prior knowledge
to reduce the computation and data required by pruning
on new tasks? We call this problem “non-parametric
meta-pruning”. In this paper, we mainly focus on a special
case of meta-pruning that initializes a sub-network for a
given new task, which is extracted from a pre-trained model
using the pruned models for previous tasks. Meta-pruning is
non-parametric if no parametric model is trained to produce
the initialization.It is analogous to MAML (Finn et al.,
2017) in that the meta-objective optimizes the initialization
but does not directly control the model update afterward.
It differs from MAML in that both the sub-network’s
architecture and weights need to be initialized and the
initialization is not universal but task-specific.

Since meta-pruning aims to find better initialization for
pruning, to strengthen the influence of initialization on the fi-
nal pruned model, we keep both the number of iterations and
the learning rate small. Restricting the number of iterations
also controls the computational cost and carbon footprint of
meta-pruning much less than conventional pruning that may
require many iterations. Meta-pruning follows a practical
setting that one single pre-trained model is tailored for
different tasks using limited iterations. We compare two
kinds of widely used pre-trained models, i.e., one is trained
by supervised learning on a labeled dataset, and the other is
trained by self-supervised learning (Grill et al., 2020; Chen
et al., 2020; Zbontar et al., 2021) on unlabeled data.

The primary contribution of this paper is two folds. In the
first part, we conduct a thorough empirical study of iterative
pruning applied to hundreds of different tasks when using
the two pre-trained models. No meta-pruning is used in this
part and its main purpose is (1) to compare the two types
of pre-trained models for different tasks’ pruning and (2) to
find the connection among pruned models for different but
similar tasks. We thus build a dataset of tasks and their cor-

Vote for Nearest Neighbors Meta-Pruning of Self-Supervised Networks

responding models pruned from the two pre-trained models.
Statistics and evaluations on this dataset indicate several
advantages of self-supervision pre-trained model for meta-
pruning. Moreover, more similar tasks tend to share more
nodes/filters preserved in their pruned models. We further
discover a strong correlation between the chance that a filter
is retained after the pruning for a task and the number of
times it is also preserved in pruned models for similar tasks.

Motivated by above empirical study, this paper proposes a
simple yet strong meta-pruning baseline called “meta-vote
pruning (MVP)” that can significantly reduce the pruning
cost, memory and data required by previous pruning ap-
proaches yet still produce pruned models with promising
performance. Given a self-supervision pre-trained model,
MVP finds a sub-network for a new task by selecting filters
through majority voting among similar tasks, i.e., we sample
nodes/filters according to their chances being selected into
the pruned model of similar tasks. To keep this baseline sim-
ple, we sample the same proportion of filters as the targeted
pruning ratio and then apply a few epochs of fine-tuning
with a small learning rate using training data of the targeted
task. The proposed baseline saves a substantial amount of
computation and memory while still maintains a high test ac-
curacy of the pruned models. Moreover, when reducing the
training data available for targeted tasks, MVP suffers much
less performance degeneration of the pruned models than
iterative pruning without leveraging any meta knowledge.

2. Empirical Study: Pre-trained model
pruning for Different Tasks

Choices of the Pre-trained Model One motivation behind
meta-pruning is avoiding to pre-train a large model for
every task. Instead, we use one single pre-trained model for
all tasks. There are two major choices for the pre-trained
model: (1) a neural network trained by supervised learning
on a labeled dataset, e.g., ImageNet; (2) a neural network
trained by self-supervised learning on unlabeled data
that are widely available. In the empirical study, we
will compare them when pruned for different tasks with
limited budget on the pruning iterations. Specifically,
we adopt ResNet-18 (He et al., 2016) and ResNet-50 as
the network architectures to pre-train on two datasets,
CIFAR-100 (Krizhevsky & Hinton, 2009) and Tiered-
ImangeNet (Ren et al., 2018), respectively. For each dataset,
we compare the two types of pre-trained models mentioned
above, whose training follows (Devries & Taylor, 2017)
and SimSiam (Chen & He, 2020), respectively.

