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ABSTRACT

Electronic medical records (EMRs) are vital for healthcare research, but their use
is limited by privacy concerns. Synthetic EMR generation offers a promising alter-
native, yet most existing methods merely imitate real records without adhering to
rigorous clinical quality principles. To address this, we introduce LLM-CARe, a
stage-wise cyclic refinement framework that progressively improves EMR quality
through three stages, each targeting a specific granularity: corpus, section and doc-
ument. At each stage, a Critic, an Adviser, and a Reviser collaborate iteratively to
evaluate, provide feedback, and refine the drafts. This structured, multi-stage pro-
cess produces records that better satisfy clinical quality standards. Experiments
show that LLM-CARe significantly enhances EMR quality across all levels com-
pared to strong baselines and yields improved performance on real-world clinical
tasks such as diagnosis prediction. Unlike prior work, our method requires no real
EMR text for training or prompting, demonstrating the effectiveness of stage-wise,
cyclic refinement for generating high-quality, privacy-preserving EMR datasets.

1 INTRODUCTION

Electronic Medical Records (EMRs) are a valuable resource for healthcare research (Ma et al., 2017;
Shang et al., 2019; Shen et al., 2025), offering large-scale, clinically grounded insights that reflect
real-world medical practice. However, the sensitive nature of patient information poses significant
privacy challenges, which severely limit the open sharing and use of real EMRs (Iyengar et al.,
2018; Shah & Khan, 2020; Tertulino et al., 2024). To mitigate these concerns, researchers have
explored synthetic EMR generation methods that aim to preserve data utility while protecting patient
confidentiality (Yan et al., 2022; Murtaza et al., 2023; Yuan et al., 2024; Lin et al., 2025).

Existing EMR synthesis approaches primarily focus on mimicking real records (Lee, 2018; Baowaly
et al., 2018; Yoon et al., 2023), without explicit ensuring clinical soundness. This imitation-based
strategy is risky: real EMRs may contain errors (Aerts et al., 2021; Mohamed et al., 2023), which
can be inadvertently inherited by synthetic data (Figure 1(a)). In practice, EMRs are professional
medical documents whose reliability depends on satisfying key requirements such as completeness,
consistency, and distribution alignment. Synthetic records that fail to meet such requirements may
be less useful—or even misleading—for downstream clinical or research applications.

Recent advances in large language models (LLMs) make them a promising tool for EMR generation,
due to their text generation ability and rich internal knowledge. However, as shown in Figure 1(a),
our preliminary analysis reveals that LLM outputs often exhibit biased distributions—such as unre-
alistic gender patterns—and tend to produce only the most typical presentations of a disease, lacking
coverage of the diverse and less common clinical scenarios seen in practice. These challenges high-
light the need for more structured approaches to harness LLMs effectively for EMR synthesis.

To bridge this gap, we propose LLM-based Critic–Adviser–Reviser Cyclic Refinement (LLM-
CARe), a stage-wise framework that enhances synthetic EMR quality through progressive refine-
ment across corpus, section and document levels. As illustrated in Figure 1(b), LLM-CARe incor-
porates clinical quality principles into the generation process, producing records that align closely
with professional standards of medical documentation. These requirements are organized into con-
crete principles of corpus distributional alignment, section completeness, and document consistency,
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Figure 1: (a) Traditional EMR generation that mimic real EMRs without considering quality often
leads to suboptimal outputs. (b) Our proposed LLM-CARe incorporates cyclic refinement based on
quality principles, synthesizing high-quality EMRs.

forming the basis for refinement at different granularities. Guided by them, LLM-CARe proceeds
through three stages of refinement—corpus, section, and document—each targeting a distinct aspect
of EMR quality. Within every stage, a Critic, an Adviser, and a Reviser collaborate in a cyclic loop:
the Critic evaluates the drafts, the Adviser provides targeted feedback, and the Reviser updates the
records. While the interaction pattern is shared, the role of each agent adapts to the stage: corpus
stage aligns the dataset with realistic distributions, section stage enforces section completeness, and
document stage ensures logical consistency within record. This structured process enables system-
atic enhancement of EMRs from local detail to global corpus characteristics.

To validate the effectiveness of our approach, we conduct two types of evaluations on a real-world
EMR dataset containing 192k records across 302 disease categories. We assess the intrinsic quality
of generated records using a strong LLM as a judge, complemented by statistical comparisons to real
EMRs. Additionally, we evaluate downstream utility by training task-specific models on synthetic
EMRs and testing them on real records across three representative clinical tasks: diagnosis predic-
tion, examination recommendation, and treatment recommendation. Results show that LLM-CARe
consistently outperforms baseline methods in both record quality and task performance. Notably,
our method requires no access to real EMR text for training or prompting during generation, fully
preserving patient privacy while producing clinically meaningful and practically useful data.

Our main contributions are summarized as follows:

• We propose LLM-CARe, a stage-wise multi-agent framework for high-quality EMR syn-
thesis that employs cyclic refinement based on clinical quality principles.

• LLM-CARe consistently improves EMR quality compared to baselines across multiple
levels. Further analysis shows that all three agents play essential and complementary roles.

• Without training or prompting on real EMR text, our synthetic data yields superior down-
stream task performance compared to baselines, ensuring both utility and privacy.

2 RELATED WORK

There has been growing interest in synthesizing EMRs to address privacy concerns and facilitate
secure data sharing. We categorize existing methods into three main paradigms:

GAN-based EMR Generation. Generative adversarial networks (GANs) have been extensively
explored for EMR synthesis. Some works generate EMRs from random noise vectors (Choi et al.,
2017; Baowaly et al., 2018; Chin-Cheong et al., 2019; Yoon et al., 2023), while other methods
incorporate structured conditions—such as diagnosis codes—to guide generation process (Rashidian
et al., 2020; Zhang et al., 2020; Guan et al., 2021; Li et al., 2023). Although effective at modeling
data distributions, these methods typically ignore the clinical quality of the generated records.

Auto-regressive EMR Generation. Another line of research leverages auto-regressive models to
generate EMRs. Recurrent neural networks (RNNs) have been used to model sequential EMR data

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(Lee, 2018; Melamud & Shivade, 2019; Mosquera et al., 2023; Ganguli et al., 2023), and more
recently, transformer-based architectures have been introduced to capture long-range dependencies
within records (Wang et al., 2019; Amin-Nejad et al., 2020; Theodorou et al., 2023; Karami et al.,
2024). While these models excel at learning temporal and structural patterns, they generally treat
EMRs as sequences of tokens without mechanisms to ensure clinically meaningful coherence.

LLM-based EMR Generation. With the emergence of large language models (LLMs), recent
studies have explored prompting LLMs to synthesize EMRs, either by providing brief clinical de-
scriptions or by asking the model to emulate real patient records (Litake et al., 2024; Kumichev
et al., 2024; Abdel-Khalek et al., 2024; Kweon et al., 2024; Lin et al., 2025). While LLMs exhibit
strong capabilities, direct generation often results in diverge from realistic corpus-level distributions.

Recent work has also explored diffusion models for EMR synthesis (Yuan et al., 2023), but existing
methods primarily target numerical representations rather than free-text EMRs, making them less
applicable to the textual EMR generation setting studied in this work.

3 METHOD

Figure 2: Quality principles across three lev-
els with representative criteria.

In this section, we present LLM-CARe, a stage-
wise cyclic refinement framework for enhancing the
quality of synthetic EMRs. Unlike ordinary free-
form text, EMR must satisfy quality requirements to
be clinically meaningful. We focus on five principles
across three levels: demographic typicality (plausi-
ble population patterns), knowledge coverage (suf-
ficient breadth of clinical conditions), content com-
pleteness (each section includes its essential infor-
mation), medical correctness (information is clin-
ically valid), and context consistency (sections do
not contradict one another). Each principle is further
divided into concrete criteria that can be explicitly checked and refined. Figure 2 shows representa-
tive examples, with full details in Appendix A.

