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Abstract

Deep reinforcement learning (DRL) algorithms have the potential to provide new
insights into psychiatric disorders. Here we create a DRL model of schizophrenia:
a complex psychotic disorder characterized by anhedonia, avoidance, temporal
discounting, catatonia, and hallucinations. Schizophrenia’s causes are not well
understood: dopaminergic theories emphasize dopamine system dysfunction in
schizophrenia, while neurodevelopmental theories emphasize abnormal connec-
tivity, including excitation/inhibition (E/I) imbalance in the brain. In this study,
we suppressed positive (excitatory) connections within an artificial neural network
to simulate E/I imbalance. Interestingly, this is insufficient to create behavioral
changes; the network simply compensates for the imbalance. But in doing so it be-
comes more sensitive to noise. Injecting noise into the network then creates a range
of schizophrenic-like behaviours. These findings point to an interesting potential
pathology of schizophrenia: E/I imbalance leads to a compensatory response by
the network to increase the excitability of neurons, which increases susceptibility
to noise. This suggests that the combination of E/I imbalance and neural noise
may be key in the emergence of schizophrenic symptoms. We further notice al-
tered response to reward prediction error in our model, and thus propose that E/I
imbalance plus noise can account for both schizophrenia symptoms and dopamine
system dysfunction: potentially unifying dopaminergic and neurodevelopmental
theories of schizophrenia pathology.

1 Introduction

Schizophrenia is a debilitating psychotic disorder characterized by “positive” symptoms including
hallucinations, and “negative” symptoms including disorganized or catatonic behavior, anhedonia,
and blunted affect [[1]]. Up to 60% of schizophrenic individuals experience negative symptoms, yet the
pathogenesis of these symptoms is unclear and they often respond poorly to antipsychotics, a first-line
treatment for the disorder [2]. Development of schizophrenia has been linked to genetic factors [3] as
well as environmental factors such as cannabis use during adolescence [4]], immigration [5], urban
living [6], and prenatal exposure to infection [[7]. However, despite decades of research the neural
mechanisms of schizophrenia remain elusive, and there are several theories around schizophrenia’s
underlying mechanisms.

1.1 Theories of schizophrenia pathology

Two prominent theories of schizophrenia pathology are the dopaminergic hypothesis and the neurode-
velopmental hypothesis.
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The dopaminergic hypothesis posits that positive symptoms are associated with excess dopamine
subcortically, while negative and cognitive symptoms of schizophrenia are associated with deficient
dopamine in the cortex [8]]. For years, this remained the primary hypothesis largely due to the
efficacy of dopamine receptor antagonistic antipsychotics as a treatment for schizophrenia. However,
antipsychotics are only effective in treating positive symptoms of schizophrenia and have very little
effect on negative or cognitive symptoms [9], [10]. Therefore, although dopamine dysregulation does
appear to play an important role in schizophrenia, it does not fully account for all symptoms; this has
prompted search for alternative, more comprehensive hypotheses.

The neurodevelopmental hypothesis attributes schizophrenia to abnormal brain development through
adolescence [[L1], [12]. Studies have found that schizophrenia is associated with gray matter loss,
synapse loss, and dendritic spine loss [[13[]: it is thought that excessive synaptic pruning during
adolescence, or underproduction of dendritic spines in early childhood [13}[14]] somehow cause the
onset of schizophrenia in adolescence or early adulthood [[15]. Regardless of how this pathology
emerges, there is a consistent observation of impaired synaptic connectivity in schizophrenia.

More recent hypotheses have attempted to reconcile the neurodevelopmental hypothesis with the
dopamine hypothesis. The integrated hypothesis of schizophrenia combines the ideas of abnormal
brain development with disruptions in dopamine systems, proposing that excessive synaptic pruning
disrupts the excitation-inhibition (E/I) balance, the equilibrium between excitatory and inhibitory
inputs, and that this E/I disruption leads to elevated dopamine release [[16} [17]. There is a growing
body of evidence supporting the presence of an E/I imbalance in schizophrenia, with studies finding
altered excitatory and inhibitory activity at the molecular, cellular, and circuit level [18} [19]. E/I
balance plays a crucial role in efficient information processing at the level of neurons, synapse,
circuits, and networks [19]], and it is thought that this E/I imbalance, triggered by aberrant synaptic
pruning, underlies the symptoms associated with schizophrenia [17]. Moreover, the cortical E/I
imbalance may dysregulate neurons that project from the frontal cortex to key regions such as the
striatum, elevating dopamine activity and ultimately resulting in psychotic symptoms [17} 20].

