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CAT: Content-Adaptive Image Tokenization
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Abstract

Most existing image tokenizers encode images
into a fixed number of tokens or patches, over-
looking the inherent variability in image com-
plexity and introducing unnecessary computate
overhead for simpler images. To address this,
we propose Content-Adaptive Tokenizer (CAT),
which dynamically adjusts representation capac-
ity based on the image content and encodes sim-
pler images into fewer tokens. We design (1) a
caption-based evaluation system that leverages
LLMs to predict content complexity and deter-
mine the optimal compression ratio for an im-
age, and (2) a novel nested VAE architecture that
performs variable-rate compression in a single
model. Trained on images with varying complex-
ity, CAT achieves an average of 15% reduction in
rFID across seven detail-rich datasets containing
text, humans, and complex textures. On natural
image datasets like ImageNet and COCO, it re-
duces token usage by 18% while maintaining
high-fidelity reconstructions. We further evalu-
ate CAT on two downstream tasks. For image
classification, CAT consistently improves top-1
accuracy across five datasets spanning diverse do-
mains. For image generation, it boosts training
throughput by 23% on ImageNet, leading to
more efficient learning and improved FIDs over
fixed-token baselines.

1. Introduction
Image tokenizers compress high-resolution images into
low-dimensional latent representations, enabling compact
and semantically meaningful inputs for downstream
tasks such as generation and classification (Esser et al.,
2020; Kingma and Welling, 2014; Yu et al., 2024a; Shen
et al., 2022; Tu et al., 2022; Yuan et al., 2021a; Mentzer
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<anon.email@domain.com>.
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et al., 2023; Yu et al., 2024b). Despite their effectiveness,
most existing tokenizers operate at a fixed compression
ratio, producing latent representations of uniform length
regardless of the image’s content. However, natural images
exhibit significant variability in complexity, from sparse
scenes to densely textured ones, suggesting that fixed-length
representations can be both inefficient and suboptimal.

Classical codecs such as JPEG (Wallace, 1992) implicitly
exploit this variation: when fixing the quality level, they
produce different file sizes for images with different fre-
quency characteristics. In contrast, fixed-ratio tokenizers
may under-compress simple images, wasting compute on
redundant information, or over-compressing complex ones,
losing important details. These problems become more
prominent when tokenizers are used in large-scale genera-
tive pipelines or as feature extractors in downstream tasks.

Several recent works explore dynamic token representation
during inference (Yan et al., 2024; Duggal et al., 2024).
However, these methods typically require access to the input
image—an assumption incompatible with many practical
use cases. For example, in image generation with latent
diffusion models (Rombach et al., 2021), only the user’s text
prompt is available, and the number of latent tokens, which
significantly influences generation quality, must be specified
in advance. Moreover, these methods do not adapt tokenizer
training to image complexity, missing an opportunity to
optimize for both content and downstream utility.

In this work, we introduce Content-Adaptive Tokenizer
(CAT), a novel approach that dynamically adjusts represen-
tation capacity based on image complexity. CAT combines
a caption-driven complexity evaluator with a nested autoen-
coder architecture to produce variable-length latent features
in a single forward pass (Figure 1). Specifically, the eval-
uator uses large language models (LLMs) to predict the
optimal compression ratio from textual descriptions. It ana-
lyzes the image’s caption and answers perception-oriented
questions (e.g., “are there human faces or text?”) to pro-
duce an interpretable complexity score. Based on this score,
we assign one of three compression ratios to the image:
8x, 16x, or 32x. Empirical results (Section 3.2) show that
this system is robust across different LLMs and caption
styles, providing a general mechanism for content-aware
adaptation.
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CAT: Content-Adaptive Image Tokenization

Figure 1: Content-Adaptive Tokenization. CAT uses an LLM to determine the compression ratio from the image’s text description and
uses a nested VAE to generate latent features by dynamically routing the input.

To support variable-length representations, we design a
nested variational autoencoder (VAE) architecture that
routes intermediate encoder features to a shared latent block
for generating Gaussian parameters of different shapes,
enabling latent codes at multiple spatial scales. This design
allows us to train a single model that supports multiple com-
pression levels while maintaining architectural efficiency.

We train CAT on a diverse set of images using LLM-
evaluated compression ratios and conduct extensive evalu-
ations across nine datasets, covering natural scenes (Ima-
geNet (Deng et al., 2009), COCO (Lin et al., 2015)), human
faces (CelebA (Liu et al., 2015)), and detail-heavy domains
such as text (ChartQA (Masry et al., 2022), GTSRB (Stal-
lkamp et al., 2011), SVHN (Netzer et al., 2011)), textures,
and satellite imagery. On large-scale natural images, CAT
preserves high reconstruction quality while reducing to-
ken usage by 18% compared to fix-token baselines. On
complex images, CAT achieves significantly better recon-
struction quiality, improving the rFID by 12% on CelebA,
17% on GTSRB, 20% on SVHN, and 39% on ChartQA
relative to fixed-token baselines. We also benchmark CAT
on two critical downstream tasks:

• Image classification: CAT achieves the highest linear
probing accuracy compared to all fixed-token baselines
across five challenging datasets where prior work has
shown that zero-shot models perform poorly (Ilharco
et al., 2021). This highlights the quality of our content-
adaptive latent representations. Besides, CAT consistently
improves performance in full fine-tuning settings.

• Text-to-Image Generation: We integrate CAT into La-
tent Diffusion Transformers (DiTs) (Peebles and Xie,
2022). On class-conditional ImageNet generation, CAT
increases the training throughput by 23%, achieving
better FIDs than all fixed-ratio tokenizers trained under
the same FLOPs. We note that CAT allows users to spec-
ify the desired token count at inference, enabling a flexible
trade-off between computational cost and output quality,
with more tokens typically yielding higher fidelity.

In summary, we propose CAT, an efficient and effective
image tokenizer that enables content-adaptive compression

through an LLM-based evaluator and a nested VAE archi-
tecture. To the best of our knowledge, this is the first work
to combine language-guided tokenization with adaptive
representation, showing both performance and efficiency
gain in image reconstruction, classification, and generation.

