

EFFICIENT MULTI-AGENT SYSTEM TRAINING WITH DATA INFLUENCE-ORIENTED TREE SEARCH

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
EFFICIENT MULTI-AGENT SYSTEM TRAINING WITH
DATA INFLUENCE-ORIENTED TREE SEARCH

ABSTRACT

Large Language Model (LLM) based multi-agent systems (MAS) show strong potential for tackling complex tasks through collaborative intelligence. Monte Carlo Tree Search (MCTS) based methods provide promising approaches for enhancing MAS self-training by generating synthetic data, using Q-values to estimate agent contributions. However, relying solely on Q-values may misalign with the goal of selecting data most beneficial for MAS improvement. To address this discrepancy, we propose **Data Influence-oriented Tree Search (DITS)**, a novel framework that incorporates influence scores to guide both tree search and data selection in data synthesis. By leveraging influence scores, we effectively identify the most impactful data for MAS improvement, thereby enhancing model performance. Furthermore, we derive a novel influence score estimation method tailored for non-differentiable metrics, significantly reducing computational overhead by calculating performance changes on the validation set. Extensive experiments on three different multi-agent tasks demonstrate the robustness and effectiveness of the proposed methods. Notably, our findings reveal that allocating more inference resources to estimate influence scores, rather than Q-values, during data synthesis can more effectively and efficiently enhance model training. The code is available at <https://anonymous.4open.science/r/DITS-F1C4/>.

1 INTRODUCTION

LLM based agents have recently achieved remarkable success across a wide range of tasks (Hu et al., 2024; Wang et al., 2024b; Xi et al., 2023; Zhang et al., 2024a). Leveraging the advanced natural language understanding and reasoning capabilities of LLMs (OpenAI, 2023; Wei et al., 2022), these agents are able to dynamically interact with complex tools and environments to accomplish various tasks (Chen et al., 2023; Yao et al., 2023). Nevertheless, individual agents often face significant limitations when confronted with complex tasks (Shi et al., 2024b). In such scenarios, the multi-agent system (MAS) (e.g., MetaGPT (Hong et al., 2024), AutoGen (Wu et al., 2023), Camel (Li et al., 2023)) involving multiple specialized agents, with strategic task allocation and division of labor, becomes crucial for achieving optimal outcomes (Guo et al., 2024). However, optimizing the collective performance of LLM-based MAS as a cohesive unit and obtaining reward signals for each agent in the MAS still remain challenging problems (Chen et al., 2024b).

To tackle this challenge, leveraging synthetic data for self-training emerges as a highly promising direction. Monte Carlo Tree Search (MCTS) (Guan et al., 2025; Li et al., 2025a) based method offers a promising approach for synthetic data generation, capable of estimating individual agent contributions through Q-value (Chen et al., 2024b). They collect fine-grained preference pairs, encouraging high-Q-value actions while suppressing low-Q-value actions via Direct Preference Optimization (DPO) (Rafailov et al., 2023). Despite its potential, the current tree search strategy is primarily adapted from the inference phase, inheriting its inherent characteristics, which rely on Q-values to identify informative data. This reliance misaligns with the data synthesis objective, which focuses on generating data that better facilitates model training. The empirical results presented in Figure 1 (a) (b) (c) also demonstrate that actions associated with higher Q-values do not always contribute significantly to the improvement of model performance, where the influence score serves as a metric to quantify the utility of data in enhancing model performance.

Figure 1: (a) (b) (c) The scatter plot and density plots of Q-values and influence scores for synthetic data. The top 30% of the data selected using DITS is highlighted in red. (d) Performance trends with different data synthesis budgets (Tokens).

To address this issue, we propose **Data Influence-oriented Tree Search (DITS)**, a novel framework that optimizes MAS through iterative synthetic data generation guided by influence-aware tree search. Our approach combines MCTS for MAS trajectory simulation with a data influence mechanism that prioritizes training samples based on their expected contribution to model improvement, rather than relying solely on traditional Q-value estimates. The influence score quantifies how training data impacts model outputs, helping identify data points that most improve performance. While traditional methods rely on training loss as a performance metric, this is less effective for DPO loss due to its weak correlation with downstream performance (Rafailov et al., 2024; Shi et al., 2024c). Hence, we redefine the influence score based on the changes in non-differentiable metrics on the validation set and derive a novel estimation method. Our method circumvents computationally intensive gradient computations across large-scale parameters that are required in traditional approaches.

We validate our approach on seven datasets across three multi-agent tasks: Information Exchange, Debate (Chen et al., 2024b), and DeepSearch (Li et al., 2025c). We observe that high Q-value data may reduce the diversity of the model’s responses and contribute little to improving model performance. Incorporating data influence is crucial for data synthesis and selection. Our method outperforms state-of-the-art multi-agent optimization techniques, achieving an average improvement of 2.7% in single-round iterations, a 2.5% performance enhancement in multi-round iterations for the Information Exchange task, and 2.6% performance improvement for the DeepSearch task. Within the same data synthesis budget, our method surpasses traditional approaches, delivering more efficient scaling of synthesis computation, as shown in Figure 1 (d) and in Appendix B.

We summarize the main contributions as follows:

- We propose DITS, a novel framework that employs influence scores to guide tree search and data selection. This enables the prioritized selection of preference pairs that contribute more significantly to performance improvement.
- We derive the influence score estimation method for non-differentiable metrics. This approach substantially reduces computational overhead through inference computation, enabling more efficient synthesis time scaling.
- We achieve state-of-the-art performance across multiple multi-agent tasks and demonstrate that the framework’s capability can be continuously improved through iterative rounds of data synthesis.

2 RELATED WORK

LLM-based multi-agent systems (MAS) have demonstrated remarkable capabilities in addressing complex problems in various tasks (Hong et al., 2024; Islam et al., 2024; Tran et al., 2025). These systems employ various collaborative strategies, including multi-agent debate (Du et al., 2024; Liang et al., 2024) and role-based division of labor (Qian et al., 2024a; Wang et al., 2024d). Researchers have explored several key approaches to improve the performance of multi-agent systems. One strategy focuses on expanding the diversity and scale of agents (Li et al., 2024a; Qian et al., 2024b; Wang et al., 2024a), optimizing performance from a network architecture perspective. Another approach emphasizes enhancing prompt quality, such as refining system memory in frameworks

108 like AutoGen (Wu et al., 2023) and BiLLP (Shi et al., 2024a) or improving instruction design and
 109 few-shot examples in Dspy (Khattab et al., 2023; Opsahl-Ong et al., 2024). A third approach involves
 110 fine-tuning the parameters of the large models within the agents, which is the most effective yet
 111 challenging method. Optima (Chen et al., 2024b) and MALT (Motwani et al., 2024) have taken the
 112 first step in this direction by constructing preference training data pairs through estimating Q-values.
 113 MALT can be viewed as a special case of Optima.

114 MCTS is an advanced search algorithm capable of effectively balancing exploration and exploitation
 115 in decision-making processes. It gained significant attention following its success in AlphaGo (Silver
 116 et al., 2016). Subsequently, researchers have introduced MCTS into LLM reasoning tasks (Hao et al.,
 117 2023), giving rise to two primary methodologies. The first approaches employ MCTS during the
 118 inference phase, prioritizing actions with the highest potential to yield correct outcomes (Snell et al.,
 119 2024; Wu et al., 2024). The second approaches leverage MCTS during the training phase to synthesize
 120 high-quality training data, with the goal of identifying data that maximizes the improvement in model
 121 performance (Qi et al., 2024; Xie et al., 2024; Zhang et al., 2024c;b). These approaches mainly rely
 122 on estimated Q-values to guide the exploration of the synthesis data space.

123 The influence function, first introduced by Hampel (1974), assesses the impact of individual data
 124 points on model performance and has become a powerful tool for training data valuation. Unlike
 125 alternative approaches such as LLM-based rating methods (Liu et al., 2024) or reward function
 126 methods (Wang et al., 2024c), the influence function offers distinct advantages by quantifying data
 127 utility through rigorous mathematical analysis of model training dynamics. Recent studies have
 128 extended its use to improve data quality in LLM pre-training through TraceIn (Pruthi et al., 2020)
 129 and MATES (Yu et al., 2024), for instruction tuning with Montessori-instruct (Li et al., 2024b) and
 130 LESS (Xia et al., 2024), and for reward modeling with OPORP (Min et al., 2025). However, its
 131 potential for MAS data synthesis that maximizes system capability enhancement remains unexplored.
 132 The core challenge in applying influence functions lies in its high computational cost. Classical
 133 methods, such as gradient-based approaches (Koh & Liang, 2017; Park et al., 2023) and trajectory-
 134 influence based methods (Bae et al., 2024), require the computation of billion-level gradients, which
 135 is extremely expensive. For efficient estimation, MATES (Yu et al., 2024) probes the oracle data
 136 influence by evaluating the model’s reference loss after training on individual data points. Our
 137 approach extends the reference loss to non-differentiable validation metrics, thereby enabling the
 138 enhancement of data quality through data synthesis.