It is difficult to directly test the effects of an E/I imbalance in vivo, since the origin of the E/I imbalance
in schizophrenia is unclear, and it cannot be induced/reversed easily in animal models. Here we
devise a way to test it in silico using Reinforcement Learning techniques; collecting experimental
data in a computational setting that is very difficult to collect in a biological one.

1.2 Reinforcement Learning

Because of the close analogy between DRL and biological reward-based learning, DRL is starting
to be used in significant neuroscientific modeling and hypothesis creation, though much potential
remains untapped [21]. In particular, it is a promising technique for modelling schizophrenia, since
it accounts for the effects of dopamine (emphasized by the dopaminergic hypothesis) and the role
of neural connectivity (emphasized by the neurodevelopmental hypothesis). Such a model could
potentially suggest how the two theories might be reconciled.

1.3 Altered signal-to-noise ratio in schizophrenia

Neural noise and signal-to-noise ratio (SNR) do not feature in the dopaminergic hypothesis’ or
neurodevelopmental hypothesis’ narratives of schizophrenia. However, various studies have observed
altered SNR in schizophrenia, and the work in this paper finds noise to be a key ingredient in
schizophrenia-like behavior.

Signal-to-noise ratio refers to the ratio between meaningful, stimulus-driven signals and spontaneous,
stimulus-independent fluctuations in brain activity [22} 23| 24]. When SNR is low, the brain struggles
to prioritize meaningful input, which negatively affects perceptual accuracy, decision-making, work-
ing memory [25}26], age-related working memory decline [23| 27], and motor function variability
[28].

Multiple EEG studies report that individuals with schizophrenia exhibit decreased SNR [24} 29],
especially in the prefrontal cortex [22| 30]]; with some research indicating that SNR is primarily due
to increased neural noise rather than a deficit in stimulus-driven signal [24]]. Because of the altered
SNR, several studies suggest that neural noise metrics may serve as more reliable biomarkers for
schizophrenia than traditional behavioral or oscillatory measures [31]. Similarly, SNR metrics can
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reliably differentiate patients from healthy controls [24}29]]. Our results show that neural noise may
in fact be a key part of schizophrenia pathology.

1.4 Contributions of this study

In this study, we alter a deep reinforcement learning algorithm to simulate the excessive synaptic
pruning and excitation-inhibition (E/I) imbalance that is associated with schizophrenia. Interestingly,
we find that an E/I imbalance is insufficient to significantly alter the behavior of the learning algorithm,
but that the combination of E/I imbalance and additive noise induces a range of schizophrenia-like
behaviors. This combination also reduces the sensitivity of the artificial neural network to reward-
prediction-error (i.e. phasic dopamine). Thus, this computational model suggests E/I imbalance +
noise as conditions key for schizophrenia, and under which neurodevelopmental and dopamine
hypotheses of schizophrenia can be reconciled.

2 Methods

2.1 Simulated environment

We utilized a minigrid-style [32]] goal-seeking task illustrated in figure 1, which places an agent in
a small gridworld which it must learn to navigate. Three types of objects are present in the space:
several “optional” goals (small reward), one “required” goal (large reward and ends the current
episode), and a “hazard” (negative reward). Optional goals and hazards appear randomly throughout
the room in each episode. At each step the agent chooses one of three actions: turn left, turn right, or
move forward. The agent’s visual field only covers part of the room, so it must learn how to select
appropriate actions to maximize reward, given the incomplete visual information. Both “healthy”
and “schizophrenic” agents (with simulated excitation/inhibition imbalance) were placed in this
environment and allowed to learn behavioral strategies.

While this simulation presents a goal-seeking problem involving spatial navigation, it is also a simple
metaphor for the sequential decision-making of daily life: The optional goals represent opportunities
like play, exploring interests, or socialization, while the required goal represents basic survival
strategies such as finding food or employment, which must be attended to every day.