To address these requirements, LLM-CARe refines EMRs in three successive stages—corpus, sec-
tion, and document. As illustrated in Figure 3, each stage involves the collaboration of three agents
in a cyclic loop: the Critic, who evaluates drafts against stage-specific objectives; the Adviser, who
pinpoints areas for improvement and suggests strategies; and the Reviser, who incorporates feedback
to update the drafts. This iterative process progressively improves EMRs from global distributional
alignment, to field-level completeness, and finally to record-level coherence.

Figure 3: Overview of our proposed LLM-CARe framework for synthesizing high-quality EMRs.

3.1 INITIAL DRAFT GENERATION

The generation process begins with a generator agent Mgenerator, which produces initial EMR drafts
based on an input prompt x. This prompt specifies key information such as the target primary diag-
nosis and required EMR fields (e.g., chief complaint, history of present illness). For each prompt,
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the generator samples multiple drafts to form a starting draft pool:

D(0) = {E(0)
1 , . . . , E(0)

n }, E
(0)
i ∼ Mgenerator(x) (1)

where D(0) denotes the initial draft set and each E
(0)
i is an EMR instance. These drafts may exhibit

omissions, inconsistencies, or clinically implausible details, but they provide the foundation for
subsequent stage-wise refinement.

3.2 CORPUS-LEVEL CARE

At the dataset scale, high-quality synthetic EMRs must preserve realistic and representative distribu-
tions. We focus on two aspects: Demographic Typicality, ensuring variables such as age and gen-
der reflect real-world patient populations (see Figure 11 for examples), and Knowledge Coverage,
ensuring the corpus contains both common and rare clinical conditions (with detailed dimensions
listed in Table 9). Maintaining these corpus-level properties is essential, as deviations may introduce
demographic bias or insufficient coverage of clinically important but less frequent scenarios. These
goals are addressed through corpus-level agent interactions, where the critic, adviser, and reviser
collaborate to align the overall distribution.

Corpus-level Critic. At the corpus stage, the critic focuses on dataset-wide properties, capturing how
well synthetic EMRs aligns with target distributions. For each attribute ccorpus,k (e.g., age, gender,
or a knowledge dimension), it measures the deviation of the current corpus D(t) from the refer-
ence distribution Td derived from aggregate statistics on the training set, including age and gender
distributions and the frequencies of clinical concepts of interest (e.g., symptoms, medications):

δ
(t)
corpus,k = Mcorpus

critic

(
D(t), Td, ccorpus,k

)
(2)

Corpus-level Adviser. The adviser interprets the critic’s feedback to guide modifications at the
dataset level. Based on the deviations, it identifies a subset of records S(t)

k ⊂ D(t) whose adjustment
would most effectively reduce distributional mismatch, and generates actionable feedback F

(t)
corpus,k:

S(t)
k , F

(t)
corpus,k = Mcorpus

adviser

(
D(t), ccorpus,k, δ

(t)
corpus,k

)
(3)

Corpus-level Reviser. The reviser applies the adviser’s instructions to the selected subset S(t)
k , mod-

ifying or enriching records to better match the reference distribution:

S(t+1)
k = Mcorpus

reviser

(
S(t)
k , F

(t)
corpus,k

)
(4)

3.3 SECTION-LEVEL CARE

At the section scale, high-quality EMRs must ensure Content Completeness: each field should
contain the essential clinical elements expected for its type. Ensuring section-level completeness
is crucial, as omissions in key fields can result in records that misrepresent the patient’s condition
and compromise clinical validity. To operationalize this, we define a set of section-specific criteria
derived from clinical guidelines (see Table 6), and apply cyclic refinement with critic, adviser, and
reviser agents to supplement missing information.

Section-level Critic. The critic operates for each single section. For a section s
(t)
i,m in record E

(t)
i

and a criterion csec,k derived from clinical guidelines, it determines whether the criterion is met:

δ
(t)
sec,i,k = Msec

critic

(
s
(t)
i,m, csec,k

)
, δ

(t)
sec,i,k ∈ {0, 1} (5)

Section-level Adviser. For unmet criteria (δ(t)sec,i,k = 0), the adviser examines the section and designs
specific instructions to indicate exactly which clinical elements should be added or clarified:

F
(t)
sec,i,k = Msec

adviser

(
s
(t)
i,m, csec,k

)
(6)
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Section-level Reviser. Using the adviser’s guidance, the reviser updates the section by incorporating
the recommended elements while preserving existing content and coherence:

s
(t+1)
i,m = Msec

reviser

(
s
(t)
i,m, F

(t)
sec,i,k

)
(7)

Through this cycle, sections are progressively completed and made sufficient for their clinical role.

3.4 DOCUMENT-LEVEL CARE

At the document scale, EMRs must ensure both Medical Correctness—that clinical statements
are valid given the diagnosis—and Context Consistency—that information across sections does
not conflict. Without enforcing these criteria, even small cross-section inconsistencies or incorrect
clinical relations can undermine the internal logic of the record to the point where the overall EMR
becomes clinically unreliable. To make these requirements concrete, we define detailed criteria for
both aspects (see Tables 7 and Table 8). To enforce them, we refine EMRs through document-level
agent interactions, where the focus is on coherence across multiple sections.

Document-level Critic. The critic evaluates each record as a whole, checking constraints across
sections for logical and clinical plausibility. For a consistency criterion cdoc,k, it outputs a judgment:

δ
(t)
doc,i,k = Mdoc

critic

(
E

(t)
i , cdoc,k

)
, δ

(t)
doc,i,k ∈ {0, 1} (8)

Document-level Adviser. When inconsistencies are flagged (δ(t)doc,i,k = 0), the adviser generates
targeted feedback, often suggesting edits to the less influential section to restore harmony:

F
(t)
doc,i,k = Mdoc

adviser

(
E

(t)
i , cdoc,k

)
(9)

Document-level Reviser. Finally, the reviser integrates this feedback to harmonize the conflicting
sections and yield an updated document:

E
(t+1)
i = Mdoc

reviser

(
E

(t)
i , F

(t)
doc,i,k

)
(10)

Through this process, records are refined into coherent, consistent, and clinically valid narratives.

3.5 STAGE-WISE ORDERING

At each stage, the critic, adviser, and reviser interact in cycles to refine the drafts according to
stage-specific principles. Once the drafts have been improved at the current granularity, they are
passed to the next stage, where the agent interaction continues under a different focus. The staged
order is intentional: modifications at one level can influence others, so we proceed from the most
flexible to the most stringent stage. Corpus-level refinement is relatively soft, aiming to align
distributions without requiring exact matches, and is therefore performed first. While document-
level refinement enforces strict logical consistency across sections, where errors could introduce
serious contradictions, thus is performed last. By progressing in this order, each stage builds on the
previous one while minimizing unintended conflicts. Through this staged refinement, the synthetic
EMRs achieve high quality across corpus, section, and document levels.

4 EXPERIMENTAL SETUP

Dataset To validate the effectiveness of our method, we conduct experiments on a real-world
EMR dataset comprising 192k records across 302 diseases. The dataset is carefully de-identified
by removing all sensitive patient information. Unlike many prior studies that focus on synthesizing
a single field in isolation (e.g., chief complaint), we consider multiple fields that together capture
the clinical trajectory from admission to discharge to provide a comprehensive view of each clinical
episode. To ensure consistent disease distribution across subsets, we perform an 8:2 stratified split
based on disease categories, maintaining proportional representation in both the training and test
sets. Further details are provided in Appendix B.
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Baselines We compare our method against two categories of baselines. (1) Non-LLM generative
models. LSTM (Lee, 2018) and mtGAN (Guan et al., 2021) share the same generation setup—both
take the disease label as input and are trained from scratch on the training split to produce full EMRs,
differing only in model architecture (LSTM vs. GAN). (2) LLM-based generators. MedSyn (Ku-
michev et al., 2024) generates EMRs by prompting an LLM with real EMR examples from the
training set along with realted symptoms; LLM Direct generates EMRs from instructions without
quality control; and Self-Refine (Madaan et al., 2023) performs iterative self-critique that evaluates
all quality requirements jointly in each refinement round. None of these LLM-based baselines in-
volve fine-tuning. All approaches are conditioned on disease labels, and generate the same number
of EMRs with same disease distribution as the test set. Details are provided in Appendix C.