3 METHOD

141 In this section, we first formalize the multi-agent task and MCTS-based data synthesis (§ 3.1), then
 142 introduce the data influence-oriented data selection (§ 3.2), and finally present the iterative data
 143 synthesis process (§ 3.3).

3.1 MULTI-AGENT TRAINING DATA SYNTHESIS

148 Training effective MAS requires high-quality data that reflects complex agent interactions, but
 149 collecting such data in the real world is costly and time-consuming. To overcome this, we utilize
 150 MCTS to simulate interactions and automatically produce preference-labeled training data.

151 In this work, we model the topology structure for multi-agent collaboration as a directed graph.
 152 Concretely, we denote a feasible topology as $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, as demonstrated in Figure 2 (a). It is worth
 153 noting that such graph structures can be static or dynamic, with the dynamic variant allowing agents
 154 to govern the information flow in an adaptive manner. We allow the presence of cycles in the graph,
 155 indicating that multiple rounds of information exchange are permitted among agents A . We assume
 156 that our agent network can be linearly traversed in topological order $A_1 \oplus A_2 \oplus \dots \oplus A_M$ Bondy
 157 & Murty (1976); Gross & Yellen (2005); Qian et al. (2024c), where $A_m \in \mathcal{V}$. Different A_m may
 158 represent the same agent being visited at different time steps. For clarity and convenience, we use
 159 different symbols to distinguish them.

160 In this way, we could utilize MCTS to synthesize training data for MAS. We mainly follow the
 161 configuration in Optima Chen et al. (2024b) and construct the tree as follows: As shown in Figure 2
 162 (b), the synthesis tree begins with a specific task instruction p .

Figure 2: Overview of our method. (a) illustrates the traversal of a cyclic agent network in topological order. We introduce virtual agents to distinguish the same agent in the traversal. (b) showcases the application of MCTS to generate synthetic multi-agent training data, where the color of each agent represents the magnitude of the node’s Q-value. (c) depicts the computation process of influence scores for a non-differentiable metric, highlighting that data points with high Q-values may correspond to low influence scores.

Selection: We select a node n to expand from the candidate node set, where a node $n = (s, a)$ refers to an agent A_m in state s that takes action a . We use the edit distance to filter out nodes that are similar to expanded nodes to obtain the candidate node set.

$$N_{\text{cand}} = \{n_j | n_i \in N_{\text{expanded}}, n_j \in N_{\text{all}}, S_{i,j} \geq 0.25\}, \quad (1)$$

where $S_{i,j} = \frac{\text{edit_distance}(n_i, n_j)}{\max(|n_i|, |n_j|)}$ and $\text{edit_distance}(n_i, n_j)$ represents the edit distance between the action strings of two nodes. N_{all} and N_{expanded} denotes the whole node set and expanded node set. Then we select a node for the candidate set N_{cand} based on softmax distribution of Q-values.

$$n \sim \text{Softmax}(\{Q(n)\}_{n \in N_{\text{cand}}}), \quad (2)$$

where $Q(n) = Q(s, a)$ and the softmax distribution balances exploration and exploitation.

Expansion For each selected node n , we denote the new state as $s' = \text{Trans}(s, a)$, where $\text{Trans}(\cdot)$ is the transit function determined by the environment. Then we sample d actions from agents A_{m+1} :

$$\{a'_1, \dots, a'_d\} \sim A_{m+1}(s'). \quad (3)$$

Simulation For each generated action a'_i , we simulate the agent interaction τ_i until termination.

$$\tau_i = \text{Simulation}(A_{m+2}, \dots, A_M, s', a'_i). \quad (4)$$

Meanwhile, we construct all (s, a) pairs in the trajectory as new nodes and add them to N_{all} .

Backpropagation Once a trajectory τ is completed, we can obtain the trajectory reward $R(\tau)$ detailed in Appendix D. We update the Q-value of nodes with the average rewards from the trajectories set containing the node.

$$Q(n) = Q(s, a) = \sum_{\tau \in \mathcal{T}(n)} \frac{1}{|\mathcal{T}(n)|} R(\tau), \quad (5)$$

where $\mathcal{T}(n)$ denotes the trajectory set containing the node n . Additionally, due to the complex interactions among multiple agents, the Q-value estimates obtained from d rollouts may be inaccurate. Allocating more inference budget in the data synthesis phase may improve the quality of the generated data and enhance the system’s performance.

We repeat the above process k times and finish the generation process. Then we can construct paired action preferences for agent A_i at state s by selecting the action a_i^h with the highest Q-value and the action a_i^l with the lowest Q-value to form the preference data:

$$z = (s, a_i^h, a_i^l). \quad (6)$$

To update the parameter of agent A_i , we utilize the Direct Preference Optimization (DPO) loss to encourage the model to prioritize responses that align with preferences a_i^h over less preferred ones a_i^l .

$$\mathcal{L}_{DPO} = \mathbb{E}_z \left[-\log \sigma \left(\beta \left[\log \frac{\pi_\theta(a_i^h | s)}{\pi_{\text{ref}}(a_i^h | s)} - \log \frac{\pi_\theta(a_i^l | s)}{\pi_{\text{ref}}(a_i^l | s)} \right] \right) \right], \quad (7)$$

where $\sigma(\cdot)$ denotes the sigmoid function and π_{ref} represents the reference model, *i.e.* the SFT model.

3.2 DATA INFLUENCE-ORIENTED DATA SELECTION

While improving the accuracy of Q-value estimation can enhance data quality to some extent, it is both highly inefficient and suboptimal. During the training phase, the primary goal of synthetic data is to maximize its contribution to model performance improvement, rather than ensuring the data is correct. Figure 2 (c) reveals an important insight: while the data pair z_1 achieves higher Q-values, the data pair z_2 demonstrates greater practical impact on system performance. This suggests that absolute Q-values may not fully capture data pair's true contribution.

Hence, in this paper, we introduce the influence score \mathcal{I} to quantify the impact of data on the current agent's performance. The influence score \mathcal{I} was developed to measure the difference in loss when a data point is assigned a higher weight in the training dataset. Suppose the agent A is parameterized by θ . We denote the optimal parameters learned by minimizing the training loss \mathcal{L}_{tr} on the dataset \mathcal{D}_{tr} , with a data point z_i assigned an additional weight of ϵ , as:

$$\theta_{\epsilon, z_i}^* = \arg \min_{\theta} \sum_{z_j \in \mathcal{D}_{\text{tr}}} \frac{1}{|\mathcal{D}_{\text{tr}}|} \mathcal{L}_{\text{tr}}(z_j, \theta) + \epsilon \mathcal{L}_{\text{tr}}(z_i, \theta). \quad (8)$$

Under standard assumptions, such as the twice-differentiability and strong convexity of the loss function \mathcal{L}_{tr} , the influence function can be derived via the chain rule of the derivatives (Koh & Liang, 2017). However, the DPO loss does not effectively align with downstream task performance. Our experiments reveal a weak correlation (less than 0.2) between the DPO loss and performance metrics \mathcal{F} such as F1-score or Accuracy on the validation set. This observation is consistent with findings reported in (Rafailov et al., 2024; Shi et al., 2024c). This indicates that we must redefine the influence score using the changes of non-differentiable performance metrics on the validation set.

$$\mathcal{I}_{\mathcal{F}_{\text{val}}}(z_i, \mathcal{D}_{\text{val}}) := \frac{\mathcal{F}_{\text{val}}(z_i, \theta_{\epsilon, z_i}^*) - \mathcal{F}_{\text{val}}(z_i, \theta^*)}{\epsilon}, \quad (9)$$

where $\theta^* = \theta_{\epsilon, z_i}^*|_{\epsilon=0}$. Due to non-differentiable metric \mathcal{F}_{val} , the influence function cannot be derived using gradients. Instead, we use the finite difference method combined with parameter perturbation to approximate the rate of change. The perturbed optimal parameter θ_{ϵ, z_i}^* can be rewritten as:

$$\theta_{\epsilon, z_i}^* = \theta^* + \epsilon \Delta \theta + o(\epsilon), \quad (10)$$

where $\Delta \theta$ represents the direction of parameter change. Following Yu et al. (2024), the direct is typically driven by the gradient of the training loss.

