

000 CRITIC-ADVISER-REVISER CYCLIC REFINEMENT: 001 002 TOWARDS HIGH-QUALITY EMR CORPUS GENERA- 003 TION WITH LLMs 004

005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010

011 ABSTRACT 012

013 Electronic medical records (EMRs) are vital for healthcare research, but their use
014 is limited by privacy concerns. Synthetic EMR generation offers a promising alter-
015 native, yet most existing methods merely imitate real records without adhering to
016 rigorous clinical quality principles. To address this, we introduce LLM-CARe, a
017 stage-wise cyclic refinement framework that progressively improves EMR quality
018 through three stages, each targeting a specific granularity: corpus, section and doc-
019 ument. At each stage, a Critic, an Adviser, and a Reviser collaborate iteratively to
020 evaluate, provide feedback, and refine the drafts. This structured, multi-stage pro-
021 cess produces records that better satisfy clinical quality standards. Experiments
022 show that LLM-CARe significantly enhances EMR quality across all levels com-
023 pared to strong baselines and yields improved performance on real-world clinical
024 tasks such as diagnosis prediction. Unlike prior work, our method requires no real
025 EMR text for training or prompting, demonstrating the effectiveness of stage-wise,
026 cyclic refinement for generating high-quality, privacy-preserving EMR datasets.
027

028 1 INTRODUCTION

029 Electronic Medical Records (EMRs) are a valuable resource for healthcare research (Ma et al., 2017;
030 Shang et al., 2019; Shen et al., 2025), offering large-scale, clinically grounded insights that reflect
031 real-world medical practice. However, the sensitive nature of patient information poses significant
032 privacy challenges, which severely limit the open sharing and use of real EMRs (Iyengar et al.,
033 2018; Shah & Khan, 2020; Tertulino et al., 2024). To mitigate these concerns, researchers have
034 explored synthetic EMR generation methods that aim to preserve data utility while protecting patient
035 confidentiality (Yan et al., 2022; Murtaza et al., 2023; Yuan et al., 2024; Lin et al., 2025).

036 Existing EMR synthesis approaches primarily focus on mimicking real records (Lee, 2018; Baowaly
037 et al., 2018; Yoon et al., 2023), without explicit ensuring clinical soundness. This imitation-based
038 strategy is risky: real EMRs may contain errors (Aerts et al., 2021; Mohamed et al., 2023), which
039 can be inadvertently inherited by synthetic data (Figure 1(a)). In practice, EMRs are professional
040 medical documents whose reliability depends on satisfying key requirements such as completeness,
041 consistency, and distribution alignment. Synthetic records that fail to meet such requirements may
042 be less useful—or even misleading—for downstream clinical or research applications.

043 Recent advances in large language models (LLMs) make them a promising tool for EMR generation,
044 due to their text generation ability and rich internal knowledge. However, as shown in Figure 1(a),
045 our preliminary analysis reveals that LLM outputs often exhibit biased distributions—such as unre-
046 alistic gender patterns—and **tend to produce only the most typical presentations of a disease, lacking**
047 **coverage of the diverse and less common clinical scenarios seen in practice**. These challenges high-
048 light the need for more structured approaches to harness LLMs effectively for EMR synthesis.

049 To bridge this gap, we propose **LLM**-based Critic–Adviser–Reviser Cyclic Refinement (**LLM-**
050 **CARe**), a stage-wise framework that enhances synthetic EMR quality through progressive refine-
051 ment across corpus, section and document levels. As illustrated in Figure 1(b), LLM-CARe incor-
052 porates clinical quality principles into the generation process, producing records that align closely
053 with professional standards of medical documentation. These requirements are organized into con-
crete principles of corpus distributional alignment, section completeness, and document consistency,

Figure 1: (a) Traditional EMR generation that mimic real EMRs without considering quality often leads to suboptimal outputs. (b) Our proposed LLM-CARE incorporates cyclic refinement based on quality principles, synthesizing high-quality EMRs.

forming the basis for refinement at different granularities. Guided by them, LLM-CARE proceeds through three stages of refinement—corpus, section, and document—each targeting a distinct aspect of EMR quality. Within every stage, a Critic, an Adviser, and a Reviser collaborate in a cyclic loop: the Critic evaluates the drafts, the Adviser provides targeted feedback, and the Reviser updates the records. While the interaction pattern is shared, the role of each agent adapts to the stage: corpus stage aligns the dataset with realistic distributions, section stage enforces section completeness, and document stage ensures logical consistency within record. This structured process enables systematic enhancement of EMRs from local detail to global corpus characteristics.

To validate the effectiveness of our approach, we conduct two types of evaluations on a real-world EMR dataset containing 192k records across 302 disease categories. We assess the intrinsic quality of generated records using a strong LLM as a judge, complemented by statistical comparisons to real EMRs. Additionally, we evaluate downstream utility by training task-specific models on synthetic EMRs and testing them on real records across three representative clinical tasks: diagnosis prediction, examination recommendation, and treatment recommendation. Results show that LLM-CARE consistently outperforms baseline methods in both record quality and task performance. Notably, our method requires no access to real EMR text for training or prompting during generation, fully preserving patient privacy while producing clinically meaningful and practically useful data.

Our main contributions are summarized as follows:

- We propose **LLM-CARE**, a stage-wise multi-agent framework for high-quality EMR synthesis that employs cyclic refinement based on clinical quality principles.
- LLM-CARE consistently improves EMR quality compared to baselines across multiple levels. Further analysis shows that all three agents play essential and complementary roles.
- Without training or prompting on real EMR text, our synthetic data yields superior downstream task performance compared to baselines, ensuring both utility and privacy.

2 RELATED WORK

There has been growing interest in synthesizing EMRs to address privacy concerns and facilitate secure data sharing. We categorize existing methods into three main paradigms:

GAN-based EMR Generation. Generative adversarial networks (GANs) have been extensively explored for EMR synthesis. Some works generate EMRs from random noise vectors (Choi et al., 2017; Baowaly et al., 2018; Chin-Cheong et al., 2019; Yoon et al., 2023), while other methods incorporate structured conditions—such as diagnosis codes—to guide generation process (Rashidian et al., 2020; Zhang et al., 2020; Guan et al., 2021; Li et al., 2023). Although effective at modeling data distributions, these methods typically ignore the clinical quality of the generated records.

Auto-regressive EMR Generation. Another line of research leverages auto-regressive models to generate EMRs. Recurrent neural networks (RNNs) have been used to model sequential EMR data

(Lee, 2018; Melamud & Shivade, 2019; Mosquera et al., 2023; Ganguli et al., 2023), and more recently, transformer-based architectures have been introduced to capture long-range dependencies within records (Wang et al., 2019; Amin-Nejad et al., 2020; Theodorou et al., 2023; Karami et al., 2024). While these models excel at learning temporal and structural patterns, they generally treat EMRs as sequences of tokens without mechanisms to ensure clinically meaningful coherence.

LLM-based EMR Generation. With the emergence of large language models (LLMs), recent studies have explored prompting LLMs to synthesize EMRs, either by providing brief clinical descriptions or by asking the model to emulate real patient records (Litake et al., 2024; Kumichev et al., 2024; Abdel-Khalek et al., 2024; Kweon et al., 2024; Lin et al., 2025). While LLMs exhibit strong capabilities, direct generation often results in divergence from realistic corpus-level distributions.

Recent work has also explored diffusion models for EMR synthesis (Yuan et al., 2023), but existing methods primarily target numerical representations rather than free-text EMRs, making them less applicable to the textual EMR generation setting studied in this work.

