
I. Introduction

Pustular psoriasis (PP) can impair the quality of life by 
producing innumerable painful pustules (white or yellow 
vesicles) on weight-bearing areas, or lead to uncontrollable 
systemic inflammation and malaise. Both localized and 
generalized forms exist. Palmoplantar PP (PPP) is the most 
frequent form and produces numerous pustules on an ery-
thematous base in the palmoplantar region. With time, these 
pustules dry, and their subsequent secondary efflorescences 
are termed brown spots. Generalized PP affects the whole 
body; it is rarer than localized forms and more dangerous in 
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cases with systemic complications. There is no established 
standard treatment, and the available options are still limited [1].
 The severity of a skin disease is traditionally evaluated 
based on its physical impact on patients’ health. Several dif-
ferent metrics exist for psoriasis, of which the Psoriasis Area 
and Severity Index (PASI) is considered the most established 
[2]. For PP, there is no universally used grading system. Ob-
jective grading systems such as the PPPASI [3] are based on 
the quantity and intensity of important disease features, most 
prominently the pustules. As these scoring systems were de-
signed for manual assessment, they use an imprecise grading 
system from “no disease” (0) to “very severe” (4), integrating 
pustules, erythema, and scaling. Similarly, the area covered 
by efflorescences is also graded using discrete categories. 
Even though such scales are clinically useful and efficient in 
practice, they clearly constrain precision for severity grading 
and disease monitoring. As shown by the PrecisePASI for 
plaque-type psoriasis [4], this limitation can be overcome by 
developing tools for fine-grained assessments. These precise 
grading systems are especially important for monitoring pa-
tients’ conditions and determining the required treatments, 
as PP is a relapsing disease with varying degrees of severity 
across flare episodes. Dermatologists usually evaluate PP 
activity by coarse estimations, which have inevitable disad-
vantages such as inter-individual variation among raters [5]. 
Hence, an automated and reliable alternative would benefit 
clinical practitioners, facilitate medical studies, and could be 
smoothly integrated into tele-dermatology applications.
 In comparison to other inflammatory skin diseases, PP 
presents distinct and easily identifiable skin lesions: pustules 
and brown spots. This special characteristic could enable 
machine learning (ML) algorithms to automatically perform 
counting and surface estimation, a very daunting task in 
manual settings. For example, the reader may visually assess 

the quantity of lesions in the patient’s hand shown in Figure 1, 
which tallies 118 pustules and 272 brown spots and surface 
percentages 2.11% and 3.14%, respectively. Clearly, such fine-
grained assessments can only be achieved through automation. 
 Current state-of-the-art image recognition models are 
based on deep learning (DL) architectures. DL is a branch 
of ML aiming to develop models that autonomously learn 
relevant discriminating features from data sources to infer 
predictions on new unseen data samples. These deep learn-
ing models (DLMs) can be used in automated pipelines and 
have the advantage of producing deterministic and therefore 
reproducible results. They have repeatedly achieved super-
human performance in image recognition tasks, progressing 
to general images today. Successful applications to medical 
image analysis include skin cancer classification [6], pso-
riasis or brain tumor segmentation [7,8] and even synthetic 
medical data generation [9].
 In this study, we propose a DLM to automatically quantify 
PP efflorescences (lesion count and surface percentage) and 
evaluate its predictions against experts’ labels.

II. Methods

1. PPP Dataset
The dataset consisted of 151 anonymized high-resolution 
photographs obtained at the University Hospital Zurich from 
PPP patients with active lesions. Two board-certified derma-
tologists and a student independently labeled the images for 
pustules and brown spots. Figure 1 shows an example of a 
PPP image from our dataset along with its expert labels.
 We randomly divided the dataset into 121 photographs to 
train the DLM and 30 photographs to test its performance, 
ensuring that the training and test set did not contain any 
data from the same patient. The training set was further 

A B C

Figure 1.   Sample image (A) with expert labels (B) and the DLM prediction (C). This picture came from the test set used to evaluate the 
DLM and was not used in the training process. The original image is shown in (A), while (B) shows the image overlaid with 
expert labels and (C) the image overlaid with the DLM predictions. The pustules are colored in yellow, the brown spots in 
red, the patient’s skin in blue, and the background in violet. DLM: deep learning model.
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divided into five folds for cross-validation to determine the 
optimal DLM (hyper-)parameters and to evaluate the variabil-
ity of the DLM performance across the different training splits.
 To leverage the full resolution of the photographs, we tiled 
the images in square patches with a fixed side length of 512 
pixels (approximately 3 cm × 3 cm). This pre-processing step 
resulted in 6,799 patches for the training set and 819 for the 
test set. Finally, only the training set was further augmented 
to improve DLM generalization using random transforma-
tions such as flips, rotations, zoom, and contrast and bright-
ness changes. The full test set lesion distribution is displayed 
in the supplementary materials.