$$\Delta \theta \propto -\nabla_{\theta} \mathcal{L}_{\text{tr}}(z_i, \theta^*). \quad (11)$$

Since the parameter update is dominated by the training loss gradient, we adopt a one-step gradient descent update:

$$\theta_{\epsilon, z_i}^* \approx \theta^* - \eta \epsilon \nabla_{\theta} \mathcal{L}_{\text{tr}}(z_i, \theta^*), \quad (12)$$

where η is the learning rate, and ϵ is a very small perturbation strength. Combining the finite difference and parameter update, the influence function is approximated as:

$$\mathcal{I}_{\mathcal{F}_{\text{val}}}(z_i, \mathcal{D}_{\text{val}}, \theta^*) \approx \frac{1}{\epsilon} [\mathcal{F}_{\text{val}}(z_i, \theta^* - \eta \epsilon \nabla_{\theta} \mathcal{L}_{\text{tr}}(z_i, \theta^*)) - \mathcal{F}_{\text{val}}(z_i, \theta^*)]. \quad (13)$$

Following Koh & Liang (2017), we theoretically illustrate that selecting data points with the highest influence scores maximizes the model's validation performance (see Appendix A for details). Finally, our selection strategy combines Q-values and influence scores to effectively identify the highest-quality pair data:

$$H(z_i) = \mathcal{I}_{\mathcal{F}_{\text{val}}}(z_i, \mathcal{D}_{\text{val}}, \theta) + \gamma \cdot Q(s, a_i^h), \quad (14)$$

where θ denotes the current parameters of agent A_m . Finally, after filtering out low-quality data as described in Chen et al. (2024b), synthetic data are ranked based on the scores, and the Top α are selected to construct the training dataset \mathcal{D}_{tr} .

270
 271 **Table 1: Performance comparison across Information Exchange and Debate tasks.** Best results
 272 are indicated in **bold**, and second-best results are underlined. The baseline results are taken from Chen
 273 et al. (2024b).

Method	Information Exchange				Debate	
	HotpotQA	2WMH QA	TriviaQA	CBT	ARC-C	MMLU
CoT	25.6	20.5	59.8	43.4	65.2	46.0
MAD	28.4	25.9	71.0	53.8	71.4	51.5
AutoForm	28.2	24.7	60.9	35.0	60.2	43.8
Optima-iSFT	54.5	72.4	71.9	<u>71.8</u>	74.1	56.8
Optima-iDPO	52.5	66.1	69.3	<u>66.7</u>	74.5	59.6
Optima-iSFT-DPO	<u>55.6</u>	<u>74.2</u>	<u>77.1</u>	70.1	<u>77.1</u>	<u>60.2</u>
DITS-iSFT-DPO	57.2	76.0	78.4	72.0	77.6	60.5

3.3 ITERATIVE DATA SYNTHESIS

In addition to utilizing the current model for data synthesis, we propose an iterative refinement approach to generate higher-quality data. By continuously training and enhancing the model, its capabilities improve, enabling the generation of more valuable synthetic data in subsequent iterations. At iteration t , we generate the training dataset $\mathcal{D}_{\text{tr}}^t$ based on the parameters θ_{t-1} and train a new model from the initial model using $\mathcal{D}_{\text{tr}}^t$. The corresponding pseudocode can be found in Algorithm 1.

4 EXPERIMENTAL SETUP

In this section, we will introduce the datasets, metrics, and baseline methods in the experiments.

Dataset To validate the collaborative and task allocation capabilities of MAS, we evaluate our framework DITS in three multi-agent settings: two static scenarios—**Information Exchange** and **Debate**—and one dynamic scenario, **DeepSearch**. In the information exchange setting, the relevant context is divided between two agents. The agents must identify the relevant information and communicate with each other to derive the final answer. This setting includes HotpotQA (Yang et al., 2018), 2WikiMultiHopQA (2WMH QA) (Ho et al., 2020), TrivalQA (Joshi et al., 2017), and CBT (Hill et al., 2016). In the debate setting, two agents work together to solve a task: one agent proposes solutions, while the other evaluates their correctness. The debate setting includes ARC’s challenge set (ARC-C) (Bhakthavatsalam et al., 2021) and MMLU (Hendrycks et al., 2021). Unlike static scenarios, where multi-agent collaboration follows a predetermined sequence, the dynamic DeepSearch setting features agents that autonomously determine and continuously adjust their collaboration strategies based on the evolving task, enabling truly adaptive and intelligent teamwork. The DeepSearch task involves collaboration among a task analysis agent, a search intent generation agent, and a web content analysis agent. The DeepSearch setting includes WebWalker (Wu et al., 2025). We use 0-shot for all benchmarks.

Metrics Following Chen et al. (2024b), we employ the F1 score between final answers and labels as evaluation metrics for information exchange tasks. For debate tasks, we utilize exact match accuracy (ARC-C, MMLU). For the deepsearch task, following Wu et al. (2025), we utilize Qwen2.5-72B-Instruct (Team, 2025) to verify whether the answers were consistent with the correct answers.

Baseline For static scenarios, we compare our methods with: (1) Chain-of-Thought (CoT) (Wei et al., 2022): single agent pipeline which enables complex reasoning to derive the final answer. (2) Multi-Agent Debate (MAD) (Du et al., 2024): multi-agent pipeline where different reasoning processes are discussed multiple rounds to arrive at the final answer. (3) AutoForm (Chen et al., 2024a): multi-agent pipeline where the agents utilize non-nature language formats in communication to improve efficiency. For the dynamic scenario, following Li et al. (2025c), we evaluate several pipeline methods within this setting, including (1) Direct Reasoning, (2) RAG workflow and its variant (Li et al., 2025c), and (3) Search-o1 (Li et al., 2025b). In both scenarios, we compare DITS with multi-agent optimization method Optima (Chen et al., 2024b): a framework that enhances communication efficiency and task

effectiveness through Supervised Finetuning and Direct Preference Optimization. It has three variants, namely Optima-iSFT, Optima-iDPO, and Optima-iSFT-DPO. We follow the iSFT-DPO variant of Optima and improve its data synthesis and selection process to obtain DITS-iSFT-DPO.

Implementation Details We utilize the Llama-3-8B-Instruct (Dubey et al., 2024) as the base model for static scenarios. Experimental results for other base models are provided in Appendix G.4. For the dynamic scenario, we employ the QwQ-32B (Team, 2024) as the base model due to the task complexity. The interaction ends when either a special token marks the final answer or the maximum number of turns is reached. Unless otherwise specified, we set the hyperparameters to $\alpha = 0.5$ and $\gamma = 1$. When collecting influence scores via single-step gradient descent, we utilize LoRA (Low-Rank Adaptation) (Hu et al., 2022). A validation set of size 20 is used in all experimental settings. We set the expansion time $d = 3$ and repeat time $k = 8$ for all datasets. More details are provided in the Appendix E.

5 EVALUATION RESULTS

In this section, we first evaluate the effectiveness of DITS (§ 5.1). Then we demonstrate the superiority of data influence through ablation studies (§ 5.2) and explore the impact of synthesis scaling on data quality (§ 5.3). Finally, we analyze the effects of selection ratio and iteration times (§ 5.4).

5.1 OVERALL PERFORMANCE

The Static Scenarios In Table 1, we compare our method DITS-iSFT-DPO with the baseline approaches on both the Information Exchange and Debate tasks. Across all datasets, our method achieves consistent improvement over the baselines, demonstrating the effectiveness and generalizability of DITS. Compared to the single agent CoT approach, our method delivers an average performance enhancement of 91%. In the Information Exchange task, our method outperforms the advanced multi-agent approach Optima-iSFT-DPO by an average margin of 2.5%.