Figure 4: Construction of multiple-choice ques-
tions for three downstream tasks from an EMR.

Evaluation Settings We employ two types of
metrics to evaluate synthetic EMRs:

EMR quality is assessed based on the five prin-
ciples introduced above. For medical correct-
ness, content completeness, and context consis-
tency, we use an LLM-based judge that eval-
uates each EMR against our criterion set. For
demographic typicality and knowledge cov-
erage, we compute statistical similarity be-
tween synthetic and real data within each dis-
ease—comparing age and gender distributions,
and measuring the proportion of clinically rel-
evant entities (symptoms, exams, treatments)
covered in synthetic EMRs.

Downstream task performance provides an practical way to evaluate the utility of synthetic data.
Following prior work, we train task-specific models on synthetic EMRs and evaluate their perfor-
mance on real-world test data. This setup reflects a common use case of synthetic data in low-
resource scenarios. We consider three representative tasks of high clinical relevance: diagnosis
prediction, examination recommendation, and treatment recommendation. These tasks collectively
span key aspects of medical decision-making. Each task is framed as a multiple-choice question,
where the model predicts answers based on the chief complaint and history of present illness. Illus-
trative examples are shown in Figure 4. More details about evaluation are provided in Appendix D.

Implementation Details We use Qwen2.5-7B-Instruct (Yang et al., 2025) as the backbone model
for all LLM-based methods. For EMR quality evaluation, we adopt Qwen2.5-32B-Instruct, as larger
models tend to provide more reliable judgments. For downstream tasks, we fine-tune Qwen2.5-
0.5B-Instruct on synthetic EMRs and evaluate performance on real test data. Detailed experimental
settings are provided in Appendix E.

5 EXPERIMENTAL RESULTS AND DISCUSSION

5.1 COMPARISON OF EMR QUALITY

Table 1 summarizes performance across the five quality principles. LLM-CARe consistently out-
performs all baselines on every metric, improving both individual-record quality and corpus-level
characteristics. Among the baselines, LLM-based baselines generally exceed traditional models on
section- and document-level criteria, yet without structured refinement they can underperform on
corpus-level dimensions. Self-Refine provides only minor gains over LLM Direct and remains far
below our method, indicating that generic all-in-one revision cannot satisfy EMRs’ multi-level qual-
ity requirements. This shows that simply employing LLMs is not sufficient to guarantee compre-
hensive EMR quality. In contrast, LLM-CARe achieves strong and balanced improvements across
all levels through principle-guided, stage-wise refinement. To confirm that these findings are not tied
to a specific judge, we also evaluate using additional LLMs (Appendix F). Fine-grained subgroup
analyses across demographic and disease-frequency partitions are provided in Figure 12.
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Table 1: Quality score (%) of generated EMRs across principles, where higher values indicate better
performance. (*) denotes standard deviation calculated from 3 runs with different random seeds.

Type Method Rely on
EMR
Text

Section Level Document Level Corpus Level

Content
Completeness

Medical
Correctness

Context
Consistency

Demographic
Typicality

Knowledge
Coverage

Non-
LLM

LSTM ✓ 70.8(1.1) 65.0(0.4) 21.7(2.3) 93.3(0.6) 70.4(0.4)
mtGAN ✓ 55.8(2.9) 51.8(6.2) 21.4(4.2) 93.6(1.4) 76.3(3.7)

LLM-
Based

MedSyn ✓ 84.8(0.3) 95.3(0.8) 91.9(1.1) 84.1(0.9) 84.5(5.8)
LLM Direct × 77.1(0.1) 90.7(0.2) 87.9(0.1) 77.7(0.1) 73.9(0.2)
Self-Refine × 78.3(0.2) 90.9(0.0) 88.5(0.1) 77.7(0.4) 78.0(2.4)

LLM-CARe(ours) × 91.2(0.4) 98.6(0.0) 93.8(0.1) 96.8(1.4) 94.1(0.1)

Figure 5: Detailed EMR quality evaluation across 3 levels. Abbreviations: CC-Chief Complaint,
HPI-History of Present Illness, HC-Hospital Course, DI-Discharge Instructions, Dx-Diagnosis.

Figure 5 presents a fine-grained breakdown of EMR quality across several representative and clin-
ically important criteria; complete results are provided in Appendix H. Our method achieves the
best or competitive performance on the majority of criteria, demonstrating robustness across diverse
quality dimensions. Notably, MedSyn underperforms even the LLM Direct on some criteria, such
as the completeness of the hospital course. This suggests that real EMRs—used by MedSyn
as in-context exemplars—may contain omissions that propagate into the generated records.
These findings further highlight the limitations of purely imitative approaches and emphasize the
importance of explicitly modeling and enforcing quality standards during generation.

5.2 COMPARISON OF DOWNSTREAM TASK PERFORMANCE

Table 2: Accuracy (%) of three downstream tasks, where micro and macro are averaged across
diseases. (*) denotes standard deviation calculated from 3 runs with different random seeds.

Type Method
Rely on
EMR
Text

Diagnosis
Prediction

Examination
Recommendation

Treatment
Recommendation

Micro Macro Micro Macro Micro Macro

Non-
LLM

LSTM ✓ 74.0(2.0) 73.1(2.0) 75.7(0.3) 76.4(0.2) 56.7(0.6) 50.0(0.7)
mtGAN ✓ 81.9(2.2) 80.9(2.5) 72.4(1.5) 73.4(1.4) 58.6(2.8) 52.9(3.0)

LLM-
Based

MedSyn ✓ 81.7(0.0) 81.7(0.0) 82.9(0.1) 82.2(0.1) 74.5(0.1) 71.3(0.2)
LLM Direct × 81.8(0.0) 81.8(0.2) 64.4(0.0) 65.4(0.0) 60.9(0.2) 59.0(0.3)
Self-Refine × 81.9(0.3) 81.8(0.3) 64.9(0.8) 65.7(0.7) 63.1(0.3) 61.3(0.5)

LLM-CARe(ours) × 82.6(0.3) 82.4(0.4) 85.3(0.1) 85.2(0.1) 76.9(0.3) 74.1(0.5)

To evaluate the utility of synthetic EMRs, we assess their effectiveness in training models for down-
stream tasks. As shown in Table 2, LLM-CARe achieves the best performance across all three
tasks, without training or prompting on any real EMR text. In contrast, most baselines rely on
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real records for model training or in-context examples, which may raise privacy concerns (privacy
evaluation is shown in Appendix I). While downstream tasks do not map directly to quality, the over-
all trend is consistent: methods with higher quality also tend to perform better on downstream tasks.
For example, MedSyn ranks second to ours on both quality and tasks. Notably, baseline methods
perform relatively well on diagnosis but show larger gaps on examination and treatment tasks. We
attribute this to their higher coverage of symptom-related knowledge but limited representation of
clinical concepts related to examinations, procedures, and medications—key to the latter two tasks.
These results highlight the advantage of our structured framework in producing semantically rich
and clinically useful synthetic records. Further experiments using an alternative backbone and an
external dataset are provided in Appendix J, with subgroup analyses shown in Figure 13.

Figure 6: Accuracy distribution across diseases of different methods on three downstream tasks.

Figure 6 further illustrates the performance distribution across diseases. The box plots show that our
method not only achieves higher average performance but also exhibits narrower variance across dis-
eases. This consistency suggests that our approach is broadly effective and robust across a wide
range of clinical conditions. In contrast, some baselines display wide performance fluctuations,
indicating limited generalization to diverse disease types. These findings underscore the reliability
of our method in real-world clinical settings, where robustness across varied diseases is critical.