3 METHOD

In this section, we present **LLM-CARe**, a stage-wise cyclic refinement framework for enhancing the quality of synthetic EMRs. Unlike ordinary free-form text, EMR must satisfy quality requirements to be clinically meaningful. We focus on five principles across three levels: **demographic typicality** (plausible population patterns), **knowledge coverage** (sufficient breadth of clinical conditions), **content completeness** (each section includes its essential information), **medical correctness** (information is clinically valid), and **context consistency** (sections do not contradict one another). Each principle is further divided into concrete criteria that can be explicitly checked and refined. Figure 2 shows representative examples, with full details in Appendix A.

To address these requirements, LLM-CARe refines EMRs in three successive stages—corpus, section, and document. As illustrated in Figure 3, each stage involves the collaboration of three agents in a cyclic loop: the *Critic*, who evaluates drafts against stage-specific objectives; the *Adviser*, who pinpoints areas for improvement and suggests strategies; and the *Reviser*, who incorporates feedback to update the drafts. This iterative process progressively improves EMRs from global distributional alignment, to field-level completeness, and finally to record-level coherence.

Level	Principle	Example of Criteria
Corpus	Demographic Typicality	The gender ratio of synthetic data should align with real populations.
	Knowledge Coverage	The synthetic dataset should cover comprehensive symptoms.
Section	Content Completeness	The chief complaint should state the reason for admission.
	Medical Correctness	The diagnosis should be valid given the patient's gender.
Document	Context Consistency	Symptoms in chief complaint and history of present illness should align.

Figure 2: Quality principles across three levels with representative criteria.

Figure 3: Overview of our proposed LLM-CARe framework for synthesizing high-quality EMRs.

3.1 INITIAL DRAFT GENERATION

The generation process begins with a *generator* agent $\mathcal{M}_{\text{generator}}$, which produces initial EMR drafts based on an input prompt x . This prompt specifies key information such as the target primary diagnosis and required EMR fields (e.g., chief complaint, history of present illness). For each prompt,

162 the generator samples multiple drafts to form a starting draft pool:
 163

$$\mathcal{D}^{(0)} = \{E_1^{(0)}, \dots, E_n^{(0)}\}, \quad E_i^{(0)} \sim \mathcal{M}_{\text{generator}}(x) \quad (1)$$

164 where $\mathcal{D}^{(0)}$ denotes the initial draft set and each $E_i^{(0)}$ is an EMR instance. These drafts may exhibit
 165 omissions, inconsistencies, or clinically implausible details, but they provide the foundation for
 166 subsequent stage-wise refinement.

169
 170 **3.2 CORPUS-LEVEL CARE**

171 At the dataset scale, high-quality synthetic EMRs must preserve realistic and representative distributions.
 172 We focus on two aspects: **Demographic Typicality**, ensuring variables such as age and gender reflect real-world patient populations (see Figure 11 for examples), and **Knowledge Coverage**,
 173 ensuring the corpus contains both common and rare clinical conditions (with detailed dimensions
 174 listed in Table 9). Maintaining these corpus-level properties is essential, as deviations may introduce
 175 demographic bias or insufficient coverage of clinically important but less frequent scenarios. These
 176 goals are addressed through corpus-level agent interactions, where the critic, adviser, and reviser
 177 collaborate to align the overall distribution.

178 *Corpus-level Critic.* At the corpus stage, the critic focuses on dataset-wide properties, capturing how
 179 well synthetic EMRs aligns with target distributions. For each attribute $c_{\text{corpus},k}$ (e.g., age, gender,
 180 or a knowledge dimension), it measures the deviation of the current corpus $\mathcal{D}^{(t)}$ from the **reference distribution**
 181 \mathcal{T}_d derived from aggregate statistics on the training set, including age and gender
 182 distributions and the frequencies of clinical concepts of interest (e.g., symptoms, medications):
 183

$$\delta_{\text{corpus},k}^{(t)} = \mathcal{M}_{\text{critic}}^{\text{corpus}} \left(\mathcal{D}^{(t)}, \mathcal{T}_d, c_{\text{corpus},k} \right) \quad (2)$$

184 *Corpus-level Adviser.* The adviser interprets the critic’s feedback to guide modifications at the
 185 dataset level. Based on the deviations, it identifies a subset of records $\mathcal{S}_k^{(t)} \subset \mathcal{D}^{(t)}$ whose adjustment
 186 would most effectively reduce distributional mismatch, and generates actionable feedback $F_{\text{corpus},k}^{(t)}$:
 187

$$\mathcal{S}_k^{(t)}, F_{\text{corpus},k}^{(t)} = \mathcal{M}_{\text{adviser}}^{\text{corpus}} \left(\mathcal{D}^{(t)}, c_{\text{corpus},k}, \delta_{\text{corpus},k}^{(t)} \right) \quad (3)$$

188 *Corpus-level Reviser.* The reviser applies the adviser’s instructions to the selected subset $\mathcal{S}_k^{(t)}$, mod-
 189 ifying or enriching records to better match the reference distribution:
 190

$$\mathcal{S}_k^{(t+1)} = \mathcal{M}_{\text{reviser}}^{\text{corpus}} \left(\mathcal{S}_k^{(t)}, F_{\text{corpus},k}^{(t)} \right) \quad (4)$$

191
 192 **3.3 SECTION-LEVEL CARE**

193 At the section scale, high-quality EMRs must ensure **Content Completeness**: each field should
 194 contain the essential clinical elements expected for its type. Ensuring section-level completeness
 195 is crucial, as omissions in key fields can result in records that misrepresent the patient’s condition
 196 and compromise clinical validity. To operationalize this, we define a set of section-specific criteria
 197 derived from clinical guidelines (see Table 6), and apply cyclic refinement with critic, adviser, and
 198 reviser agents to supplement missing information.

199 *Section-level Critic.* The critic operates for each single section. For a section $s_{i,m}^{(t)}$ in record $E_i^{(t)}$
 200 and a criterion $c_{\text{sec},k}$ derived from clinical guidelines, it determines whether the criterion is met:
 201

$$\delta_{\text{sec},i,k}^{(t)} = \mathcal{M}_{\text{critic}}^{\text{sec}} \left(s_{i,m}^{(t)}, c_{\text{sec},k} \right), \quad \delta_{\text{sec},i,k}^{(t)} \in \{0, 1\} \quad (5)$$

212 *Section-level Adviser.* For unmet criteria ($\delta_{\text{sec},i,k}^{(t)} = 0$), the adviser examines the section and designs
 213 specific instructions to indicate exactly which clinical elements should be added or clarified:
 214

$$F_{\text{sec},i,k}^{(t)} = \mathcal{M}_{\text{adviser}}^{\text{sec}} \left(s_{i,m}^{(t)}, c_{\text{sec},k} \right) \quad (6)$$

216 *Section-level Reviser.* Using the adviser’s guidance, the reviser updates the section by incorporating
 217 the recommended elements while preserving existing content and coherence:
 218

$$219 \quad s_{i,m}^{(t+1)} = \mathcal{M}_{\text{reviser}}^{\text{sec}}(s_{i,m}^{(t)}, F_{\text{sec},i,k}^{(t)}) \quad (7)$$

221 Through this cycle, sections are progressively completed and made sufficient for their clinical role.
 222

223 3.4 DOCUMENT-LEVEL CARE

225 At the document scale, EMRs must ensure both **Medical Correctness**—that clinical statements
 226 are valid given the diagnosis—and **Context Consistency**—that information across sections does
 227 not conflict. Without enforcing these criteria, even small cross-section inconsistencies or incorrect
 228 clinical relations can undermine the internal logic of the record to the point where the overall EMR
 229 becomes clinically unreliable. To make these requirements concrete, we define detailed criteria for
 230 both aspects (see Tables 7 and Table 8). To enforce them, we refine EMRs through document-level
 231 agent interactions, where the focus is on coherence across multiple sections.

