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ABSTRACT

Large Language Model (LLM) based multi-agent systems (MAS) show strong
potential for tackling complex tasks through collaborative intelligence. Monte
Carlo Tree Search (MCTS) based methods provide promising approaches for en-
hancing MAS self-training by generating synthetic data, using Q-values to estimate
agent contributions. However, relying solely on Q-values may misalign with the
goal of selecting data most beneficial for MAS improvement. To address this
discrepancy, we propose Data Influence-oriented Tree Search (DITS), a novel
framework that incorporates influence scores to guide both tree search and data
selection in data synthesis. By leveraging influence scores, we effectively identify
the most impactful data for MAS improvement, thereby enhancing model perfor-
mance. Furthermore, we derive a novel influence score estimation method tailored
for non-differentiable metrics, significantly reducing computational overhead by
calculating performance changes on the validation set. Extensive experiments on
three different multi-agent tasks demonstrate the robustness and effectiveness of
the proposed methods. Notably, our findings reveal that allocating more inference
resources to estimate influence scores, rather than Q-values, during data synthesis
can more effectively and efficiently enhance model training. The code is available
at https://anonymous.4open.science/r/DITS-F1C4/.

1 INTRODUCTION

LLM based agents have recently achieved remarkable success across a wide range of tasks Hu et al.
(2024); Wang et al. (2024b); Xi et al. (2023); Zhang et al. (2024a). Leveraging the advanced natural
language understanding and reasoning capabilities of LLMs OpenAI (2023); Wei et al. (2022), these
agents are able to dynamically interact with complex tools and environments to accomplish various
tasks Chen et al. (2023); Yao et al. (2023). Nevertheless, individual agents often face significant
limitations when confronted with complex tasks Shi et al. (2024b). In such scenarios, the multi-
agent system (MAS) (e.g., MetaGPT Hong et al. (2024), AutoGen Wu et al. (2023), Camel Li
et al. (2023)) involving multiple specialized agents, with strategic task allocation and division of
labor, becomes crucial for achieving optimal outcomes Guo et al. (2024). However, optimizing the
collective performance of LLM-based MAS as a cohesive unit and obtaining reward signals for each
agent in the MAS still remain challenging problems Chen et al. (2024b).

To tackle this challenge, leveraging synthetic data for self-training emerges as a highly promising
direction. Monte Carlo Tree Search (MCTS) Guan et al. (2025); Li et al. (2025a) based method
offers a promising approach for synthetic data generation, capable of estimating individual agent
contributions through Q-value Chen et al. (2024b). They collect fine-grained preference pairs,
encouraging high-Q-value actions while suppressing low-Q-value actions via Direct Preference
Optimization (DPO) Rafailov et al. (2023). Despite its potential, the current tree search strategy
is primarily adapted from the inference phase, inheriting its inherent characteristics, which rely on
Q-values to identify informative data. This reliance misaligns with the data synthesis objective, which
focuses on generating data that better facilitates model training. The empirical results presented
in Figure 1 (a) (b) (c) also demonstrate that actions associated with higher Q-values do not always
contribute significantly to the improvement of model performance, where the influence score serves
as a metric to quantify the utility of data in enhancing model performance.
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Figure 1: (a) (b) (c) The scatter plot and density plots of Q-values and influence scores for synthetic
data. The top 30% of the data selected using DITS is highlighted in red. (d) Performance trends with
different data synthesis budgets (Tokens).

To address this issue, we propose Data Influence-oriented Tree Search (DITS), a novel framework
that optimizes MAS through iterative synthetic data generation guided by influence-aware tree search.
Our approach combines MCTS for MAS trajectory simulation with a data influence mechanism that
prioritizes training samples based on their expected contribution to model improvement, rather than
relying solely on traditional Q-value estimates. The influence score quantifies how training data
impacts model outputs, helping identify data points that most improve performance. While traditional
methods rely on training loss as a performance metric, this is less effective for DPO loss due to its
weak correlation with downstream performance Rafailov et al. (2024); Shi et al. (2024c). Hence, we
redefine the influence score based on the changes in non-differentiable metrics on the validation set
and derive a novel estimation method. Our method circumvents computationally intensive gradient
computations across large-scale parameters that are required in traditional approaches.

We validate our approach on seven datasets across three multi-agent tasks: Information Exchange,
Debate Chen et al. (2024b), and DeepSearch Li et al. (2025c). We observe that high Q-value
data may reduce the diversity of the model’s responses and contribute little to improving model
performance. Incorporating data influence is crucial for data synthesis and selection. Our method
outperforms state-of-the-art multi-agent optimization techniques, achieving an average improvement
of 2.7% in single-round iterations, a 2.5% performance enhancement in multi-round iterations for the
Information Exchange task, and 2.6% performance improvement for the DeepSearch task. Within the
same data synthesis budget, our method surpasses traditional approaches, delivering more efficient
scaling of synthesis computation, as shown in Figure 1 (d) and in Appendix B.

We summarize the main contributions as follows:

• We propose DITS, a novel framework that employs influence scores to guide tree search and data
selection. This enables the prioritized selection of preference pairs that contribute more significantly
to performance improvement.

• We derive the influence score estimation method for non-differentiable metrics. This approach
substantially reduces computational overhead through inference computation, enabling more
efficient synthesis time scaling.

• We achieve state-of-the-art performance across multiple multi-agent tasks and demonstrate that the
framework’s capability can be continuously improved through iterative rounds of data synthesis.

2 RELATED WORK

LLM-based multi-agent systems (MAS) have demonstrated remarkable capabilities in addressing
complex problems in various tasks Hong et al. (2024); Islam et al. (2024); Tran et al. (2025). These
systems employ various collaborative strategies, including multi-agent debate Du et al. (2024); Liang
et al. (2024) and role-based division of labor Qian et al. (2024a); Wang et al. (2024d). Researchers
have explored several key approaches to improve the performance of multi-agent systems. One
strategy focuses on expanding the diversity and scale of agents Li et al. (2024a); Qian et al. (2024b);
Wang et al. (2024a), optimizing performance from a network architecture perspective. Another
approach emphasizes enhancing prompt quality, such as refining system memory in frameworks
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like AutoGen Wu et al. (2023) and BiLLP Shi et al. (2024a) or improving instruction design and
few-shot examples in Dspy Khattab et al. (2023); Opsahl-Ong et al. (2024). A third approach involves
fine-tuning the parameters of the large models within the agents, which is the most effective yet
challenging method. Optima Chen et al. (2024b) and MALT Motwani et al. (2024) have taken the
first step in this direction by constructing preference training data pairs through estimating Q-values.
MALT can be viewed as a special case of Optima.