2. Related Work
Image tokenization. Existing tokenizers use diverse ar-
chitectures and encoding schemes. Continuous tokenizers
often utilize the VAE architecture (Kingma and Welling,
2014) to generate Gaussian distributions for sampling con-
tinuous latent features. Discrete tokenizers like VQ-VAE
(van den Oord et al., 2018), RQ-VAE (Lee et al., 2022),
MoVQ (Zheng et al., 2022), MAGVIT-v2 (Yu et al., 2024a),
and FSQ (Mentzer et al., 2023) use quantization tech-
niques to convert latent representations into tokens. VQ-
GAN (Esser et al., 2020), ViT-VQGAN (Yu et al., 2021),
and Efficient-VQGAN (Cao et al., 2023) further built on ad-
versarial training to improve performance. Beyond methods
that tokenize images into 2D grids, 1D tokenizers such as
TiTok (Yu et al., 2024b) are proposed to enhance efficiency.
While CAT is designed as a continuous 2D tokenizer, the
proposed adaptive image encoding scheme can be applied
to discrete and 1D tokenizers.

Adaptive compression. Traditional codecs like
JPEG (Wallace, 1992) for images and H.264 (Wiegand
et al., 2003) for videos apply varying levels of compression
based on the input media, producing files of different
sizes. In deep learning, patch dropout (Chen et al.,
2023; Rao et al., 2021), patch merging (Yin et al., 2022;
Bolya et al., 2023; Shen and Yang, 2021; Shen et al.,
2024a), and sequence packing (Dehghani et al., 2023) are
proposed for Vision Transformers (Dosovitskiy et al., 2020).
Quadformer (Ronen et al., 2023) uses mixed-resolution
patches to vary token count. However, these methods are
tailored for visual understanding tasks and cannot be used
for generation. A few recent works such as VAR (Tian
et al., 2024) study multi-scale tokenization for generation.
Nonetheless, these works are not adaptive to image content.
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CAT: Content-Adaptive Image Tokenization

Metric Pearson r

JPEG 0.31
MSE 0.36
LPIPS 0.23
Caption 0.55

Figure 2: L: Max acceptable compression ratios for different τ .
R: Correlation with max acceptable compression for τ = 0.0015.

Adaptive tokenizers for image generation remain relatively
underexplored. ElasticTok (Yan et al., 2024) employs
random masking to drop the tail tokens during training.
ALIT (Duggal et al., 2024) iteratively distills 2D tokens into
1D to reduce the token count. DQ-VAE (Huang et al., 2023)
leverages information-density for dynamic representation.
However, all of these methods (1) require an input image to
determine the token count, limiting their use in generation
settings where only text is available; and (2) overlook image
complexity during training. In contrast, we enable adaptive
compression directly from textual descriptions without ob-
serving the image. We also explicitly train the tokenizer
with complexity-aware supervision. A concurrent work,
TexTok (Zha et al., 2024), explores language-guided tok-
enization by supplying the caption embeddings to the VAE.
However, it is not designed for adaptive representation.

Multi-scale network design. Our work is also related
to designing neural networks for multi-scale feature extrac-
tion. Inspired by U-Net (Ronneberger et al., 2015) and Ma-
tryoshka networks (Kusupati et al., 2022; Cai et al., 2024;
Gu et al., 2024), we incorporate skip connections into the
VAE to support multi-ratio compression in a single forward
pass. Parallel work explores transformer-based multi-scale
architectures (Nash et al., 2022; Shen et al., 2023; 2024b;
Roberts et al., 2021; Yuan et al., 2021b; Shen et al., 2024c;
Hu et al., 2024). To the best of our knowledge, our nested de-
sign offers the simplest yet effective solution for generating
multi-scale latents via VAEs without additional architectural
or computational overhead, while achieving strong results
(Section 4).

3. Method
In this section, we present CAT for adaptive image tokeniza-
tion. We begin by motivating our caption-based evaluator
for image complexity estimation. Then, we describe the
nested VAE architecture.

3.1. Proof of Concept

How much can we actually compress? A key ques-
tion in this work is to determine how much an image can
be compressed without significant loss of quality. To ex-
plore this, we study the reconstruction performance of exist-

ing tokenizers under various compression ratios. We take
the open-source LDM tokenizers 1 with 8x, 16x and 32x
compression ratios and compute their reconstruction mean
squared error (MSE) on 41K COCO 2014 (Lin et al., 2015)
images with resolution 512. We find that for 28.3% of the
images, 32x compression results in less than a 0.001 MSE
increase compared to 8x, while reducing the token count
by a factor of 16. We also compute the best MSE among
all compression ratios for each image and determine the
maximum acceptable compression ratio under a tolerance
τ (argmaxratio MSEratio − MSEbest < τ ). Fig. 2 (left)
shows that 56% of the images can be compressed at least
to 16x with negligible (0.0001) increase in MSE2. That is,
a large portion of natural images can be compressed more
aggressively to save compute.

On the other hand, our visual inspection reveals that im-
ages with fine-grained elements like text have significantly
worse reconstruction quality at 32x compression compared
to 8x compression (e.g., see row 3 and 4 in Figure 3). This
suggests that more tokens are required to accurately recon-
struct low-level details. The above results provide strong
motivation for developing an adaptive tokenizer.

Limitations of existing complexity metrics. Next, we
want to identify a metric for predicting an image’s optimal
compression ratio. We explore two existing options: (1)
metrics produced by traditional codecs, such as the JPEG
file size; (2) metrics based on pretrained VAEs, such as the
reconstruction MSE and LPIPS distance (Zhang et al., 2018).
We use Stable Diffusion’s sd-vae-ft-mse (AI, 2022) for this
analysis. We compute these metrics on COCO and analyze
their correlation with the maximum acceptable compression
ratio under 0.0015 tolerance. However, Table 2 shows that
the Pearson r’s are relatively low. Statistically, these metrics
are not highly correlated with an image’s complexity.

We also manually inspect images with large JPEG sizes and
MSEs. We note that images featuring repetitive patterns,
such as grass, forests, and animals like giraffes and zebras
consistently show high complexity metrics. Indeed, JPEG
compression can be inefficient for images with sharp edges
and high contrast. A single-pixel shift in a zebra image can
toggle pixel values between black and white, significantly
increasing the reconstruction error. However, as Figure 3
(left) show, large JPEG sizes or MSEs do not always notably
affect visual quality. For example, we can easily recognize
the zebra and may not perceive the differences resulting
from various compression ratios.

1LDM (Rombach et al., 2021) released a series of VAE tokeniz-
ers with diverse compression ratios trained in a controlled setting.
Most other tokenizers like stabilityai/sd-vae-ft-mse
only have one compressed ratio.

2The average MSE across all images for 8x LDM VAE is
0.0039, so a 0.0001 tolerance should be acceptable.
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CAT: Content-Adaptive Image Tokenization

Figure 3: Existing metrics can misjudge image complexity.
Text-heavy images that are difficult to difficulty to reconstruct
(note the distortion in the bottom two rows) are considered as easy
by existing metrics.