232 *Document-level Critic.* The critic evaluates each record as a whole, checking constraints across
 233 sections for logical and clinical plausibility. For a consistency criterion $c_{\text{doc},k}$, it outputs a judgment:

$$234 \quad \delta_{\text{doc},i,k}^{(t)} = \mathcal{M}_{\text{critic}}^{\text{doc}}(E_i^{(t)}, c_{\text{doc},k}), \quad \delta_{\text{doc},i,k}^{(t)} \in \{0, 1\} \quad (8)$$

237 *Document-level Adviser.* When inconsistencies are flagged ($\delta_{\text{doc},i,k}^{(t)} = 0$), the adviser generates
 238 targeted feedback, often suggesting edits to the less influential section to restore harmony:

$$240 \quad F_{\text{doc},i,k}^{(t)} = \mathcal{M}_{\text{adviser}}^{\text{doc}}(E_i^{(t)}, c_{\text{doc},k}) \quad (9)$$

242 *Document-level Reviser.* Finally, the reviser integrates this feedback to harmonize the conflicting
 243 sections and yield an updated document:

$$245 \quad E_i^{(t+1)} = \mathcal{M}_{\text{reviser}}^{\text{doc}}(E_i^{(t)}, F_{\text{doc},i,k}^{(t)}) \quad (10)$$

247 Through this process, records are refined into coherent, consistent, and clinically valid narratives.
 248

249 3.5 STAGE-WISE ORDERING

250 At each stage, the critic, adviser, and reviser interact in cycles to refine the drafts according to
 251 stage-specific principles. Once the drafts have been improved at the current granularity, they are
 252 passed to the next stage, where the agent interaction continues under a different focus. The staged
 253 order is intentional: modifications at one level can influence others, so we proceed **from the most**
 254 **flexible to the most stringent stage**. Corpus-level refinement is relatively soft, aiming to align
 255 distributions without requiring exact matches, and is therefore performed first. While document-
 256 level refinement enforces strict logical consistency across sections, where errors could introduce
 257 serious contradictions, thus is performed last. By progressing in this order, each stage builds on the
 258 previous one while minimizing unintended conflicts. Through this staged refinement, the synthetic
 259 EMRs achieve high quality across corpus, section, and document levels.

261 4 EXPERIMENTAL SETUP

263 **Dataset** To validate the effectiveness of our method, we conduct experiments on a real-world
 264 EMR dataset comprising 192k records across 302 diseases. The dataset is carefully de-identified
 265 by removing all sensitive patient information. Unlike many prior studies that focus on synthesizing
 266 a single field in isolation (e.g., chief complaint), we consider multiple fields that together capture
 267 the clinical trajectory from admission to discharge to provide a comprehensive view of each clinical
 268 episode. To ensure consistent disease distribution across subsets, we perform an 8:2 stratified split
 269 based on disease categories, maintaining proportional representation in both the training and test
 sets. Further details are provided in Appendix B.

270 **Baselines** We compare our method against two categories of baselines. **(1) Non-LLM generative**
 271 **models.** **LSTM** (Lee, 2018) and **mtGAN** (Guan et al., 2021) share the same generation setup—both
 272 take the disease label as input and are trained from scratch on the training split to produce full EMRs,
 273 differing only in model architecture (LSTM vs. GAN). **(2) LLM-based generators.** **MedSyn** (Ku-
 274 michev et al., 2024) generates EMRs by prompting an LLM with real EMR examples from the
 275 training set along with real symptoms; **LLM Direct** generates EMRs from instructions without
 276 quality control; and **Self-Refine** (Madaan et al., 2023) performs iterative self-critique that evaluates
 277 all quality requirements jointly in each refinement round. None of these LLM-based baselines in-
 278 volve fine-tuning. All approaches are conditioned on disease labels, and generate the same number
 279 of EMRs with same disease distribution as the test set. Details are provided in Appendix C.

280
 281 **Evaluation Settings** We employ two types of
 282 metrics to evaluate synthetic EMRs:

283 **EMR quality** is assessed based on the five prin-
 284 ciples introduced above. For medical correct-
 285 ness, content completeness, and context con-
 286 sistency, we use an LLM-based judge that eval-
 287 uates each EMR against our criterion set. For
 288 demographic typicality and knowledge cov-
 289 erage, we compute statistical similarity be-
 290 tween synthetic and real data within each dis-
 291 ease—comparing age and gender distributions,
 292 and measuring the proportion of clinically rel-
 293 evant entities (symptoms, exams, treatments)
 294 covered in synthetic EMRs.

295 **Downstream task performance** provides a practical way to evaluate the utility of synthetic data.
 296 Following prior work, we train task-specific models on synthetic EMRs and evaluate their per-
 297 formance on real-world test data. This setup reflects a common use case of synthetic data in low-
 298 resource scenarios. We consider three representative tasks of high clinical relevance: diagnosis
 299 prediction, examination recommendation, and treatment recommendation. These tasks collectively
 300 span key aspects of medical decision-making. Each task is framed as a multiple-choice question,
 301 where the model predicts answers based on the chief complaint and history of present illness. Illus-
 302 trative examples are shown in Figure 4. More details about evaluation are provided in Appendix D.

303
 304 **Implementation Details** We use Qwen2.5-7B-Instruct (Yang et al., 2025) as the backbone model
 305 for all LLM-based methods. For EMR quality evaluation, we adopt Qwen2.5-32B-Instruct, as larger
 306 models tend to provide more reliable judgments. For downstream tasks, we fine-tune Qwen2.5-
 307 0.5B-Instruct on synthetic EMRs and evaluate performance on real test data. Detailed experimental
 308 settings are provided in Appendix E.

310 5 EXPERIMENTAL RESULTS AND DISCUSSION

311 5.1 COMPARISON OF EMR QUALITY

312 Table 1 summarizes performance across the five quality principles. LLM-CARe consistently out-
 313 performs all baselines on every metric, improving both individual-record quality and corpus-level
 314 characteristics. Among the baselines, LLM-based baselines generally exceed traditional models on
 315 section- and document-level criteria, yet without structured refinement they can underperform on
 316 corpus-level dimensions. Self-Refine provides only minor gains over LLM Direct and remains far
 317 below our method, indicating that generic all-in-one revision cannot satisfy EMRs’ multi-level qual-
 318 ity requirements. This shows that **simply employing LLMs is not sufficient to guarantee compre-**
 319 **hensive EMR quality.** In contrast, LLM-CARe achieves strong and balanced improvements across
 320 all levels through principle-guided, stage-wise refinement. **To confirm that these findings are not tied**
 321 **to a specific judge, we also evaluate using additional LLMs (Appendix F).** Fine-grained subgroup
 322 analyses across demographic and disease-frequency partitions are provided in Figure 12.

323 Figure 4: Construction of multiple-choice ques-
 324 tions for three downstream tasks from an EMR.

324
 325 Table 1: Quality score (%) of generated EMRs across principles, where higher values indicate better
 326 performance. (*) denotes standard deviation calculated from 3 runs with different random seeds.

328 Type	329 Method	330 Rely on 331 EMR 332 Text	333 Section Level		334 Document Level		335 Corpus Level	
			336 Content 337 Completeness	338 Medical 339 Correctness	339 Context 340 Consistency	340 Demographic 341 Typicality	341 Knowledge 342 Coverage	342
331 Non- 332 LLM	333 LSTM 334 mtGAN	335 ✓	336 70.8(1.1)	337 65.0(0.4)	338 21.7(2.3)	339 93.3(0.6)	340 70.4(0.4)	341
333 LLM- 334 Based	335 MedSyn	336 ✓	337 55.8(2.9)	338 51.8(6.2)	339 21.4(4.2)	340 93.6(1.4)	341 76.3(3.7)	342
	335 LLM Direct	336 ×	337 84.8(0.3)	338 95.3(0.8)	339 91.9(1.1)	340 84.1(0.9)	341 84.5(5.8)	342
	335 Self-Refine	336 ×	337 77.1(0.1)	338 90.7(0.2)	339 87.9(0.1)	340 77.7(0.1)	341 73.9(0.2)	342
335 LLM-CARe(ours)		336 ×	337 78.3(0.2)	338 90.9(0.0)	339 88.5(0.1)	340 77.7(0.4)	341 78.0(2.4)	342
		336 91.2(0.4)		337 98.6(0.0)	338 93.8(0.1)	339 96.8(1.4)	340 94.1(0.1)	341

343 Figure 5: Detailed EMR quality evaluation across 3 levels. Abbreviations: CC-Chief Complaint,
 344 HPI-History of Present Illness, HC-Hospital Course, DI-Discharge Instructions, Dx-Diagnosis.