2.2 Deep reinforcement learning model

Each agent in our experiments is driven by a Deep Q Learning Algorithm [33] and features a
feedforward perceptron-style artificial neural network using sigmoid activation functions such that
neuron outputs range from 0 (i.e. fully quiet) to 1 (i.e. fully excited). The network has an input
layer of 100 neurons that accept visual input, a hidden layer of 25 neurons, and an output layer of 3
neurons representing the 3 actions available to the agent at any given time: turn left, turn right, and
move forward. Outputs estimate the values of each possible action from the current (visual) state.
“Value” here is defined using the formulation common in temporal-difference learning [34]:

V(Saa):]E T’+’y~IlI71€aﬁ([V(8/,b)] (H

Where V(s,a) is the value of executing action a while in state s, r is the immediate reward received for
that action (rewards can be positive or negative), s’ is the new state perceived after executing action
a, and 7 is a discount factor (between 0 and 1) that discounts the value of future rewards relative to
immediate ones. After each experience in the environment, a reward-prediction-error (denoted 9) is
computed, capturing the difference between actual experienced value and the network’s estimate:

RPE:6:7'+'V~II§1€£2([V(5',17)}fV(s,a) 2)

It is thought that dopamine neurons in the midbrain signal RPE in the brain citemontagueFrame-
workMesencephalicDopamine 1996, schultzNeuralSubstratePrediction1997 and influence plasticity
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in the striatum [35]] (and possibly hippocampus [36] and prefrontal cortex [37]). In Deep RL, con-
nection weights w; in the network are updated to reduce the RPE for next time (this simulates the
neuromodulatory effect of dopamine):

(3)
where « is a learning rate parameter.

2.3 Altering the network to simulate excitation/inhibition imbalance

Our artificial neural network is randomly initialized with both positive (excitatory) and negative
(inhibitory) connections. We simulate over-pruning of excitatory connections by selecting a random
subset of positive connections and setting their weights to zero. The commonly-used backpropagation-
based training process for neural networks can tune weights upward or downward, and so could
simply replace the lost excitatory connections. To prevent this and maintain the simulated excita-
tion/inhibition imbalance, we suppress the formation of strong positive connections using a selective
weight decay effect. That is, we change the weight updates from the form in equation 3 to:

— OéaTiOld —a\- RELU(ULL‘DM) (4)

where )\ is a parameter that effectively controls the magnitude of the resulting excitation/inhibition
imbalance. The net effect of these alterations is a reduction in the overall amount of excitation relative
to the amount of inhibition in the network. This is an ad-hoc approach to creating an E/I imbalance in
our artificial neural network, and does not necessarily reflect the particular pathology of E/I imbalance
in biology.

For comparison, we also created an agent with the opposite excitation/inhibition imbalance. That is,
we overpruned and penalized negative (inhibitory) connections to create an excess of excitation in the
network. Comparison between the two types of imbalance help build validity for our computational
model (see Results).

2.4 Probing agents’ perceptions of their environment

To partially understand how each agent perceives or processes its visual input, we create a second
artificial neural network in parallel to the network used in decision making. This second network
accepts the first network’s hidden layer neuron activations as inputs, and is trained to reconstruct the
original visual input given these hidden layer signals.

The agent’s decision-making network processes visual input with the ultimate goal of executing re-
warding behavior. The reconstructions of the visual input reveal something about this processing. For
example, inaccurate reconstructions may accompany general impairments in goal-seeking behavior,
or we may see reconstructions that primarily support goal seeking in some agents but reconstructions
that primarily support hazard-avoidance in other agents.

3 Results

3.1 The effects of simulated excitation/inhibition imbalance, and of additive noise

After we apply the simulated excitation/inhibition imbalance, we allow the agent to learn in the
environment until its behavior stabilizes, then measure all connection weights and neuron biases
within the network. As expected, our intervention creates an excitation/inhibition imbalance that
persists throughout learning. Interestingly, we found that this imbalance alone has very little effect
on the agent’s performance, relative to an unaltered (“healthy”) agent. This is because the network
can compensate for the general lack of excitation by increasing neuron biases (Fig 1). This increases
general excitability within the network, allowing it to function even with lower overall levels of
excitatory signalling. Thus the increase in neuron biases is a homeostatic mechanism employed by the
artificial neural network. It should be noted that a biological network may try to achieve homeostasis
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Figure 1: A) Simulating excitation/inhibition imbalance creates an artificial neural network with
mostly inhibitory connections. Interestingly, this has little effect on the agent’s behavior and per-
formance, because the artificial network automatically compensates by increasing the bias of most
neurons. This makes the neurons more “excitable”. B) Increased bias makes the network with
excitation/inhibition imbalance less noise-tolerant. Here, adding gaussian noise to the network inputs
causes all agents to obtain fewer optional rewards per episode, but the effect is greater for the agent
with the imbalanced network.

through a different mechanism, but the principle that the network attempts to compensate for the loss
of excitation is likely general.