Conversely, images with small JPEG sizes and low MSEs
can have poor fidelity. For example, as Figure 3 (right)
shows, distortions in images containing elements sensitive
to human perception, such as text, numbers, and human
faces, can drastically reduce visual quality. Despite this,
these images have low reconstruction errors since the critical
elements occupy only small portions of the images.

Thus, existing metrics fail to capture details crucial to human
perception. In contrast to the predicted complexity, we
actually want to use a large compression ratio for zebra
images, and a small ratio for the phone images. Beyond
this, all considered metrics require images as input and
cannot be used for text-to-image generation tasks, where no
image is available. Given all these limitations, we seek a
new complexity metric that is independent of pixel data and
aligns with human perception. We note that it is impractical
to use the tolerance-based compression ratio in Figure 2
as the complexity metric because it requires at least three
model calls to get the MSEs, making it computationally
expensive.

3.2. Complexity Evaluation via Captions and LLMs

Image generation typically involves users providing a
prompt that describes the desired image content. Inspired
by this use case, we propose to use the text description of
an image to evaluate its complexity.

We propose a 3-stage evaluation pipeline: (1) obtaining the
text description, (2) prompting a LLM for a complexity
score, and (3) classifying the score into a compression ratio.
The text description includes both the image caption and
answers to a set of pre-defined queries of the form “Are
there [obj]?” For example, obj ∈ {human faces, text} can
be used to align with human perceptions. During training,
when image data are available, we use a vision language
model (VLM) to generate the captions and answers. Dur-
ing inference, users need to provide the necessary textual
information.

We prompt a language model with the text description to
generate an integer score ranging from 1 to 10, where higher
scores indicate greater complexity. To ensure scoring con-
sistency, we design a detailed rubric that instructs the model
to consider factors including semantic complexity (objects,
scenes), visual complexity (color, texture), and perceptual
complexity. We also provide in-context examples for each
score. The complete prompt is provided in Appendix B.

Based on the complexity score, each image is classified
into one of three compression ratios: 8x, 16x, or 32x, with
higher complexity scores corresponding to lower ratios. We
choose these options as they are widely used in existing
tokenizers (Rombach et al., 2021) and provide meaningful
variation in token counts. Then, we implement a threshold-
ing scheme to divide the scores into three intervals: [1, a],
(a, b], and (b, 10], where a < b ∈ Z+ are selected to achieve
an average compression ratio of 16x across all training data
to enable fair comparison with fixed 16x tokenizers. For-
mally, denote the training distribution as X , input resolu-
tion as r, the compression ratio of an image x ∈ X as
f(x) ∈ {f1 = 8, f2 = 16, f3 = 32}, the target average
compression ratio as f̄ := 16. We set a, b by:

Ex∈X [
r2

f(x)2
] ≈

∑
x∈D

p
(
f(x)

) r2

f(x)2
≈ r2

f̄2
(1)

While multiple threshold configurations can achieve the
target average compression ratio, our experiments in Sec-
tion 4.2 demonstrate that a diverse distribution of ratios
yields better performance. For the specific training dataset
and thresholds used in our experiments, see Section 4.

Robustness testing and bias mitigation. To evaluate the
robustness of our caption-based complexity evaluator, par-
ticularly under different model choices and caption styles,
we conduct ablation studies on diverse datasets such as Im-
ageNet (Deng et al., 2009), CelebA (Liu et al., 2015) and
EuroSAT (Helber et al., 2019). We compare two pipelines:
(1) a unified pipeline using LLaVA1.5 7B (Liu et al., 2023)
for both captioning and scoring in a single pass, and (2) a
separated pipeline using InstructBLIP (Dai et al., 2023a)
for captioning and either Qwen2.5 7B (Yang et al., 2024)
or LLaMA3.1 8B Instruct (Dubey et al., 2024) for scoring.
Additionally, within the unified pipeline, we test variants
that explicitly prompt the model to produce longer versus
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shorter captions. As shown in Appendix Table 10, all con-
figurations result in similar compression distributions. We
attribute this robustness to (1) our carefully designed scoring
rubrics and in-context examples, and (2) the LLM’s ability
to infer content complexity is more influenced by the seman-
tic content of the caption than its wording. These findings
suggest that our evaluator is robust to model choices and
captioning variations. Given its simplicity and efficiency,
we adopt the unified pipeline in all subsequent experiments.

High correlation with visual complexity. We verify
that our caption score provides reliable estimates of the
optimal compression ratio. Similar to Section 3.1, we com-
pute the correlation between complexity scores and maxi-
mum acceptable compression ratios on COCO. Our metric
achieves the highest Pearson r among all options (Table 2)
and 62.39% exact agreement on compression ratio selection.
Manual inspection also confirms that perceptually challeng-
ing images receive high complexity scores. We note that
during development, we also tested other caption-derived
metrics such as caption length, but it does not perform as
well as LLM-based scoring (Appendix Table 9).

Minimal captioning overhead. When text information
is available, our pipeline requires only a single LLM call
to obtain the complexity score. During training, where
only images are provided, we generate the caption, query
responses, and complexity score within a single inference
pass, keeping the evaluation overhead minimal. Given the
efficiency of modern inference engines like vLLM (Kwon
et al., 2023), the cost of complexity evaluation is negligible
compared to the overall compute required for training the
tokenizer and downstream models.

3.3. Nested VAE for Adaptive Compression

To reduce the tokenizer’s training and storage costs, we
introduce a nested structure to the standard VAE architec-
ture (Kingma and Welling, 2014) to enable multiple com-
pression ratios within a single model. In standard VAE
architecture, the encoder consists of multiple downsampling
blocks followed by an attention-based middle block. The de-
coder consists of an attention-based middle block followed
by upsampling blocks. This symmetrical design resembles
U-Net (Ronneberger et al., 2015) and Matryoshka networks
(Kusupati et al., 2022) for multi-scale feature extraction. In-
spired by these works, we leverage the intermediate outputs
of the downsampling blocks to enable adaptive compression
(Figure 1). We describe the proposed architecture below.