351 Figure 5 presents a fine-grained breakdown of EMR quality across several representative and clin-
 352 ically important criteria; complete results are provided in Appendix H. Our method achieves the
 353 best or competitive performance on the majority of criteria, demonstrating robustness across diverse
 354 quality dimensions. Notably, MedSyn underperforms even the LLM Direct on some criteria, such
 355 as the completeness of the hospital course. **This suggests that real EMRs—used by MedSyn**
 356 **as in-context exemplars—may contain omissions that propagate into the generated records.**
 357 These findings further highlight the limitations of purely imitative approaches and emphasize the
 358 importance of explicitly modeling and enforcing quality standards during generation.

360 5.2 COMPARISON OF DOWNSTREAM TASK PERFORMANCE

363 Table 2: Accuracy (%) of three downstream tasks, where micro and macro are averaged across
 364 diseases. (*) denotes standard deviation calculated from 3 runs with different random seeds.

365 Type	366 Method	367 Rely on 368 EMR 369 Text	370 Diagnosis 371 Prediction		372 Examination 373 Recommendation		374 Treatment 375 Recommendation	
			376 Micro	377 Macro	378 Micro	379 Macro	380 Micro	381 Macro
369 Non- 370 LLM	371 LSTM 372 mtGAN	373 ✓	374 74.0(2.0)	375 73.1(2.0)	376 75.7(0.3)	377 76.4(0.2)	378 56.7(0.6)	379 50.0(0.7)
371 LLM- 372 Based	373 MedSyn	374 ✓	375 81.9(2.2)	376 80.9(2.5)	377 72.4(1.5)	378 73.4(1.4)	379 58.6(2.8)	380 52.9(3.0)
	373 LLM Direct	374 ×	375 81.7(0.0)	376 81.7(0.0)	377 82.9(0.1)	378 82.2(0.1)	379 74.5(0.1)	380 71.3(0.2)
	373 Self-Refine	374 ×	375 81.9(0.3)	376 81.8(0.3)	377 64.9(0.8)	378 65.7(0.7)	379 63.1(0.3)	380 61.3(0.5)
373 LLM-CARe(ours)		374 82.6(0.3)		375 82.4(0.4)	376 85.3(0.1)	377 85.2(0.1)	378 76.9(0.3)	379 74.1(0.5)

376 To evaluate the utility of synthetic EMRs, we assess their effectiveness in training models for down-
 377 stream tasks. As shown in Table 2, **LLM-CARe achieves the best performance across all three**
 378 **tasks, without training or prompting on any real EMR text.** In contrast, most baselines rely on

real records for model training or in-context examples, which may raise privacy concerns (privacy evaluation is shown in Appendix I). While downstream tasks do not map directly to quality, the overall trend is consistent: methods with higher quality also tend to perform better on downstream tasks. For example, MedSyn ranks second to ours on both quality and tasks. Notably, baseline methods perform relatively well on diagnosis but show larger gaps on examination and treatment tasks. We attribute this to their higher coverage of symptom-related knowledge but limited representation of clinical concepts related to examinations, procedures, and medications—key to the latter two tasks. These results highlight the advantage of our structured framework in producing semantically rich and clinically useful synthetic records. Further experiments using an alternative backbone and an external dataset are provided in Appendix J, with subgroup analyses shown in Figure 13.

Figure 6: Accuracy distribution across diseases of different methods on three downstream tasks.

Figure 6 further illustrates the performance distribution across diseases. The box plots show that our method not only achieves higher average performance but also exhibits narrower variance across diseases. This consistency suggests that **our approach is broadly effective and robust across a wide range of clinical conditions**. In contrast, some baselines display wide performance fluctuations, indicating limited generalization to diverse disease types. These findings underscore the reliability of our method in real-world clinical settings, where robustness across varied diseases is critical.

5.3 ANALYSIS OF PERFORMANCE ACROSS STAGES

Figure 7: Trends on (a) EMR quality and (b) downstream task performance across stages.

Figure 7 shows how EMR quality and downstream task performance evolve through the three refinement stages. Quality dimensions improve most notably in their corresponding stages (e.g., completeness during the section stage). While some dimensions may show temporary fluctuations at other stages, the staged design—progressing from softer corpus-level constraints to stricter document-level checks—ensures that all dimensions ultimately exceed direct generation by a clear margin. For downstream tasks, examination and treatment recommendation benefit most from corpus-level refinement, since they rely on broad and diverse clinical concepts present in the training data. In contrast, diagnosis prediction depends more directly on complete histories and symptom–diagnosis alignment, thus improves primarily at the section and document stages.

5.4 ABLATION STUDY OF MULTI-AGENT COMPONENTS

To assess the contribution of each agent in our framework, we conduct an ablation study by individually removing the Critic, Adviser, and Reviser agents. When the Critic is removed, the Adviser generates feedback for all quality criteria, regardless of whether they are already satisfied. Without

the Adviser, the Reviser receives only high-level information about unmet criteria, without actionable suggestions. When the Reviser is removed, the system cannot update existing drafts—instead, we prompt the Generator to regenerate EMRs using all quality criteria as input.

Figure 8: Impact of removing each agent on EMR quality and downstream task performance.

Figure 8 shows that removing any of the agents leads to a noticeable performance drop in both EMR quality and downstream tasks. The most significant declines occur when either the Critic or Reviser is ablated, highlighting two key insights: accurate assessment of the current draft is crucial for targeted refinement; and **large language models struggle to satisfy all quality criteria in a single generation step**, underscoring the need for cyclic refinement. Besides, removing the Adviser also results in a performance drop, suggesting that concrete, actionable feedback is more effective than abstract criterion-level input in guiding successful revisions.

5.5 ANALYSIS OF ROBUSTNESS ACROSS LLM BACKBONE

Table 3 compares our framework with the LLM Direct baseline across three different LLM backbones: a general-purpose model (LLaMA 3.1) (Dubey et al., 2024), a medically pre-trained model (Meditron) (Chen et al., 2023), and a reasoning-oriented model (R1) (Guo et al., 2025). Without any prompt tuning or model-specific adaptation, our method consistently improves both EMR quality and downstream task performance across all backbones.

Notably, **although Meditron is explicitly trained for medical domains, it still struggles to directly generate high-quality EMRs** and gains substantial improvements when integrated into our framework. Similarly, R1 does not significantly outperform the general model in direct generation, indicating that **internal reasoning alone is insufficient to meet the nuanced requirements of EMR**. These findings emphasize the necessity of principle-driven refinement that complements backbone capabilities and cannot be replaced by pretraining or reasoning alone.

5.6 EFFECT ON INCORPORATING REAL EMR TEXT

To further examine whether LLM-CARe benefits from access to real EMR text, we introduce a variant in which the initial draft generator is given a real EMR as a reference example. As illustrated in Figure 9, the performance of this variant remains highly similar to the original LLM-CARe. These findings show that the effectiveness of LLM-CARe arises from its structured multi-agent cyclic refinement, which leads to strong performance without relying on real EMR text. Additional comparisons with other variants are provided in Appendix K.

5.7 CLINICIAN EVALUATION

Table 3: EMR quality and downstream performance (%) across LLM backbones, averaged over principles and tasks.