MCTS is an advanced search algorithm capable of effectively balancing exploration and exploitation in
decision-making processes. It gained significant attention following its success in AlphaGo Silver et al.
(2016). Subsequently, researchers have introduced MCTS into LLM reasoning tasks Hao et al. (2023),
giving rise to two primary methodologies. The first approaches employ MCTS during the inference
phase, prioritizing actions with the highest potential to yield correct outcomes Snell et al. (2024);
Wu et al. (2024). The second approaches leverage MCTS during the training phase to synthesize
high-quality training data, with the goal of identifying data that maximizes the improvement in model
performance Qi et al. (2024); Xie et al. (2024); Zhang et al. (2024c;b). These approaches mainly rely
on estimated Q-values to guide the exploration of the synthesis data space.

The influence function, first introduced by Hampel (1974), assesses the impact of individual data
points on model performance and has become a powerful tool for training data valuation. Unlike
alternative approaches such as LLM-based rating methods Liu et al. (2024) or reward function
methods Wang et al. (2024c), the influence function offers distinct advantages by quantifying data
utility through rigorous mathematical analysis of model training dynamics. Recent studies have
extended its use to improve data quality in LLM pre-training through TraceIn Pruthi et al. (2020)
and MATES Yu et al. (2024), for instruction tuning with Montessori-instruct Li et al. (2024b) and
LESS Xia et al. (2024), and for reward modeling with OPORP Min et al. (2025). However, its
potential for MAS data synthesis that maximizes system capability enhancement remains unexplored.
The core challenge in applying influence functions lies in its high computational cost. Classical
methods, such as gradient-based approaches Koh & Liang (2017); Park et al. (2023) and trajectory-
influence based methods Bae et al. (2024), require the computation of billion-level gradients, which
is extremely expensive. For efficient estimation, MATES Yu et al. (2024) probes the oracle data
influence by evaluating the model’s reference loss after training on individual data points. Our
approach extends the reference loss to non-differentiable validation metrics, thereby enabling the
enhancement of data quality through data synthesis.

3 METHOD

In this section, we first formalize the multi-agent task and MCTS-based data synthesis (§ 3.1), then
introduce the data influence-oriented data selection (§ 3.2), and finally present the iterative data
synthesis process (§ 3.3).

3.1 MULTI-AGENT TRAINING DATA SYNTHESIS

Training effective MAS requires high-quality data that reflects complex agent interactions, but
collecting such data in the real world is costly and time-consuming. To overcome this, we utilize
MCTS to simulate interactions and automatically produce preference-labeled training data.

In this work, we model the topology structure for multi-agent collaboration as a directed graph.
Concretely, we denote a feasible topology as G = (V, E), as demonstrated in Figure 2 (a). It is worth
noting that such graph structures can be static or dynamic, with the dynamic variant allowing agents
to govern the information flow in an adaptive manner. We allow the presence of cycles in the graph,
indicating that multiple rounds of information exchange are permitted among agents A. We assume
that our agent network can be linearly traversed in topological order A1 ⊕A2 ⊕ · · · ⊕AM Bondy
& Murty (1976); Gross & Yellen (2005); Qian et al. (2024c), where Am ∈ V . Different Am may
represent the same agent being visited at different time steps. For clarity and convenience, we use
different symbols to distinguish them.

In this way, we could utilize MCTS to synthesize training data for MAS. We mainly follow the
configuration in Optima Chen et al. (2024b) and construct the tree as follows: As shown in Figure 2
(b), the synthesis tree begins with a specific task instruction p.
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Figure 2: Overview of our method. (a) illustrates the traversal of a cyclic agent network in topological
order. We introduce virtual agents to distinguish the same agent in the traversal. (b) showcases the
application of MCTS to generate synthetic multi-agent training data, where the color of each agent
represents the magnitude of the node’s Q-value. (c) depicts the computation process of influence
scores for a non-differentiable metric, highlighting that data points with high Q-values may correspond
to low influence scores.

Selection: We select a node n to expand from the candidate node set, where a node n = (s, a) refers
to an agent Am in state s that takes action a. We use the edit distance to filter out nodes that are
similar to expanded nodes to obtain the candidate node set.

Ncand = {nj |ni ∈ Nexpanded, nj ∈ Nall, Si,j ≥ 0.25}, (1)

where Si,j =
edit_distance(ni,nj)
max(|ni|,|nj |) and edit_distance(ni, nj) represents the edit distance between the

action strings of two nodes. Nall and Nexpanded denotes the whole node set and expanded node set.
Then we select a node for the candidate set Ncand based on softmax distribution of Q-values.

n ∼ Softmax({Q(n)}n∈Ncand), (2)

where Q(n) = Q(s, a) and the softmax distribution balances exploration and exploitation.

Expansion For each selected node n, we denote the new state as s′ = Trans(s, a), where Trans(·) is
the transit function determined by the environment. Then we sample d actions from agents Am+1:

{a′1, · · · , a′d} ∼ Am+1(s
′). (3)

Simulation For each generated action a′i, we simulate the agent interaction τi until termination.

τi = Simulation(Am+2, · · · , AM , s′, a′i). (4)

Meanwhile, we construct all (s, a) pairs in the trajectory as new nodes and add them to Nall.

Backpropagation Once a trajectory τ is completed, we can obtain the trajectory reward R(τ) detailed
in Appendix D. We update the Q-value of nodes with the average rewards from the trajectories set
containing the node.