The Dynamic Scenario In dynamic scenarios, we adopt the WebThinker framework (Li et al., 2025c) to structure the process into a collaborative system comprising three agents: a task analysis agent, a search intent generation agent, and a web content analysis agent. This framework empowers the agents to autonomously conduct web searches, deeply analyze web content, and dynamically adjust their collaboration strategies. For search, we use the Serper API¹, retrieving the top 10 search results ($k=10$). In Table 2, we observe that the Webthinker framework for dynamic multi-agent collaboration outperforms traditional single-agent approaches and simple RAG methods. Furthermore, fine-tuning multiple agents within the collaborative framework enhances coordination efficiency. Notably, the DITS method surpasses all baseline models, highlighting its effectiveness and robustness.

5.2 INFLUENCE FUNCTION ANALYSIS

To provide a detailed comparison of the effectiveness of the influence function, we present the results of different data selection methods in Table 3. The experiments are conducted in a single iteration. The Base method represents the multi-agent framework performance with the base model Llama-3-8B-Instruct. The Optima-DPO and Optima-RPO methods utilize the dataset \mathcal{D}_{tr} sampled through the MCTS approach in Optima to train the model using DPO loss (Rafailov et al., 2023) and RPO loss (Pang et al., 2024), respectively. Random Select refers to training on the data randomly sampled from \mathcal{D}_{tr} with DPO loss, while Q-value Select involves selecting the top-ranked data based

Table 2: Performance comparison on DeepSearch task. Best results are indicated in **bold**.

Models	WebWalker
Direct Reasoning	4.3
RAG Workflow	31.2
- w/ Query Planning	32.5
- w/ Iterative RAG	31.5
Search-o1	34.1
WebThinker	
- Base	37.0
- Optima-SFT	46.0
- Optima-DPO	46.6
- DITS-DPO	47.2

¹<https://serper.dev/>

378 Table 3: **Single iteration performances across Information exchange and Debate tasks.** Best
 379 results are indicated in **bold**, and second-best results are underlined.
 380

381 Method	382 Information Exchange				383 Debate	
	384 HotpotQA	385 2WMH QA	386 TriviaQA	387 CBT	388 ARC-C	389 MMLU
390 Base	28.2	24.7	60.9	35.0	60.2	43.8
391 Optima-SFT	45.2	<u>59.7</u>	68.8	50.7	68.2	50.3
392 Optima-RPO	50.4	60.6	68.4	<u>59.1</u>	72.2	<u>52.1</u>
393 Optima-DPO	46.6	61.2	70.9	<u>57.2</u>	71.5	<u>51.6</u>
394 - Random Select	51.5	60.6	70.3	58.0	74.0	51.1
395 - Q-value Select	50.5	61.1	69.8	58.6	73.7	50.2
396 DITS-DPO						
397 - $\gamma = 0$	53.1	62.2	72.2	59.6	<u>74.2</u>	50.8
398 - $\gamma = 1$	<u>52.8</u>	<u>61.5</u>	<u>71.0</u>	<u>59.1</u>	74.5	52.3

399 on Q-values for training. DITS employs the influence score in Eq. equation 14 to select the top-ranked
 400 data for training, where the variant $\gamma = 1$ integrates both Q-value and influence score, and the variant
 401 $\gamma = 0$ relies solely on the influence score for data selection. For a fair comparison, we set the
 402 selection ratio as 50% for all methods.

403 **Ablation Study** As shown in Table 3, we observe that (1) The DITS method achieves consistent
 404 performance improvements across all datasets compared to using the full dataset, indicating that
 405 the original MCTS-generated dataset contains noisy and lower-quality data. This suggests that
 406 further enhancing data quality is beneficial for model performance. (2) Selecting data based on
 407 influence scores outperforms both random selection and Q-value-based selection, highlighting its
 408 superior effectiveness in enhancing data quality. To further explore the underlying reasons for this
 409 improvement, the following paragraph provides an in-depth analysis of the data distribution. (3)
 410 For the Information Exchange task, the variant $\gamma = 0$ achieves the best performance, while the
 411 variant $\gamma = 1$ achieves suboptimal results. In contrast, on the Debate task, the variant $\gamma = 1$
 412 generally performs the best. This discrepancy is attributed to the fact that the evaluation metric for
 413 the Information Exchange task is F1-score, which introduces more noise into the estimated Q-values,
 414 resulting in lower quality in selecting data.

415 **Distribution Analysis** To provide an in-depth analysis of the advantages of using the influence score
 416 for data selection, we visualize the distributions of Q-values and influence scores on the HotpotQA,
 417 MMLU, and 2WMH QA datasets in Figure 1 (a) (b) (c), highlighting the distribution of the top
 418 30% data points selected by our methods with $\gamma = 1$. The visualization results of other datasets can
 419 be found in Figure 4. From the figures, we observe that: (1) There are discrepancies between the
 420 influence score and Q-value, which reveals that Q value is not perfectly aligned with training needs.
 421 This highlights the importance of integrating the influence score into the MCTS process and data
 422 selection process. (2) The data selected by our methods exhibit high influence scores and Q-values,
 423 indicating that DITS is capable of selecting high-quality data.

424 5.3 SYNTHESIS TIME SCALING

425 In this study, we empirically demonstrate that increasing the synthesis budget during the data synthesis
 426 phase enhances model performance, as shown in Figure 1 (d) and Appendix B. Specifically, the
 427 figure highlights three key observations: (1) Allocating a larger synthesis budget, which extends
 428 rollout times and increases the number of expansions, will generate more high-quality data, thereby
 429 improving model performance. (2) We validate that allocating resources to influence score estimation
 430 can indeed lead to better performance improvements. This is attributed to the fact that the influence
 431 score is more aligned with training needs. This underscores the capability of our method to enhance
 432 the efficiency of synthesizing training data within a vast action space. (3) The performance gains
 433 from a sixteenfold increase in the synthesis budget are notably smaller compared to the improvements
 434 achieved through three times iterative data synthesis and training, as detailed in Table 1. This
 435 comparison highlights the efficiency and effectiveness of the iterative approach.

Figure 3: (a) The effect of hyperparameter selection ratio α of DITS on the 2WMH QA and TrivalQA datasets. (b) The distribution of synthetic data influence scores across different iterations on the HotpotQA and MMLU datasets, with the mean of the distribution highlighted by a red dashed line.

We also compare DITS with traditional data influence estimation methods. Unlike conventional gradient-based approaches, DITS offers improved computational efficiency. Additional details are provided in Appendix B.

5.4 HYPERPARAMETER ANALYSIS

Selection Ratio We first investigate the impact of the selection ratio hyperparameter γ on model performance. We conduct experiments on two Information Exchange tasks: 2WMH QA and Trival QA datasets and present the results in Figure 3. We compare Optima-DPO (random Select and Q-value Select) with DITS ($\gamma = 0$) and DITS ($\gamma = 1$). From the figure, we observe that: (1) Across different selection ratios, DITS consistently outperforms Optima-DPO, demonstrating that our method can select data more beneficial for model training and exhibits strong generalization ability. (2) When an appropriate selection ratio is chosen, the performance of DITS surpasses that of using the full dataset, indicating the presence of noise in original MCTS-generated data and the potential for further improving data quality. (3) When the selection ratio is very small, the performance of all methods declines, indicating that training set size is also crucial for achieving optimal performance. This suggests that an overly small yet high-quality dataset may not be sufficient to train a good model.

Iteration Times To gain deeper insights into the iterative data synthesis and training process, we analyzed the distribution of influence scores for synthetic data across different iterations on the HotpotQA and MMLU datasets, as shown in Figure 3 (b). The mean of each distribution is highlighted. From the figure, we observe the following trends: (1) As the number of iterations increases, the mean influence score gradually rises, indicating an improvement in the quality of synthetic data. This suggests that the iterative process enhances data quality by refining the model, creating a positive feedback loop that makes data synthesis more effective. (2) With more iterations, the distribution of influence scores becomes more concentrated, suggesting that the model trained on synthetic data achieves more stable quality on specialized tasks. However, this may come at the cost of reduced data diversity.

We further analyze model performance over training iterations, the impact of validation set size, and compare data selection strategies based on influence scores. Details are provided in Appendix G.

6 CONCLUSION

In this work, we propose DITS, a novel multi-agent data self-training framework that integrates influence scores into MCTS to guide tree search and data selection. By leveraging influence scores and proposing a novel estimation method, we effectively identify the most impactful data for system improvement, thereby enhancing model performance. Meanwhile, we derive an efficient influence score estimation method for non-differentiable metrics through gradient-to-inference conversion. This approach substantially reduces computational overhead through inference computation and allows us to estimate influence scores to achieve a more efficient data synthesis process. Our approach introduces new perspectives and scaling dimensions for data synthesis, highlighting the impact of training data on model performance rather than its correctness.