Backbone	Generation Strategy	EMR Quality	Downstream Task		
			Micro	Macro	Average
Llama3.1	LLM Direct	49.3	54.9	55.8	
-8B-Instruct	LLM-CARe	77.5	73.1	71.7	
Meditron3	LLM Direct	53.9	53.7	54.8	
-8B	LLM-CARe	76.4	73.6	72.4	
R1-Distill	LLM Direct	55.5	51.3	52.4	
-Llama-8B	LLM-CARe	80.5	72.8	71.5	

Figure 9: Comparison between LLM-CARe and a variant that incorporates real EMR text as an example during initial draft generation.

486 To validate the reliability of
 487 using LLM as a judge, we
 488 conducted a human evaluation
 489 study. **A total of 200 synthetic**
 490 **EMRs were sampled (40 from each of five methods)** and
 491 independently assessed by four
 492 licensed clinicians, who rated
 493 completeness, consistency, and
 494 correctness for each record. As
 495 shown in Table 4, the agreement
 496 between clinicians and LLM is consistently high (Cohen’s Kappa = 0.833 overall, where values exceeding 0.8 indicate near-perfect agreement), with tight confidence intervals. Inter-clinician agreement is also strong (Fleiss’s Kappa = 0.950 overall), confirming that the evaluation criteria are well-defined and consistently interpretable by human experts. Together, these results demonstrate that the **LLM-based evaluation closely aligns with human judgment, supporting its validity as an efficient proxy for large-scale quality assessment**. To ensure the stability of human evaluation, we gradually expanded the annotated subset from 100 to 200 EMRs and observed consistently stable agreement levels. Detailed results are reported in Appendix L.

5.8 CASE STUDY

506 Table 5 presents examples of quality is-
 507 sues that commonly arise when genera-
 508 tion methods lack explicit adherence to
 509 quality standards. These cases reveal that
 510 without structured quality control, gen-
 511 erated EMRs often exhibit missing details,
 512 medical inaccuracies, or inconsistencies.

513 In contrast, Figure 10 demonstrates how
 514 LLM-CARe progressively improves draft
 515 quality through refinement on different
 516 levels. This underscores the importance
 517 of stage-wise cyclic refinement in producing high-quality EMRs.

Table 4: Agreement between human clinicians and LLM-based evaluation on EMR quality.

Quality Level	Clinician-LLM Agreement		Inter-Clinician Agreement	
	Cohen’s Kappa	Confidence Interval (95%)	Fleiss’s Kappa	Confidence Interval (95%)
Section	0.866	[0.834, 0.896]	0.975	[0.959, 0.988]
Document	0.797	[0.764, 0.829]	0.932	[0.912, 0.950]
Overall	0.833	[0.809, 0.855]	0.950	[0.937, 0.962]

Table 5: Examples of quality issues in synthetic EMRs. Abbreviations: CC-Chief Complaint, HPI-History of Present Illness, HC-Hospital Course, Dx-Diagnosis.

Method	Example	Problem
LSTM	Dx: Uterine leiomyomas Gender: Male	Males do not have a uterus.
mtGAN	HC: Discharged after feeling stable.	No treatments are mentioned in HC.
MedSyn	CC: Diarrhea for 2 days. HPI: ... no diarrhea ...	CC mentions diarrhea, but HPI denies it.

Figure 10: Illustration of quality improvements through LLM-CARe. Revisions are marked in blue.

6 CONCLUSION

530 In this work, we tackle the limitations of existing EMR synthesis methods which mimic real records
 531 without considering quality requirements. To overcome these, we propose **LLM-CARe**, a stage-
 532 wise cyclic refinement framework driven by the collaboration of **Critic**, **Adviser**, and **Reviser**
 533 agents. Instead of single-pass generation, LLM-CARe progressively enhances drafts through three
 534 dedicated stages: aligning corpus-level distributions, ensuring section-level completeness, and en-
 535 forcing document-level consistency and correctness. Experiments on a large real-world dataset
 536 demonstrate that LLM-CARe substantially improves the quality of EMRs across all granularities.
 537 Moreover, models trained on the refined synthetic corpus achieve superior performance on vari-
 538 ous downstream tasks, highlighting the practical value of our approach. These results show the
 539 effectiveness of LLM-CARe in generating synthetic EMRs that are both high-quality and clinically
 meaningful, offering a reliable and privacy-preserving foundation for healthcare AI development.

540
541
ETHICS STATEMENT

542 This work adheres to the ICLR Code of Ethics. This work focuses on improving the quality of
 543 synthetic EMRs guided by clinical quality principles. The core methodology does not involve training
 544 on actual EMRs. During evaluation, a limited set of test cases was accessed within a secure,
 545 institutional data environment. These records had been fully de-identified by the hosting healthcare
 546 organization and remained within its controlled data management platform. The study did not entail
 547 any active data collection from patients or clinicians. All data usage adhered to institutional policies
 548 and was conducted under the oversight of the relevant data governance framework.

549
550
REPRODUCIBILITY STATEMENT

551 The collection and preprocessing of the EMR dataset are described in Section 4 and Appendix B.
 552 Experimental settings, model configurations, and evaluation protocols are detailed in Section 4 and
 553 Appendix E. The code for our experiments will be publicly released upon publication to further
 554 facilitate reproducibility.

555
556
REFERENCES

557 Sayed Abdel-Khalek, Abeer D. Algarni, Ghada Amoudi, Salem Alkhafaf, Fahad Mohammed Al-
 558 homayani, and Shankar Kathiresan. Leveraging ai-generated content for synthetic electronic
 559 health record generation with deep learning-based diagnosis model. *IEEE Transactions on Con-*
 560 *sumer Electronics*, pp. 1–1, 2024. doi: 10.1109/TCE.2024.3415626.

561 Hannelore Aerts, Dipak Kalra, Carlos Sáez, Juan Manuel Ramírez-Anguita, Miguel-Angel Mayer,
 562 Juan M Garcia-Gomez, Marta Durà-Hernández, Geert Thienpont, and Pascal Coorevits. Quality
 563 of hospital electronic health record (ehr) data based on the international consortium for health
 564 outcomes measurement (ichom) in heart failure: Pilot data quality assessment study. *JMIR Medi-*
 565 *cal Informatics*, 9(8), 2021. ISSN 2291-9694. doi: <https://doi.org/10.2196/27842>. URL <https://www.sciencedirect.com/science/article/pii/S2291969421002568>.

566 Ali Amin-Nejad, Julia Ive, and Sumithra Velupillai. Exploring transformer text generation for
 567 medical dataset augmentation. In Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid
 568 Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard,
 569 Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk, and Stelios Piperidis (eds.), *Pro-*
 570 *ceedings of the Twelfth Language Resources and Evaluation Conference*, pp. 4699–4708, Mar-
 571 *seille, France, May 2020. European Language Resources Association. ISBN 979-10-95546-34-4.*
 572 URL <https://aclanthology.org/2020.lrec-1.578/>.

573 Mrinal Kanti Baowaly, Chia-Ching Lin, Chao-Lin Liu, and Kuan-Ta Chen. Synthesizing electronic
 574 health records using improved generative adversarial networks. *Journal of the American Medical*
 575 *Informatics Association*, 26(3):228–241, 12 2018. ISSN 1527-974X. doi: 10.1093/jamia/ocx142.
 576 URL <https://doi.org/10.1093/jamia/ocx142>.

577 Zeming Chen, Alejandro Hernández Cano, Angelika Romanou, Antoine Bonnet, Kyle Matoba,
 578 Francesco Salvi, Matteo Pagliardini, Simin Fan, Andreas Köpf, Amirkeivan Mohtashami, Alexan-
 579 dre Sallinen, Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk, Deniz Bayazit, Axel Marmet,
 580 Syrielle Montariol, Mary-Anne Hartley, Martin Jaggi, and Antoine Bosselut. Meditron-70b: Scal-
 581 ing medical pretraining for large language models, 2023. URL <https://arxiv.org/abs/2311.16079>.

