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Abstract

Deep reinforcement learning (DRL) algorithms have the potential to provide new1

insights into psychiatric disorders. Here we create a DRL model of schizophrenia:2

a complex psychotic disorder characterized by anhedonia, avoidance, temporal3

discounting, catatonia, and hallucinations. Schizophrenia’s causes are not well4

understood: dopaminergic theories emphasize dopamine system dysfunction in5

schizophrenia, while neurodevelopmental theories emphasize abnormal connec-6

tivity, including excitation/inhibition (E/I) imbalance in the brain. In this study,7

we suppressed positive (excitatory) connections within an artificial neural network8

to simulate E/I imbalance. Interestingly, this is insufficient to create behavioral9

changes; the network simply compensates for the imbalance. But in doing so it be-10

comes more sensitive to noise. Injecting noise into the network then creates a range11

of schizophrenic-like behaviours. These findings point to an interesting potential12

pathology of schizophrenia: E/I imbalance leads to a compensatory response by13

the network to increase the excitability of neurons, which increases susceptibility14

to noise. This suggests that the combination of E/I imbalance and neural noise15

may be key in the emergence of schizophrenic symptoms. We further notice al-16

tered response to reward prediction error in our model, and thus propose that E/I17

imbalance plus noise can account for both schizophrenia symptoms and dopamine18

system dysfunction: potentially unifying dopaminergic and neurodevelopmental19

theories of schizophrenia pathology.20

1 Introduction21

Schizophrenia is a debilitating psychotic disorder characterized by “positive” symptoms including22

hallucinations, and “negative” symptoms including disorganized or catatonic behavior, anhedonia,23

and blunted affect [1]. Up to 60% of schizophrenic individuals experience negative symptoms, yet the24

pathogenesis of these symptoms is unclear and they often respond poorly to antipsychotics, a first-line25

treatment for the disorder [2]. Development of schizophrenia has been linked to genetic factors [3] as26

well as environmental factors such as cannabis use during adolescence [4], immigration [5], urban27

living [6], and prenatal exposure to infection [7]. However, despite decades of research the neural28

mechanisms of schizophrenia remain elusive, and there are several theories around schizophrenia’s29

underlying mechanisms.30

1.1 Theories of schizophrenia pathology31

Two prominent theories of schizophrenia pathology are the dopaminergic hypothesis and the neurode-32

velopmental hypothesis.33
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The dopaminergic hypothesis posits that positive symptoms are associated with excess dopamine34

subcortically, while negative and cognitive symptoms of schizophrenia are associated with deficient35

dopamine in the cortex [8]. For years, this remained the primary hypothesis largely due to the36

efficacy of dopamine receptor antagonistic antipsychotics as a treatment for schizophrenia. However,37

antipsychotics are only effective in treating positive symptoms of schizophrenia and have very little38

effect on negative or cognitive symptoms [9], [10]. Therefore, although dopamine dysregulation does39

appear to play an important role in schizophrenia, it does not fully account for all symptoms; this has40

prompted search for alternative, more comprehensive hypotheses.41

The neurodevelopmental hypothesis attributes schizophrenia to abnormal brain development through42

adolescence [11], [12]. Studies have found that schizophrenia is associated with gray matter loss,43

synapse loss, and dendritic spine loss [13]: it is thought that excessive synaptic pruning during44

adolescence, or underproduction of dendritic spines in early childhood [13, 14] somehow cause the45

onset of schizophrenia in adolescence or early adulthood [15]. Regardless of how this pathology46

emerges, there is a consistent observation of impaired synaptic connectivity in schizophrenia.47