5.3 ANALYSIS OF PERFORMANCE ACROSS STAGES

Figure 7: Trends on (a) EMR quality and (b) downstream task performance across stages.

Figure 7 shows how EMR quality and downstream task performance evolve through the three refine-
ment stages. Quality dimensions improve most notably in their corresponding stages (e.g., complete-
ness during the section stage). While some dimensions may show temporary fluctuations at other
stages, the staged design—progressing from softer corpus-level constraints to stricter document-
level checks—ensures that all dimensions ultimately exceed direct generation by a clear margin.
For downstream tasks, examination and treatment recommendation benefit most from corpus-level
refinement, since they rely on broad and diverse clinical concepts present in the training data. In
contrast, diagnosis prediction depends more directly on complete histories and symptom–diagnosis
alignment, thus improves primarily at the section and document stages.

5.4 ABLATION STUDY OF MULTI-AGENT COMPONENTS

To assess the contribution of each agent in our framework, we conduct an ablation study by indi-
vidually removing the Critic, Adviser, and Reviser agents. When the Critic is removed, the Adviser
generates feedback for all quality criteria, regardless of whether they are already satisfied. Without
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the Adviser, the Reviser receives only high-level information about unmet criteria, without action-
able suggestions. When the Reviser is removed, the system cannot update existing drafts—instead,
we prompt the Generator to regenerate EMRs using all quality criteria as input.

Figure 8: Impact of removing each agent on EMR quality and downstream task performance.

Figure 8 shows that removing any of the agents leads to a noticeable performance drop in both
EMR quality and downstream tasks. The most significant declines occur when either the Critic or
Reviser is ablated, highlighting two key insights: accurate assessment of the current draft is crucial
for targeted refinement; and large language models struggle to satisfy all quality criteria in a
single generation step, underscoring the need for cyclic refinement. Besides, removing the Adviser
also results in a performance drop, suggesting that concrete, actionable feedback is more effective
than abstract criterion-level input in guiding successful revisions.

5.5 ANALYSIS OF ROBUSTNESS ACROSS LLM BACKBONE

Table 3: EMR quality and downstream performance
(%) across LLM backbones, averaged over principles
and tasks.

Backbone Generation
Strategy

EMR
Quality

Downstream Task
Micro

Average
Macro

Average

Llama3.1
-8B-Instruct

LLM Direct 49.3 54.9 55.8
LLM-CARe 77.5 73.1 71.7

Meditron3
-8B

LLM Direct 53.9 53.7 54.8
LLM-CARe 76.4 73.6 72.4

R1-Distill
-Llama-8B

LLM Direct 55.5 51.3 52.4
LLM-CARe 80.5 72.8 71.5

Table 3 compares our framework with the
LLM Direct baseline across three different
LLM backbones: a general-purpose model
(LLaMA 3.1) (Dubey et al., 2024), a med-
ically pre-trained model (Meditron) (Chen
et al., 2023), and a reasoning-oriented
model (R1) (Guo et al., 2025). Without
any prompt tuning or model-specific adap-
tation, our method consistently improves
both EMR quality and downstream task
performance across all backbones.

Notably, although Meditron is explic-
itly trained for medical domains, it still
struggles to directly generate high-quality EMRs and gains substantial improvements when in-
tegrated into our framework. Similarly, R1 does not significantly outperform the general model
in direct generation, indicating that internal reasoning alone is insufficient to meet the nuanced
requirements of EMR. These findings emphasize the necessity of principle-driven refinement that
complements backbone capabilities and cannot be replaced by pretraining or reasoning alone.

5.6 EFFECT ON INCORPORATING REAL EMR TEXT

Figure 9: Comparison between LLM-CARe and a
variant that incorporates real EMR text as an ex-
ample during initial draft generation.

To further examine whether LLM-CARe ben-
efits from access to real EMR text, we intro-
duce a variant in which the initial draft genera-
tor is given a real EMR as a reference example.
As illustrated in Figure 9, the performance of
this variant remain highly similar to the orig-
inal LLM-CARe. These findings show that
the effectiveness of LLM-CARe arises from its
structured multi-agent cyclic refinement, which
leads to strong performance without relying on
real EMR text. Additional comparisons with
other variants are provided in Appendix K.

5.7 CLINICIAN EVALUATION

9
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Table 4: Agreement between human clinicians and LLM-based
evaluation on EMR quality.

Quality
Level

Clinician-LLM Agreement Inter-Clinician Agreement
Cohen’s
Kappa

Confidence
Interval (95%)

Fleiss’s
Kappa

Confidence
Interval (95%)

Section 0.866 [0.834, 0.896] 0.975 [0.959, 0.988]
Document 0.797 [0.764, 0.829] 0.932 [0.912, 0.950]

Overall 0.833 [0.809, 0.855] 0.950 [0.937, 0.962]

To validate the reliability of
using LLM as a judge, we
conducted a human evaluation
study. A total of 200 syn-
thetic EMRs were sampled (40
from each of five methods) and
independently assessed by four
licensed clinicians, who rated
completeness, consistency, and
correctness for each record. As
shown in Table 4, the agreement
between clinicians and LLM is consistently high (Cohen’s Kappa = 0.833 overall, where values ex-
ceeding 0.8 indicate near-perfect agreement), with tight confidence intervals. Inter-clinician agree-
ment is also strong (Fleiss’s Kappa = 0.950 overall), confirming that the evaluation criteria are
well-defined and consistently interpretable by human experts. Together, these results demonstrate
that the LLM-based evaluation closely aligns with human judgment, supporting its validity as
an efficient proxy for large-scale quality assessment. To ensure the stability of human evaluation,
we gradually expanded the annotated subset from 100 to 200 EMRs and observed consistently stable
agreement levels. Detailed results are reported in Appendix L.

5.8 CASE STUDY

Table 5: Examples of quality issues in synthetic EMRs.
Abbreviations: CC-Chief Complaint, HPI-History of
Present Illness, HC-Hospital Course, Dx-Diagnosis.

Method Example Problem

LSTM Dx: Uterine leiomyomas
Gender: Male

Males do not
have a uterus.

mtGAN HC: Discharged after
feeling stable.

No treatments are
mentioned in HC.

MedSyn CC: Diarrhea for 2 days.
HPI: ... no diarrhea ...

CC mentions diarrhea,
but HPI denies it.

Table 5 presents examples of quality is-
sues that commonly arise when genera-
tion methods lack explicit adherence to
quality standards. These cases reveal that
without structured quality control, gener-
ated EMRs often exhibit missing details,
medical inaccuracies, or inconsistencies.

In contrast, Figure 10 demonstrates how
LLM-CARe progressively improves draft
quality through refinement on different
levels. This underscores the importance
of stage-wise cyclic refinement in producing high-quality EMRs.

Figure 10: Illustration of quality improvements through LLM-CARe. Revisions are marked in blue.

6 CONCLUSION

In this work, we tackle the limitations of existing EMR synthesis methods which mimic real records
without considering quality requirements. To overcome these, we propose LLM-CARe, a stage-
wise cyclic refinement framework driven by the collaboration of Critic, Adviser, and Reviser
agents. Instead of single-pass generation, LLM-CARe progressively enhances drafts through three
dedicated stages: aligning corpus-level distributions, ensuring section-level completeness, and en-
forcing document-level consistency and correctness. Experiments on a large real-world dataset
demonstrate that LLM-CARe substantially improves the quality of EMRs across all granularities.
Moreover, models trained on the refined synthetic corpus achieve superior performance on vari-
ous downstream tasks, highlighting the practical value of our approach. These results show the
effectiveness of LLM-CARe in generating synthetic EMRs that are both high-quality and clinically
meaningful, offering a reliable and privacy-preserving foundation for healthcare AI development.
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. This work focuses on improving the quality of
synthetic EMRs guided by clinical quality principles. The core methodology does not involve train-
ing on actual EMRs. During evaluation, a limited set of test cases was accessed within a secure,
institutional data environment. These records had been fully de-identified by the hosting healthcare
organization and remained within its controlled data management platform. The study did not entail
any active data collection from patients or clinicians. All data usage adhered to institutional policies
and was conducted under the oversight of the relevant data governance framework.