Q(n) = Q(s, a) =
∑

τ∈T (n)

1

|T (n)|
R(τ), (5)

where T (n) denotes the trajectory set containing the node n. Additionally, due to the complex
interactions among multiple agents, the Q-value estimates obtained from d rollouts may be inaccurate.
Allocating more inference budget in the data synthesis phase may improve the quality of the generated
data and enhance the system’s performance.

We repeat the above process k times and finish the generation process. Then we can construct paired
action preferences for agent Ai at state s by selecting the action ahi with the highest Q-value and the
action ali with the lowest Q-value to form the preference data:

z =
(
s, ahi , a

l
i

)
. (6)
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To update the parameter of agent Ai, we utilize the Direct Preference Optimization (DPO) loss to
encourage the model to prioritize responses that align with preferences ahi over less preferred ones ali.

LDPO = Ez

[
− log σ

(
β

[
log

πθ(a
h
i | s)

πref(ahi | s)
− log

πθ(a
l
i | s)

πref(ali | s)

])]
, (7)

where σ(·) denotes the sigmoid function and πref represents the reference model, i.e. the SFT model.

3.2 DATA INFLUENCE-ORIENTED DATA SELECTION

While improving the accuracy of Q-value estimation can enhance data quality to some extent, it is
both highly inefficient and suboptimal. During the training phase, the primary goal of synthetic data
is to maximize its contribution to model performance improvement, rather than ensuring the data is
correct. Figure 2 (c) reveals an important insight: while the data pair z1 achieves higher Q-values,
the data pair z2 demonstrates greater practical impact on system performance. This suggests that
absolute Q-values may not fully capture data pair’s true contribution.

Hence, in this paper, we introduce the influence score I to quantify the impact of data on the current
agent’s performance. The influence score I was developed to measure the difference in loss when a
data point is assigned a higher weight in the training dataset. Suppose the agent A is parameterized
by θ. We denote the optimal parameters learned by minimizing the training loss Ltr on the dataset
Dtr, with a data point zi assigned an additional weight of ϵ, as:

θ∗ϵ,zi = argmin
θ

∑
zj∈Dtr

1

|Dtr|
Ltr(zj , θ) + ϵLtr(zi, θ). (8)

Under standard assumptions, such as the twice-differentiability and strong convexity of the loss
function Ltr, the influence function can be derived via the chain rule of the derivatives Koh & Liang
(2017). However, the DPO loss does not effectively align with downstream task performance. Our
experiments reveal a weak correlation (less than 0.2) between the DPO loss and performance metrics
F such as F1-score or Accuracy on the validation set. This observation is consistent with findings
reported in Rafailov et al. (2024); Shi et al. (2024c). This indicates that we must redefine the influence
score using the changes of non-differentiable performance metrics on the validation set.

IFval(zi,Dval) :=
Fval(zi, θ

∗
ϵ,zi)−Fval(zi, θ

∗)

ϵ
, (9)

where θ∗ = θ∗ϵ,zi |ϵ=0. Due to non-differentiable metric Fval, the influence function cannot be derived
using gradients. Instead, we use the finite difference method combined with parameter perturbation
to approximate the rate of change. The perturbed optimal parameter θ∗ϵ,zi can be rewritten as:

θ∗ϵ,zi = θ∗ + ϵ∆θ + o(ϵ), (10)
where ∆θ represents the direction of parameter change. Following Yu et al. (2024), the direct is
typically driven by the gradient of the training loss.

∆θ ∝ −∇θLtr(zi, θ
∗). (11)

Since the parameter update is dominated by the training loss gradient, we adopt a one-step gradient
descent update:

θ∗ϵ,zi ≈ θ∗ − ηϵ∇θLtr(zi, θ
∗), (12)

where η is the learning rate, and ϵ is a very small perturbation strength. Combining the finite difference
and parameter update, the influence function is approximated as:

IFval(zi,Dval, θ
∗) ≈ 1

ϵ
[Fval(zi, θ

∗ − ηϵ∇θLtr(zi, θ
∗)) −Fval(zi, θ

∗)] . (13)

Following Koh & Liang (2017), we theoretically illustrate that selecting data points with the highest
influence scores maximizes the model’s validation performance (see Appendix A for details). Finally,
our selection strategy combines Q-values and influence scores to effectively identify the highest-
quality pair data:

H(zi) = IFval(zi,Dval, θ) + γ ·Q(s, ahi ), (14)

where θ denotes the current parameters of agent Am. Finally, after filtering out low-quality data as
described in Chen et al. (2024b), synthetic data are ranked based on the scores, and the Top α are
selected to construct the training dataset Dtr.
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Table 1: Performance comparison across Information Exchange and Debate tasks. Best results
are indicated in bold, and second-best results are underlined. The baseline results are taken from Chen
et al. (2024b).

Information Exchange Debate
Method HotpotQA 2WMH QA TriviaQA CBT ARC-C MMLU
CoT 25.6 20.5 59.8 43.4 65.2 46.0

MAD 28.4 25.9 71.0 53.8 71.4 51.5
AutoForm 28.2 24.7 60.9 35.0 60.2 43.8

Optima-iSFT 54.5 72.4 71.9 71.8 74.1 56.8
Optima-iDPO 52.5 66.1 69.3 66.7 74.5 59.6
Optima-iSFT-DPO 55.6 74.2 77.1 70.1 77.1 60.2

DITS-iSFT-DPO 57.2 76.0 78.4 72.0 77.6 60.5

3.3 ITERATIVE DATA SYNTHESIS

In addition to utilizing the current model for data synthesis, we propose an iterative refinement
approach to generate higher-quality data. By continuously training and enhancing the model, its
capabilities improve, enabling the generation of more valuable synthetic data in subsequent iterations.
At iteration t, we generate the training dataset Dt

tr based on the parameters θt−1 and train a new
model from the initial model using Dt

tr. The corresponding pseudocode can be found in Algorithm 1.

4 EXPERIMENTAL SETUP

In this section, we will introduce the datasets, metrics, and baseline methods in the experiments.