582 Kieran Chin-Cheong, Thomas Sutter, and Julia E Vogt. Generation of heterogeneous synthetic
 583 electronic health records using gans. In *workshop on machine learning for health (ML4H) at the*
 584 *33rd conference on neural information processing systems (NeurIPS 2019)*. ETH Zurich, Institute
 585 for Machine Learning, 2019.

586 Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F. Stewart, and Jimeng Sun.
 587 Generating multi-label discrete patient records using generative adversarial networks. In Fi-
 588 nale Doshi-Velez, Jim Fackler, David Kale, Rajesh Ranganath, Byron Wallace, and Jenna Wiens
 589 (eds.), *Proceedings of the 2nd Machine Learning for Healthcare Conference*, volume 68 of

594 *Proceedings of Machine Learning Research*, pp. 286–305. PMLR, 18–19 Aug 2017. URL
 595 <https://proceedings.mlr.press/v68/choi17a.html>.
 596

597 DeepSeek-AI. Deepseek-v3.2-exp: Boosting long-context efficiency with deepseek sparse attention,
 598 2025.

599 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 600 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 601 *arXiv e-prints*, pp. arXiv–2407, 2024.
 602

603 Reetam Ganguli, Rishik Lad, Alice Lin, and Xiaotian Yu. Novel generative recurrent neural network
 604 framework to produce accurate, applicable, and deidentified synthetic medical data for patients
 605 with metastatic cancer. *JCO Clinical Cancer Informatics*, (7):e2200125, 2023. doi: 10.1200/
 606 CCI.22.00125. URL <https://ascopubs.org/doi/abs/10.1200/CCI.22.00125>.
 607 PMID: 37130342.

608 Jiaqi Guan, Runzhe Li, Sheng Yu, and Xuegong Zhang. A method for generating synthetic electronic
 609 medical record text. *IEEE/ACM Transactions on Computational Biology and Bioinformatics*, 18
 610 (1):173–182, 2021. doi: 10.1109/TCBB.2019.2948985.
 611

612 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
 613 Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
 614 ment learning. *Nature*, 645(8081):633–638, 2025.

615 Arun Iyengar, Ashish Kundu, and George Pallis. Healthcare informatics and privacy. *IEEE Internet
 616 Computing*, 22(2):29–31, 2018. doi: 10.1109/MIC.2018.022021660.
 617

618 Hojjat Karami, David Atienza, and Anisoara Paraschiv-Ionescu. SynEHRgy: Synthesizing mixed-
 619 type structured electronic health records using decoder-only transformers. In *GenAI for Health:
 620 Potential, Trust and Policy Compliance*, 2024. URL <https://openreview.net/forum?id=k4CTvnQZxx>.
 621

622 Gleb Komichev, Pavel Blinov, Yulia Kuzkina, Vasily Goncharov, Galina Zubkova, Nikolai Zen-
 623 ovkin, Aleksei Goncharov, and Andrey Savchenko. Medsyn: Llm-based synthetic medical text
 624 generation framework. In *Machine Learning and Knowledge Discovery in Databases. Applied
 625 Data Science Track: European Conference, ECML PKDD 2024, Vilnius, Lithuania, September
 626 9–13, 2024, Proceedings, Part X*, pp. 215–230, Berlin, Heidelberg, 2024. Springer-Verlag. ISBN
 627 978-3-031-70380-5. doi: 10.1007/978-3-031-70381-2_14. URL https://doi.org/10.1007/978-3-031-70381-2_14.
 628

629 Sunjun Kweon, Junu Kim, Jiyoung Kim, Sujeong Im, Eunbyeol Cho, Seongsu Bae, Jungwoo Oh,
 630 Gyubok Lee, Jong Hak Moon, Seng Chan You, Seungjin Baek, Chang Hoon Han, Yoon Bin
 631 Jung, Yohan Jo, and Edward Choi. Publicly shareable clinical large language model built on
 632 synthetic clinical notes. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of
 633 the Association for Computational Linguistics: ACL 2024*, pp. 5148–5168, Bangkok, Thailand,
 634 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.
 635 305. URL <https://aclanthology.org/2024.findings-acl.305>.
 636

637 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 638 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 639 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating
 640 Systems Principles*, 2023.

641 Scott H. Lee. Natural language generation for electronic health records. *npj Digital Medicine*, 1
 642 (1):63, Nov 2018. ISSN 2398-6352. doi: 10.1038/s41746-018-0070-0. URL <https://doi.org/10.1038/s41746-018-0070-0>.
 643

644 Jin Li, Benjamin J. Cairns, Jingsong Li, and Tingting Zhu. Generating synthetic mixed-type lon-
 645 gitudinal electronic health records for artificial intelligent applications. *npj Digital Medicine*,
 646 6(1):98, May 2023. ISSN 2398-6352. doi: 10.1038/s41746-023-00834-7. URL <https://doi.org/10.1038/s41746-023-00834-7>.
 647

648 Yihan Lin, Zhirong Yu, and Simon A. Lee. A case study exploring the current landscape of
 649 synthetic medical record generation with commercial llms. In Xuhai Orson Xu, Edward Choi,
 650 Pankhuri Singhal, Walter Gerych, Shengpu Tang, Monica Agrawal, Adarsh Subbaswamy, Elena
 651 Sizikova, Jessilyn Dunn, Roxana Daneshjou, Tasmie Sarker, Matthew McDermott, and Irene
 652 Chen (eds.), *Proceedings of the sixth Conference on Health, Inference, and Learning*, volume
 653 287 of *Proceedings of Machine Learning Research*, pp. 105–129. PMLR, 25–27 Jun 2025. URL
 654 <https://proceedings.mlr.press/v287/lin25a.html>.

655 Onkar Litake, Brian H Park, Jeffrey L Tully, and Rodney A Gabriel. Constructing synthetic datasets
 656 with generative artificial intelligence to train large language models to classify acute renal failure
 657 from clinical notes. *Journal of the American Medical Informatics Association*, 31(6):1404–1410,
 658 04 2024. ISSN 1527-974X. doi: 10.1093/jamia/ocae081. URL <https://doi.org/10.1093/jamia/ocae081>.

659
 660 Fenglong Ma, Radha Chitta, Jing Zhou, Quanzeng You, Tong Sun, and Jing Gao. Dipole: Di-
 661 agnosis prediction in healthcare via attention-based bidirectional recurrent neural networks. In
 662 *Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and*
 663 *Data Mining*, KDD '17, pp. 1903–1911, New York, NY, USA, 2017. Association for Com-
 664 puting Machinery. ISBN 9781450348874. doi: 10.1145/3097983.3098088. URL <https://doi.org/10.1145/3097983.3098088>.

665
 666 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 667 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 668 with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594, 2023.

669
 670 Oren Melamud and Chaitanya Shivade. Towards automatic generation of shareable synthetic clinical
 671 notes using neural language models. In Anna Rumshisky, Kirk Roberts, Steven Bethard, and
 672 Tristan Naumann (eds.), *Proceedings of the 2nd Clinical Natural Language Processing Workshop*,
 673 pp. 35–45, Minneapolis, Minnesota, USA, June 2019. Association for Computational Linguistics.
 674 doi: 10.18653/v1/W19-1905. URL <https://aclanthology.org/W19-1905/>.

675
 676 Yahia Mohamed, Xing Song, Tamara M McMahon, Suman Sahil, Meredith Zozus, Zhan Wang,
 677 Greater Plains Collaborative, and Lemuel R Waitman. Electronic health record data quality vari-
 678 ability across a multistate clinical research network. *J Clin Transl Sci*, 7(1):e130, May 2023.