More recent hypotheses have attempted to reconcile the neurodevelopmental hypothesis with the48

dopamine hypothesis. The integrated hypothesis of schizophrenia combines the ideas of abnormal49

brain development with disruptions in dopamine systems, proposing that excessive synaptic pruning50

disrupts the excitation-inhibition (E/I) balance, the equilibrium between excitatory and inhibitory51

inputs, and that this E/I disruption leads to elevated dopamine release [16, 17]. There is a growing52

body of evidence supporting the presence of an E/I imbalance in schizophrenia, with studies finding53

altered excitatory and inhibitory activity at the molecular, cellular, and circuit level [18, 19]. E/I54

balance plays a crucial role in efficient information processing at the level of neurons, synapse,55

circuits, and networks [19], and it is thought that this E/I imbalance, triggered by aberrant synaptic56

pruning, underlies the symptoms associated with schizophrenia [17]. Moreover, the cortical E/I57

imbalance may dysregulate neurons that project from the frontal cortex to key regions such as the58

striatum, elevating dopamine activity and ultimately resulting in psychotic symptoms [17, 20].59

It is difficult to directly test the effects of an E/I imbalance in vivo, since the origin of the E/I imbalance60

in schizophrenia is unclear, and it cannot be induced/reversed easily in animal models. Here we61

devise a way to test it in silico using Reinforcement Learning techniques; collecting experimental62

data in a computational setting that is very difficult to collect in a biological one.63

1.2 Reinforcement Learning64

Because of the close analogy between DRL and biological reward-based learning, DRL is starting65

to be used in significant neuroscientific modeling and hypothesis creation, though much potential66

remains untapped [21]. In particular, it is a promising technique for modelling schizophrenia, since67

it accounts for the effects of dopamine (emphasized by the dopaminergic hypothesis) and the role68

of neural connectivity (emphasized by the neurodevelopmental hypothesis). Such a model could69

potentially suggest how the two theories might be reconciled.70

1.3 Altered signal-to-noise ratio in schizophrenia71

Neural noise and signal-to-noise ratio (SNR) do not feature in the dopaminergic hypothesis’ or72

neurodevelopmental hypothesis’ narratives of schizophrenia. However, various studies have observed73

altered SNR in schizophrenia, and the work in this paper finds noise to be a key ingredient in74

schizophrenia-like behavior.75

Signal-to-noise ratio refers to the ratio between meaningful, stimulus-driven signals and spontaneous,76

stimulus-independent fluctuations in brain activity [22, 23, 24]. When SNR is low, the brain struggles77

to prioritize meaningful input, which negatively affects perceptual accuracy, decision-making, work-78

ing memory [25, 26], age-related working memory decline [23, 27], and motor function variability79

[28].80

Multiple EEG studies report that individuals with schizophrenia exhibit decreased SNR [24, 29],81

especially in the prefrontal cortex [22, 30]; with some research indicating that SNR is primarily due82

to increased neural noise rather than a deficit in stimulus-driven signal [24]. Because of the altered83

SNR, several studies suggest that neural noise metrics may serve as more reliable biomarkers for84

schizophrenia than traditional behavioral or oscillatory measures [31]. Similarly, SNR metrics can85
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reliably differentiate patients from healthy controls [24, 29]. Our results show that neural noise may86

in fact be a key part of schizophrenia pathology.87

1.4 Contributions of this study88

In this study, we alter a deep reinforcement learning algorithm to simulate the excessive synaptic89

pruning and excitation-inhibition (E/I) imbalance that is associated with schizophrenia. Interestingly,90

we find that an E/I imbalance is insufficient to significantly alter the behavior of the learning algorithm,91

but that the combination of E/I imbalance and additive noise induces a range of schizophrenia-like92

behaviors. This combination also reduces the sensitivity of the artificial neural network to reward-93

prediction-error (i.e. phasic dopamine). Thus, this computational model suggests E/I imbalance +94

noise as conditions key for schizophrenia, and under which neurodevelopmental and dopamine95

hypotheses of schizophrenia can be reconciled.96

2 Methods97

2.1 Simulated environment98

We utilized a minigrid-style [32] goal-seeking task illustrated in figure 1, which places an agent in99

a small gridworld which it must learn to navigate. Three types of objects are present in the space:100