Skip connection with channel matching. Denote
the feature shape under the largest compression ratio as
(c3,

r
f3
, rf3 ), where c3 is the channel dimension. We observe

that, in the standard VAE encoder, the spatial dimension
of the intermediate outputs from the downsampling blocks
decreases by a factor of 2 with each additional block. This

means that the output of the second-to-last downsampling
block has shape (c2,

r
f2
, rf2 ), and the output of the third-to-

last downsampling block has shape (c1, rf1 ,
r
f1
). Then, a nat-

ural thought is to directly route these intermediate outputs to
the middle block to generate latent features. However, since
the channel dimensions of these intermediate outputs vary,
we incorporate ResNet blocks (He et al., 2015) for channel
matching. Let the latent channel dimension of the VAE be
c. Applying channel matching enables us to transform in-
termediate features of shape (cn,

r
fn
, rfn ) to (c, rfn ,

r
fn

) for
n = 1, 2, 3. This will be the shape of the latent parameters.

For decoder, we similarly add skip connection with channel
matching and use the decoder middle block’s output as
the input to the corresponding upsampling block, i.e., for
compression ratio fn, we bypass the first n− 1 upsampling
blocks so the final output has the same size as the original
image.

Shared mean/variance parametrization. Features after
channel matching are directed to the middle block to gener-
ate the latent parameters. In CAT, we share the middle block
for all compression ratios to maintain scale consistency of
the parameterized mean and variance. The convolutional
design of the middle block allows it to process inputs of
varying spatial dimensions, as long as the channel dimen-
sion is aligned. Thus, for all n ∈ {1, 2, 3}, the mean µn,
variance σ2

n, and samples zn of the Gaussian distribution all
have shape (c, rfn ,

r
fn

), i.e., the input compressed at fn.

Increasing parameter allocation for shared modules. Im-
ages assigned larger compression ratios do not go through
the later downsampling blocks and are directed straight to
the middle block. The middle block is thus tasked with
handling multi-scale features. To improve its capacity, we
allocate more parameters to the middle block by increasing
the number of attention layers.

3.4. Training

While existing adaptive tokenizers like ElasticTok (Yan
et al., 2024) do not consider the varying complexity of train-
ing data, we explicitly incorporate content complexity into
training to learn feature extraction at different granularity.
For each training example, we first obtain the compression
ratio from the LLM. Then, the image is processed only by
the layers dedicated to its compression ratio.

Similar to prior works (Kingma and Welling, 2014; Esser
et al., 2020), we use a joint objective that minimizes re-
construction error, Kullback-Leibler (KL) divergence, and
perceptual loss. Specifically, we use L1 loss for pixel-
wise reconstruction. To encourage the encoder output z
towards a normal distribution, KL-regularization is added:
LKL(z) := KL(qθ(z|x)∥p(z)

)
, where θ is the encoder pa-

rameters and p(z) ∼ N (0, I). The perceptual loss consists
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Table 1: Test data distribution. CAT applies larger compression
to natural images and smaller ratios to CelebA and ChartQA.

Datasets Method 8x 16x 32x Avg Latent Dim Avg Rate

COCO CAT (Ours) 9% 54% 37% 31.87 16.07x
JPEG 10% 54% 36% 32.43 15.79x

ImageNet CAT (Ours) 6% 49% 45% 29.32 17.46x
JPEG 9% 49% 42% 31.24 16.39x

CelebA CAT (Ours) 17% 83% 0% 39.29 13.03x
JPEG 0% 0% 100% 16 32x

ChartQA CAT (Ours) 96% 4% 0% 63.02 8.12x
JPEG 0% 3% 97% 16.61 30.82x

of the LPIPS similarity (Zhang et al., 2018) and a loss based
on the internal features of the MoCo v2 model (He et al.,
2020). Beyond these, we train our tokenizer in an adversar-
ial manner (Goodfellow et al., 2014) using a patch-based
discriminator ψ, which adds a GAN loss LGAN(x, x̂, ψ).
Thus, our overall objective is:

L =min
θ

max
ψ

Ex∈X

[
Lrec(x, x̂) + βLKL(z)

+ γLperc(x̂) + δLGAN(x, x̂, ψ)
]
, (2)

where β, γ, δ are loss weights. We provide our training code
in the supplementary material.

4. Image Reconstruction
We first evaluate CAT’s reconstruction quality and analyze
various design choices via ablation studies.

Training details. We use a nested VAE with six downsam-
pling blocks and 187M parameters. For our main results
(Table 2), we set the latent channel c to 16. We study its
effect as an ablation study in Section 4.2. For training data,
we use 380M licensed Shutterstock images with 512x512
resolution. After obtaining the complexity scores, we find
that two sets of thresholds, (a, b) ∈ {(4, 7), (2, 8)}, both
achieve an average compression ratio of 16x. We select
(4, 7) for our main experiments because it leads to a more
diverse distribution and better empirical results (see ablation
studies in Section 4.2). All models including the baselines
are trained using a global batch size of 512 on 64 NVIDIA
A100 GPUs for 1M steps. Other architecture and training
details can be found in Appendix E.

Evaluation datasets. We use four representative datasets:
COCO (Lin et al., 2015) and ImageNet (Deng et al., 2009)
for natural images, CelebA (Liu et al., 2015) and ChartQA
(Masry et al., 2022) for perceptually challenging images.
Table 1 shows the compression ratio distributions.

Baselines. We compare against fixed-token baselines that
use the same VAE architecture but without the nested struc-
ture. We further study the effect of caption complexity by
training a nested VAE using JPEG size as the complexity
metric. All baselines have average 16x compression. To

our knowledge, none of existing adaptive tokenizers (e.g.,
ElasticTok, ALIT) report quantitative results on the datasets
we use, so we do not compare with them. ALIT only shows
an rFID of 8.03 on ImageNet100. See Appendix E.3 for
more baseline details.

4.1. Main Results

Better reconstruction for complex images, higher effi-
ciency for natural images. Table 2 presents the recon-
struction FID (rFID), LPIPS, and PSNR (Horé and Ziou,
2010) on four datasets. Comparing CAT with the fixed 16x
baseline, our method significantly outperforms the base-
lines across all metrics on CelebA and ChartQA, improving
the rFID by 12% on CelebA and 39% on ChartQA.
Our ChartQA rFID even surpasses the fixed 8x base-
line, likely because the LLM evaluator can effectively iden-
tify rich visual details in these datasets and assign lower
compression ratios accordingly (Table 1). On COCO and
ImageNet, CAT generally outperforms the baselines, with
only a slight drop in rFID on ImageNet. However, On
ImageNet, CAT achieves an average compression ratio of
17.46x, which means we use 18% fewer tokens to represent
the dataset compared to the 16x baseline,

Figure 4 shows qualitative examples of progressive recon-
struction quality as we manually increase the token count
and reduce the compression ratio to represent each image.
We highlight the compression ratio predicted by CAT in red.
Different visual inputs need different ideal compression ra-
tios. Natural images with fewer objects and simpler patterns
can be accurately reconstructed at 32x, whereas complex
images with visual details require lower compression. Thus,
the caption-based CAT reconstruction has comparable qual-
ity to the fixed 16x baseline on natural images but surpasses
it on text-heavy images. We include more visualization
in Appendix E.4. We also report CAT’s performance with
uniform 16x compression in Appendix E.5.