REPRODUCIBILITY STATEMENT

The collection and preprocessing of the EMR dataset are described in Section 4 and Appendix B.
Experimental settings, model configurations, and evaluation protocols are detailed in Section 4 and
Appendix E. The code for our experiments will be publicly released upon publication to further
facilitate reproducibility.
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A DETAILS OF EMR QUALITY PRINCIPLES

In this section, we provide a detailed description of each criterion corresponding to the EMR quality
principles, along with representative examples.

A.1 CONTENT COMPLETENESS

Table 6 lists the criteria used to assess content completeness, which evaluate whether each field
contains all essential information. The criteria follow standard clinical documentation conventions
and use ordinary clinical terms (e.g., “major symptoms” refers to the primary complaints driving the
visit, as opposed to secondary associated manifestations).

Table 6: Description of quality criteria for content completeness, along with representative exam-
ples. Abbreviations: CC-Chief Complaint, HPI-History of Present Illness, HC-Hospital Course,
DI-Discharge Instructions.

Criterion Abbreviation Positive Example Negative Example

Chief complaint
states reason
for admission

CC
Reason

• CC: Cough for 1 day
• CC: Thyroid nodule
noted for 2 months

• CC: Admitted on
2025/05/16

Chief complaint
includes onset time

CC
Onset

• CC: Fever for 6 days
• CC: Chest pain for 1 year,
worsened over past month

• CC: Dizziness
accompanied by nausea
• CC: Poor recent
glycemic control

History of present
illness describes
acuity of onset

HPI
Acuity

• HPI: Sudden-onset
headache 1 week ago
• HPI: Gradual onset of
unsteady gait for 4 months

• HPI: Experienced
headache over a month ago
• HPI: Developed gait
instability recently

History of present
illness mentions
possible causes

HPI
Cause

• HPI: Abdominal pain after
alcohol intake 1 day ago
• HPI: Dizziness for 2 weeks
without obvious cause

• HPI: Sudden right eye
vision loss one week ago
• HPI: Cough onset 3
days ago

History of present
illness lists

major symptoms
and onset time

HPI
Symptom

• HPI: Vomited 4–5 times
over the past half day
• HPI: Poor appetite and
fatigue over past 2 weeks

• HPI: Experienced
dizziness for days

History of present
illness includes

all general conditions

HPI
General

• HPI: Normal mental
status, sleep, appetite, bowel
and bladder function; no
significant weight change

• HPI: Appetite
decreased

Hospital course includes
auxiliary examinations

or laboratory examinations

HC
Examination

• HC: Chest CT revealed
a pulmonary mass lesion
• HC: Admission labs
showed CRP: 12.3 mg/L

• HC: Patient underwent
further examinations
after admission

Hospital course
includes treatment

interventions

HC
Treatment

• HC: Appendectomy
under general anesthesia
• HC: Aspirin given
for antiplatelet therapy

• HC: Given
pharmacological therapy

Discharge instruction
includes medication

dosage and usage

DI
Medication

• DI: Atorvastatin
1 tablet nightly
• DI: Amoxicillin
1g twice daily

• DI: Take antibiotics
regularly

A.2 MEDICAL CORRECTNESS

Table 7 outlines the criteria for medical correctness, which assess whether the clinical content aligns
with the patient’s diagnosis.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Description of quality criteria for medical correctness, along with representative exam-
ples. Abbreviations: CC-Chief Complaint, HPI-History of Present Illness, HC-Hospital Course,
DI-Discharge Instructions, Dx-Diagnosis, PD-Patient Demographics.

Criterion Abbreviation Positive Example Negative Example

Diagnosis
matches the

patient’s gender

Dx-PD
Gender

• Dx: Pregnancy
Gender: Female

• Dx: Pregnancy
Gender: Male

Symptoms in
chief complaint

align with diagnosis

Dx-CC
Symptom

• Dx: Pneumonia
CC: Cough for 1 day

• Dx: Pneumonia
CC: Knee pain for 3 days

Symptoms in history
of present illness

align with diagnosis

Dx-HPI
Symptom

• Dx: Cerebral
infarction
HPI: Sudden slurred
speech 1 day ago

• Dx: Acute
appendicitis
HPI: Sudden blurred
vision 2 weeks ago

Examinations in
hospital course

align with diagnosis

Dx-HC
Examination

• Dx: Pneumonia
HC: Chest CT indicated
pneumonia

• Dx: Cerebral
infarction
HC: Abdominal
ultrasound showed
appendiceal thickening

Medications in
discharge instructions
align with diagnosis

Dx-DI
Medication

• Dx: Type 2 diabetes
DI: Metformin (0.5g),
one tablet twice daily

• Dx: Pneumonia
DI: Insulin injection
before meals

A.3 CONTEXT CONSISTENCY

Table 8 presents the criteria for context consistency, which evaluate whether information across
different EMR sections is logically coherent.

Table 8: Description of quality criteria for context consistency, along with representative examples.
Abbreviations: CC-Chief Complaint, HPI-History of Present Illness, HC-Hospital Course.

Criterion Abbreviation Positive Example Negative Example

Symptoms in chief
complaint are consistent

with those in history
of present illness

CC-HPI
Symptom

• CC: Cough for 1 day
HPI: ... wich cough ...

• CC: Cough for 1 day
HPI: ... wichout cough ...

Onset time in chief
complaint is consistent

with that in history
of present illness

CC-HPI
Onset

• CC: Chest pain for
1 month
HPI: Chest pain over
past 1 month

• CC: Chest pain for
1 month
HPI: Chest pain over
past 2 months

Affected site in history of
present illness is consistent
with the site of examination

or treatment in hospital course

HPI-HC
Site

• HPI: Left leg pain
after a fall
HC: X-ray showed a
fracture of the left leg.

• HPI: Left leg pain
after a fall
HC: X-ray showed a
fracture of the right leg.

A.4 DEMOGRAPHIC TYPICALITY

For demographic typicality, we focus on two key patient attributes: gender and age. We evaluate
whether the distributions of these attributes in the synthetic EMRs align with the target distributions.
Figure 11 illustrates representative examples of gender and age distributions that are aligned with
and deviate from the target distribution.
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Figure 11: Examples of synthetic data distributions that are either consistent or inconsistent with the
target distribution.

A.5 KNOWLEDGE COVERAGE

For knowledge coverage, we focus on five key categories of clinical knowledge: symptoms, auxil-
iary examinations, laboratory examinations, surgeries, and medications. Table 9 lists representative
entities from each category.

Table 9: Knowledge categories and representative entities.

Category Example

Symptom Cough, Fever, Headache, Nausea, ...
Auxiliary Examination Chest CT, Brain MRI, ECG, Abdominal Ultrasound, ...

Laboratory Examination Complete Blood Count, Liver Function Test, C-Reactive Protein, ...
Surgery Appendectomy, Tonsillectomy, Cataract Surgery, Cholecystectomy, ...

Medication Aspirin, Penicillin, Metformin, Atorvastatin, ...

B DETAILS OF DATASET

B.1 DATASET CONSTRUCTION

We conduct our experiments on a large-scale real-world EMR dataset containing 1.82 million de-
identified medical records collected from hospitals. Personally identifiable information (e.g., patient
and clinician names, phone numbers, locations) had already been removed by the data provider,
ensuring compliance with privacy standards. All experiments were conducted on hospital-controlled
infrastructure to ensure data security and prevent risk of privacy leakage.

To ensure data quality, we first remove records that are missing critical information, such as patient
age or gender, primary diagnosis, or any of the four target fields: chief complaint, history of present
illness, hospital course, and discharge instruction. After this filtering step, 905k records remain.