Dataset To validate the collaborative and task allocation capabilities of MAS, we evaluate our
framework DITS in three multi-agent settings: two static scenarios—Information Exchange and
Debate—and one dynamic scenario, DeepSearch. In the information exchange setting, the relevant
context is divided between two agents. The agents must identify the relevant information and
communicate with each other to derive the final answer. This setting includes HotpotQA Yang et al.
(2018), 2WikiMultiHopQA (2WMH QA) Ho et al. (2020), TrivalQA Joshi et al. (2017), and CBT Hill
et al. (2016). In the debate setting, two agents work together to solve a task: one agent proposes
solutions, while the other evaluates their correctness. The debate setting includes ARC’s challenge set
(ARC-C) Bhakthavatsalam et al. (2021) and MMLU Hendrycks et al. (2021). Unlike static scenarios,
where multi-agent collaboration follows a predetermined sequence, the dynamic DeepSearch setting
features agents that autonomously determine and continuously adjust their collaboration strategies
based on the evolving task, enabling truly adaptive and intelligent teamwork. The DeepSearch task
involves collaboration among a task analysis agent, a search intent generation agent, and a web
content analysis agent. The DeepSearch setting includes WebWalker Wu et al. (2025). We use 0-shot
for all benchmarks.

Metrics Following Chen et al. (2024b), we employ the F1 score between final answers and labels as
evaluation metrics for information exchange tasks. For debate tasks, we utilize exact match accuracy
(ARC-C, MMLU). For the deepsearch task, following Wu et al. (2025), we utilize Qwen2.5-72B-
Instruct Team (2025) to verify whether the answers were consistent with the correct answers.

Baseline For static scenarios, we compare our methods with: (1) Chain-of-Thought (CoT) Wei et al.
(2022): single agent pipeline which enables complex reasoning to derive the final answer. (2) Multi-
Agent Debate (MAD) Du et al. (2024): multi-agent pipeline where different reasoning processes are
discussed multiple rounds to arrive at the final answer. (3) AutoForm Chen et al. (2024a): multi-agent
pipeline where the agents utilize non-nature language formats in communication to improve efficiency.
For the dynamic scenario, following Li et al. (2025c), we evaluate several pipeline methods within
this setting, including (1) Direct Reasoning, (2) RAG workflow and its variant Li et al. (2025c), and
(3) Search-o1 Li et al. (2025b). In both scenarios, we compare DITS with multi-agent optimization
method Optima Chen et al. (2024b): a framework that enhances communication efficiency and task

6
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effectiveness through Supervised Finetuning and Direct Preference Optimization. It has three variants,
namely Optima-iSFT, Optima-iDPO, and Optima-iSFT-DPO. We follow the iSFT-DPO variant of
Optima and improve its data synthesis and selection process to obtain DITS-iSFT-DPO.

Implementation Details We utilize the Llama-3-8B-Instruct Dubey et al. (2024) as the base model
for static scenarios. Experimental results for other base models are provided in Appendix G.4. For
the dynamic scenario, we employ the QwQ-32B Team (2024) as the base model due to the task
complexity. The interaction ends when either a special token marks the final answer or the maximum
number of turns is reached. Unless otherwise specified, we set the hyperparameters to α = 0.5
and γ = 1. When collecting influence scores via single-step gradient descent, we utilize LoRA
(Low-Rank Adaptation) Hu et al. (2022). A validation set of size 20 is used in all experimental
settings. We set the expansion time d = 3 and repeat time k = 8 for all datasets. More details are
provided in the Appendix E.

5 EVALUATION RESULTS

In this section, we first evaluate the effectiveness of DITS (§ 5.1). Then we demonstrate the superiority
of data influence through ablation studies (§ 5.2) and explore the impact of synthesis scaling on data
quality (§ 5.3). Finally, we analyze the effects of selection ratio and iteration times (§ 5.4).

5.1 OVERALL PERFORMANCE

The Static Scenarios In Table 1, we compare our method DITS-iSFT-DPO with the baseline ap-
proaches on both the Information Exchange and Debate tasks. Across all datasets, our method
achieves consistent improvement over the baselines, demonstrating the effectiveness and general-
izability of DITS. Compared to the single agent CoT approach, our method delivers an average
performance enhancement of 91%. In the Information Exchange task, our method outperforms the
advanced multi-agent approach Optima-iSFT-DPO by an average margin of 2.5%.

Table 2: Performance comparison on
DeepSearch task. Best results are indi-
cated in bold.

Models WebWalker

Direct Reasoning 4.3
RAG Workflow 31.2

- w/ Query Planning 32.5
- w/ Iterative RAG 31.5

Search-o1 34.1

WebThinker
- Base 37.0
- Optima-SFT 46.0
- Optima-DPO 46.6
- DITS-DPO 47.2

The Dynamic Scenario In dynamic scenarios, we
adopt the WebThinker framework Li et al. (2025c) to
structure the process into a collaborative system com-
prising three agents: a task analysis agent, a search
intent generation agent, and a web content analysis
agent. This framework empowers the agents to au-
tonomously conduct web searches, deeply analyze
web content, and dynamically adjust their collabora-
tion strategies. For search, we use the Serper API1,
retrieving the top 10 search results (k=10). In Ta-
ble 2, we observe that the Webthinker framework for
dynamic multi-agent collaboration outperforms tradi-
tional single-agent approaches and simple RAG meth-
ods. Furthermore, fine-tuning multiple agents within
the collaborative framework enhances coordination
efficiency. Notably, the DITS method surpasses all
baseline models, highlighting its effectiveness and
robustness.

5.2 INFLUENCE FUNCTION ANALYSIS

To provide a detailed comparison of the effectiveness of the influence function, we present the
results of different data selection methods in Table 3. The experiments are conducted in a single
iteration. The Base method represents the multi-agent framework performance with the base model
Llama-3-8B-Instruct. The Optima-DPO and Optima-RPO methods utilize the dataset Dtr sampled
through the MCTS approach in Optima to train the model using DPO loss Rafailov et al. (2023) and
RPO loss Pang et al. (2024), respectively. Random Select refers to training on the data randomly
sampled from Dtr with DPO loss, while Q-value Select involves selecting the top-ranked data based

1https://serper.dev/
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Table 3: Single iteration performances across Information exchange and Debate tasks. Best
results are indicated in bold, and second-best results are underlined.