2. DLM Training
The suggested DLM is composed of two subunits, both 
based on the U-Net [10] architecture with a ResNet [11] 
backbone to extract image features. The workflow is as 
follows: first, the M1 subunit separates the skin and back-
ground from the full picture, while the M2 subunit splits the 
picture into patches and segments pustules and brown spots. 
The M1 predictions take priority over M2 predictions in the 
sense that we consider M2-predicted pustules and spots only 
when they overlap with M1-predicted skin. The lesions are 
counted and the surface percentage (the total lesions’ pixel 
size multiplied by 100, then divided by the total skin’s pixel 
size) is calculated.
 Due to the relatively small size of our dataset, the training 
process was preceded by two pretraining steps. First, we ap-
plied transfer learning on both subunits’ backbones using 
the pretrained weights from the ImageNet dataset [12]. Next, 
we pretrained the M2 subunit’s backbone on a simpler clas-
sification task: separating patches containing lesions from 
patches with only background or healthy skin.
 Finally the training of the DLM was performed for each 
subunit independently on the same training set using a 
learning rate scheduler with a one-cycle policy [13]. 
 As the lesions are very small, there is a large imbalance 
between lesion pixels and irrelevant pixels from the skin or 
background. To ensure that the DLM properly learns to rec-
ognize very small lesions, we used the mixed focal loss func-
tion [14], combining the focal loss [15] and the dice focal 
loss [16], both of which are known to mitigate semantic class 
imbalance and are popular in medical image segmentation 
[17]. The implementation was done with PyTorch [18] and 
the fastai library [19].

3. Pustular Diseases Dataset (PDD)
This dataset used for out-of-distribution testing consisted of 

213 unstandardized pictures from four pustular diseases (Ta-
ble 1) with at least 15 images per diagnosis (Supplementary 
Tables S1–S3). The diseases were selected because they also 
produce pustules and brown spots. One of the four diseases 
was again PPP, but the pictures were derived from a distinct 
patient population and were less standardized. In compari-
son to the training dataset, the PDD pictures varied greatly 
in terms of resolution, zoom level, focus, brightness level, 
patient posture, and so on. One dermatologist assessed the 
images for actual disease severity using a physician’s global 
assessment ranking from 0 (no disease) to 4 (very severe). 
In contrast, one student graded the images for lesion count 
only, with results ranging from 0 (no lesions) to 4 (very large 
count) for the estimated lesion count. Consistent estimation 
of the lesion surface percentage by human raters was tried, 
but proved to be too difficult and was therefore abandoned. 

4. Analysis
To evaluate the agreement between the experts’ labels and 
the DLM predictions, intraclass correlation coefficients 
(ICCs) with 95% confidence intervals (CIs) were measured. 
For the PDD experiment, we computed Spearman correla-
tion (SC) coefficients with a 95% CI instead, since ranking 
labels are ordinal variables. The computed correlation coef-
ficients reflect how well the DLM predictions relate to the 
experts’ labels: <0.4 for weak agreement, 0.4–0.6 for moder-
ate, 0.61–0.8 for strong, and >0.8 for very strong agreement.
 Following the recommendations by van Stralen [20] we 
created Bland-Altman (BA) plots to analyze the agreement. 
As the data were not normally distributed, the BA limits of 
agreements were computed with the 2.5th and 97.5th per-
centiles (to cover 95% of the data samples). We also created a 
Q3P plot to show the third quartile of (absolute and relative) 
differences between experts’ labels and DLM predictions. 