We then apply a length-based filtering criterion to further improve data quality. During inspection,
we found that overly short entries often contain placeholders or incomplete content, while exces-
sively long entries are more likely to include unintelligible text. Therefore, we retain only records
where the chief complaint is under 20 words, and each of the other fields falls within the 10 to 1,000
word range. This step yields a subset of 710k high-quality records.
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Lastly, to ensure the reliability and stability of downstream evaluation, we retain only common
diseases with sufficient data volume. Specifically, we exclude any diagnosis category with fewer
than 500 records. This ensures that each disease has at least 100 samples in the test set after an
80/20 train-test split. Diseases with very few examples can lead to high-variance estimates and lack
statistical significance in evaluation. After this final filtering step, we obtain 192k EMRs spanning
302 distinct disease categories.

B.2 CONSTRUCTION OF DOWNSTREAM TASKS

For all downstream tasks, the correct options are extracted directly from the EMR. For the diagnosis
prediction task, incorrect options are randomly sampled from other diagnoses in the dataset. For the
test and treatment prediction tasks, incorrect options are selected to be incompatible with the gold
diagnosis: we first exclude all tests or treatments that appear in EMRs with the same diagnosis, and
then randomly sample from the remaining pool. Using this approach, we construct training examples
from synthetic EMRs, and evaluate model performance on questions built from real EMRs in the
held-out test set. The diagnosis prediction task contains exactly one question per EMR, yielding 38k
samples in the test set. For examination and treatment recommendation, each extracted examination
or treatment entity forms one question, resulting in 346k and 110k test questions respectively.

C BASELINE IMPLEMENTATION DETAILS

For the non-LLM baselines (LSTM and mtGAN), we trained both models from scratch on the train-
ing set. Each model receives a one-hot disease vector as input and is optimized to generate the
corresponding real EMR, treated as the supervision target.

For the LLM-based baselines (MedSyn, LLM Direct, and Self-Refine), we used the same backbone
model as in LLM-CARe (Qwen2.5-7B-Instruct) to ensure a fair comparison. MedSyn: For each
generation, we randomly sample one real EMR of the target disease from the training set as an
in-context example, and randomly sample five symptoms associated with the disease as additional
cues. The model then generates an EMR in a single pass conditioned on these inputs. LLM Direct:
We generate EMRs using the same initial-draft prompt template as in LLM-CARe, without applying
any refinement or evaluation steps. Self-Refine: We aggregate all section-level and document-level
criteria into a single combined instruction. The model first identifies issues based on this unified
prompt and then produces a revised EMR accordingly, without multi-level decomposition.

D EVALUATION DETAILS

For the LLM-based evaluation of EMR quality, we prompt the model to assess each generated
EMR against the predefined criteria for medical correctness, content completeness, and context
consistency. Each criterion is formulated as a binary classification task—whether a given EMR
satisfies the criterion or not. The model outputs a yes/no response for each criterion per EMR, and
we compute the final score by averaging over all EMRs.

For demographic typicality, we compare the distribution of demographic attributes in synthetic
EMRs to those in the real dataset. For gender, we use the total variation distance (TVD) between
the two distributions. For age, which is a continuous variable, we compute the Wasserstein dis-
tance. Since lower distance values indicate higher similarity, we transform the scores by computing
1 − TVD and 1 − Wasserstein, respectively, so that higher values consistently reflect better quality
across all metrics.

For knowledge coverage, we first extract medical entities associated with each diagnosis from the
real EMRs. We then measure the proportion of these entities that appear in synthetic EMRs with
the same diagnosis. To avoid the complexity and potential noise of semantic matching, we use exact
string-level matching to compare entity presence.

For the downstream task evaluation, we report both macro and micro accuracy. Macro accuracy
averages the model performance across all diagnoses by first computing the accuracy within each
disease category, then averaging across categories. Micro accuracy, in contrast, computes the overall
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accuracy across all samples regardless of diagnosis. This dual evaluation provides a comprehensive
view of model generalizability across frequent and less frequent disease types.

E EXPERIMENTAL DETAILS

E.1 PROMPTS USED FOR EACH AGENT

In this section, we list the prompts used for each agent in our LLM-CARe framework.

Generator

Please generate an electronic medical record according to the following require-
ments:
1. The patient’s primary diagnosis is: [diag].
2. Include only the following sections: ’Gender’, ’Age’, ’Primary Diagnosis’,
’Chief Complaint’, ’History of Present Illness’, ’Hospital Course’, and ’Discharge
Instructions’.
3. Section-specific instructions:
- The Chief Complaint should briefly describe the reason for admission.
- The History of Present Illness should describe the onset and development of the
condition in detail.
- The Hospital Course should mention the examinations and treatments the patient
received.
- The Discharge Instructions should specify post-discharge recommendations,
such as prescribed medications.
4. Output the result in JSON format with the structure: ”Section Name”: ”Section
Content”, where each section content is a single string.

Section-Level Critic

Below is the ’[section name]’ section from an electronic medical record:
[section]
Please determine whether the above ’[section name]’ meets the following require-
ment: [requirement].
Respond in the following JSON format:
{”Meets Requirement”: true/false}

Section-Level Adviser

Below is the ’[section name]’ section from an electronic medical record:
[section]
This section does not meet the following requirement: [requirement]. Please pro-
vide a specific revision suggestion based on the section content, explaining how it
should be modified to meet the requirement.
Respond in the following JSON format:
{”Revision Suggestion”: ”specific suggestion”}

Section-Level Reviser

Below is the ’[section name]’ section from an electronic medical record with an
issue:
[section]
The ’[section name]’ section misses essential content. Please revise the record
based on the following suggestion: [feedback]
Return the result in JSON format using the pattern ”Section Name”: ”Section Con-
tent”, and include only the ”[section name]” section. The content of the section
should be a single string.
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Document-Level Critic

Below is an electronic medical record consisting of multiple sections:
[record]
Please evaluate whether the record satisfies the following requirement: [require-
ment]. Identify any conflicts or implausible statements across sections.
Respond in the following JSON format:
{”Meets Requirement”: true/false}

Document-Level Adviser

The following record has issues violating the requirement: [requirement]:
[record]
Please provide targeted suggestions to resolve the problem. Prioritize changes to
the sections that minimally disrupt overall coherence.
Respond in the following JSON format:
{”Revision Suggestion”: ”specific suggestion”}

Document-Level Reviser

Below is an electronic medical record with flagged issues:
[record]
Please revise the record according to the following suggestion: [feedback].
Return the updated record in JSON format, including all sections. The content of
each section should be a single string.

Corpus-Level Agents: For the corpus-level stage, we use statistical analysis tools as the critic and
adviser rather than LLMs. Therefore, no natural language instructions are required for these agents;
their operations are fully automated and operate on dataset-wide distributions. For the corpus-level
reviser, each sample in the selected subset is modified individually, using the same type of instruc-
tions as the document-level reviser.

E.2 LLM BACKBONES

We use the following pretrained large language models in our experiments:

• Qwen2.5 (Yang et al., 2025): Licensed under the Apache 2.0 License1. We use the model
checkpoints available on Huggingface2.

• LLaMA 3.1 (Dubey et al., 2024): Licensed under the LLaMA 3.1 Community License3.
We use the model checkpoints available on Huggingface4.

• Meditron 3 (Chen et al., 2023): Licensed under the LLaMA 3.1 Community License5. We
use the model checkpoints available on Huggingface6.

• DeepSeek-R1-Distill-Llama (Guo et al., 2025): Licensed under the MIT License7. We
use the model checkpoints available on Huggingface8.