Table 3: ImageNet-512 re-
construction.
ImageNet rFID
MaskGIT-VQGAN (Chang et al., 2022) 1.97
TiTok-B-128 (Yu et al., 2024b) 1.52
LFQ (Yu et al., 2024a) 1.22
TexTok (Zha et al., 2024) 0.73
LDM (Rombach et al., 2021) 0.53
CAT 0.46

Lastly, while most prior
works do not evaluate on di-
verse datasets like ChartQA,
we include a side-by-side
comparison with popular
fixed-ratio tokenizers on Im-
ageNet in Table 3. This ta-
ble is for reference due to differing training setups (we refer
the readers to Table 2 for fully comparable baselines). Still,
the results highlight that CAT achieves competitive perfor-
mance by adapting compression ratios to image content.

Caption complexity outperforms JPEG metric. We fur-
ther compare CAT against training the same adaptive ar-
chitecture but using JPEG size as the complexity metric.
Table 2 shows that CAT achieves better rFID, LPIPS,
and PSNR across all datasets. While both tokenizers have
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Table 2: Reconstruction results. All models have latent channel c = 16.

Average
Compression

COCO ImageNet CelebA ChartQA
rFID↓ LPIPS↓ PSNR ↑ rFID↓ LPIPS↓ PSNR ↑ rFID↓ LPIPS↓ PSNR ↑ rFID↓ LPIPS↓ PSNR ↑

8 Fixed 8x 0.48 0.10 30.95 0.24 0.095 33.86 1.86 0.028 45.36 8.21 0.019 36.98

16
Fixed 16x 0.66 0.16 29.79 0.38 0.15 30.45 2.25 0.059 41.84 8.67 0.029 33.48
Adaptive JPEG 0.72 0.17 30.11 0.51 0.16 30.61 6.57 0.14 36.47 10.17 0.048 31.54
Adaptive CAT (Ours) 0.65 0.15 30.19 0.46 0.15 30.62 1.97 0.051 42.43 5.27 0.021 36.45

32 Fixed 32x 1.18 0.26 26.93 0.81 0.25 27.48 6.10 0.16 36.35 10.79 0.045 30.99

Figure 4: Qualitative reconstruction examples. We highlight the compression ratio selected by our caption complexity in red. On
simpler images (top two rows), adjusting the compression ratio does not significantly affect quality. On more complex images (bottom
three rows), the impact is substantial.

similar training compression ratio distribution, the test-time
compression ratio distribution varies significantly (Table 1).
Notably, since JPEG size often cannot capture perceptually
important factors (see Section 3.1), nearly all images in
CelebA and ChartQA are assigned 32x compression. Thus,
CAT significantly outperforms JPEG on these two datasets,
showing the effectiveness of caption-based metric and LLM
evaluation in determining image intrinsic complexity.

4.2. Ablation Studies

Benefits of diverse compression ratios. We explore sev-
eral design choices for our tokenizer. First, we study how

the distribution of compression ratios affects overall recon-
struction. To achieve an average compression ratio of 16,
we could set the thresholds (a, b) to either (4, 7) or (2, 8).
(4, 7) yields a more diverse distribution of compression ra-
tios, whereas (2, 8) results in a concentrated distribution
similar to a fixed 16x tokenizer, making it less interesting.
Table 4 shows that (4, 7) produces better reconstruction met-
rics across all datasets due to the diversity in compression
ratios ensures that all parts of the model are fully trained.
Hence, we adopt (4, 7) as the thresholds for CAT.

Effect of latent channel dimension. We also vary the
latent channel c to study its effect. Table 5 shows that a
larger c improves reconstruction results. However, similar
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Table 4: Ablation on thresholds. The (4, 7)-setting with more
diverse training distribution achieves generally better performance.

(a, b) COCO ImageNet CelebA ChartQA

(4, 7) 0.65 0.46 1.97 5.27
(2, 8) 0.67 0.43 2.58 7.70

Table 5: Ablation on latent channel. Increasing latent channel c
improves rFID across all four evaluated datasets.

c COCO ImageNet CelebA ChartQA

4 1.66 1.10 5.83 9.13
8 1.03 0.60 4.54 7.95

16 0.65 0.46 1.97 5.27

to previous work (Rombach et al., 2021; Dai et al., 2023b),
we observe a reconstruction-generation trade-off: while
increasing c is beneficial for reconstruction, it does not
necessarily improve second-stage generative results. We
elaborate more on this in Section 6.

5. Classification on Diverse Datasets
While CAT demonstrates strong reconstruction performance
on COCO, ImageNet, CelebA, and ChartQA, these datasets
represent only a subset of image domains. To thoroughly as-
sess CAT’s capabilities in diverse domains and tasks beyond
reconstruction, we follow OpenCLIP (Ilharco et al., 2021)
and test CAT’s classification performance on five datasets
that feature details beyond text and human faces: DTD (Cim-
poi et al., 2014) (textures), EuroSAT (Helber et al., 2019)
(satellite images), GTSRB (Stallkamp et al., 2011) (traffic
signs), SUN397 (Xiao et al., 2016) (indoor and outdoor
scenes), and SVHN (Netzer et al., 2011) (street numbers).
We examine two settings: (1) linear probing, where we
freeze the encoder and train only a linear layer on top of
the latent features; and (2) fine-tuning both the encoder and
classification head. See Appendix F for experiment details.

As shown in Table 6, CAT consistently outperforms fixed-
ratio baselines across both settings, achieving the best top-1
accuracy on all five datasets in the linear probing setup.
This highlights the quality and generalizability of CAT’s
latent representations, which transfer effectively to down-
stream classification tasks even without fine-tuning. In addi-
tion, CAT maintains strong reconstruction performance on
these datasets, improving the rFID by 13% on EuroSAT,
17% on GTSRB, and 20% on SVHN (Table 6, top rows).
These results further confirm that our caption-based com-
plexity metric supports learning representations that balance
both compression quality and downstream utility.

Table 6: More reconstruction and classification results. CAT
achieves better reconstruction and classification results.