Pruning Algorithm Iterative pruning alternates between
network pruning and fine-tuning of model weights for
multiple iterations usually achieves better performance in
empirical comparisons with other pruning methods. This
empirical study is conducted on convolutional neural net-

works so we apply iterative filter-pruning (IFP) that removes
filters with the smallest activation values averaged over
all training samples. Given a pre-trained network F (·; θ)
of L layers (layer-L is fully-connected) with parameter
θ = {θ`}`=1:L and a training set DT of a target task T , let
θ` = {θ`,i}i=1:n`

denote all parameters in layer-` composed
of θ`,i for every filter-i. IFP first train a new linear classifier
(i.e., θL) for K epochs on DT and follows by J fine-tune
iterations. It prunes p% of the filters remained in each
layer every h iterations according to their activation values
f`,i(x). It stops to prune layer-` if reaching the targeted
pruning ratio r. Refer to appendix for detailed algorithm.

A Dataset of Pruned Models Our empirical study is
carried out on CIFAR-100 and Tiered-ImageNet. For each
dataset, we randomly draw 300 classification tasks, each
defined on 5 classes sampled without replacement. Running
IFP for all 300 tasks using two different pre-trained
models creates a dataset of pruned models. For each task
i, we record its classes Ci, the set of preserved filters
{Ω`}`=1:L−1 and the pruned model θT . We use the same
hyper-parameters for different tasks. As argued in Sec. 1,
limited iterations and small learning rate are applied to com-
pare the pre-trained models (Sec. 2.1), We use a learning
rate of 0.0001, K = 10, J = 200(250), h = 60(75), batch-
size of 128(256) for CIFAR-100 (Tiered-ImageNet). We
have tried two pruning ratios r = {0.9, 0.96}. To study the
similarity between the “winning tickets” for different tasks,
we use more delicately pruned models achieved by running
more iterations (J = 800(1000)) in above experiments.

0 20 40 60 80 100 120 140 160 180 200
Pruning iterations

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

%
 o

f p
ru

ne
d

m
od

el
s

self-supervised pre-training, pruning ratio: 90%
self-supervised pre-training, pruning ratio: 96%
supervised pre-training, pruning ratio: 90%
supervised pre-training, pruning ratio: 96%

0 25 50 75 100 125 150 175 200 225 250
Pruning iterations

20

40

60

80

100

Ac
cu

ra
cy

%
 o

f p
ru

ne
d

m
od

el
s

self-supervised pre-training, pruning ratio: 90%
self-supervised pre-training, pruning ratio: 96%
supervised pre-training, pruning ratio: 90%
supervised pre-training, pruning ratio: 96%

Figure 1. Supervised vs. self-supervised network for IFP with
fewer iterations: test accuracy (mean±std) of pruned models with
200 and 250 pruning iterations for 300 tasks drawn from CIFAR-
100 (LEFT) and Tiered-ImageNet (RIGHT).

2.1. Which Pre-trained Model to Prune? Supervised vs.
Self-Supervised Model

We compare supervised and self-supervised networks
when pruned for 300 different tasks drawn from CIFAR-
100 (Tiered-ImageNet) using IFP with fewer iterations
(J = 200(250)) with small learning rate (0.0001). We re-
port how the test accuracy (mean±std) changes over pruning
iterations in Fig. 1. For both datasets and pruning ratios, self-
supervised network consistently outperforms supervised
network when being used as the pre-trained model for prun-

Vote for Nearest Neighbors Meta-Pruning of Self-Supervised Networks

ing. We posit the reason is that the the filters/nodes in self-
supervised networks are more disentangled across different
classes, i.e., a filter corresponds to fewer classes than that in
supervised networks. Hence, it requires fewer iterations and
smaller learning rate to fine-tune the filters for the targeted
task’s classes. So pruning a self-supervised network for a
new task can be easier and starts closer to the final model.

2.2. Do Pruned Models for More Similar Tasks share
More Nodes/Filters in Every Layer?

In this study, we measure the similarity between two clas-
sification tasks in our dataset by the number of their shared
classes (i.e., |Ci ∩ Cj | for task i and j) and aim at finding
how it relates to their shared filters in different layers of
their pruned models. In particular, let Ωi

` and Ωj
` denote the

sets of filters remained in layer-` after running IFP for task
i and j, we measure the overlap of the two sets by inter-
section over union (IoU) ratio (Jaccard, 1901), i.e., IoU =
|Ωi