Importantly, we find that the increased excitability caused by the increased neuron biases makes the
network less noise-tolerant. We add normally distributed random noise (o = 0.3) which has a roughly
flat power spectrum, to the network’s inputs to simulate the increased noise observed in schizophrenia.
This affected the excitation/inhibition-imbalanced network more than the unaltered network (Fig 1).
Specifically, noise has the greatest effect on (all) networks’ ability to obtain optional rewards, but
this effect is more dramatic for the network with excitation/inhibition imbalance. The more basic
behavior of reaching the goal in each episode is preserved, suggesting a reversion from reward-rich
behavior to simple survival strategy that is more pronounced in the network with excitation/inhibition
imbalance.

3.2 Excitation/inhibition imbalance plus noise creates symptoms of schizophrenia

The combination of excitation/inhibition imbalance and additive noise creates behavioral effects analo-
gous to symptoms of schizophrenia, including anhedonia, avoidance, increased temporal discounting,
and catatonia.

Figure 2 illustrates an anhedonia-like effect in which the schizophrenic agent appears ambivalent
towards optional rewards. In a scenario analogous to a sucrose preference test [38), [39]], we place
agents in a position where the reward-optimal strategy would detour to collect an optional reward en
route to the required goal - requiring 1 additional action but obtaining both rewards. The optimality of
this detour is reflected in the “healthy” agent’s perceived values, but not the “schizophrenic” agent’s.
In addition to this anhedonia-like effect, we see the avoidance-like effect illustrated in figure 2 where
the schizophrenic agent seems to inappropriately generalize the negative value of a hazard to states
where the hazard is not imminent.

We can also infer the agent’s effective temporal discounting rate from changes in its action values as
it approaches a goal or hazard. In our experiments, all agents use an explicit discount factor setting
of v = 0.9, and the discount factor inferred from the “healthy” agent’s behavior is roughly 0.9 as
expected. Surprisingly, the inferred discount factor for the “schizophrenic™ agent is roughly 0.75.
That is, the excitation/inhibition imbalance (with additive noise) induces an additional discounting
effect similar to that observed in schizophrenia [40Q].

Finally, fig 3 illustrates a repetitive-movement effect analogous to stereotypy (a type of catatonia
associated with schizophrenia). As the magnitude of the additive noise increases, the “schizophrenic”
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Figure 3: Excitation/inhibition imbalance plus noise creates repetitive movements or catatonia. A)

simulated environment. B-D) example heatmaps of how long (number of simulation steps) the agent
spends in each state of the environment shown in A.

agent is increasingly likely to become “‘stuck’ in particular states - executing the same movements
repeatedly for some time before finally breaking free.

3.3 Inaccurate perception and reconstruction of the agent’s surroundings

Immediately after adding noise to each agent’s neural network, we find that we can reconstruct the
“healthy” agents’ visual input more accurately than the “schizophrenic” agents’. This suggests that
the excitation/inhibition imbalance causes the network’s internal representations to be more easily
disrupted in the presence of noise. The result is an effect analogous to hallucinations - with the
schizophrenic agent’s reconstructions being a less accurate picture of reality, and more likely to
contain false objects. Importantly, the “healthy” agents’ reconstructions are not perfectly accurate
either: Figure 4 shows an example in which the healthy agent’s reconstruction is flawed, but still
supports rewarding behavior (drawing the agent toward the goal in the top-left). To paraphrase Beau
Lotto; the brain does not see the world as it is, but rather the world it is useful to see.

3.4 Altered response to reward-prediction error

Phasic activity of dopamine is thought to signal reward prediction error, and has a neuromodulatory
effect. Fig 9 shows the magnitude of the network’s response to reward prediction error (i.e. dopamine)
in terms of mean weight change in the network per unit of reward prediction error. A given reward
prediction error generally induces less change in the agent with simulated schizophrenia than the
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Figure 5: Weight changes induced in the networks per unit loss (i.e per unit of reward-prediction
error, which is thought to be signalled by dopamine in biological networks). The healthy network
exhibits greater and sustained plasticity throughout learning. The “schizophrenic” network’s response
to RPE is muted.