DTD EuroSAT GTSRB SUN397 SVHN

Reconstruction FID (↓)
LDM VAE 16x 7.86 7.04 1.22 1.95 1.76
Fix 16x 7.29 6.26 1.38 1.95 2.11
CAT (Ours) 7.23 5.45 1.14 1.93 1.69

Linear Probing Top-1 Accuracy (%, ↑)
LDM VAE 16x 53.81 75.38 70.29 63.70 64.87
Fix 16x 50.42 78.08 70.07 62.92 65.07
CAT (Ours) 54.51 78.21 71.28 64.16 66.39

Fine-Tuning Top-1 Accuracy (%, ↑)
LDM VAE 16x 75.91 97.00 90.61 79.89 83.05
Fix 16x 71.96 92.46 95.07 78.77 85.93
CAT (Ours) 74.11 98.00 95.32 78.45 86.13

6. Image Generation
Lastly, we evaluate CAT on text-to-image generation to
show that (1) its adaptive design does not compromise
generation quality; (2) by using fewer tokens to represent
the training data, CAT actually enables more efficient
learning, leading to stronger generative models under the
same compute budget.

Setup. Given CAT’s ability to produce variable-length
token sequences, we integrate it with Diffusion Transformer
(DiT) (Peebles and Xie, 2022), which handles adaptive to-
ken representations naturally. DiT takes the noised latent
features as input, applies patching for downsampling, and
uses a transformer architecture to predict the added noise.
Following (Peebles and Xie, 2022), we work with class-
conditional generation on ImageNet-512, leveraging DiT-
XL with a patch size of 2.

During training, each image is processed through the CAT
pipeline to determine its compression ratio, resulting in
variable-length latent representations tailored to its com-
plexity. That is, each example can have different number of
latent tokens. For inference, we obtain a class-level com-
pression ratio by providing a textual description of the form
“this is an image of [label]” to the LLM evaluator, which
predicts the appropriate compression ratio for that class. For
example, if the evaluator suggests a 16x compression, we
generate ( 512

16·2 )
2 = 256 tokens, where the 2 in the denom-

inator accounts for DiT’s patching. The generated tokens
are then decoded by CAT to reconstruct 512x512 images.
Following (Peebles and Xie, 2022), we report FID (Heusel
et al., 2018), Sliding FID (Ding et al., 2023), Inception Score
(Salimans et al., 2016), precision and recall (Kynkäänniemi
et al., 2019) on 50K images generated with 250 DDPM
steps and classifier-free guidance (Ho and Salimans, 2022).
We note that we use the same compression ratio per class
predicted by LLMs mainly for benchmarking purpose. In re-
ality, CAT allows users to flexibly specify the desired token
count at inference time, as we will show later.
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Table 7: ImageNet-512 generation results. All tokenizers have average 16x compression ratio. “rFLOPs” means relative FLOPs.

FID↓ sFID↓ IS↑ Precision↑ Recall↑ Eval rFLOPs↓

Fixed DiT + LDM VAE 10.03 16.88 114.84 0.65 0.50 1×
DiT + Fixed 16x 4.78 11.81 187.47 0.72 0.49 1×

Adaptive DQ-Transformer (Huang et al., 2023) 5.11 - 178.2 - - -
DiT + CAT (Ours) 4.56 10.55 191.09 0.75 0.49 0.82×

Table 8: Larger channel c is not always better for generation.

c FID↓ sFID↓ IS↑ Precision↑ Recall↑
4 5.12 11.12 152.39 0.72 0.48
8 4.38 10.31 181.03 0.76 0.48
16 4.56 10.55 191.09 0.75 0.49

Baselines. We compare against DiT-XL paired with the
open-source 16x LDM VAE and the fixed 16x tokenizer we
trained ourselves. All models are trained on 16 NVIDIA
H100 GPUs for 400K steps, using a global token batch
size of 262,144, which is equivalent to 1024 images at 16x
compression. See Appendix G for more implementation
and baseline details.

As shown in Table 7, DiT-CAT achieves the best FID,
sFID, IS, and precision among all DiT baselines trained
with the same computational resources. We attribute this
performance to two factors. First, using fewer tokens for
simpler images improves processing efficiency, allowing
for more extensive training within the same computational
budget. In fact, the average token count per training image
for DiT-CAT is 197.44. Compared to the 256 tokens used
by fixed 16x tokenizers, CAT achieves a 23% reduction
in token count, allowing the model to process more images
within the same training budget. Second, adaptively allo-
cating representation capacity also enables more effective
modeling of complex images, as richer visual details are
better preserved through the use of additional tokens.

As discussed earlier, we use our LLM evaluator to obtain the
generation token count using pre-defined captions mainly
because we want to automate the evaluation process. In
reality, users can flexibly set the token count based on their
computational budget. To explore this, we manually vary the
token count during generation with DiT-CAT and observe
that FID-50K improves from 5.83 (64 tokens) to 5.02 (256
tokens) and 4.12 (1024 tokens), confirming that more tokens
lead to higher-quality images. Qualitative examples in Fig-
ure 5 further support this observation. Thus, CAT enables
a controllable trade-off between efficiency and generation
quality. For more visualization, see Appendix G.4.

Lastly, recall that we trained tokenizers with different latent
channels in Section 4.1. Table 8 shows the generation per-
formance. While larger c is better for reconstruction, it does
not benefit generation. CAT with c = 8 achieves the best

Figure 5: Increasing token count (left→right) for CAT leads to
better image quality and higher complexity.

FID across all experiments. This observation agrees with
prior work (Rombach et al., 2021) and highlights the impor-
tance of choosing an appropriate c. We leave exploring c’s
impact on downstream task for future work.

7. Conclusion
We propose an adaptive image tokenizer, CAT, that allocates
different number of tokens to images based on the content
complexity derived from text description. Our experiments
show that CAT improves the quality and efficiency of image
representation on a variety of downstream tasks.

Limitations and Future Work. Nested VAE is a nat-
ural extension of the VAE architecture but is constrained
to predefined compression ratios that scale by factors of
2. An intriguing future direction would be to enable more
flexible compression ratios by transitioning to transformer
backbones and dynamically adjusting token counts. Be-
sides, images contain diverse global and local informa-
tion. While CAT addresses global complexity by increas-
ing token allocation for images with intricate details, fur-
ther efficiency improvements could come through local
tokenization—allocating more tokens specifically to de-
tailed regions while reducing tokens for simpler areas. Be-
sides, an ideal pipeline would enable LLMs to automatically
identify perception-critical elements without relying on pre-
defined queries. This would be an important next step.
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CAT: Content-Adaptive Image Tokenization

A. Broader Impact
This work introduces CAT, a content-adaptive tokenizer designed to improve the efficiency and flexibility of image modeling.
By enabling dynamic compression based on image content, CAT has the potential to reduce computational and energy costs
in large-scale generative and classification systems, contributing to more sustainable AI practices. However, as with any
generative model, misuse of this technology for creating misleading or harmful content remains a concern. We encourage
responsible deployment, including proper safeguards and usage guidelines, particularly in sensitive domains such as media
generation, surveillance, or automated decision-making.