several “optional” goals (small reward), one “required” goal (large reward and ends the current101

episode), and a “hazard” (negative reward). Optional goals and hazards appear randomly throughout102

the room in each episode. At each step the agent chooses one of three actions: turn left, turn right, or103

move forward. The agent’s visual field only covers part of the room, so it must learn how to select104

appropriate actions to maximize reward, given the incomplete visual information. Both “healthy”105

and “schizophrenic” agents (with simulated excitation/inhibition imbalance) were placed in this106

environment and allowed to learn behavioral strategies.107

While this simulation presents a goal-seeking problem involving spatial navigation, it is also a simple108

metaphor for the sequential decision-making of daily life: The optional goals represent opportunities109

like play, exploring interests, or socialization, while the required goal represents basic survival110

strategies such as finding food or employment, which must be attended to every day.111

2.2 Deep reinforcement learning model112

Each agent in our experiments is driven by a Deep Q Learning Algorithm [33] and features a113

feedforward perceptron-style artificial neural network using sigmoid activation functions such that114

neuron outputs range from 0 (i.e. fully quiet) to 1 (i.e. fully excited). The network has an input115

layer of 100 neurons that accept visual input, a hidden layer of 25 neurons, and an output layer of 3116

neurons representing the 3 actions available to the agent at any given time: turn left, turn right, and117

move forward. Outputs estimate the values of each possible action from the current (visual) state.118

“Value” here is defined using the formulation common in temporal-difference learning [34]:119

V (s, a) = E
[
r + γ ·max

b∈A
[V (s′, b)]

]
(1)

Where V(s,a) is the value of executing action a while in state s, r is the immediate reward received for120

that action (rewards can be positive or negative), s’ is the new state perceived after executing action121

a, and γ is a discount factor (between 0 and 1) that discounts the value of future rewards relative to122

immediate ones. After each experience in the environment, a reward-prediction-error (denoted δ) is123

computed, capturing the difference between actual experienced value and the network’s estimate:124

RPE = δ = r + γ ·max
b∈A

[V (s′, b)]− V (s, a) (2)

It is thought that dopamine neurons in the midbrain signal RPE in the brain citemontagueFrame-125

workMesencephalicDopamine1996, schultzNeuralSubstratePrediction1997 and influence plasticity126
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in the striatum [35] (and possibly hippocampus [36] and prefrontal cortex [37]). In Deep RL, con-127

nection weights wi in the network are updated to reduce the RPE for next time (this simulates the128

neuromodulatory effect of dopamine):129

winew
= wiold − α

∂δ2

∂wiold

(3)

where α is a learning rate parameter.130

2.3 Altering the network to simulate excitation/inhibition imbalance131

Our artificial neural network is randomly initialized with both positive (excitatory) and negative132

(inhibitory) connections. We simulate over-pruning of excitatory connections by selecting a random133

subset of positive connections and setting their weights to zero. The commonly-used backpropagation-134

based training process for neural networks can tune weights upward or downward, and so could135

simply replace the lost excitatory connections. To prevent this and maintain the simulated excita-136

tion/inhibition imbalance, we suppress the formation of strong positive connections using a selective137

weight decay effect. That is, we change the weight updates from the form in equation 3 to:138

winew = wiold − α
∂δ2

∂wiold

− αλ · RELU(wiold) (4)

where λ is a parameter that effectively controls the magnitude of the resulting excitation/inhibition139

imbalance. The net effect of these alterations is a reduction in the overall amount of excitation relative140

to the amount of inhibition in the network. This is an ad-hoc approach to creating an E/I imbalance in141

our artificial neural network, and does not necessarily reflect the particular pathology of E/I imbalance142

in biology.143

For comparison, we also created an agent with the opposite excitation/inhibition imbalance. That is,144

we overpruned and penalized negative (inhibitory) connections to create an excess of excitation in the145

network. Comparison between the two types of imbalance help build validity for our computational146