1https://huggingface.co/Qwen/Qwen2.5-7B-Instruct/blob/main/LICENSE
2https://huggingface.co/Qwen
3https://www.llama.com/llama3_1/license/
4https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
5https://www.llama.com/llama3_1/license/
6https://huggingface.co/OpenMeditron/Meditron3-8B
7https://github.com/deepseek-ai/DeepSeek-R1/blob/main/LICENSE
8https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
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E.3 HYPERPARAMETERS

For LLM-CARe and LLM Direct—we adopt the default generation configuration provided with each
model checkpoint. For all refinement stages (corpus, section, and document), the Critic, Adviser,
and Reviser agents are iterated for two cycles before proceeding to the next stage. We empirically
observed that additional iterations beyond two provided negligible improvements in EMR quality
and downstream task performance.

For EMR quality evaluation, we use greedy decoding to ensure deterministic outputs. For down-
stream tasks, we fine-tune Qwen2.5-0.5B-Instruct using the AdamW optimizer with a batch size of
16, a learning rate of 2e-5, and a cosine learning rate scheduler with 5% warmup steps. The model
is fine-tuned for 3 epochs on the synthetic dataset and evaluated on the real test set.

E.4 SOFTWARE

EMR generation with LLMs is conducted using vLLM (Kwon et al., 2023). PyTorch (Paszke et al.,
2019) is used for training and inference of non-LLM baselines. Fine-tuning of downstream task
models is performed using the Huggingface Transformers library (Wolf et al., 2020). Evaluations
are also executed using vLLM.

E.5 COMPUTATIONAL RESOURCES

All experiments—except for EMR quality evaluation—are conducted on NVIDIA RTX 4090 GPU
with 24GB of memory. EMR quality evaluation, which uses Qwen2.5-32B-Instruct, is performed
on NVIDIA A100 GPU with 80GB of memory.

F ROBUSTNESS OF LLM-AS-JUDGE EVALUATION

Table 10: Quality scores evaluated by different LLMs.

Evaluation LLM Method Content
Completeness

Medical
Correctness

Context
Consistency

Qwen2.5-32B

LSTM 70.8 65.0 21.7
mtGAN 55.8 51.8 21.4
MedSyn 84.8 95.3 91.9

LLM Direct 77.1 90.7 87.9
LLM-CARe (ours) 91.2 98.6 93.8

GPT-OSS-20B

LSTM 73.9 88.9 8.9
mtGAN 62.8 87.7 13.4
MedSyn 79.9 97.3 86.9

LLM Direct 81.1 96.7 70.2
LLM-CARe (ours) 93.4 99.0 91.3

Deepseek-V3.2-Exp

LSTM 69.9 72.5 2.6
mtGAN 57.9 64.0 0.7
MedSyn 80.6 97.5 85.0

LLM Direct 79.9 96.8 77.8
LLM-CARe (ours) 91.1 98.5 89.8

To examine whether our intrinsic quality evaluation is robust to the choice of LLM judge, we per-
formed an extended cross-model assessment using three independent evaluators: Qwen2.5-32B,
GPT-OSS-20B (OpenAI, 2025), and DeepSeek-V3.2-Exp (DeepSeek-AI, 2025). Qwen2.5-32B is
our original judge; GPT-OSS-20B was included due to its reported strength in medical-language un-
derstanding tasks, and DeepSeek-V3.2-Exp (API) was added as a large commercial model to further
test evaluation generality across architectures and training regimes. Owing to the computational cost
of the API, DeepSeek evaluation was conducted on 10% sampled data.
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All three evaluators were provided with the same scoring instructions used in our main experiments.
As shown in Table 10, the absolute scores vary across models—as expected due to differences in
calibration and alignment—but the overall ranking pattern remains consistent, with LLM-CARe
achieving the top scores across all intrinsic quality dimensions under all judges. The baselines also
maintain broadly similar relative positions, with only minor ordering differences between closely
performing systems. These results indicate that our evaluation conclusions are not tied to a spe-
cific model family and that LLM-CARe demonstrates robust superiority under multiple independent
evaluators.

G SUBGROUP ANALYSIS ACROSS DEMOGRAPHIC AND DISEASE
FREQUENCY

Figure 12: Subgroup analysis of intrinsic EMR quality.

Figure 13: Subgroup analysis of downstream task performance.

To examine whether LLM-CARe amplifies or mitigates subgroup disparities, we conducted a strat-
ified evaluation across three grouping dimensions: gender, age (0–17, 18–44, 45–64, 65+), and
disease-frequency strata. Figure 12 reports intrinsic EMR quality across subgroups, and Figure 13
shows downstream performance under the same partitions. LLM-CARe consistently achieves the
highest scores across all subgroups, and the variation across demographic and frequency groups is
comparable to or smaller than that of the baselines. These results indicate that LLM-CARe does not
reinforce demographic or clinical biases and maintains robustness across diverse subpopulations,
supporting its applicability to balanced synthetic EMR corpus construction.

H FULL RESULTS OF EMR QUALITY

Figure 14 provides the complete breakdown of EMR quality across all evaluated criteria, extending
the representative results presented in Figure 5 of the main text. These detailed results offer a more
comprehensive view of how different methods perform with respect to each quality dimension.

I PRIVACY EVALUATION VIA MEMBERSHIP INFERENCE ATTACK

Table 11: Membership inference attack
accuracy (closer to 0.50 is better).

Method Attack Accuracy

LSTM 0.499
mtGAN 0.504
MedSyn 0.533

LLM Direct 0.500
LLM-CARe (ours) 0.504

To assess whether synthetic EMRs generated by differ-
ent methods inadvertently reveal information from real
patient records, we conduct a membership inference at-
tack (MIA)—a standard privacy evaluation technique that
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Figure 14: Fine-Grained EMR quality evaluation across three level of criteria. Abbreviations of
EMR sections: CC-Chief Complaint, HPI-History of Present Illness, HC-Hospital Course, DI-
Discharge Instructions, Dx-Diagnosis.

tests whether an attacker can distinguish training exam-
ples from non-members. An accuracy of 0.50 corre-
sponds to random guessing; values close to 0.50 therefore
indicate stronger privacy, as the attacker cannot reliably
infer membership.

Table 11 reports the attack accuracy across all methods. LLM-CARe and LLM Direct both achieve
values near 0.50, as expected, since neither method accesses real EMR text during generation.
LSTM and mtGAN also remain close to 0.50. Although these models are trained on real EMRs,
their limited model capacity—combined with the complexity of multi-section EMRs used in our
setting—reduces their ability to memorize full clinical notes. In contrast, MedSyn, which directly
uses real EMRs as in-context exemplars, exhibits higher attack accuracy, indicating elevated privacy
risk due to closer exposure to specific real records.

These results show that LLM-CARe introduces no observable privacy risk and that its generation
process remains indistinguishable from non-member data, consistent with the fact that it operates
without using any real EMR text.

J ADDITIONAL VALIDATION OF DOWNSTREAM TASK RELIABILITY

To further examine the robustness of downstream task results, we conducted two complementary
evaluations.

Table 12: Downstream task performance using Llama-3.2-1B-Instruct as the backbone model.

Method
Diagnosis
Prediction

Examination
Recommendation

Treatment
Recommendation

Micro Macro Micro Macro Micro Macro

LSTM 68.5 67.1 74.7 75.4 55.6 48.6
mtGAN 78.8 77.7 72.8 73.6 58.9 53.1
MedSyn 77.2 77.8 82.4 81.7 72.0 68.7

LLM Direct 78.9 79.0 61.9 62.8 59.4 57.0
LLM-CARe (ours) 80.1 79.8 83.3 83.2 74.7 71.8

First, we replaced the backbone model used for downstream classifiers and retrained all methods
using Llama-3.2-1B-Instruct. As reported in Table 12, the relative ordering of all methods remained
stable, with LLM-CARe achieving the highest accuracy on diagnosis prediction, examination rec-
ommendation, and treatment recommendation. This consistency under a different model architecture
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indicates that performance gains do not depend on properties of the Qwen family, but instead arise
from the proposed multi-level refinement framework.