`∩Ωj
` |/|Ωi

`∪Ωj
` |. In Fig. 2, we show the IoU (mean±std)

of each layer for pairs of tasks with task similarity∈
{0, 1, 2, 3, 4}. For both datasets and pruning ratios, more
similar tasks tend to share more filters (larger IoU) be-
tween their pruned models especially in the last few layers,
because the features are more task-specific in deeper layers.
Therefore, for a new task, its similar tasks’ pruned models
preserve many important filters and combining them might
result in a better and much smaller initialization network.

lay
er0

(co
nv

)

lay
er1

(co
nv

)

lay
er2

(co
nv

)

lay
er3

(co
nv

)

lay
er4

(co
nv

)

lay
er5

(co
nv

)

lay
er6

(do
wnsa

mple
)

lay
er7

(co
nv

)

lay
er8

(co
nv

)

lay
er9

(co
nv

)

lay
er1

0(c
on

v)

lay
er1

1(d
ow

nsa
mple

)

lay
er1

2(c
on

v)

lay
er1

3(c
on

v)

lay
er1

4(c
on

v)

lay
er1

5(c
on

v)

lay
er1

6(d
ow

nsa
mple

)

lay
er1

7(c
on

v)

lay
er1

8(c
on

v)

Layers in model

0.2

0.4

0.6

0.8

1.0

Io
U

of
 fi

lte
rs

 b
et

we
en

 tw
o

di
ffe

re
nt

 ta
sk

s

task similarity = 0
task similarity = 1
task similarity = 2
task similarity = 3
task similarity = 4

(a) CIFAR-100, 90%

lay
er0

(co
nv

)

lay
er1

(co
nv

)

lay
er2

(co
nv

)

lay
er3

(do
wnsa

mple
)

lay
er4

(co
nv

)

lay
er5

(co
nv

)

lay
er6

(co
nv

)

lay
er7

(co
nv

)

lay
er8

(co
nv

)

lay
er9

(co
nv

)

lay
er1

0(c
on

v)

lay
er1

1(c
on

v)

lay
er1

2(c
on

v)

lay
er1

3(d
ow

nsa
mple

)

lay
er1

4(c
on

v)

lay
er1

5(c
on

v)

lay
er1

6(c
on

v)

lay
er1

7(c
on

v)

lay
er1

8(c
on

v)

lay
er1

9(c
on

v)

lay
er2

0(c
on

v)

lay
er2

1(c
on

v)

lay
er2

2(c
on

v)

lay
er2

3(c
on

v)

lay
er2

4(c
on

v)

lay
er2

5(c
on

v)

lay
er2

6(d
ow

nsa
mple

)

lay
er2

7(c
on

v)

lay
er2

8(c
on

v)

lay
er2

9(c
on

v)

lay
er3

0(c
on

v)

lay
er3

1(c
on

v)

lay
er3

2(c
on

v)

lay
er3

3(c
on

v)

lay
er3

4(c
on

v)

lay
er3

5(c
on

v)

lay
er3

6(c
on

v)

lay
er3

7(c
on

v)

lay
er3

8(c
on

v)

lay
er3

9(c
on

v)

lay
er4

0(c
on

v)

lay
er4

1(c
on

v)

lay
er4

2(c
on

v)

lay
er4

3(c
on

v)

lay
er4

4(c
on

v)

lay
er4

5(d
ow

nsa
mple

)

lay
er4

6(c
on

v)

lay
er4

7(c
on

v)

lay
er4

8(c
on

v)

lay
er4

9(c
on

v)

lay
er5

0(c
on

v)

lay
er5

1(c
on

v)

Layers in model

0.2

0.4

0.6

0.8

1.0

Io
U

of
 fi

lte
rs

 b
et

we
en

 tw
o

di
ffe

re
nt

 ta
sk

s

task similarity = 0
task similarity = 1
task similarity = 2
task similarity = 3
task similarity = 4

(b) Tiered-ImageNet, 90%

Figure 2. IoU (mean±std) measuring filter sharing between two
tasks of different similarity∈ {0, 1, 2, 3, 4} in each layer of their
pruned models, for all the layers from input to output (left to right).