Table 1. Correlation coefficients of DLM predictions

ICC

Surface Count

Pustules 0.88 (0.87–0.90) 0.96 (0.96–0.97)
Brown spots 0.92 (0.91–0.93) 0.97 (0.97–0.98)
All lesions 0.93 (0.92–0.94) 0.97 (0.97–0.98)

The values in parenthesis correspond to the 95% confidence in-
terval.
Performance of the deep learning model (DLM) surface and 
count predictions evaluated on 819 image patches from the 
test set using the intraclass correlation coefficient (ICC). All p-
values are below 0.05.
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Thus, for both the BA and Q3P plots, a positive difference 
means that the DLM underestimates the efflorescence quan-
tity while a negative difference implies the opposite.
 Finally, in order to better understand the DLM’s divergence 
from the experts’ labels, we randomly selected 100 patches 
from the PPP test set and manually analyzed the lesions 
missed by the DLM and the lesions that it detected but were 
missed by the experts. A student then analyzed each case 
individually and determined if the discrepancy reflected a 
mistake by the DLM or the experts.

III. Results

The results presented in this section were obtained from the 
PPP test set patches (Supplementary Figures S1–S3).

1.  PPP Test Set: Prediction of Pustule and Brown Spot 
Counts

 As shown in Figure 2F, the DLM predictions differed by 
at most 1 pustule or brown spot in 75% of the patches with 
up to 6 lesions (corresponding to the third quartile [Q3] 
of the test set for lesion count). For the remaining patches 
(i.e., in 18.8% of all cases), the difference increased to 2 le-
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Figure 2.   Agreement of DLM lesion 
count predict ions with 
expert labels. The figure 
shows the Bland-Altman 
plots of the predicted count 
for pustules (A), spots (C), 
and combined lesions (E). 
The plots for pustules (B), 
spots (D), and both lesions 
(F) show the third quartile 
of the mean difference and 
the mean absolute differ-
ence of the predicted count 
for patches with up to the 
number of lesions specified 
on the horizontal axis value. 
DLM: deep learning model.
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sions. The DLM’s bias (full line in BA plots) was 0.24 lesions 
(Figure 2E), indicating that the DLM tended to detect fewer 
lesions than the experts did. The BA plots did not reveal a 
systematic bias in the DLM predictions; the patches were 
concentrated on the left of the x-axis because most of them 
contained only a few lesions. The mean absolute difference 
(MAD) was 1.68 lesions, and although we observed several 
outliers, the ICC was 0.97 with (95% CI, 0.97–0.98) (Table 2), 
implying very strong agreement with the experts’ labels.

2.  PPP Test Set: Prediction of Pustule and Brown Spot 
Surface Percentage

Considering the test image patches with lesion surface per-
centages up to 1.31% (PPP test set’s surface Q3), the DLM 
surface predictions differed by less than 0.15% in 75% of the 
cases (Figure 3F). This difference plateaued at 0.42% for 75% 
of the patches with higher surface percentages. The predict-
ed surface ICC was 0.93 with (95% CI, 0.92–0.94) (Table 2). 
The DLM bias was 0.27% and the MAD was 0.47%, implying 
that the DLM tended to underestimate the surface of lesions. 
Again, the BA plots did not reveal any systematic bias in the 
DLM predictions.

3. PPP Test Set: Review of DLM Divergence
The DLM predictions for all 100 patches yielded 486 lesions, 
of which 76.6% matched the experts’ labels. However, 23.4% 
were absent from the experts’ labels. Manual verification 
determined that 88.5% were indeed real pustules or brown 
spots missed by the experts, and only 11.5% were structures 
mistakenly identified by the DLM.
 The experts labeled a total of 579 lesions, of which 63.6% 
were identified by the DLM, 30.6% were missed, and the re-
maining 5.8% were upon manual verification identified to be 
expert label errors; thus, they were correctly classified to be 
healthy skin by the DLM.

 We infer from these observations that from these 100 
patches, the correct lesion count should have been 645, im-
plying a combined sensitivity for experts of 84.4% with a 
labeling error rate of 5.8%, and for the DLM a sensitivity of 
73.3% with a detection error rate of 2.6%.
 The usual mistakes both for the experts and DLM were 
caused by lesion-mimicking structures, such as small lentigi-
nes or dirt for brown spots and scales for pustules. Concern-
ing the missing lesions from the experts’ labels, these were 
mainly small pustules or brown spots that a human could 
barely see without sufficient zooming in.