model (see Results).147

2.4 Probing agents’ perceptions of their environment148

To partially understand how each agent perceives or processes its visual input, we create a second149

artificial neural network in parallel to the network used in decision making. This second network150

accepts the first network’s hidden layer neuron activations as inputs, and is trained to reconstruct the151

original visual input given these hidden layer signals.152

The agent’s decision-making network processes visual input with the ultimate goal of executing re-153

warding behavior. The reconstructions of the visual input reveal something about this processing. For154

example, inaccurate reconstructions may accompany general impairments in goal-seeking behavior,155

or we may see reconstructions that primarily support goal seeking in some agents but reconstructions156

that primarily support hazard-avoidance in other agents.157

3 Results158

3.1 The effects of simulated excitation/inhibition imbalance, and of additive noise159

After we apply the simulated excitation/inhibition imbalance, we allow the agent to learn in the160

environment until its behavior stabilizes, then measure all connection weights and neuron biases161

within the network. As expected, our intervention creates an excitation/inhibition imbalance that162

persists throughout learning. Interestingly, we found that this imbalance alone has very little effect163

on the agent’s performance, relative to an unaltered (“healthy”) agent. This is because the network164

can compensate for the general lack of excitation by increasing neuron biases (Fig 1). This increases165

general excitability within the network, allowing it to function even with lower overall levels of166

excitatory signalling. Thus the increase in neuron biases is a homeostatic mechanism employed by the167

artificial neural network. It should be noted that a biological network may try to achieve homeostasis168

4



Figure 1: A) Simulating excitation/inhibition imbalance creates an artificial neural network with
mostly inhibitory connections. Interestingly, this has little effect on the agent’s behavior and per-
formance, because the artificial network automatically compensates by increasing the bias of most
neurons. This makes the neurons more “excitable”. B) Increased bias makes the network with
excitation/inhibition imbalance less noise-tolerant. Here, adding gaussian noise to the network inputs
causes all agents to obtain fewer optional rewards per episode, but the effect is greater for the agent
with the imbalanced network.

through a different mechanism, but the principle that the network attempts to compensate for the loss169

of excitation is likely general.170

Importantly, we find that the increased excitability caused by the increased neuron biases makes the171

network less noise-tolerant. We add normally distributed random noise (σ = 0.3) which has a roughly172

flat power spectrum, to the network’s inputs to simulate the increased noise observed in schizophrenia.173

This affected the excitation/inhibition-imbalanced network more than the unaltered network (Fig 1).174

Specifically, noise has the greatest effect on (all) networks’ ability to obtain optional rewards, but175

this effect is more dramatic for the network with excitation/inhibition imbalance. The more basic176

behavior of reaching the goal in each episode is preserved, suggesting a reversion from reward-rich177

behavior to simple survival strategy that is more pronounced in the network with excitation/inhibition178

imbalance.179

3.2 Excitation/inhibition imbalance plus noise creates symptoms of schizophrenia180

The combination of excitation/inhibition imbalance and additive noise creates behavioral effects analo-181

gous to symptoms of schizophrenia, including anhedonia, avoidance, increased temporal discounting,182

and catatonia.183

Figure 2 illustrates an anhedonia-like effect in which the schizophrenic agent appears ambivalent184

towards optional rewards. In a scenario analogous to a sucrose preference test [38, 39], we place185

agents in a position where the reward-optimal strategy would detour to collect an optional reward en186

route to the required goal - requiring 1 additional action but obtaining both rewards. The optimality of187

this detour is reflected in the “healthy” agent’s perceived values, but not the “schizophrenic” agent’s.188

In addition to this anhedonia-like effect, we see the avoidance-like effect illustrated in figure 2 where189

the schizophrenic agent seems to inappropriately generalize the negative value of a hazard to states190

where the hazard is not imminent.191

We can also infer the agent’s effective temporal discounting rate from changes in its action values as192

it approaches a goal or hazard. In our experiments, all agents use an explicit discount factor setting193

of γ = 0.9, and the discount factor inferred from the “healthy” agent’s behavior is roughly 0.9 as194

expected. Surprisingly, the inferred discount factor for the “schizophrenic” agent is roughly 0.75.195