486 7 REPRODUCIBILITY STATEMENT
487488 To ensure the reproducibility of our work, we have taken several steps to provide comprehensive
489 details on our methods, experiments, and implementations. First, an anonymized link to the source
490 code has been included as supplementary material, allowing full access to our implementation.
491 Second, section 3 elaborates on the key ideas and procedural details of our approach. Additionally,
492 a comprehensive description of all hyperparameter configurations employed in the experiments is
493 provided in the Section 4 and in Appendix D. We hope these resources will facilitate the replication
494 of our results and further research.
495496 REFERENCES
497498 Juhan Bae, Wu Lin, Jonathan Lorraine, and Roger Grosse. Training data attribution via approximate
499 unrolled differentiation. *CoRR*, abs/2405.12186, 2024.
500 Sumithra Bhakthavatsalam, Daniel Khashabi, Tushar Khot, Bhavana Dalvi Mishra, Kyle Richardson,
501 Ashish Sabharwal, Carissa Schoenick, Oyvind Tafjord, and Peter Clark. Think you have solved
502 direct-answer question answering? try arc-da, the direct-answer AI2 reasoning challenge. *CoRR*,
503 abs/2102.03315, 2021.
504 J. A. Bondy and U. S. R. Murty. *Graph Theory with Applications*. Elsevier, New York, 1976.
505 Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier, Karthik Narasimhan, and Shunyu Yao.
506 Fireact: Toward language agent fine-tuning. *CoRR*, abs/2310.05915, 2023.
507 Weize Chen, Chenfei Yuan, Jiarui Yuan, Yusheng Su, Chen Qian, Cheng Yang, Ruobing Xie,
508 Zhiyuan Liu, and Maosong Sun. Beyond natural language: Llms leveraging alternative formats for
509 enhanced reasoning and communication. In *EMNLP (Findings)*, pp. 10626–10641. Association for
510 Computational Linguistics, 2024a.
511 Weize Chen, Jiarui Yuan, Chen Qian, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Optima:
512 Optimizing effectiveness and efficiency for llm-based multi-agent system. *CoRR*, abs/2410.08115,
513 2024b.
514 Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
515 factuality and reasoning in language models through multiagent debate. In *ICML*. OpenReview.net,
516 2024.
517 Abhimanyu Dubey, Abhinav Jauhri, and et al. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.
518 Jonathan L. Gross and Jay Yellen. *Graph Theory and Its Applications*. 2005. URL <http://books.google.com/books?vid=ISBN158488505X>.
519 Xinyu Guan, Li Lyra Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
520 rstar-math: Small llms can master math reasoning with self-evolved deep thinking, 2025. URL
521 <https://arxiv.org/abs/2501.04519>.
522 Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V. Chawla, Olaf Wiest,
523 and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
524 challenges. In *IJCAI*, pp. 8048–8057. ijcai.org, 2024.
525 Frank R Hampel. The influence curve and its role in robust estimation. *Journal of the american
526 statistical association*, 69(346):383–393, 1974.
527 Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting
528 Hu. Reasoning with language model is planning with world model. In *EMNLP*, pp. 8154–8173.
529 Association for Computational Linguistics, 2023.
530 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
531 Steinhardt. Measuring massive multitask language understanding. In *ICLR*. OpenReview.net,
532 2021.

540 Felix Hill, Antoine Bordes, Sumit Chopra, and Jason Weston. The goldilocks principle: Reading
 541 children's books with explicit memory representations. In *ICLR*, 2016.

542

543 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing A multi-
 544 hop QA dataset for comprehensive evaluation of reasoning steps. In *COLING*, pp. 6609–6625.
 545 International Committee on Computational Linguistics, 2020.

546 Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
 547 Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
 548 Xiao, Chenglin Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for A multi-agent
 549 collaborative framework. In *ICLR*. OpenReview.net, 2024.

550 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 551 and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *ICLR*. OpenReview.net,
 552 2022.

553

554 Xueyu Hu, Tao Xiong, Biao Yi, Zishu Wei, Ruixuan Xiao, Yurun Chen, Jiasheng Ye, Meiling Tao,
 555 Xiangxin Zhou, Ziyu Zhao, Yuhuai Li, Shengze Xu, Shawn Wang, Xinchen Xu, Shuofei Qiao, Kun
 556 Kuang, Tieyong Zeng, Liang Wang, Jiwei Li, Yuchen Eleanor Jiang, Wangchunshu Zhou, Guoyin
 557 Wang, Keting Yin, Zhou Zhao, Hongxia Yang, Fan Wu, Shengyu Zhang, and Fei Wu. Os agents:
 558 A survey on mllm-based agents for general computing devices use. *Preprints*, December 2024.

559 Md. Ashraful Islam, Mohammed Eunus Ali, and Md. Rizwan Parvez. Mapcoder: Multi-agent
 560 code generation for competitive problem solving. In *ACL (1)*, pp. 4912–4944. Association for
 561 Computational Linguistics, 2024.

562 Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
 563 supervised challenge dataset for reading comprehension. In *ACL (1)*, pp. 1601–1611. Association
 564 for Computational Linguistics, 2017.

565

566 Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
 567 hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,
 568 Matei Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into
 569 self-improving pipelines. *CoRR*, abs/2310.03714, 2023.

570 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
 571 *ICML*, volume 70 of *Proceedings of Machine Learning Research*, pp. 1885–1894. PMLR, 2017.

572

573 Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbulin, and Bernard Ghanem. CAMEL:
 574 communicative agents for "mind" exploration of large language model society. In *NeurIPS*, 2023.

575 Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More agents is all you need. *CoRR*,
 576 abs/2402.05120, 2024a.

577

578 Shuangtao Li, Shuaihao Dong, Kexin Luan, Xinhuan Di, and Chaofan Ding. Enhancing reasoning
 579 through process supervision with monte carlo tree search, 2025a. URL <https://arxiv.org/abs/2501.01478>.

580

581 Xiaochuan Li, Zichun Yu, and Chenyan Xiong. Montessori-instruct: Generate influential training
 582 data tailored for student learning. *CoRR*, abs/2410.14208, 2024b.

583

584 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang,
 585 and Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *CoRR*,
 586 abs/2501.05366, 2025b. doi: 10.48550/ARXIV.2501.05366. URL <https://doi.org/10.48550/arXiv.2501.05366>.

587

588 Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
 589 Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability.
 590 *CoRR*, abs/2504.21776, 2025c. doi: 10.48550/ARXIV.2504.21776. URL <https://arxiv.org/abs/2504.21776>.

591

592 Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi,
 593 and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-agent
 594 debate. In *EMNLP*, pp. 17889–17904. Association for Computational Linguistics, 2024.

594 Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic LLM-powered agent
 595 network for task-oriented agent collaboration. In *COLM*, 2024.

596

597 Taywon Min, Haeone Lee, Hanho Ryu, Yongchan Kwon, and Kimin Lee. Understanding impact
 598 of human feedback via influence functions, 2025. URL <https://arxiv.org/abs/2501.05790>.

599

600 Sumeet Ramesh Motwani, Chandler Smith, Rocktim Jyoti Das, Markian Rybchuk, Philip H. S. Torr,
 601 Ivan Laptev, Fabio Pizzati, Ronald Clark, and Christian Schröder de Witt. MALT: improving
 602 reasoning with multi-agent LLM training. *CoRR*, abs/2412.01928, 2024.

603

604 OpenAI. GPT-4 technical report. *CoRR*, abs/2303.08774, 2023.

605

606 Krista Opsahl-Ong, Michael J. Ryan, Josh Purtell, David Broman, Christopher Potts, Matei Zaharia,
 607 and Omar Khattab. Optimizing instructions and demonstrations for multi-stage language model
 608 programs. In *EMNLP*, pp. 9340–9366. Association for Computational Linguistics, 2024.

609

610 Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
 611 Weston. Iterative reasoning preference optimization. *CoRR*, abs/2404.19733, 2024.

612

613 Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. TRAK:
 614 attributing model behavior at scale. In *ICML*, volume 202 of *Proceedings of Machine Learning
 Research*, pp. 27074–27113. PMLR, 2023.

615

616 Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
 617 influence by tracing gradient descent. In *NeurIPS*, 2020.