4. PDD Set: DLM Evaluation for Pustular Diseases
We applied the DLM to 213 unstandardized pictures from 
four different pustular diseases to predict the lesion count 
and surface. Table 2 shows the corresponding SC coefficients 
with the experts’ grading. With respect to the dermatologist’s 
severity grading, the overall SC coefficient for all diagno-
ses was 0.66 (95% CI, 0.60–0.74) for lesion count and 0.80 
(95% CI, 0.75–0.83) for lesion surface, indicating strong 
agreement. Regarding the medical student’s estimated lesion 
count, the observed agreement was strong (SC coefficient = 
0.77; 95% CI, 0.72–0.81).

IV. Discussion

This work addressed the task of automatically measuring 
disease intensity in PPP patient photographs. The presented 
DLM was able to quantify both pustules and brown spots in 
patient images, reaching very strong agreement with experts’ 
labels, as shown by an ICC range of 0.97–0.98 for lesion 
count and an ICC range of 0.92–0.94 for lesion surface per-
centage. An analysis of a randomly selected subsample of the 
test set revealed a combined expert sensitivity of 84.4% with 
an error rate of 5.8%, while the DLM showed a sensitivity of 

Table 2. Pustular diseases dataset

Diagnosis
Spearman correlation coefficient

Surface A Count A Count B

All diagnoses 0.80 (0.75–0.83) 0.66 (0.60–0.74) 0.77 (0.72–0.81)
Acropustulosis of infancy 0.83 (0.61–0.96) 0.71 (0.50–0.92) 0.66 (0.31–0.89)
Palmoplantar pustular psoriasis 0.76 (0.69–0.85) 0.70 (0.60–0.79) 0.78 (0.73–0.86)
Pustulosis palmoplantaris 0.78 (0.70–0.85) 0.67 (0.52–0.79) 0.74 (0.63–0.84)
Pustulosis subcornealis 0.75 (0.60–0.82) 0.75 (0.61–0.87) 0.87 (0.82–0.91)
The values in parenthesis correspond to the 95% confidence interval.
Performance of the deep learning model (DLM) surface and count predictions evaluated on the 213 images from the pustular dis-
ease dataset with the Spearman correlation coefficients. The columns labeled A correspond the dermatologist’s disease severity 
ranking and B, the medical student’s lesion count ranking. All p-values are below 0.05.
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73.3% with an error rate of 2.6%. 
 The DLM was further evaluated on photographs taken 
from patients with four pustular diseases. It showed strong 
agreement with the dermatologist’s severity evaluation (on 
a range from 0 to 4) and the student’s lesion count (likewise 
on a scale from 0 to 4). To the best of our knowledge, this is the 
first attempt to automatically quantify efflorescences from pus-
tular psoriasis; as such, this is the first step toward a precise, 
reproducible, and objective evaluation of this disease activity.
 Related to the task of automating existing disease scoring 
systems, most of the literature has focused on the automa-
tion of the PASI index. Some studies [21-23] chose to rely on 

classification DLMs, thus capping the achievable precision 
to discrete scores in contrast to our DLM, which predicts 
continuous metrics. Various segmentation approaches have 
also been applied to ulcers [24], skin cancer [25,26], eczema 
[27], and psoriasis [7,28], and therefore could also be used to 
produce metrics similar to our study. However, they all tar-
geted diseases with plaques, single lesions, or lesions larger 
than PP efflorescences. The segmentation of small objects in 
imbalanced settings is a well-known technical challenge [29], 
which we successfully addressed here in the context of PP 
with our patch-based approach and an additional pretraining 
task. This patch-based approach was the main motivation 
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Figure 3.   Agreement of DLM lesion 
surface predictions with 
expert labels. The figure 
shows the Bland-Altman 
plots of the predicted sur-
face percentage for pustules 
(A), spots (C) and combined 
lesions (E). The plots for 
pustules (B), spots (D), and 
both lesions (F) show the 
third quartile of the mean 
difference and the mean 
absolute difference of the 
predicted surface percent-
age for patches with up to 
the lesion surface specified 
on the horizontal axis value. 
DLM: deep learning model.