Information Exchange Debate
Method HotpotQA 2WMH QA TriviaQA CBT ARC-C MMLU
Base 28.2 24.7 60.9 35.0 60.2 43.8
Optima-SFT 45.2 59.7 68.8 50.7 68.2 50.3

Optima-RPO 50.4 60.6 68.4 59.1 72.2 52.1
Optima-DPO 46.6 61.2 70.9 57.2 71.5 51.6

- Random Select 51.5 60.6 70.3 58.0 74.0 51.1
- Q-value Select 50.5 61.1 69.8 58.6 73.7 50.2

DITS-DPO
- γ = 0 53.1 62.2 72.2 59.6 74.2 50.8
- γ = 1 52.8 61.5 71.0 59.1 74.5 52.3

on Q-values for training. DITS employs the influence score in Eq. equation 14 to select the top-ranked
data for training, where the variant γ = 1 integrates both Q-value and influence score, and the variant
γ = 0 relies solely on the influence score for data selection. For a fair comparison, we set the
selection ratio as 50% for all methods.

Ablation Study As shown in Table 3, we observe that (1) The DITS method achieves consistent
performance improvements across all datasets compared to using the full dataset, indicating that
the original MCTS-generated dataset contains noisy and lower-quality data. This suggests that
further enhancing data quality is beneficial for model performance. (2) Selecting data based on
influence scores outperforms both random selection and Q-value-based selection, highlighting its
superior effectiveness in enhancing data quality. To further explore the underlying reasons for this
improvement, the following paragraph provides an in-depth analysis of the data distribution. (3)
For the Information Exchange task, the variant γ = 0 achieves the best performance, while the
variant γ = 1 achieves suboptimal results. In contrast, on the Debate task, the variant γ = 1
generally performs the best. This discrepancy is attributed to the fact that the evaluation metric for
the Information Exchange task is F1-score, which introduces more noise into the estimated Q-values,
resulting in lower quality in selecting data.

Distribution Analysis To provide an in-depth analysis of the advantages of using the influence score
for data selection, we visualize the distributions of Q-values and influence scores on the HotpotQA,
MMLU, and 2WMH QA datasets in Figure 1 (a) (b) (c), highlighting the distribution of the top
30% data points selected by our methods with γ = 1. The visualization results of other datasets can
be found in Figure 4. From the figures, we observe that: (1) There are discrepancies between the
influence score and Q-value, which reveals that Q value is not perfectly aligned with training needs.
This highlights the importance of integrating the influence score into the MCTS process and data
selection process. (2) The data selected by our methods exhibit high influence scores and Q-values,
indicating that DITS is capable of selecting high-quality data.

5.3 SYNTHESIS TIME SCALING

In this study, we empirically demonstrate that increasing the synthesis budget during the data synthesis
phase enhances model performance, as shown in Figure 1 (d) and Appendix B. Specifically, the
figure highlights three key observations: (1) Allocating a larger synthesis budget, which extends
rollout times and increases the number of expansions, will generate more high-quality data, thereby
improving model performance. (2) We validate that allocating resources to influence score estimation
can indeed lead to better performance improvements. This is attributed to the fact that the influence
score is more aligned with training needs. This underscores the capability of our method to enhance
the efficiency of synthesizing training data within a vast action space. (3) The performance gains
from a sixteenfold increase in the synthesis budget are notably smaller compared to the improvements
achieved through three times iterative data synthesis and training, as detailed in Table 1. This
comparison highlights the efficiency and effectiveness of the iterative approach.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.1 0.3 0.5 0.7 1.0
Selection Ratio

0.56

0.58

0.60

0.62
F1

-s
co

re

2WMH QA

0.1 0.3 0.5 0.7 1.0
Selection Ratio

0.67
0.68
0.69
0.70
0.71
0.72
0.73 TrivalQA

Random Value DITS( =1) DITS( =0)

(a)

0

10 Iteration 2

0

10
Iteration 1

0.2 0.0 0.2
Influence Score

0

5 Iteration 0

HotpotQA

0

10 Iteration 2

0

10
Iteration 1

0.5 0.0 0.5
Influence Score

0.0

2.5
Iteration 0

MMLU

(b)

Figure 3: (a) The effect of hyperparameter selection ratio α of DITS on the 2WMH QA and TrivalQA
datasets. (b) The distribution of synthetic data influence scores across different iterations on the
HotpotQA and MMLU datasets, with the mean of the distribution highlighted by a red dashed line.

We also compare DITS with traditional data influence estimation methods. Unlike conventional
gradient-based approaches, DITS offers improved computational efficiency. Additional details are
provided in Appendix B.

5.4 HYPERPARAMETER ANALYSIS

Selection Ratio We first investigate the impact of the selection ratio hyperparameter γ on model
performance. We conduct experiments on two Information Exchange tasks: 2WMH QA and Trival
QA datasets and present the results in Figure 3. We compare Optima-DPO (random Select and
Q-value Select) with DITS (γ = 0) and DITS (γ = 1). From the figure, we observe that: (1)
Across different selection ratios, DITS consistently outperforms Optima-DPO, demonstrating that our
method can select data more beneficial for model training and exhibits strong generalization ability.
(2) When an appropriate selection ratio is chosen, the performance of DITS surpasses that of using
the full dataset, indicating the presence of noise in original MCTS-generated data and the potential
for further improving data quality. (3) When the selection ratio is very small, the performance of all
methods declines, indicating that training set size is also crucial for achieving optimal performance.
This suggests that an overly small yet high-quality dataset may not be sufficient to train a good model.

Iteration Times To gain deeper insights into the iterative data synthesis and training process,
we analyzed the distribution of influence scores for synthetic data across different iterations on
the HotpotQA and MMLU datasets, as shown in Figure 3 (b). The mean of each distribution is
highlighted. From the figure, we observe the following trends: (1) As the number of iterations
increases, the mean influence score gradually rises, indicating an improvement in the quality of
synthetic data. This suggests that the iterative process enhances data quality by refining the model,
creating a positive feedback loop that makes data synthesis more effective. (2) With more iterations,
the distribution of influence scores becomes more concentrated, suggesting that the model trained on
synthetic data achieves more stable quality on specialized tasks. However, this may come at the cost
of reduced data diversity.