618

619 Zhenting Qi, Mingyuan Ma, Jiahang Xu, Li Lyra Zhang, Fan Yang, and Mao Yang. Mutual reasoning
 620 makes smaller llms stronger problem-solvers. *CoRR*, abs/2408.06195, 2024.

621

622 Chen Qian, Jiahao Li, Yufan Dang, Wei Liu, Yifei Wang, Zihao Xie, Weize Chen, Cheng Yang, Yingli
 623 Zhang, Zhiyuan Liu, and Maosong Sun. Iterative experience refinement of software-developing
 624 agents. *CoRR*, abs/2405.04219, 2024a.

625

626 Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
 627 Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chatdev:
 628 Communicative agents for software development. In *ACL (1)*, pp. 15174–15186. Association for
 629 Computational Linguistics, 2024b.

630

631 Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
 632 Zhiyuan Liu, and Maosong Sun. Scaling large-language-model-based multi-agent collaboration,
 633 2024c. URL <https://arxiv.org/abs/2406.07155>.

634

635 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea
 636 Finn. Direct preference optimization: Your language model is secretly a reward model. In *NeurIPS*,
 637 2023.

638

639 Rafael Rafailov, Yaswanth Chittep, Ryan Park, Harshit Sikchi, Joey Hejna, W. Bradley Knox,
 640 Chelsea Finn, and Scott Niekum. Scaling laws for reward model overoptimization in direct
 641 alignment algorithms. *CoRR*, abs/2406.02900, 2024.

642

643 Wentao Shi, Xiangnan He, Yang Zhang, Chongming Gao, Xinyue Li, Jizhi Zhang, Qifan Wang, and
 644 Fuli Feng. Large language models are learnable planners for long-term recommendation. In *SIGIR*,
 645 pp. 1893–1903. ACM, 2024a.

646

647 Wentao Shi, Mengqi Yuan, Junkang Wu, Qifan Wang, and Fuli Feng. Direct multi-turn preference
 648 optimization for language agents. In *EMNLP*, pp. 2312–2324. Association for Computational
 649 Linguistics, 2024b.

650

651 Zhengyan Shi, Sander Land, Acyr Locatelli, Matthieu Geist, and Max Bartolo. Understanding
 652 likelihood over-optimisation in direct alignment algorithms. *CoRR*, abs/2410.11677, 2024c.

648 David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
 649 che, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot, Sander
 650 Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
 651 Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game
 652 of go with deep neural networks and tree search. *Nat.*, 529(7587):484–489, 2016.

653 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute optimally
 654 can be more effective than scaling model parameters. *CoRR*, abs/2408.03314, 2024.

655 Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown. <https://huggingface.co/>, 2024. [50].

656 Qwen Team. Qwen2.5 technical report, 2025. URL <https://arxiv.org/abs/2412.15115>.

657 Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
 658 Hoang D. Nguyen. Multi-agent collaboration mechanisms: A survey of llms, 2025. URL
 659 <https://arxiv.org/abs/2501.06322>.

660 Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
 661 large language model capabilities. *CoRR*, abs/2406.04692, 2024a.

662 Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
 663 Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on large
 664 language model based autonomous agents. *Frontiers of Computer Science*, 18(6), 2024b.

665 Xiyao Wang, Linfeng Song, Ye Tian, Dian Yu, Baolin Peng, Haitao Mi, Furong Huang, and Dong Yu.
 666 Towards self-improvement of llms via MCTS: leveraging stepwise knowledge with curriculum
 667 preference learning. *CoRR*, abs/2410.06508, 2024c.

668 Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the
 669 emergent cognitive synergy in large language models: A task-solving agent through multi-persona
 670 self-collaboration. In *NAACL-HLT*, pp. 257–279. Association for Computational Linguistics,
 671 2024d.

672 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 673 Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
 674 models. In *NeurIPS*, 2022.

675 Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Deyu Zhou,
 676 Pengjun Xie, and Fei Huang. Webwalker: Benchmarking llms in web traversal, 2025. URL
 677 <https://arxiv.org/abs/2501.07572>.

678 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
 679 Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen LLM applications via
 680 multi-agent conversation framework. *CoRR*, abs/2308.08155, 2023.

681 Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws: An
 682 empirical analysis of compute-optimal inference for problem-solving with language models, 2024.
 683 URL <https://arxiv.org/abs/2408.00724>.

684 Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
 685 Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou,
 686 Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou, Rongxi-
 687 ang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing
 688 Huang, and Tao Gui. The rise and potential of large language model based agents: A survey, 2023.

689 Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. LESS:
 690 selecting influential data for targeted instruction tuning. In *ICML*. OpenReview.net, 2024.

691 Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P. Lillicrap, Kenji Kawaguchi, and
 692 Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning. *CoRR*,
 693 abs/2405.00451, 2024.

702 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
703 and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
704 answering. In *EMNLP*, pp. 2369–2380. Association for Computational Linguistics, 2018.

705

706 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan Cao.
707 React: Synergizing reasoning and acting in language models. In *ICLR*. OpenReview.net, 2023.

708

709 Zichun Yu, Spandan Das, and Chenyan Xiong. Mates: Model-aware data selection for efficient
710 pretraining with data influence models. In *NeurIPS*, 2024.

711

712 Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, Liqun Li, Si Qin, Yu Kang, Minghua Ma,
713 Guyue Liu, Qingwei Lin, Saravan Rajmohan, Dongmei Zhang, and Qi Zhang. Large language
714 model-brained gui agents: A survey, 2024a.

715

716 Dan Zhang, Sining Zhoubian, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: LLM self-training
717 via process reward guided tree search. *CoRR*, abs/2406.03816, 2024b.

718

719 Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang Li, and Wanli Ouyang. Accessing GPT-4
720 level mathematical olympiad solutions via monte carlo tree self-refine with llama-3 8b. *CoRR*,
721 abs/2406.07394, 2024c.

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756
757 Table 4: Comparison of training costs and performance between DITS and Optima on the 2WMH
758 QA dataset.

Method	Synthesis Budget (Token)	# Samples	Synthesis Cost (GPU Hours)	Training Cost (GPU Hours)	Total Cost (GPU Hours)	Performance (F1 score)
Optima-DPO	1.67×10^7	17000	82	16	98	0.607
Optima-DPO	3.34×10^7	34000	165	30	195	0.610
DITS-DPO	2.00×10^7	8500	98	8	106	0.612

A THEORETICAL ANALYSIS

In this section, we illustrate the relationship between influence scores and model performance, where the selection of the most influential data points maximizes the model’s validation performance. Concretely, we first extend the definition of influence score to a data group $U \subset \mathcal{D}_{tr}$ as:

$$\theta_{\epsilon, U}^* = \arg \min_{\theta} \sum_{z \in \mathcal{D}_{tr}} \frac{1}{|\mathcal{D}_{tr}|} \mathcal{L}_{tr}(z, \theta) + \epsilon \sum_{z \in U} \mathcal{L}_{tr}(z, \theta).$$

Following Koh & Liang (2017), under the first-order approximation, we have

$$\mathcal{I}_{\mathcal{L}_{tr}}(U, \mathcal{D}_{tr}) \stackrel{\text{def}}{=} \frac{d\mathcal{L}_{tr}(U, \theta_{\epsilon, U}^*)}{d\epsilon} \Big|_{\epsilon=0} \approx \sum_{z \in U} \mathcal{I}_{\mathcal{L}_{tr}}(z, \mathcal{D}_{tr}),$$

where the influence score of a group of data points can be represented as the sum of the influence score of individual data points. For DITS, we adopt a similar approximation:

$$\mathcal{I}_{\mathcal{F}_{val}}(U, \mathcal{F}_{val}) \approx \sum_{z \in U} \mathcal{I}_{\mathcal{F}_{val}}(z, \mathcal{D}_{val}).$$

Thus, the selection of the most influential data points maximizes validation performance.

B EFFICIENCY ANALYSIS

In this section, we first provide an empirical computation cost comparison between DITS and Optima. Using the 2WMH QA dataset as an illustrative example, we compare the training costs per iteration across different settings. As shown in Table 4, we can observe that although employing data influence incurs additional costs, we argue that estimating the influence score is more effective in enhancing model performance compared to Optima.

Moreover, we quantify the computational cost of the different influence score estimation methods. For the forward pass of LLM, the computational cost is $2NS + 4LHS^2$, where S is the sequence length, N is the number of model parameters, L is the number of model layers, and H is the embedding dimension of the model. For small S (e.g., 2000), the second term is negligible, making the cost per token $2N$. The backward pass doubles this cost to $4N$. During inference with KV cache, generating one token also costs $2N$.