B. Prompt for LLM Scorer
Our caption complexity pipeline works as follows:

Step 1: Use a VLM to generate image description, with the following prompts:

• What’s in the image? → Caption

• Are there text or numbers in the image? → Yes/No.

• Are there faces in the image? → Yes/No.

Step 2: Use the same VLM or a separate LLM to generate the complexity score with the prompt:

Given the description of a 512px image, determine its complexity based on the following factors:
1. Number of distinct objects
2. Color variance
3. Texture complexity
4. Foreground and background
5. Symmetry and repetition
6. Human perception factors, like the presence of human faces or text
You will be given the caption, whether there are text or numbers, and whether there are faces in the image.
Assign a complexity score such that a higher number means the image is more complex. Note that text and
facial details are intrinsically complex because they are crucial to human perception. Here are some examples
for scoring:
- Score 1: A plane in a sky
- Score 2: A t-shirt with a emoji on it
- Score 3: A dog lying on the grass
- Score 4: A woman skiing in the snow
- Score 5: Two kids walking on the beach
- Score 6: A dinning table full of food
- Score 7: A close-up shot of a old man
- Score 8: Many people gathering in the stadium
- Score 9: Newspapers or graphs with text and numbers
Now determine the complexity for the caption:
[Insert caption here]
[Insert one of the following based on the Yes/No questions:
- There are text visible in the image. There are also facial details.
- There are text visible in the image, but there is no human face.
- There is no obvious text in the image, but there are facial details.
- There is no text or human face in the image. ]
Respond with “Score: ? out of 9”, where “?” is a number between 1 and 9. Then provide explanations.

Note these two steps can be combined into a single inference call.
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CAT: Content-Adaptive Image Tokenization

C. Other Complexity Metrics

Table 9: We also tried various other metrics. However, they are less effective (e.g., caption length) compared to our
LLM-based score.

Metric Pearson r

JPEG 0.31
MSE 0.36
LPIPS 0.23

Caption Length 0.33
CAT (Ours) 0.55
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D. Compression Ratio Distributions with Different LLMs

Table 10: To study whether our caption score is robust to LLM choice, we test multiple captioners and LLMs for scoring.
The fact that these combinations generate similar score and compression ratio distributions show that our scoring method is
robust.

Scoring Model 8x 16x 32x Avg Rate

InstructBLIP + Llama3.1-8B-Instruct 6% 49% 45% 17.43
ImageNet InstructBLIP + Qwen2.5-7B-Instruct 2% 70% 28% 17.35

LLaVA1.5 7B 2% 65% 33% 17.75
LLaVA1.5 7B (Longer Caption) 3% 62% 35% 17.58

InstructBLIP + Llama3.1-8B-Instruct 17% 83% 0% 13.02
CelebA InstructBLIP + Qwen2.5-7B-Instruct 15% 70% 15% 13.83

LLaVA1.5 7B 5% 95% 0% 14.92
LLaVA1.5 7B (Longer Caption) 6% 94% 0% 14.72

InstructBLIP + Llama3.1-8B-Instruct 0% 40% 60% 21.57
DTD InstructBLIP + Qwen2.5-7B-Instruct 0% 38% 62% 21.87

LLaVA1.5 7B 0% 41% 59% 21.42
LLaVA1.5 7B (Longer Caption) 2% 44% 54% 19.76

InstructBLIP + Llama3.1-8B-Instruct 3% 30% 67% 20.87
EuroSAT InstructBLIP + Qwen2.5-7B-Instruct 3% 25% 72% 21.57

LLaVA1.5 7B 2% 22% 76% 22.85
LLaVA1.5 7B (Longer Caption) 4% 23% 72% 21.19

InstructBLIP + Llama3.1-8B-Instruct 6% 73% 21% 15.82
SUN397 InstructBLIP + Qwen2.5-7B-Instruct 2% 78% 20% 16.77

LLaVA1.5 7B 3% 80% 17% 16.30
LLaVA1.5 7B (Longer Caption) 5% 82% 13% 15.59

E. Reconstruction Experiments
E.1. Architecture

We implement the nested VAE similar to the AutoencoderKL implementation in the diffusers library. The network
configuration is:

• sample size: 512

• in channels: 3

• out channels: 3

• down block types: [DownEncoderBlock2D] × 6

• up block types: [UpDecoderBlock2D] × 6

• block out channels: [64, 128, 256, 256, 512, 512]

• layers per block: 2

• act fn: silu

• latent channels: 4/8/16

• norm num groups: 32

• mid block attention head dim: 1

• num layers: 8

The model sizes for different latent channels are shown below. For the discriminator, we use the pretrained StyleGAN
(Karras et al., 2019).
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Nested VAE c = 4 c = 8 c = 16

# Params (M) 187.45 187.50 187.61

E.2. Training

We use obj ∈ {human faces, text} for our perception-focused queries. We use the following training configuration:

• GPU: 64 NVIDIA A100

• Per-GPU batch size: 8

• Global batch size: 512

• Training steps: 1,000,000

• Optimizer: AdamW

– lr: 0.0001
– beta1: 0.9
– beta2: 0.95
– weight decay: 0.1
– epsilon: 1e-8
– gradient clip: 5.0

• Scheduler: constant with 10,000 warmup steps

• Loss:

– recon loss weight: 1.0
– kl loss weight: 1e-6
– perceptual loss weight: 1.0
– moco loss weight: 0.2
– gan loss weight: 0.5
– gan loss starting step: 50,000

The discriminator is trained with the standard GAN loss.

E.3. Baselines

Figure 6: On COCO 2014 test set, the
minimum JPEG size is 6128; maximum is
118428; mean is 45474.29; standard devia-
tion is 15037.07.

We train fixed compression baselines using the same data, training config-
uration, and VAE backbone. For smaller compression ratios, e.g., fixed 8x,
the last two downsampling blocks and first two upsampling blocks are not
used.