We further analyze model performance over training iterations, the impact of validation set size, and
compare data selection strategies based on influence scores. Details are provided in Appendix G.

6 CONCLUSION

In this work, we propose DITS, a novel multi-agent data self-training framework that integrates
influence scores into MCTS to guide tree search and data selection. By leveraging influence scores
and proposing a novel estimation method, we effectively identify the most impactful data for system
improvement, thereby enhancing model performance. Meanwhile, we derive an efficient influence
score estimation method for non-differentiable metrics through gradient-to-inference conversion.
This approach substantially reduces computational overhead through inference computation and
allows us to estimate influence scores to achieve a more efficient data synthesis process. Our approach
introduces new perspectives and scaling dimensions for data synthesis, highlighting the impact of
training data on model performance rather than its correctness.
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7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have taken several steps to provide comprehensive
details on our methods, experiments, and implementations. First, an anonymized link to the source
code has been included as supplementary material, allowing full access to our implementation.
Second, section 3 elaborates on the key ideas and procedural details of our approach. Additionally,
a comprehensive description of all hyperparameter configurations employed in the experiments is
provided in the Section 4 and in Appendix D. We hope these resources will facilitate the replication
of our results and further research.
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Table 4: Comparison of training costs and performance between DITS and Optima on the 2WMH
QA dataset.

Method Synthesis Budget
(Token) # Samples Synthesis Cost

(GPU Hours)
Training Cost
(GPU Hours)

Total Cost
(GPU Hours)

Performance
(F1 score)

Optima-DPO 1.67× 107 17000 82 16 98 0.607

Optima-DPO 3.34× 107 34000 165 30 195 0.610

DITS-DPO 2.00× 107 8500 98 8 106 0.612

A THEORETICAL ANALYSIS

In this section, we illustrate the relationship between influence scores and model performance, where
the selection of the most influential data points maximizes the model’s validation performance.
Concretely, we first extend the definition of influence score to a data group U ⊂ Dtr as:

θ∗ϵ,U = argmin
θ

∑
z∈Dtr

1

|Dtr|
Ltr(z, θ) + ϵ

∑
z∈U

Ltr(z, θ).

Following Koh & Liang (2017), under the first-order approximation, we have

ILtr(U,Dtr)
def
=

dLtr(U, θ
∗
ϵ,U )

dϵ

∣∣∣∣
ϵ=0

≈
∑
z∈U

ILtr(z,Dtr),

where the influence score of a group of data points can be represented as the sum of the influence
score of individual data points. For DITS, we adopt a similar approximation:

IFval(U,Fval) ≈
∑
z∈U

IFval(z,Dval).

Thus, the selection of the most influential data points maximizes validation performance.

B EFFICIENCY ANALYSIS

In this section, we first provide an empirical computation cost comparison between DITS and Optima.
Using the 2WMH QA dataset as an illustrative example, we compare the training costs per iteration
across different settings. As shown in Table 4, we can observe that although employing data influence
incurs additional costs, we argue that estimating the influence score is more effective in enhancing
model performance compared to Optima.

Moreover, we quantify the computational cost of the different influence score estimation methods. For
the forward pass of LLM, the computational cost is 2NS + 4LHS2, where S is the sequence length,
N is the number of model parameters, L is the number of model layers, and H is the embedding
dimension of the model. For small S (e.g., 2000), the second term is negligible, making the cost per
token 2N . The backward pass doubles this cost to 4N . During inference with KV cache, generating
one token also costs 2N .

We compare two classic gradient-based data influence methods, TRAK Park et al. (2023) and
LESS Xia et al. (2024), under the following assumptions: average sequence length S = 2000,
validation set size V = 20, model parameters N = 8B, projection dimension, d = 8192 for TRAK
and LESS, and R = 4 checkpoints for LESS.

The computational costs (in FLOPs) for estimating the influence score of one data point are described
in Table 5. As shown in the table, our method exhibits superior efficiency compared to traditional
approaches. This advantage primarily stems from the fact that gradient-based methods require
gradient computation on validation data and necessitate parameter projection onto a low-dimensional
subspace.
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Table 5: The computational costs comparison for estimating the influence score of one data point for
different methods.

Methods FLOPs FLOPs (1015)
DITS 6N · S + 2N · V · S 0.7
TRAK 6N · S · V + 2N · V · d+ V · d3 4.6
LESS 6N · S · V ·R+ 2N · V · d ·R 18

Algorithm 1 DITS-iSFT-DPO

Require: Initial model θinit, problem Set D, validation Set Dval, and max iterations T
Ensure: parameter θT

1: θ0 ← θinit
2: for t = 1 to T do
3: DSFT

t ← SFTDataCollect(θt−1) ▷ Following Chen et al. (2024b)
4: θt ← SFT(DSFT

t , θinit) ▷ Following Chen et al. (2024b)
5: DDPO

t ← ∅
6: for all pi ∈ D do
7: DDPO

i ← MCTSSynthesis(θt, pi)
8: IFval ← DataInfluenceCollect(Dval)
9: DDPO

t ← DDPO
t ∪ DDPO

i
10: end for
11: DDPO

t ← InfluSelection(DDPO
t , IFval )

12: θt← DPO(DDPO
t , θt)

13: end for
14: return θT

C ALGORITHM

The DITS-iSFT-DPO algorithm (Algorithm 1) iteratively refines a model by alternating between
SFT and DPO. In each iteration, the model is fine-tuned using new data collected via SFT. Then,
DPO training data is generated through MCTS synthesis and filtered using influence scores from a
validation set. The model is updated with DPO to better align with preferences, leading to progressive
improvement.