679
 680 Lucy Mosquera, Khaled El Emam, Lei Ding, Vishal Sharma, Xue Hua Zhang, Samer El Kababji,
 681 Chris Carvalho, Brian Hamilton, Dan Palfrey, Linglong Kong, Bei Jiang, and Dean T. Eurich. A
 682 method for generating synthetic longitudinal health data. *BMC Medical Research Methodology*,
 683 23(1):67, Mar 2023. ISSN 1471-2288. doi: 10.1186/s12874-023-01869-w. URL <https://doi.org/10.1186/s12874-023-01869-w>.

684
 685 Hajra Murtaza, Musharif Ahmed, Naurin Farooq Khan, Ghulam Murtaza, Saad Zafar, and Am-
 686 breen Bano. Synthetic data generation: State of the art in health care domain. *Computer*
 687 *Science Review*, 48:100546, 2023. ISSN 1574-0137. doi: <https://doi.org/10.1016/j.cosrev.2023.100546>. URL <https://www.sciencedirect.com/science/article/pii/S1574013723000138>.

688
 689 OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025. URL <https://arxiv.org/abs/2508.10925>.

690
 691 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 692 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
 693 ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 694 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
 695 learning library, 2019. URL <https://arxiv.org/abs/1912.01703>.

696
 697 Sina Rashidian, Fusheng Wang, Richard Moffitt, Victor Garcia, Anurag Dutt, Wei Chang, Vishwam
 698 Pandya, Janos Hajagos, Mary Saltz, and Joel Saltz. Smooth-gan: Towards sharp and smooth
 699 synthetic ehr data generation. In Martin Michalowski and Robert Moskovitch (eds.), *Artificial*
 700 *Intelligence in Medicine*, pp. 37–48, Cham, 2020. Springer International Publishing. ISBN 978-
 701 3-030-59137-3.

702 Shahid Munir Shah and Rizwan Ahmed Khan. Secondary use of electronic health record: Opportunities
 703 and challenges. *IEEE Access*, 8:136947–136965, 2020. doi: 10.1109/ACCESS.2020.
 704 3011099.

705 Junyuan Shang, Cao Xiao, Tengfei Ma, Hongyan Li, and Jimeng Sun. Gamenet: Graph augmented
 706 memory networks for recommending medication combination. *Proceedings of the AAAI Conference on Artificial Intelligence*, 33(01):1126–1133, Jul. 2019. doi: 10.1609/aaai.v33i01.33011126.
 707 URL <https://ojs.aaai.org/index.php/AAAI/article/view/3905>.

708 Yun Shen, Jiamin Yu, Jian Zhou, and Gang Hu. Twenty-five years of evolution and hurdles
 709 in electronic health records and interoperability in medical research: Comprehensive review.
 710 *Journal of Medical Internet Research*, 27, 2025. ISSN 1438-8871. doi: <https://doi.org/10.2196/59024>. URL <https://www.sciencedirect.com/science/article/pii/S1438887125000378>.

711 Rodrigo Tertulino, Nuno Antunes, and Higor Morais. Privacy in electronic health records:
 712 a systematic mapping study. *Journal of Public Health*, 32(3):435–454, Mar 2024. ISSN
 713 1613-2238. doi: 10.1007/s10389-022-01795-z. URL <https://doi.org/10.1007/s10389-022-01795-z>.

714 Brandon Theodorou, Cao Xiao, and Jimeng Sun. Synthesize high-dimensional longitudinal electronic
 715 health records via hierarchical autoregressive language model. *Nature Communications*, 14(1):5305, Aug 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-41093-0. URL
 716 <https://doi.org/10.1038/s41467-023-41093-0>.

717 Zixu Wang, Julia Ive, Sumithra Velupillai, and Lucia Specia. Is artificial data useful for biomedical
 718 natural language processing algorithms? In Dina Demner-Fushman, Kevin Bretonnel Cohen,
 719 Sophia Ananiadou, and Junichi Tsujii (eds.), *Proceedings of the 18th BioNLP Workshop and Shared Task*, pp. 240–249, Florence, Italy, August 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-5026. URL <https://aclanthology.org/W19-5026>.

720 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 721 Pierrick Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
 722 von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
 723 Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
 724 language processing. In Qun Liu and David Schlangen (eds.), *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pp. 38–
 725 45, Online, October 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
 726 emnlp-demos.6. URL <https://aclanthology.org/2020.emnlp-demos.6>.

727 Chao Yan, Yao Yan, Zhiyu Wan, Ziqi Zhang, Larsson Omberg, Justin Guinney, Sean D. Mooney,
 728 and Bradley A. Malin. A multifaceted benchmarking of synthetic electronic health record generation
 729 models. *Nature Communications*, 13(1):7609, Dec 2022. ISSN 2041-1723. doi: 10.1038/s41467-022-35295-1. URL <https://doi.org/10.1038/s41467-022-35295-1>.

730 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 731 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 732 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 733 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang,
 734 Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 735 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
 736 <https://arxiv.org/abs/2412.15115>.

737 Jinsung Yoon, Michel Mizrahi, Nahid Farhady Ghalaty, Thomas Jarvinen, Ashwin S. Ravi, Peter
 738 Brune, Fanyu Kong, Dave Anderson, George Lee, Arie Meir, Farhana Bandukwala, Elli
 739 Kanal, Sercan Ö. Arik, and Tomas Pfister. Ehr-safe: generating high-fidelity and privacy-
 740 preserving synthetic electronic health records. *npj Digital Medicine*, 6(1):141, Aug 2023.
 741 ISSN 2398-6352. doi: 10.1038/s41746-023-00888-7. URL <https://doi.org/10.1038/s41746-023-00888-7>.

742 Hongyi Yuan, Songchi Zhou, and Sheng Yu. Ehrdiff: Exploring realistic ehr synthesis with diffusion
 743 models. *arXiv preprint arXiv:2303.05656*, 2023.

756 Hongyi Yuan, Songchi Zhou, and Sheng Yu. EHRDiff : Exploring realistic EHR synthesis with
757 diffusion models. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL
758 <https://openreview.net/forum?id=DIGkJhGeqi>.

759

760 Ziqi Zhang, Chao Yan, Thomas A Lasko, Jimeng Sun, and Bradley A Malin. Synteg: a framework
761 for temporal structured electronic health data simulation. *Journal of the American Medical
762 Informatics Association*, 28(3):596–604, 11 2020. ISSN 1527-974X. doi: 10.1093/jamia/ocaa262.
763 URL <https://doi.org/10.1093/jamia/ocaa262>.

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A DETAILS OF EMR QUALITY PRINCIPLES 811

812 In this section, we provide a detailed description of each criterion corresponding to the EMR quality
813 principles, along with representative examples.
814

815 A.1 CONTENT COMPLETENESS 816

817 Table 6 lists the criteria used to assess content completeness, which evaluate whether each field
818 contains all essential information. The criteria follow standard clinical documentation conventions
819 and use ordinary clinical terms (e.g., “major symptoms” refers to the primary complaints driving the
820 visit, as opposed to secondary associated manifestations).
821

822
823 Table 6: Description of quality criteria for content completeness, along with representative exam-
824 ples. Abbreviations: CC-Chief Complaint, HPI-History of Present Illness, HC-Hospital Course,
825 DI-Discharge Instructions.
826