228 www.e-hir.org

Ludovic Amruthalingam et al

https://doi.org/10.4258/hir.2022.28.3.222

behind our design choice to segment skin separately from 
lesions, since the first task is performed better when the full 
image context is available. Another PP-specific difficulty 
was caused by the inevitably limited sensitivity of experts in 
cases with a large number of lesions and the tedious nature 
of the labeling task. To illustrate the impact on the clinical 
workload, the image shown in Figure 1 required 30 minutes 
for the human expert to fully label, whilst the same took 
less than 15 seconds for the DLM. The produced labels were 
bound to miss some lesions, penalizing the DLM training 
and evaluation process. Indeed when analyzing the quantita-
tive DLM segmentation performance (see Supplementary 
Figures S4 and S5), around 40% of lesion pixels were mis-
taken for healthy skin, matching the observed positive bias 
in the counts and surface Bland-Altman plots. However, the 
high intra-class correlation with experts’ labels implies that 
the disease lesions were quantified according to the experts’ 
annotations, aligning with the study’s main objective.
 Due to its algorithmic nature, the error rate of the DLM 
should remain constant in time across different patient cases. 
We expect the DLM’s performance to be at least as stable as 
human evaluation over the course of various follow-up visits. 
Both hypotheses should be validated in future studies.
 While our DLM was trained exclusively on PPP patients’ 
pictures, we demonstrated that our approach of counting 
lesions and measuring their surface to evaluate the disease 
severity is also applicable to relatively unstandardized, out-
of-distribution (coming from a different source with differ-
ent capturing conditions) photographs of patients with other 
pustular disorders. 
 This remarkable generalization is possible without retrain-
ing the DLM as long as the different diseases’ lesions have 
a similar appearance. Whilst the pictures showed very dif-
ferent patient postures and body regions, the DLM’s perfor-
mance remained robust, presumably due to its training on 
small image patches instead of full images.
 Dermatologists’ workflow currently consists of either an 
informal subjective global assessment or manually grading 
disease activity with an objective score such as the PPPASI. 
The latter, however, requires time and expertise to perform 
in a reproducible manner. Improving on this situation, our 
approach for PP grading does not have such constraints. The 
DLM could be integrated into a smartphone app enabling 
physician extenders to photograph and quantify lesions be-
fore patients consult with dermatologists. To allow a system-
atic comparison of the DLM predictions, it is important to 
standardize the conditions under which pictures are taken, 
such as a patient’s posture, zoom level, and so forth. This 

could be achieved via a guided picture-taking process in the 
smartphone app and proper training of medical personnel. 
 Image standardization is a common pitfall for DLMs. 
When photographs are taken with very different settings 
(lighting, posture, or zoom level), the quality of DLM pre-
dictions can degrade despite training with extensive data 
augmentation. Such variations can be reduced by following 
photograph collection procedures such as the guidelines 
proposed by Finnane et al. [30] for dermatology. Although 
our DLM showed robust performance on unstandardized 
pictures, they were taken by photographers and medical 
personnel in relatively controlled conditions (hospitals and 
studies). For extreme cases such as tele-dermatology (where 
untrained people take images with different devices, resolu-
tion, zoom, exposure to sunlight, and so forth) the DLM 
should be retrained using transfer learning on a subset of 
the new data source. Another limitation to consider is that 
the DLM was trained in this study mainly with Caucasian 
patient pictures and must therefore be retrained before it is 
applied to patients with different skin pigmentation. Once 
a new dataset has been collected, DLM retraining is usually 
not a challenging task since it is possible to leverage the al-
ready learned knowledge with transfer learning.
 Another common criticism of DL applications in medicine 
is the difficulty of explaining the rationale behind model 
predictions, which makes them unsafe for use in tasks such 
as differential diagnosis. Here, this issue is not critical since 
the presented approach can be validated with little effort and 
training by visualizing the predicted lesions (a single glance 
would be sufficient).
 Our DLM enables new, previously impractical analyses, 
including systematic studies of pustules’ growth, shapes, 
evolution, and treatment response. In practice, our approach 
is particularly suited for automatically generating patient re-
ports, disease monitoring, and analyzing treatment efficacy. 
It synergizes well with standardized full-body photography 
solutions and their respective image analysis pipelines. In 
the future, our method could be utilized to develop tools 
that would help dermatologists better monitor patients af-
flicted with any type of pustulosis or disseminated mono-
morphic rashes and therefore improve the quality of follow-
up consultations. The DLM is well-suited for integration into 
tele-dermatology applications, provided it is retrained to 
match the expected types of inputs and complemented with 
systems to ensure picture quality and verify the output. This 
could reduce hospital loads and be deployed in geographical 
regions where physical access to dermatologists is difficult or 
even impossible.
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