D METHOD DETAILS

D.1 REWARD FUNCTION

Following Optima Chen et al. (2024b), we define each trajectory τi is then evaluated using a reward
function R : T → R:

R(τ ji ) = Rtask(τ
j
i )− λtokenRtoken(τ

j
i ) + λloss

1

Rloss(τ
j
i )

. (15)

Here, Rtask : T → R is the task-specific performance metric, Rtoken(τ
j
i ) =

#Tokens(τj
i )

maxk({#Tokens(τk
i )}k)

is

the normalized token count, and Rloss(τ
j
i ) = g

(
L(Mbase, di, τ

j
i )
)

is based on the language modeling
loss of the base modelMbase. The positive coefficients λtoken and λloss are hyper-parameters. More
details can refer to Optima Chen et al. (2024b).

D.2 INITIAL DATA FILTERING

For the preference data pairs obtained from the MCTS tree, we follow the Optima Chen et al.
(2024b) by initially filtering the data pair (s, ahi , a

l
i). Specifically, we select pairs that satisfy: (1)

R(s, ahi ) > λdpo-filter. (2) R(s, ahi )− R(s, ali) > λdpo-diff. (3) For preference pairs starting with the
same problem p, we rank these pairs based on their Q-values and select the top 50% of the pairs.
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HotpotQA 2WMH QA TrivalQA CBT ARC-C MMLU
DITS-iSFT-DPO
γ 1 1 1 1 1 1
α 0.5 0.5 0.5 0.5 0.5 0.5
SFT LR 2e-5 2e-5 2e-5 2e-5 1e-6 1e-6
SFT Epoch 2 1 1 1 4 2
SFT Batch Size 32 32 32 32 16 16
λtoken 0.6 0.6 0.6 0.6 0.5 0.6
λloss 1 1 1 1 0.6 0.7
λdpo-filter 0.4 0.4 0.4 0.4 0.45 0.4
λdpo-diff 0.2 0.2 0.2 0.2 0.2 0.2
Iteration 0

DPO LR 5e-7 5e-7 5e-7 5e-7 5e-7 5e-7
DPO Epoch 1 1 1 1 1 1
DPO Batch Size 64 64 64 64 64 64
β 0.5 0.5 0.7 0.7 0.1 0.1

Iteration 1
DPO LR 5e-7 5e-7 5e-7 5e-7 5e-7 5e-7
DPO Epoch 1 1 1 1 1 1
DPO Batch Size 64 64 64 64 64 64
β 0.5 0.5 0.7 0.7 0.1 0.1

Iteration 2
DPO LR 5e-7 5e-7 5e-7 5e-7 5e-7 1e-6
DPO Epoch 1 1 1 1 1 1
DPO Batch Size 64 64 64 64 64 64
β 0.5 0.5 0.7 0.5 0.2 0.1

Table 6: Hyper-parameters used in Table 1.

HotpotQA 2WMH QA TrivalQA CBT ARC-C MMLU
DITS-DPO
γ 1 1 1 1 1 1
α 0.5 0.5 0.5 0.5 0.5 0.5
λtoken 0.6 0.6 0.6 0.6 0.5 0.6
λloss 1 1 1 1 0.6 0.7
λdpo-filter 0.4 0.4 0.4 0.4 0.45 0.4
λdpo-diff 0.2 0.2 0.2 0.2 0.2 0.2
DPO LR 5e-6 5e-7 5e-6 5e-7 5e-7 5e-7
DPO Epoch 1 1 1 1 1 1
DPO Batch Size 64 64 64 64 64 64
β 0.5 0.5 0.7 0.5 0.4 0.1

Table 7: Hyper-parameters used in Table 3.

E TRAINING DETAILS

The hyperparameters we used are shown in Table 6 and Table 7.

F DISTRIBUTION ANALYSIS

We visualize the distributions of Q-values and influence scores on the CBT, TrivalQA, and ARC-C
datasets in Figure 4, highlighting the distribution of the top 30% data points selected by our methods
with γ = 1. From the figures, we observe the following: (1) There are discrepancies between the
influence score and the Q-value, indicating that the Q-value is not perfectly aligned with training
needs. This underscores the importance of incorporating the influence score into both the MCTS
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Figure 4: The scatter plot and density plots of Q-values and influence scores for synthetic data. The
top 30% of the data selected by DITS is highlighted in red.
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Figure 5: The relative performance improvement of DITS-iSFT-DPO across all datasets at different
iterations. The best performance of each dataset is set as 1.0.

process and the data selection strategy. (2) The data selected by our method exhibit both high influence
scores and Q-values, demonstrating that DITS effectively identifies and selects high-quality data. (3)
In the mathematics dataset, the distribution of the influence score is concentrated at several discrete
points. This is because the dataset is relatively challenging, and significant model improvements may
be required to change the correctness of certain answers. As a result, the metric exhibits a stepwise
effect.

G ABLATION STUDY

G.1 ITERATIVE TIMES ANALYSIS

Using the performance of CoT as the baseline, we report the average relative performance improve-
ment of our method, DITS-iSFT-DPO, across all datasets per iteration and present the results in
Figure 5. From the figure, we observe that: (1) Our method achieves an average improvement of 91%
compared to the single-agent CoT approach and an improvement of 64% over the multi-agent MAD
method, demonstrating the effectiveness of our approach. (2) As the number of iterations increases,
the average performance continues to improve. Since we start training from the same initial model
in each iteration, this indicates that training better models and subsequently synthesizing data can
consistently enhance the quality of the generated data and improve the final performance.

G.2 VALIDATION SET SIZE ANALYSIS

To investigate the relationship between DITS and validation set size, we conducted additional
experiments on 2WMHQA. As shown in the Figure 6, the performance of DITS-DPO improves
with an increasing validation set size, indicating that a larger validation set provides a more accurate
estimation. However, since a larger validation set demands a higher synthesis budget, a trade-off is
necessary in practical applications.
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Figure 6: The effect of hyperparameter validation size V on the performance of DITS.

Table 8: Performance comparison under different selection strategy.