That is, the excitation/inhibition imbalance (with additive noise) induces an additional discounting196

effect similar to that observed in schizophrenia [40].197

Finally, fig 3 illustrates a repetitive-movement effect analogous to stereotypy (a type of catatonia198

associated with schizophrenia). As the magnitude of the additive noise increases, the “schizophrenic”199
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Figure 2: a) In this contrived situation, reward-optimal behavior is to turn right, spending one
additional action but collecting the optional reward en route to the goal. This is reflected in the
“healthy” agent’s perceived action values, but the “schizophrenic” agent is ambivalent toward turning
right or moving forward - an anhedonia-like effect. b) A contrived situation in which the agent is
slowly moved toward a hazard. The “healthy” agent is appropriately willing to move forward through
states 1-3, as this moves it closer to the goal. The “schizophrenic” agent demonstrates avoidance by
devaluing forward moves much earlier.

Figure 3: Excitation/inhibition imbalance plus noise creates repetitive movements or catatonia. A)
simulated environment. B-D) example heatmaps of how long (number of simulation steps) the agent
spends in each state of the environment shown in A.

agent is increasingly likely to become “stuck” in particular states - executing the same movements200

repeatedly for some time before finally breaking free.201

3.3 Inaccurate perception and reconstruction of the agent’s surroundings202

Immediately after adding noise to each agent’s neural network, we find that we can reconstruct the203

“healthy” agents’ visual input more accurately than the “schizophrenic” agents’. This suggests that204

the excitation/inhibition imbalance causes the network’s internal representations to be more easily205

disrupted in the presence of noise. The result is an effect analogous to hallucinations - with the206

schizophrenic agent’s reconstructions being a less accurate picture of reality, and more likely to207

contain false objects. Importantly, the “healthy” agents’ reconstructions are not perfectly accurate208

either: Figure 4 shows an example in which the healthy agent’s reconstruction is flawed, but still209

supports rewarding behavior (drawing the agent toward the goal in the top-left). To paraphrase Beau210

Lotto; the brain does not see the world as it is, but rather the world it is useful to see.211

3.4 Altered response to reward-prediction error212

Phasic activity of dopamine is thought to signal reward prediction error, and has a neuromodulatory213

effect. Fig 9 shows the magnitude of the network’s response to reward prediction error (i.e. dopamine)214

in terms of mean weight change in the network per unit of reward prediction error. A given reward215

prediction error generally induces less change in the agent with simulated schizophrenia than the216
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Figure 4: a) when hidden-layer neuron activations are used to reconstruct the agents’ visual input,
the “healthy” agent’s reconstructions are more accurate than the “schizophrenic” agent’s. This
effect grows as the magnitude of additive noise increases. b) example reconstructions: neither
agent reconstructs its surroundings perfectly, but the schizophrenic agent’s reconstruction is more
hallucination-like (including an imagined hazard), and less likely to support rewarding behavior.

Figure 5: Weight changes induced in the networks per unit loss (i.e per unit of reward-prediction
error, which is thought to be signalled by dopamine in biological networks). The healthy network
exhibits greater and sustained plasticity throughout learning. The “schizophrenic” network’s response
to RPE is muted.