For the adaptive JPEG baseline, we use torchvision.io.encode jpeg to trans-
form the images into JPEG file and compute the number of bytes as the
complexity metric. Smaller files correspond to larger complexity. To provide
a better understanding of this metric, we show in Figure 6 the distribution of
JPEG sizes on the COCO 2014 test set, with relevant statistics included in
the caption. Then, based on the JPEG sizes of all images in the Shutterstock
training dataset, we set the thresholds (a, b) to (38761, 65837) to categorize
the file sizes into three compression ratios. This set of thresholds ensure that
the JPEG baseline has the same training compression ratio distribution as
CAT.
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For LDM VAEs, we follow the instructions in their original repository to use
the model checkpoints. Note that LDM VAEs are trained on OpenImages
dataset (Kuznetsova et al., 2020), which is different from our training data,
so it is hard to fairly compare the reconstruction performance. Nonetheless, we present their rFIDs on the evaluation datasets
in Table 11.

Table 11: rFIDs for CAT and LDM VAEs.

COCO ImageNet CelebA ChartQA

CAT 0.65 0.46 1.97 5.27
LDM 8x 0.51 0.33 2.83 8.32
LDM 16x 0.53 0.37 3.07 8.49
LDM 32x 0.90 0.62 5.54 10.35

E.4. More Reconstruction Visualization

See Figure 7 in the next page.
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E.5. Fixing Token Count for CAT
Table 12: Equalizing test-time to-
ken counts.

CAT rFID Adaptive Equalized 16x

COCO 0.65 0.67
ImageNet 0.46 0.40
CelebA 1.97 2.47
ChartQA 5.27 7.27

We also evaluate the reconstruction performance under fixed compression ratio (token
count) for different datasets. Table 12 compares the reconstruction FID for CAT
with caption-guided compression ratio vs. fixed 16x compression ratio. We see that
adaptive compression based on image complexity outperforms uniform compression
using the same architecture in most cases, possibly because error reduction on
complex images outweighs the slight error increase on simpler ones.
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Figure 7: More CAT reconstruction examples. We highlight the compression ratio selected by our caption complexity
in red.

E.6. Full Results for Table 4 and Table 5

To complement Table 4, we include the training distribution for different scoring
thresholds in Table 13. To complement Table 5, we include the results of fixed-ratio baseline in Table 14.
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Table 13: Compression ratio distribution affects learning outcomes. Both settings have an average compression of ∼16x,
but (4, 7) leads to better distribution diversity and empirical results.

(a, b)
Training Distribution Reconstruction FID ↓

8x 16x 32x Average COCO ImageNet CelebA ChartQA

(4, 7) 10% 48% 42% 16.0x 0.65 0.46 1.97 5.27
(2, 8) 0.5% 89.5% 10% 16.5x 0.67 0.43 2.58 7.70

Table 14: Larger latent channel c generally improves rFID.

rFID↓ c COCO ImageNet CelebA ChartQA

4 1.25 1.32 5.89 9.45
Fixed 16x 8 1.10 0.61 4.99 8.19

16 0.66 0.38 2.25 8.67

4 1.66 1.10 5.83 9.13
CAT 8 1.03 0.60 4.54 7.95

16 0.65 0.46 1.97 5.27

F. Classification Experiments
We selected the diverse datasets because they represent out-of-domain distributions where zero-shot models perform
poorly (Radford et al., 2021; Xu et al., 2024; Ilharco et al., 2022). Similar to OpenClip (Ilharco et al., 2021), we initialize a
simple linear classification head that maps from the tokenizer’s maximum latent dimension (under 8x compression) to the
number of labels for each task. When the image is compressed with 16x or 32x ratio, we zero-pad the latent features to
make the length match with the classification head. We evaluate two settings: (1) linear probing, where we keep the image
encoder frozen and only fine-tune the classification head; (2) full fine-tuning, where we update both the encoder and the
classification head. We train both settings for 20 epochs with a batch size of 64, learning rate 1e-4 and a cosine annealing
learning rate schedule with 2 warm-up epochs. We use the AdamW optimizer with weight decay 0.1.

G. Generation Experiments
G.1. Architecture

We use DiT-XL architecture with a patchify downsampler and patch size of 2. The model size depends on the latent channel,
but is generally around 431M parameters. The model TFLOPs is 22.0. All baselines reported in Table 7 use c = 16.

G.2. Training & Inference

We use LLaVA1.5 7B to generate the complexity score for ImageNet training images. For 10 % of the time, we remove the
image class label from the input and train unconditional image generation. The training configuration for DiT is:

• GPU: 16 NVIDIA H100

• Per-GPU token batch size: 4096 × 4 (equivalent to 64 images for 16x compression ratio)

• Global token batch size: 4096 × 64

• Training steps: 400,000

• Optimizer: AdamW

– lr: 0.0001
– beta1: 0.9
– beta2: 0.95
– weight decay: 0.1
– epsilon: 1e-8
– gradient clip: 1.0
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CAT: Content-Adaptive Image Tokenization

• Scheduler: Cosine

– warmup: 4000
– cosine theta: 1.0
– cycle length: 1.0
– lr min ratio: 0.05

At test time, we use “this is an image of [label]” as a standardized prompt and manually provide answers to the queries
to enable automated evaluation. Then, we use Llama3.1 to obtain the complexity score. DDPM scheduler (diffusers
implementation) configuration is:

• num train timesteps: 1000

• beta start: 0.0001

• beta end: 0.02

• beta schedule: squaredcos cap v2

• prediction type: epsilon

• timestep spacing: leading

• num inference steps: 250

All FID-50K and images generated in this paper are using cfg=1.5.

G.3. Baselines

To ensure we train the baseline with the same compute FLOPs, we fix the token batch size and number of training steps for
all settings. For pretrained LDM VAE, we use the scaling factor specified in the model configuration to ensure the input
scale and noise scale are similar. For CAT, we use a scaling factor of 1.

G.4. More Visualization

See Figure 8 in the end.

G.5. Full Results for Table 8

To complement Table 8, we include the results of fixed-ratio baseline in Table 15.

Table 15: Larger channel c is not always better for generation. Contrary to Table 5, we find that increasing channel
dimension does not always result in generation gains.

c FID↓ sFID↓ IS↑ Precision↑ Recall↑
4 5.11 10.84 158.80 0.75 0.49

Fixed 16x 8 4.96 10.39 221.85 0.76 0.51
16 4.78 11.81 187.47 0.72 0.49

4 5.12 11.12 152.39 0.72 0.48
CAT 8 4.38 10.31 181.03 0.76 0.48

16 4.56 10.55 191.09 0.75 0.49
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CAT: Content-Adaptive Image Tokenization

Figure 8: More DiT-CAT generation examples. Increasing token count (left→right) generally leads to better image
quality and higher complexity.
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