“healthy” agent. This suggests reduced plasticity and reduced sensitivity to reward prediction error in
the schizophrenic network.

3.5 The opposite excitation/inhibition imbalance does not impair the agent

To validate the specificity of our proposed model as a model of schizophrenia, we must consider
whether the observed behavioral effects are specific to schizophrenia (i.e. is the agent impaired
generally or in specifically schizophrenia-like ways?), and whether the impairments are caused by
our specific network alterations (i.e. would altering the network another way produce the same
impairments?).

Our “schizophrenic” agent does assign value to reaching the goal, and does in fact reach the goal
in each episode. This learning and execution of a basic survival strategy shows that the agent is
not generally impaired. In addition, when we reverse the excitation/inhibition imbalance to create
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a network with an excess of excitation, we do not see any of the above impairments. In fact, the
agent with reversed excitation/inhibition imbalance actually showed slightly enhanced performance
relative to the “healthy” agent in terms of reward obtained in the presence of noise. Thus the
schizophrenia-like behaviors we observed seem to depend specifically on reduced network excitation,
plus noise.

4 Discussion

By creating a deep reinforcement learning agent with relatively more inhibition than excitation
in its neural network and adding noise, we have created a computational model of schizophrenia
with a degree of face validity. The deep reinforcement learning agent demonstrates behaviors such
as anhedonia, increased temporal discounting, repetitive movement, and an inaccurate perception
of its environment analogous to hallucinations - all features of schizophrenia. It still manages to
execute a basic goal-seeking survival strategy, indicating that it is not generally impaired, and an
opposite excitation/inhibition (E/I) imbalance does not produce the same schizophrenia-like behaviors,
indicating that reduced excitation within the network is the specific deficiency necessary.

This model suggests a way to reconcile the dopamine hypothesis of schizophrenia with the neurode-
velopmental hypothesis. In our model, the E/I imbalance seems to cause a reduction in the network’s
sensitivity to reward-prediction-error (which in biological networks is signalled by dopamine). That is,
the dopamine signal in our “schizophrenic” agent does not affect the same plastic change in the neural
network that we see in our “healthy” agent. It is possible that dopamine fluctuations have reduced
efficacy in a network which must - in addition to learning rewarding behavior - also expend energy to
compensate for E/I imbalance. With the network’s sensitivity to dopamine reduced, the dopamine
system may be thrown into dysregulation. Under this view, dopamine system dysregulation is not a
cause of schizophrenia; rather, altered connectivity causes both schizophrenia and dopamine system
dysregulation. Thus this model accounts for both E/I imbalance and dopamine system dysfunction,
and lends computational support to the integrated hypothesis of schizophrenia.

However, we found that an excitation/inhibition imbalance is not sufficient to create behavioral
changes - the network simply compensates for the reduced excitation. But in compensating for the
imbalance, our network becomes more susceptible to noise. The addition of noise then produces the
expected behavioral changes. Thus we propose the integrated hypothesis is not complete: the idea of
noise as an essential ingredient should be added. We further suggest that treatments for schizophrenia
should target either the E/I imbalance or noise processes in the brain, since the combination of E/I
imbalance and noise seems to be prerequisite for schizophrenic symptoms in our model.

Our simulations model neural noise by adding normally-distributed random noise to the network’s
input. Due to the feed-forward network nature of our artificial neural network, the noise then
propagates through each layer and affects processing throughout the network. But this leaves some
important questions open. What role does noise play, exactly, in the schizophrenic brain? Where
does the noise come from, and does it exist at the level of individual-neuron function, network
communication, or both? Can the noise be reduced through pharmacological, behavioral, or other
means? Our artificial neural networks are a high-level abstraction of biological neural networks, with
limited ability to comment on lower-level biological mechanisms. Just as our computational work
addresses a limitation of biological studies - namely, the difficulty of controlling and studying E/I
imbalance directly - the limitations of computational work mean that we must now return to biology
to seek more clarity on the sources and role of noise in schizophrenia.

Finally, it is interesting that the presence of noise turned out to be a necessary ingredient in a
computational model. This is instructive for the field of computational modelling generally, where we
usually simulate pristine signals and clean, precise neural processing. Including noise processes in our
models will make them more realistic. As we have found here, the noise may actually be an important
part of the reality of biological information processing - both its function and its dysfunctions.
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