We compare two classic gradient-based data influence methods, TRAK (Park et al., 2023) and LESS (Xia et al., 2024), under the following assumptions: average sequence length $S = 2000$, validation set size $V = 20$, model parameters $N = 8B$, projection dimension, $d = 8192$ for TRAK and LESS, and $R = 4$ checkpoints for LESS.

The computational costs (in FLOPs) for estimating the influence score of one data point are described in Table 5. As shown in the table, our method exhibits superior efficiency compared to traditional approaches. This advantage primarily stems from the fact that gradient-based methods require gradient computation on validation data and necessitate parameter projection onto a low-dimensional subspace.

810
811 Table 5: The computational costs comparison for estimating the influence score of one data point for
812 different methods.
813

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863	813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863	813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
	Methods	FLOPs
	DITS	$6N \cdot S + 2N \cdot V \cdot S$
	TRAK	$6N \cdot S \cdot V + 2N \cdot V \cdot d + V \cdot d^3$
	LESS	$6N \cdot S \cdot V \cdot R + 2N \cdot V \cdot d \cdot R$
		$FLOPs (10^{15})$
		0.7
		4.6
		18

Algorithm 1 DITS-iSFT-DPO

820 **Require:** Initial model θ_{init} , problem Set \mathcal{D} , validation Set \mathcal{D}_{val} , and max iterations T
 821 **Ensure:** parameter θ_T

822 1: $\theta_0 \leftarrow \theta_{\text{init}}$
 823 2: **for** $t = 1$ to T **do**
 824 3: $\mathcal{D}_t^{SFT} \leftarrow \text{SFTDataCollect}(\theta_{t-1})$ ▷ Following Chen et al. (2024b)
 825 4: $\theta_t \leftarrow \text{SFT}(\mathcal{D}_t^{SFT}, \theta_{\text{init}})$ ▷ Following Chen et al. (2024b)
 826 5: $\mathcal{D}_t^{\text{DPO}} \leftarrow \emptyset$
 827 6: **for all** $p_i \in \mathcal{D}$ **do**
 828 7: $\mathcal{D}_i^{\text{DPO}} \leftarrow \text{MCTS}(\theta_t, p_i)$
 829 8: $\mathcal{I}_{\mathcal{F}_{\text{val}}} \leftarrow \text{DataInfluenceCollect}(\mathcal{D}_{\text{val}})$
 829 9: $\mathcal{D}_t^{\text{DPO}} \leftarrow \mathcal{D}_t^{\text{DPO}} \cup \mathcal{D}_i^{\text{DPO}}$
 830 10: **end for**
 831 11: $\mathcal{D}_t^{\text{DPO}} \leftarrow \text{InfluSelection}(\mathcal{D}_t^{\text{DPO}}, \mathcal{I}_{\mathcal{F}_{\text{val}}})$
 832 12: $\theta_t \leftarrow \text{DPO}(\mathcal{D}_t^{\text{DPO}}, \theta_t)$
 833 13: **end for**
 834 14: **return** θ_T

C ALGORITHM

835
 836
 837
 838
 839 The DITS-iSFT-DPO algorithm (Algorithm 1) iteratively refines a model by alternating between
 840 SFT and DPO. In each iteration, the model is fine-tuned using new data collected via SFT. Then,
 841 DPO training data is generated through MCTS synthesis and filtered using influence scores from a
 842 validation set. The model is updated with DPO to better align with preferences, leading to progressive
 843 improvement.
 844

D METHOD DETAILS**D.1 REWARD FUNCTION**

845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 Following Optima (Chen et al., 2024b), we define each trajectory τ_i is then evaluated using a reward
 function $R : \mathcal{T} \rightarrow \mathbb{R}$:

$$R(\tau_i^j) = R_{\text{task}}(\tau_i^j) - \lambda_{\text{token}} R_{\text{token}}(\tau_i^j) + \lambda_{\text{loss}} \frac{1}{R_{\text{loss}}(\tau_i^j)}. \quad (15)$$

853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 Here, $R_{\text{task}} : \mathcal{T} \rightarrow \mathbb{R}$ is the task-specific performance metric, $R_{\text{token}}(\tau_i^j) = \frac{\#\text{Tokens}(\tau_i^j)}{\max_k(\#\text{Tokens}(\tau_i^k))}$ is
 the normalized token count, and $R_{\text{loss}}(\tau_i^j) = g(\mathcal{L}(\mathcal{M}_{\text{base}}, d_i, \tau_i^j))$ is based on the language modeling
 loss of the base model $\mathcal{M}_{\text{base}}$. The positive coefficients λ_{token} and λ_{loss} are hyper-parameters. More
 details can refer to Optima (Chen et al., 2024b).

D.2 INITIAL DATA FILTERING

864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 For the preference data pairs obtained from the MCTS tree, we follow the Optima (Chen et al.,
 874 2024b) by initially filtering the data pair (s, a_i^h, a_i^l) . Specifically, we select pairs that satisfy: (1)
 875 $R(s, a_i^h) > \lambda_{\text{dpo-filter}}$. (2) $R(s, a_i^h) - R(s, a_i^l) > \lambda_{\text{dpo-diff}}$. (3) For preference pairs starting with the
 876 same problem p , we rank these pairs based on their Q-values and select the top 50% of the pairs.
 877

	HotpotQA	2WMH QA	TrivalQA	CBT	ARC-C	MMLU
<i>DITS-iSFT-DPO</i>						
γ	1	1	1	1	1	1
α	0.5	0.5	0.5	0.5	0.5	0.5
SFT LR	2e-5	2e-5	2e-5	2e-5	1e-6	1e-6
SFT Epoch	2	1	1	1	4	2
SFT Batch Size	32	32	32	32	16	16
λ_{token}	0.6	0.6	0.6	0.6	0.5	0.6
λ_{loss}	1	1	1	1	0.6	0.7
$\lambda_{dpo\text{-}filter}$	0.4	0.4	0.4	0.4	0.45	0.4
$\lambda_{dpo\text{-}diff}$	0.2	0.2	0.2	0.2	0.2	0.2
<i>Iteration 0</i>						
DPO LR	5e-7	5e-7	5e-7	5e-7	5e-7	5e-7
DPO Epoch	1	1	1	1	1	1
DPO Batch Size	64	64	64	64	64	64
β	0.5	0.5	0.7	0.7	0.1	0.1
<i>Iteration 1</i>						
DPO LR	5e-7	5e-7	5e-7	5e-7	5e-7	5e-7
DPO Epoch	1	1	1	1	1	1
DPO Batch Size	64	64	64	64	64	64
β	0.5	0.5	0.7	0.7	0.1	0.1
<i>Iteration 2</i>						
DPO LR	5e-7	5e-7	5e-7	5e-7	5e-7	1e-6
DPO Epoch	1	1	1	1	1	1
DPO Batch Size	64	64	64	64	64	64
β	0.5	0.5	0.7	0.5	0.2	0.1

Table 6: Hyper-parameters used in Table 1.

	HotpotQA	2WMH QA	TrivalQA	CBT	ARC-C	MMLU
<i>DITS-DPO</i>						
γ	1	1	1	1	1	1
α	0.5	0.5	0.5	0.5	0.5	0.5
λ_{token}	0.6	0.6	0.6	0.6	0.5	0.6
λ_{loss}	1	1	1	1	0.6	0.7
$\lambda_{dpo\text{-}filter}$	0.4	0.4	0.4	0.4	0.45	0.4
$\lambda_{dpo\text{-}diff}$	0.2	0.2	0.2	0.2	0.2	0.2
DPO LR	5e-6	5e-7	5e-6	5e-7	5e-7	5e-7
DPO Epoch	1	1	1	1	1	1
DPO Batch Size	64	64	64	64	64	64
β	0.5	0.5	0.7	0.5	0.4	0.1

Table 7: Hyper-parameters used in Table 3.

E TRAINING DETAILS

The hyperparameters we used are shown in Table 6 and Table 7.

F DISTRIBUTION ANALYSIS

We visualize the distributions of Q-values and influence scores on the CBT, TrivalQA, and ARC-C datasets in Figure 4, highlighting the distribution of the top 30% data points selected by our methods with $\gamma = 1$. From the figures, we observe the following: (1) There are discrepancies between the influence score and the Q-value, indicating that the Q-value is not perfectly aligned with training needs. This underscores the importance of incorporating the influence score into both the MCTS

Figure 4: The scatter plot and density plots of Q-values and influence scores for synthetic data. The top 30% of the data selected by DITS is highlighted in red.