3. Meta-Vote Pruning (MVP)
Inspired by the empirical study above, we propose a
simple yet strong baseline “meta-vote pruning (MVP)”
for non-parametric meta-pruning. Given a target task i,
MVP draws a sub-network of a self-supervised network by
sampling filters in each layer using majority voting among
the pruned models of similar tasks N i. In particular, we
apply softmax (with temperature τ) to the number of tasks
in N i that select each filter-k ∈ [n`] from layer-` of the
pre-trained model, which yields a probability distribution

over all the filter [n`], i.e., ∀k ∈ [n`],

p(k) =
exp(|{j ∈ N i : k ∈ Ωj

`}|/τ)∑
h∈[n`] exp(|{j ∈ N i : h ∈ Ωj

`}|/τ)
(1)

To initialize layer-` of the sub-network, MVP samples filters
from this distribution (without replacement) according
to the targeted pruning ratio r. We further initialize the
parameters of each filter-k by averaging its parameters in
the pruned models of the similar tasks {j ∈ N i : k ∈ Ωj

`}.
MVP then fine-tunes the initialized sub-network for a few
iterations on the training set of the target task. Refer to
appendix for detailed algorithm.

4. Experiments
In this section, we conduct three groups of experiments
to evaluate MVP and compare it mainly with IFP under
different number of iterations, different amount of training
data and prototype similarities for general cases without
overlapping classes between tasks in Fig. 3. In Table 1, we
compare MVP with SOTA pruning methods. In appendix,
we further compare their computational and memory
efficiency in terms of iterations, wall-clock time, and
FLOPs in Fig. 4. And the results of applying MVP to
unseen datasets are reported in Table 2 in appendix.

4.1. Implementation Details

In every group of experiments, we randomly draw 30 test
tasks from the dataset introduced in Sec. 2 and treat the
rest 270 tasks as training tasks. For every test task, we
apply MVP on multiple sets of training tasks with identical
task similarity to the test task: (1) for Group-I&II, the task
similarity is measured by the shared classes c = |Ci ∩ Cj |
and we tried four sets of training tasks with c ∈ {1, 2, 3, 4};
(2) for Group-III, we use a similarity metric based on the
class prototypes so that classes in different tasks are disjoint.
In particular, we first compute its prototype for every class
of each task and compute the similarity between two tasks
by applying bipartite graph matching (Hungarian algorithm
(Kuhn, 1955)) to the two sets of class prototypes.

In Fig. 3, we report the performance of MVP. For compar-
ison, we also report the performance of IFP and uniform
pruning in different settings. IFP does not use any meta
knowledge from the pruned models of training tasks and
uniform pruning replaces the majority voting with uniform
sampling of filters from the pre-trained self-supervised
network, which is the “random baseline” for majority
voting. We use the same optimizer for all methods, i.e.,
SGD with momentum and cosine-annealing learning
rate schedule. We use a learning rate of 0.0003(0.0005)
on CIFAR-100 (Tiered-ImageNet) in MVP and uniform
pruning. We tune the learning rate of IFP for different

Vote for Nearest Neighbors Meta-Pruning of Self-Supervised Networks

Table 1. Comparison with SoTA methods. Number in brackets refers to training iterations.
MEST+EM(800) MEST+EM&S(800) MEST+EM(100) MEST+EM&S(100) DLTH(800) HT-based Reptile(100) MVP(100)

Accuracy 78.84± 5.37 79.12± 5.13 75.78± 7.27 76.28± 6.84 77.4±6.73 73.65± 2.58 87.08± 4.39

1 2 3 4
Task simiarity

0

20

40

60

80

Ac
cu

ra
cy

(%
) o

f p
ru

ne
d

m
od

el
s

CIFAR-100, pruning ratio:96%

Uniform pruning(160 iters, sufficient data)
MVP(N=2, 160 iters, sufficient data)
MVP(N=5, 160 iters, sufficient data)
MVP(N=8, 160 iters, sufficient data)
MVP(N=10, 160 iters, sufficient data)
IFP(160 iters, sufficient data)
IFP(800 iters, sufficient data)
IFP(4000 iters, sufficient data)

1 2 3 4
Task simiarity

20

30

40

50

60

70

80

Ac
cu

ra
cy

(%
) o

f p
ru

ne
d

m
od

el
s

Tiered-ImageNet, pruning ratio:96%

MVP(N=2, 150 iters, limited data)
MVP(N=5, 150 iters, limited data)
MVP(N=8, 150 iters, limited data)
MVP(N=10, 150 iters, limited data)
IFP(150 iters, limited data)
MVP(N=10, 150 iters, sufficient data)