“healthy” agent. This suggests reduced plasticity and reduced sensitivity to reward prediction error in217

the schizophrenic network.218

3.5 The opposite excitation/inhibition imbalance does not impair the agent219

To validate the specificity of our proposed model as a model of schizophrenia, we must consider220

whether the observed behavioral effects are specific to schizophrenia (i.e. is the agent impaired221

generally or in specifically schizophrenia-like ways?), and whether the impairments are caused by222

our specific network alterations (i.e. would altering the network another way produce the same223

impairments?).224

Our “schizophrenic” agent does assign value to reaching the goal, and does in fact reach the goal225

in each episode. This learning and execution of a basic survival strategy shows that the agent is226

not generally impaired. In addition, when we reverse the excitation/inhibition imbalance to create227
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a network with an excess of excitation, we do not see any of the above impairments. In fact, the228

agent with reversed excitation/inhibition imbalance actually showed slightly enhanced performance229

relative to the “healthy” agent in terms of reward obtained in the presence of noise. Thus the230

schizophrenia-like behaviors we observed seem to depend specifically on reduced network excitation,231

plus noise.232

4 Discussion233

By creating a deep reinforcement learning agent with relatively more inhibition than excitation234

in its neural network and adding noise, we have created a computational model of schizophrenia235

with a degree of face validity. The deep reinforcement learning agent demonstrates behaviors such236

as anhedonia, increased temporal discounting, repetitive movement, and an inaccurate perception237

of its environment analogous to hallucinations - all features of schizophrenia. It still manages to238

execute a basic goal-seeking survival strategy, indicating that it is not generally impaired, and an239

opposite excitation/inhibition (E/I) imbalance does not produce the same schizophrenia-like behaviors,240

indicating that reduced excitation within the network is the specific deficiency necessary.241

This model suggests a way to reconcile the dopamine hypothesis of schizophrenia with the neurode-242

velopmental hypothesis. In our model, the E/I imbalance seems to cause a reduction in the network’s243

sensitivity to reward-prediction-error (which in biological networks is signalled by dopamine). That is,244

the dopamine signal in our “schizophrenic” agent does not affect the same plastic change in the neural245

network that we see in our “healthy” agent. It is possible that dopamine fluctuations have reduced246

efficacy in a network which must - in addition to learning rewarding behavior - also expend energy to247

compensate for E/I imbalance. With the network’s sensitivity to dopamine reduced, the dopamine248

system may be thrown into dysregulation. Under this view, dopamine system dysregulation is not a249

cause of schizophrenia; rather, altered connectivity causes both schizophrenia and dopamine system250

dysregulation. Thus this model accounts for both E/I imbalance and dopamine system dysfunction,251

and lends computational support to the integrated hypothesis of schizophrenia.252

However, we found that an excitation/inhibition imbalance is not sufficient to create behavioral253

changes - the network simply compensates for the reduced excitation. But in compensating for the254

imbalance, our network becomes more susceptible to noise. The addition of noise then produces the255

expected behavioral changes. Thus we propose the integrated hypothesis is not complete: the idea of256

noise as an essential ingredient should be added. We further suggest that treatments for schizophrenia257

should target either the E/I imbalance or noise processes in the brain, since the combination of E/I258

imbalance and noise seems to be prerequisite for schizophrenic symptoms in our model.259

Our simulations model neural noise by adding normally-distributed random noise to the network’s260

input. Due to the feed-forward network nature of our artificial neural network, the noise then261

propagates through each layer and affects processing throughout the network. But this leaves some262

important questions open. What role does noise play, exactly, in the schizophrenic brain? Where263

does the noise come from, and does it exist at the level of individual-neuron function, network264

communication, or both? Can the noise be reduced through pharmacological, behavioral, or other265

means? Our artificial neural networks are a high-level abstraction of biological neural networks, with266

limited ability to comment on lower-level biological mechanisms. Just as our computational work267

addresses a limitation of biological studies - namely, the difficulty of controlling and studying E/I268

imbalance directly - the limitations of computational work mean that we must now return to biology269

to seek more clarity on the sources and role of noise in schizophrenia.270

Finally, it is interesting that the presence of noise turned out to be a necessary ingredient in a271

computational model. This is instructive for the field of computational modelling generally, where we272

usually simulate pristine signals and clean, precise neural processing. Including noise processes in our273

models will make them more realistic. As we have found here, the noise may actually be an important274

part of the reality of biological information processing - both its function and its dysfunctions.275
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