Model 2WMH QA (V=20) 2WMH QA (V=5)

Optima-DPO-Random-Select 60.6 60.6
DITS-DPO-High-Qvalue-High-Influence 61.5 61.4
DITS-DPO-Low-Qvalue-High-Influence 61.7 60.8
DITS-DPO-High-Qvalue-Low-Influence 59.8 60.4

G.3 SELECTION STRATEGY ANALYSIS

The influence scores are estimated on the validation set according to Eq equation 13. A larger size of
validation set V yields a more accurate estimation but requires a higher synthesis budget.

1. Data points with high influence scores but low Q-values can still contribute to model training, and
we have provided an example in the Appendix H. Empirical results, as shown in the Table 8 (V= 20),
further validate this conclusion. However, when the estimated influence scores contain noise (due to
a small V), supplementing the selection with high Q-values can help filter higher-quality data.

2. Data points with high Q-values but low influence scores represent data that the model already
handles well. Further training on them risks overfitting and hinders model advancement. Empirically,
these data points significantly degrade model performance, performing even worse than random
select.

Overall, the contribution of data points to model training fundamentally depends on the influence
scores. The correlation coefficient between Q-values and influence scores is approximately 0.1,
indicating that traditional methods relying solely on high Q-values are insufficient for selecting
optimal training data. When constrained by a limited synthesis budget—leading to less accurate
influence score estimation—leveraging high Q-values as an auxiliary filtering criterion can improve
data selection.

G.4 RESULTS WITH DIFFERENT BASE MODELS

In this section, we evaluate DITS with Llama-3.1-8B-Instruct Dubey et al. (2024) and Qwen2.5-
7B-Instruct Team (2025) across information exchange and debate tasks. As shown in Table 9, we
observe that across most datasets, DITS outperforms all baseline methods, demonstrating strong
generalization and robustness. Moreover, experiments show that incorporating more powerful base
models and applying task-specific fine-tuning further enhances performance, suggesting that stronger
base models promote more effective multi-agent cooperation.

H CASE STUDY

As illustrated in Figure 10, we present a comparative case study highlighting the differences in data
selection outcomes when using Q-value versus influence score for the same task. The task—"Which
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Table 9: Results with different base models across Information Exchange and Debate tasks. Best
results are indicated in bold, and second-best results are underlined.

Method HotpotQA 2WMH QA CBT ARC-C MMLU
Qwen2.5-7B-Instruct

- Base 39.02 37.92 25.77 4.93 11.40
- Optima-SFT 49.08 58.18 52.63 73.98 57.70
- Optima-DPO 52.19 60.86 61.67 74.05 55.70
- DITS-DPO 51.68 61.81 62.23 74.23 56.30

Llama-3.1-8B-Instruct
- Base 38.07 35.32 28.27 18.17 16.20
- Optima-SFT 44.60 38.25 53.79 68.26 48.10
- Optima-DPO 44.47 40.12 54.29 74.15 56.20
- DITS-DPO 45.23 41.22 61.44 76.37 58.00

film has the director who was born later, Eyes of the Forest or Stardust on the Sage?"—was analyzed
through agent dialogues between Alice and Bob.

In the Q-value-selected data pair, the dialogue history efficiently conveyed the directors’ birth dates
within a single interaction round. The chosen response directly identified "Stardust on the Sage"
as the correct answer using special token markers in the response, achieving an exceptionally high
Q-value. Meanwhile, the rejected response, although redundant in restating first-round information,
contained no errors, thereby maintaining a high Q-value. However, the minimal difference between
the paired responses resulted in low influence scores, limiting their utility for model improvement.

In contrast, the influence-score-selected data pair exhibited incomplete information sharing in the
dialogue history. The chosen response correctly ruled out Hillyer as the director of "Stardust on the
Sage" but required more information to get to the correct answer, leading to lower Q-values. More
critically, the rejected response contained hallucinatory content—an outright factual error falsely
attributing Katedza as the film’s director—which fundamentally obstructed correct reasoning and
resulted in an extremely low Q-value. This high-contrast pair data holds significant pedagogical value,
as it juxtaposes valid reasoning with critical hallucinations, thereby achieving superior influence
scores.

Our analysis reveals that while high-Q-value pairs ensure accurate answers, they may have low
influence scores and contribute little to multi-agent training. Conversely, data pairs with pronounced
contrasts in reasoning validity—despite both exhibiting lower Q-values—substantially enhance model
robustness against hallucinations by explicitly demarcating errors. These findings strongly advocate
prioritizing influence score metrics over Q-value in both data synthesis and tree search to maximize
model performance.
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Table 10: Case study to demonstrate the data selected by Q-value and influence score on 2WMH QA
dataset.

Question Which film has the director who was born later, Eyes Of The Forest or Stardust On The Sage?

Q-value Select

Alice:
[

[""Film"", ""Eyes of the Forest""],
[""Director"", ""Lambert Hillyer""],
[""Birth Date"", ""July 8, 1893""],
[""Death Date"", ""July 5, 1969""],
[""Director Born Later?"", ""0""]

]
Bob:
[

[""Film"", ""Stardust On The Sage""],
[""Director"", ""William Morgan""],
[""Birth Date"", ""1895-12-07""],
[""Director Born Later?"", ""1""]

]
Chosen:
Alice:
[

[""Director Born Later?"", ""1""],
[""Conclusion"", ""<A> Stardust On The Sage</A>""]

]
Rejected:
Alice:
[

[""Director"", ""Lambert Hillyer""],
[""Birth Date"", ""July 8, 1893""],
[""Director Born Later?"", ""0""]

]

Influence Score
Select

Alice:
[

[""Information"", ""Lambert Harwood Hillyer was born 1893""],
[""Query"", ""Is Hillyer the director of Eyes Of The Forest?""],
[""Information"", ""Yes""]

]
Bob:
[

[""Query"", ""Is Hillyer the director of Stardust On The Sage?""],
[""Information"", ""No""]

]
Chosen:
Alice:
[

[""Query"", ""Is Hillyer the director of Stardust On The Sage?""],
[""Information"", ""No""]

]
Rejected:
Alice:
[

[""Query"", ""Who is the director of Stardust On The Sage?""],
[""Information"", ""Rumbi Katedza""],
[""Query"", ""Is Katedza the director of Stardust On The Sage?""],
[""Information"", ""Yes""]

]
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