1 2 3 4 5 6
Prototype similarity

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

(%
) o

f p
ru

ne
d

m
od

el
s

Tiered-ImageNet, pruning ratio:96%

MVP(N=2, 200 iters, sufficient data)
MVP(N=5, 200 iters, sufficient data)
MVP(N=8, 200 iters, sufficient data)
MVP(N=10, 200 iters, sufficient data)
IFP(200 iters, sufficient data)
IFP(1000 iters, sufficient data)

Figure 3. Test-set accuracy of pruned models produced by different methods (MVP, IFP, uniform pruning) using different number of
iterations (Group-I, Left plot), different amount of training data (Group-II, Middle plot), and training tasks with prototype similarity (
Group-III, Right plot).

amount of training data due to the sensitivity of large-model
fine-tuning to training data size. Specifically, we set it to
0.001 for limited data and 0.0001 for sufficient data.

4.2. Detailed Analysis

Group-I In the left plot of Fig. 3, we mainly compare
different methods with fewer iterations. It shows that the
uniform pruning performs much poorer than MVP without
meta knowledge, which implies that the pruned models of
similar tasks can significantly improve the quality of initial-
ized network for a new task. MVP’s performance improves
as it is able to access more similar training tasks to the test
task. MVP outperforms IFP who spends 5× iterations when
using training tasks of similarity 3 or 4. It even outperforms
IFP that costs 25× iterations. Hence, MVP can produce
higher-quality pruned model when using fewer iterations.

Group-II In the middle plot of Fig. 3, we compare MVP
with IFP when training data and pruning iterations are
limited. MVP exhibits overwhelming advantages over IFP
in this region. Its accuracy improves with the increasing
similarity, which is consistent with results in Group-I.
In addition, we witness that MVP with limited data has
comparable accuracy as MVP with sufficient (≥ 5×) data
when the number of iterations are limited. This is different
from observations on IFP, whose performance heavily
depends on the availability of sufficient data. Therefore,
the meta knowledge MVP extracting from similar training
tasks can make the pruning much less data-hungry.

Group-III In the right plot of Fig. 3, we evaluate the
effectiveness of MVP using a more general similarity
metric (prototype similarity) for the case that there are no
overlapping classes between different tasks. For a better
comparison, we quantize the prototype similarity to 6 levels.

We observe a degradation of the accuracy comparing to
the previous “shared classes similarity” case since the set
of classes of these tasks is disjoint and these tasks are less
similar. However, the prototype similarity still lends MVP
the power to surpass IFP and approximate IFP with much
more iterations, which again verify the importance of meta
knowledge in finding a better initialization sub-network.

Comparison to SoTA methods In Table 1, we compare
MVP with SOTA related methods on the tasks of CIFAR-
100. We compare MVP with IHT-based Reptile (Tian
et al., 2020), which is a meta-pruning method that applies
meta-learning to initializing the model weights for prun-
ing. In particular, IHT-based Reptile applies Reptile (Nichol
et al., 2018) and iterative pruning to find better weight-
initialization for a pruned meta-model. The results show
that MVP achieves higher accuracy than IHT-based Reptile
when their training iterations and the amount of training
data are the same, implying that MVP can find better initial-
ization of pruned models for different tasks. MEST (Yuan
et al., 2021) is the SOTA method in sparse training commu-
nity of which the training starts from a sub-network. The
difference is that MVP is trained on the sub-network with
meta knowledge while the sub-network for MEST is ran-
domly initialized. DLTH (Bai et al., 2022) is a variant of
Lottery Ticket Hypothesis which propose a method to trans-
form random tickets into winning tickets, but the winning
tickets generated by DLTH is worse than MVP. In Table 1,
MVP outperforms these methods by a large margin, which
implies meta knowledge from similar tasks can speed up
training of target task and promote the final accuracy.