Figure 5: The relative performance improvement of DITS-iSFT-DPO across all datasets at different iterations. The best performance of each dataset is set as 1.0.

process and the data selection strategy. (2) The data selected by our method exhibit both high influence scores and Q-values, demonstrating that DITS effectively identifies and selects high-quality data. (3) In the mathematics dataset, the distribution of the influence score is concentrated at several discrete points. This is because the dataset is relatively challenging, and significant model improvements may be required to change the correctness of certain answers. As a result, the metric exhibits a stepwise effect.

G ABLATION STUDY

G.1 ITERATIVE TIMES ANALYSIS

Using the performance of CoT as the baseline, we report the average relative performance improvement of our method, DITS-iSFT-DPO, across all datasets per iteration and present the results in Figure 5. From the figure, we observe that: (1) Our method achieves an average improvement of 91% compared to the single-agent CoT approach and an improvement of 64% over the multi-agent MAD method, demonstrating the effectiveness of our approach. (2) As the number of iterations increases, the average performance continues to improve. Since we start training from the same initial model in each iteration, this indicates that training better models and subsequently synthesizing data can consistently enhance the quality of the generated data and improve the final performance.

G.2 VALIDATION SET SIZE ANALYSIS

To investigate the relationship between DITS and validation set size, we conducted additional experiments on 2WMHQA. As shown in the Figure 6, the performance of DITS-DPO improves with an increasing validation set size, indicating that a larger validation set provides a more accurate estimation. However, since a larger validation set demands a higher synthesis budget, a trade-off is necessary in practical applications.

Figure 6: The effect of hyperparameter validation size V on the performance of DITS.

Table 8: Performance comparison under different selection strategy.

Model	2WMH QA (V=20)	2WMH QA (V=5)
Optima-DPO-Random-Select	60.6	60.6
DITS-DPO-High-Qvalue-High-Influence	61.5	61.4
DITS-DPO-Low-Qvalue-High-Influence	61.7	60.8
DITS-DPO-High-Qvalue-Low-Influence	59.8	60.4

G.3 SELECTION STRATEGY ANALYSIS

The influence scores are estimated on the validation set according to Eq equation 13. A larger size of validation set V yields a more accurate estimation but requires a higher synthesis budget.

1. Data points with high influence scores but low Q-values can still contribute to model training, and we have provided an example in the Appendix H. Empirical results, as shown in the Table 8 ($V=20$), further validate this conclusion. However, when the estimated influence scores contain noise (due to a small V), supplementing the selection with high Q-values can help filter higher-quality data.

2. Data points with high Q-values but low influence scores represent data that the model already handles well. Further training on them risks overfitting and hinders model advancement. Empirically, these data points significantly degrade model performance, performing even worse than random select.

Overall, the contribution of data points to model training fundamentally depends on the influence scores. The correlation coefficient between Q-values and influence scores is approximately 0.1, indicating that traditional methods relying solely on high Q-values are insufficient for selecting optimal training data. When constrained by a limited synthesis budget—leading to less accurate influence score estimation—leveraging high Q-values as an auxiliary filtering criterion can improve data selection.

G.4 RESULTS WITH DIFFERENT BASE MODELS

In this section, we evaluate DITS with Llama-3.1-8B-Instruct (Dubey et al., 2024) and Qwen2.5-7B-Instruct (Team, 2025) across information exchange and debate tasks. As shown in Table 9, we observe that across most datasets, DITS outperforms all baseline methods, demonstrating strong generalization and robustness. Moreover, experiments show that incorporating more powerful base models and applying task-specific fine-tuning further enhances performance, suggesting that stronger base models promote more effective multi-agent cooperation.

H CASE STUDY

As illustrated in Figure 10, we present a comparative case study highlighting the differences in data selection outcomes when using Q-value versus influence score for the same task. The task—"Which

1026 **Table 9: Results with different base models across Information Exchange and Debate tasks.** Best
 1027 results are indicated in **bold**, and second-best results are underlined.

1029	Method	HotpotQA	2WMH QA	CBT	ARC-C	MMLU
1030	Qwen2.5-7B-Instruct					
1031	- Base	39.02	37.92	25.77	4.93	11.40
1032	- Optima-SFT	49.08	58.18	52.63	73.98	57.70
1033	- Optima-DPO	52.19	<u>60.86</u>	<u>61.67</u>	<u>74.05</u>	55.70
1034	- DITS-DPO	<u>51.68</u>	61.81	62.23	74.23	<u>56.30</u>
1035	Llama-3.1-8B-Instruct					
1036	- Base	38.07	35.32	28.27	18.17	16.20
1037	- Optima-SFT	<u>44.60</u>	38.25	53.79	68.26	48.10
1038	- Optima-DPO	<u>44.47</u>	<u>40.12</u>	<u>54.29</u>	<u>74.15</u>	<u>56.20</u>
1039	- DITS-DPO	45.23	41.22	61.44	76.37	58.00

1040 film has the director who was born later, Eyes of the Forest or Stardust on the Sage?"—was analyzed
 1041 through agent dialogues between Alice and Bob.

1042 In the Q-value-selected data pair, the dialogue history efficiently conveyed the directors' birth dates
 1043 within a single interaction round. The chosen response directly identified "Stardust on the Sage"
 1044 as the correct answer using special token markers in the response, achieving an exceptionally high
 1045 Q-value. Meanwhile, the rejected response, although redundant in restating first-round information,
 1046 contained no errors, thereby maintaining a high Q-value. However, the minimal difference between
 1047 the paired responses resulted in low influence scores, limiting their utility for model improvement.

1048 In contrast, the influence-score-selected data pair exhibited incomplete information sharing in the
 1049 dialogue history. The chosen response correctly ruled out Hillyer as the director of "Stardust on the
 1050 Sage" but required more information to get to the correct answer, leading to lower Q-values. More
 1051 critically, the rejected response contained hallucinatory content—an outright factual error falsely
 1052 attributing Katedza as the film's director—which fundamentally obstructed correct reasoning and
 1053 resulted in an extremely low Q-value. This high-contrast pair data holds significant pedagogical value,
 1054 as it juxtaposes valid reasoning with critical hallucinations, thereby achieving superior influence
 1055 scores.

1056 Our analysis reveals that while high-Q-value pairs ensure accurate answers, they may have low
 1057 influence scores and contribute little to multi-agent training. Conversely, data pairs with pronounced
 1058 contrasts in reasoning validity—despite both exhibiting lower Q-values—substantially enhance model
 1059 robustness against hallucinations by explicitly demarcating errors. These findings strongly advocate
 1060 prioritizing influence score metrics over Q-value in both data synthesis and tree search to maximize
 1061 model performance.

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080
10811082 Table 10: Case study to demonstrate the data selected by Q-value and influence score on 2WMH QA
1083 dataset.
10841085
1086

Question	Which film has the director who was born later, Eyes Of The Forest or Stardust On The Sage?
Q-value Select	<pre> Alice: [["Film", "Eyes of the Forest"], ["Director", "Lambert Hillyer"], ["Birth Date", "July 8, 1893"], ["Death Date", "July 5, 1969"], ["Director Born Later?", "0"]] Bob: [["Film", "Stardust On The Sage"], ["Director", "William Morgan"], ["Birth Date", "1895-12-07"], ["Director Born Later?", "1"]] Chosen: Alice: [["Director Born Later?", "1"], ["Conclusion", "<A> Stardust On The Sage"]] Rejected: Alice: [["Director", "Lambert Hillyer"], ["Birth Date", "July 8, 1893"], ["Director Born Later?", "0"]] </pre>
Influence Score Select	<pre> Alice: [["Information", "Lambert Harwood Hillyer was born 1893"], ["Query", "Is Hillyer the director of Eyes Of The Forest?"], ["Information", "Yes"]] Bob: [["Query", "Is Hillyer the director of Stardust On The Sage?"], ["Information", "No"]] Chosen: Alice: [["Query", "Is Hillyer the director of Stardust On The Sage?"], ["Information", "No"]] Rejected: Alice: [["Query", "Who is the director of Stardust On The Sage?"], ["Information", "Rumbi Katedza"], ["Query", "Is Katedza the director of Stardust On The Sage?"], ["Information", "Yes"]] </pre>

1132
1133