Table 13: Diagnosis prediction accuracy on MIMIC-IV-Note dataset.
Method Micro Average Macro Average

LSTM 0.587 0.552
mtGAN 0.589 0.555
MedSyn 0.584 0.571

LLM Direct 0.589 0.532
LLM-CARe (ours) 0.606 0.590

Second, to test whether models benefit from superficial alignment with the textual format of the
generation prompts, we constructed an additional diagnosis-prediction task using MIMIC-IV-Note.
We selected only records corresponding to the same disease categories but originating from a dif-
ferent clinical institution and written in a distinctly different narrative style. All models trained on
synthetic corpora exhibit lower accuracy due to the distributional and stylistic shift, yet LLM-CARe
again achieves the best performance (Table 13), demonstrating that the downstream advantages are
not tied to prompt-format similarity but to improved clinical quality in the synthesized EMRs.

K ROBUSTNESS TO PROMPTING STYLES AND INITIAL DRAFT QUALITY

Table 14: Intrinsic EMR quality under prompt rephrasing and improved initial drafts.

Method Section Level Document Level Corpus Level

Content
Completeness

Medical
Correctness

Context
Consistency

Demographic
Typicality

Knowledge
Coverage

LLM-CARe (ours) 91.2 98.6 93.8 96.8 94.1
+Rephrased Prompts 94.1 98.0 93.8 96.8 95.1
+Better Initial Draft 93.3 98.6 94.0 96.8 96.2

Table 15: Downstream prediction performance (micro/macro accuracy) under prompt and draft per-
turbations.

Method
Diagnosis
Prediction

Examination
Recommendation

Treatment
Recommendation

Micro Macro Micro Macro Micro Macro

LLM-CARe (ours) 82.6 82.4 85.3 85.2 76.9 74.1
+Rephrased Prompts 81.1 80.7 83.4 83.4 75.3 73.0
+Better Initial Draft 82.6 81.8 84.7 84.4 76.8 73.9

We evaluated the stability of LLM-CARe under variations in prompting style and initial draft quality.
First, all agent prompts were substantially rephrased using GPT-5 while preserving only high-level
intent. Second, to test sensitivity to draft quality, we replaced the LLM-Direct drafts with higher-
quality MedSyn drafts. Tables 14 and 15 report intrinsic quality and downstream task performance.

Across both perturbations, numerical differences are small and the overall ranking of methods re-
mains unchanged. This robustness reflects the structure of LLM-CARe: quality requirements are
decomposed into explicit criteria, and each agent operates on a single criterion at a time, making
the refinement cycle insensitive to prompt wording. Likewise, the staged refinement progressively
corrects deficiencies from multiple dimensions, reducing dependence on the initial draft. These
properties together ensure that moderate changes in prompt phrasing or draft quality do not materi-
ally affect the final refined EMRs.
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L DETAILS OF CLINICIAN EVALUATION

L.1 RELIABILITY OF CLINICIAN EVALUATION

Table 16: Agreement between clinicians and LLM-based evaluation across different sample sizes.

# Samples Clinician-LLM Agreement Inter-Clinician Agreement
Cohen’s
Kappa

Confidence
Interval (95%)

Fleiss’s
Kappa

Confidence
Interval (95%)

100 0.837 [0.804, 0.868] 0.947 [0.928, 0.964]
150 0.842 [0.816, 0.868] 0.948 [0.933, 0.962]
200 0.833 [0.809, 0.855] 0.950 [0.937, 0.962]

To ensure that clinician evaluation reflects a broad range of clinical scenarios, all clinician-labeled
samples were obtained through stratified sampling. Diseases were grouped by frequency, and each
group contributed proportionally to the evaluation set. The sampling was likewise balanced across
generation methods, gender, and age groups, ensuring that the annotated EMRs covered both com-
mon and less-common situations and represented diverse demographic and clinical patterns.

To examine the stability of human evaluation, we increased the evaluation size from 100 to 150 and
then to 200 EMRs. As shown in Table 16, clinician–LLM agreement (Cohen’s Kappa) remains con-
sistently above 0.8 across all three subset sizes, and inter-clinician agreement (Fleiss’s Kappa) stays
above 0.9. Confidence intervals narrow as sample size increases, but the agreement values them-
selves remain highly similar, indicating that both human annotations and LLM-based evaluations
are stable and reliable.

L.2 EXAMPLES OF DISAGREEMENT BETWEEN LLM AND CLINICIANS

We present examples of disagreement observed in our human evaluation.

LLM–Clinician Disagreement
Criterion: Discharge instructions should specify both the medication name and its
dosage/usage.
Discharge Instruction: Continue oral antibiotic therapy...
LLM: Correct
Clinician: Wrong

In such cases, the LLM treats non-specific statements (e.g., “continue oral antibiotic therapy”) as
sufficiently informative, whereas clinicians regard them as incomplete because essential details such
as drug name and dosage are missing. This reflects the LLM’s more permissive interpretation of
medication-related content.

Inter–Clinician Disagreement
Criterion: The history of present illness should describe general conditions (diet,
sleep, mental status, bowel/urination, weight change).
History of Present Illness: The patient developed dizziness and fatigue two days
ago... Appetite and sleep are normal; bowel and urination regular; no weight
change.
Clinician A: Correct
Clinician B: Wrong

Here, clinicians differ in how they interpret the requirement to document mental status. Some con-
sider dizziness and fatigue to implicitly convey reduced alertness, whereas others expect an explicit
statement. Such differences reflect variation in documentation style rather than clinical competence
and represent a common source of mild disagreement in narrative EMR review.
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L.3 EVALUATION SCHEMA

To verify the reliability of our evaluation, we asked licensed clinicians to assess the quality of syn-
thetic EMRs. Clinicians were instructed to read each synthetic record carefully and then answer sev-
eral yes/no questions regarding completeness, consistency, and correctness. The questions were
designed to be simple binary judgments to ensure reproducibility. The detailed labeling instructions
are as follows:

Please review the synthetic EMR text shown below.

Synthetic EMR:
Gender: Male
Age: 45 years old
Primary Diagnosis: Pneumonia
Chief Complaint: Fever and cough for 3 days . . .
History of Present Illness: Patient developed fever three days ago, accompanied
by cough and mild chest pain . . .
. . .

Based on the above synthetic EMR, please answer the following questions. For
each question, mark your judgment in the blank: Yes if the requirement is satis-
fied, No otherwise.
Completeness

• Does the history of present illness include major symptoms? Answer:
(Yes/No)

• . . .
Consistency

• Are the symptoms in the chief complaint consistent with those in the history
of present illness? Answer: (Yes/No)

• . . .
Correctness

• Is the patient’s sex valid given the diagnosis? Answer: (Yes/No)
• . . .

Confidence interval estimation: To quantify agreement, we report Cohen’s Kappa and Fleiss’s
Kappa with 95% confidence intervals. The intervals were computed using a non-parametric boot-
strap procedure with 10,000 resamples, which provides uncertainty estimates without assuming nor-
mality of the statistics.

M COMPUTATIONAL COST

On a single RTX 4090 GPU, producing 38k synthetic EMRs takes approximately 13 hours
with direct generation, whereas LLM-CARe requires about 36 hours, which includes initial draft
generation and all three refinement stages. Although the framework performs three levels of
Critic–Adviser–Reviser interactions, the actual overhead is moderated by two factors. First, the
outputs of these agents are much shorter than full EMRs, making each refinement step relatively
lightweight. Second, if a draft already satisfies the criteria at a given stage, it bypasses subsequent
agents, avoiding unnecessary iterations. Moreover, the computational cost scales linearly with the
number of EMRs, and the cyclic refinement process can be parallelized across disease categories,
making the framework feasible for scaling to larger corpora.

N USE OF LLMS

In preparing this manuscript, we used LLM solely as an assistive tool for text refinement, including
grammar correction, and language polishing. The research ideas, experimental design, implementa-
tion, and analysis were entirely conceived and executed by the authors.
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