Vote for Nearest Neighbors Meta-Pruning of Self-Supervised Networks

5. Conclusion
In this paper, we study “non-parametric meta-pruning”
problem that aims to reduce the memory and computational
costs of single-task pruning, via reusing a pre-trained model
and similar tasks’ pruned models to find an initialization
sub-network for a new task. We conduct empirical studies
to investigate (1) the choices of pre-trained model for
meta-pruning; (2) the relationship between task similarity
and the pruned models of two tasks. The first study reveals
several advantages of adopting self-supervised network
as the pre-trained model for meta-pruning, while another
motivates a simple yet strong baseline for meta-pruning,
called “meta-vote pruning (MVP)”. By extensive experi-
ments on multiple tasks drawn from two datasets under
different training settings, we demonstrate the advantages
of MVP over other pruning methods in the region of limited
computation or/and data and show its potential on reducing
carbon footprint of pruning/fine-tuning large networks for
billions of edge devices and tasks.

References
Bai, Y., Wang, H., Tao, Z., Li, K., and Fu, Y. Dual lot-

tery ticket hypothesis. arXiv preprint arXiv:2203.04248,
2022.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. E.
A simple framework for contrastive learning of visual
representations. ArXiv, abs/2002.05709, 2020.

Chen, X. and He, K. Exploring simple siamese representa-
tion learning. arXiv preprint arXiv:2011.10566, 2020.

Chin, T.-W., Ding, R., Zhang, C., and Marculescu, D. To-
wards efficient model compression via learned global
ranking. 2020 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 1515–1525,
2020.

Devries, T. and Taylor, G. W. Improved regularization
of convolutional neural networks with cutout. ArXiv,
abs/1708.04552, 2017.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML,
2017.

Grill, J.-B., Strub, F., Altch’e, F., Tallec, C., Richemond,
P. H., Buchatskaya, E., Doersch, C., Pires, B. A.,
Guo, Z. D., Azar, M. G., Piot, B., Kavukcuoglu, K.,
Munos, R., and Valko, M. Bootstrap your own latent:
A new approach to self-supervised learning. ArXiv,
abs/2006.07733, 2020.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural networks with pruning, trained

quantization and huffman coding. International Confer-
ence on Learning Representations (ICLR), 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

Jaccard, P. Etude de la distribution florale dans une portion
des alpes et du jura. Bulletin de la Societe Vaudoise des
Sciences Naturelles, 37:547–579, 01 1901. doi: 10.5169/
seals-266450.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. Technical report, University
of Toronto, 2009.

Kuhn, H. W. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–
97, 1955.

Li, Y., Gu, S., Zhang, K., Gool, L., and Timofte, R. Dhp:
Differentiable meta pruning via hypernetworks. ArXiv,
abs/2003.13683, 2020.

Nichol, A., Achiam, J., and Schulman, J. On first-order
meta-learning algorithms. ArXiv, abs/1803.02999, 2018.

Nilsback, M.-E. and Zisserman, A. Automated flower clas-
sification over a large number of classes. In Indian Con-
ference on Computer Vision, Graphics and Image Pro-
cessing, Dec 2008.

Ren, M., Triantafillou, E., Ravi, S., Snell, J., Swer-
sky, K., Tenenbaum, J., Larochelle, H., and Zemel, R.
Meta-learning for semi-supervised few-shot classifica-
tion. ArXiv, abs/1803.00676, 2018.

Tian, H., Liu, B., Yuan, X., and Liu, Q. Meta-learning with
network pruning. ArXiv, abs/2007.03219, 2020.

Yuan, G., Ma, X., Niu, W., Li, Z., Kong, Z., Liu, N., Gong,
Y., Zhan, Z., He, C., Jin, Q., et al. Mest: Accurate and fast
memory-economic sparse training framework on the edge.
Advances in Neural Information Processing Systems, 34,
2021.

Zbontar, J., Jing, L., Misra, I., LeCun, Y., and Deny, S.
Barlow twins: Self-supervised learning via redundancy
reduction. ArXiv, abs/2103.03230, 2021.

Vote for Nearest Neighbors Meta-Pruning of Self-Supervised Networks

A. Iterative filter pruning algorithm

Algorithm 1 ITERATIVE FILTER PRUNING (IFP)
Input :Pre-trained network F (·; θ), Task T and training set DT , K, Hyper-parameters J, h, r, p
Initialize :Ω` ← [n`], the set of filters preserved in layer-`

1 Replace the last fully-connected layer θL of F (·; θ) with a newly initialized one for targeted task T ;
2 Train θL for K epochs on DT with other layers fixed;
3 for j ← 1 to J do
4 for `← 1 to L− 1 do
5 if j%h = 0 and |Ω`| > (1− r)n` then
6 Prune p% of filters in Ω` with the smallest activation values over DT , i.e., 1

|DT |
∑

x∈DT
f`,i(x);

7 end
8 end
9 Apply one SGD step on a mini-batch of DT to fine-tune the remained filters {θ`,i : ` ∈ [L− 1], i ∈ Ω`} and θL;

10 end
11 Fine-tune the pruned model for one epoch on DT ;

B. Meta-vote pruning algorithm

Algorithm 2 META-VOTE PRUNING (MVP)
Input :Target task i and its training set Di, pruning ratio r, τ , J , N , a dataset of pruned models for different tasks
Output :A pruned model for target task-i
Initialize :Ω` ← ∅, the set of filters in layer-`

1 Sample/find N similar tasks N i to task i;
2 for `← 1 to L− 1 do
3 Sample (1− r)n` filters with probability p(k) (Eq. (1)) and add them to Ω`;
4 for k ∈ Ω` do
5 Initialize filter-k by averaging its parameters for tasks in {j ∈ N i : k ∈ Ωj

`};
6 end
7 end
8 Fine-tune the pruned model for J iterations on Di.

C. Comparison of efficiency between different methods.
In Fig. 4, the comparison between the memory and computational cost of MVP, IHT-based Reptile and IFP on two datasets
when targeting two pruning ratios and using two different amounts of training data. All the presented experiments are
accomplished on a 24GB RTX 6000 GPU. In all scenarios, MVP is as efficient as IHT-based Reptile and significantly
reduces the FLOPs and computational iterations/time required by IFP while achieves higher test accuracy. The improvement
of MVP on the efficiency is attributed to two factors, i.e., the few iterations it requires to find a high-quality pruned model,
and a much smaller (yet high-quality) sub-network to initialize the weight fine-tuning.

D. Application of MVP to unseen datasets
In Table 2, the results of testing MVP on unseen dataset Oxford Flowers (Nilsback & Zisserman, 2008) based on the
Tiered-ImageNet pruned models using prototype similarity are reported. Results are consistent with our observations that
MVP outperforms IFP with the same limited iterations, and tasks with higher similarities leads to better performance. This
result indicates that MVP can be applied to independent datasets and achieve good performance.

Vote for Nearest Neighbors Meta-Pruning of Self-Supervised Networks

0

20

40

60

80

Ac
cu

ra
cy

(%
) o

f t
he

 p
ru

ne
d

m
od

el
s Accuracy

0

2

4

6

8

Av
er

ag
ed

 F
LO

Ps
(M

) p
er

 it
er

at
io

n FLOPs

0

10

20

30

40

W
al

lcl
oc

k
tim

e(
s)

 p
er

 ta
sk

Time

0

200

400

600

800

Nu
m

be
r o

f t
ra

in
in

g
ite

ra
tio

ns

Iterations
IFP(800 iters, sufficient data)
MVP(N=10, 100 iters, sufficient data)
IFP(100 iters, limited data)
MVP(N=10, 100 iters, limited data)
IHT-based Reptile(100 iters, sufficient data)

CIFAR-100, pruning ratio:90%

Figure 4. Test accuracy, memory and computational costs of MVP, IFP and IHT-based Reptile (Tian et al., 2020).

Table 2. Accuracy of testing MVP on independent Oxford Flowers dataset

Methods\Similarity 1 2 3 4 5 6

MVP(N=2,200 iters) 80.40±10.65 81.40±8.77 81.20±10.81 79.00±8.40 84.00±7.48 83.20±7.76
MVP(N=5,200 iters) 79.40±9.76 76.60±7.54 81.80±8.78 77.80±6.42 79.00±10.13 80.00±7.59
MVP(N=8,200 iters) 75.00±8.77 74.80±11.97 74.00±9.84 80.80±10.85 77.80±11.78 79.80±8.17
MVP(N=10,200 iters) 72.40±13.08 76.60±11.07 79.40±6.33 74.00±10.77 80.60±8.30 78.20±13.70
IFP(200 iters) 66.40±13.11 66.40±13.11 66.40±13.11 66.40±13.11 66.40±13.11 66.40±13.11