827 Criterion	828 Abbreviation	829 Positive Example	830 Negative Example
829 Chief complaint 830 states reason 831 for admission	832 CC 833 Reason	<ul style="list-style-type: none"> • CC: Cough for 1 day • CC: Thyroid nodule noted for 2 months 	<ul style="list-style-type: none"> • CC: Admitted on 2025/05/16
831 Chief complaint 832 includes onset time	833 CC 834 Onset	<ul style="list-style-type: none"> • CC: Fever for 6 days • CC: Chest pain for 1 year, worsened over past month 	<ul style="list-style-type: none"> • CC: Dizziness accompanied by nausea • CC: Poor recent glycemic control
834 History of present 835 illness describes 836 acuity of onset	836 HPI 837 Acuity	<ul style="list-style-type: none"> • HPI: Sudden-onset headache 1 week ago • HPI: Gradual onset of unsteady gait for 4 months 	<ul style="list-style-type: none"> • HPI: Experienced headache over a month ago • HPI: Developed gait instability recently
838 History of present 839 illness mentions 840 possible causes	840 HPI 841 Cause	<ul style="list-style-type: none"> • HPI: Abdominal pain after alcohol intake 1 day ago • HPI: Dizziness for 2 weeks without obvious cause 	<ul style="list-style-type: none"> • HPI: Sudden right eye vision loss one week ago • HPI: Cough onset 3 days ago
841 History of present 842 illness lists 843 major symptoms 844 and onset time	844 HPI 845 Symptom	<ul style="list-style-type: none"> • HPI: Vomited 4–5 times over the past half day • HPI: Poor appetite and fatigue over past 2 weeks 	<ul style="list-style-type: none"> • HPI: Experienced dizziness for days
845 History of present 846 illness includes 847 all general conditions	847 HPI 848 General	<ul style="list-style-type: none"> • HPI: Normal mental status, sleep, appetite, bowel and bladder function; no significant weight change 	<ul style="list-style-type: none"> • HPI: Appetite decreased
848 Hospital course includes 849 auxiliary examinations 850 or laboratory examinations	850 HC 851 Examination	<ul style="list-style-type: none"> • HC: Chest CT revealed a pulmonary mass lesion • HC: Admission labs showed CRP: 12.3 mg/L 	<ul style="list-style-type: none"> • HC: Patient underwent further examinations after admission
851 Hospital course 852 includes treatment 853 interventions	853 HC 854 Treatment	<ul style="list-style-type: none"> • HC: Appendectomy under general anesthesia • HC: Aspirin given for antiplatelet therapy 	<ul style="list-style-type: none"> • HC: Given pharmacological therapy
855 Discharge instruction 856 includes medication 857 dosage and usage	857 DI 858 Medication	<ul style="list-style-type: none"> • DI: Atorvastatin 1 tablet nightly • DI: Amoxicillin 1g twice daily 	<ul style="list-style-type: none"> • DI: Take antibiotics regularly

859 A.2 MEDICAL CORRECTNESS 860

861 Table 7 outlines the criteria for medical correctness, which assess whether the clinical content aligns
862 with the patient’s diagnosis.
863

864
 865 Table 7: Description of quality criteria for medical correctness, along with representative exam-
 866 ples. Abbreviations: CC-Chief Complaint, HPI-History of Present Illness, HC-Hospital Course,
 867 DI-Discharge Instructions, Dx-Diagnosis, PD-Patient Demographics.

Criterion	Abbreviation	Positive Example	Negative Example
Diagnosis matches the patient's gender	Dx-PD Gender	• Dx: Pregnancy Gender: Female	• Dx: Pregnancy Gender: Male
Symptoms in chief complaint align with diagnosis	Dx-CC Symptom	• Dx: Pneumonia CC: Cough for 1 day	• Dx: Pneumonia CC: Knee pain for 3 days
Symptoms in history of present illness align with diagnosis	Dx-HPI Symptom	• Dx: Cerebral infarction HPI: Sudden slurred speech 1 day ago	• Dx: Acute appendicitis HPI: Sudden blurred vision 2 weeks ago
Examinations in hospital course align with diagnosis	Dx-HC Examination	• Dx: Pneumonia HC: Chest CT indicated pneumonia	• Dx: Cerebral infarction HC: Abdominal ultrasound showed appendiceal thickening
Medications in discharge instructions align with diagnosis	Dx-DI Medication	• Dx: Type 2 diabetes DI: Metformin (0.5g), one tablet twice daily	• Dx: Pneumonia DI: Insulin injection before meals

888 A.3 CONTEXT CONSISTENCY

890 Table 8 presents the criteria for context consistency, which evaluate whether information across
 891 different EMR sections is logically coherent.

894 Table 8: Description of quality criteria for context consistency, along with representative examples.
 895 Abbreviations: CC-Chief Complaint, HPI-History of Present Illness, HC-Hospital Course.

Criterion	Abbreviation	Positive Example	Negative Example
Symptoms in chief complaint are consistent with those in history of present illness	CC-HPI Symptom	• CC: Cough for 1 day HPI: ... with cough ...	• CC: Cough for 1 day HPI: ... without cough ...
Onset time in chief complaint is consistent with that in history of present illness	CC-HPI Onset	• CC: Chest pain for 1 month HPI: Chest pain over past 1 month	• CC: Chest pain for 1 month HPI: Chest pain over past 2 months
Affected site in history of present illness is consistent with the site of examination or treatment in hospital course	HPI-HC Site	• HPI: Left leg pain after a fall HC: X-ray showed a fracture of the left leg.	• HPI: Left leg pain after a fall HC: X-ray showed a fracture of the right leg.

913 A.4 DEMOGRAPHIC TYPICALITY

914 For demographic typicality, we focus on two key patient attributes: gender and age. We evaluate
 915 whether the distributions of these attributes in the synthetic EMRs align with the target distributions.
 916 Figure 11 illustrates representative examples of gender and age distributions that are aligned with
 917 and deviate from the target distribution.

Figure 11: Examples of synthetic data distributions that are either consistent or inconsistent with the target distribution.

A.5 KNOWLEDGE COVERAGE

For knowledge coverage, we focus on five key categories of clinical knowledge: symptoms, auxiliary examinations, laboratory examinations, surgeries, and medications. Table 9 lists representative entities from each category.

Table 9: Knowledge categories and representative entities.

Category	Example
Symptom	Cough, Fever, Headache, Nausea, ...
Auxiliary Examination	Chest CT, Brain MRI, ECG, Abdominal Ultrasound, ...
Laboratory Examination	Complete Blood Count, Liver Function Test, C-Reactive Protein, ...
Surgery	Appendectomy, Tonsillectomy, Cataract Surgery, Cholecystectomy, ...
Medication	Aspirin, Penicillin, Metformin, Atorvastatin, ...

B DETAILS OF DATASET

B.1 DATASET CONSTRUCTION

We conduct our experiments on a large-scale real-world EMR dataset containing 1.82 million de-identified medical records collected from hospitals. Personally identifiable information (e.g., patient and clinician names, phone numbers, locations) had already been removed by the data provider, ensuring compliance with privacy standards. All experiments were conducted on hospital-controlled infrastructure to ensure data security and prevent risk of privacy leakage.

To ensure data quality, we first remove records that are missing critical information, such as patient age or gender, primary diagnosis, or any of the four target fields: chief complaint, history of present illness, hospital course, and discharge instruction. After this filtering step, 905k records remain.

We then apply a length-based filtering criterion to further improve data quality. During inspection, we found that overly short entries often contain placeholders or incomplete content, while excessively long entries are more likely to include unintelligible text. Therefore, we retain only records where the chief complaint is under 20 words, and each of the other fields falls within the 10 to 1,000 word range. This step yields a subset of 710k high-quality records.

972 Lastly, to ensure the reliability and stability of downstream evaluation, we retain only common
 973 diseases with sufficient data volume. Specifically, we exclude any diagnosis category with fewer
 974 than 500 records. This ensures that each disease has at least 100 samples in the test set after an
 975 80/20 train-test split. Diseases with very few examples can lead to high-variance estimates and lack
 976 statistical significance in evaluation. After this final filtering step, we obtain 192k EMRs spanning
 977 302 distinct disease categories.
 978

979 B.2 CONSTRUCTION OF DOWNSTREAM TASKS

980 For all downstream tasks, the correct options are extracted directly from the EMR. For the diagnosis
 981 prediction task, incorrect options are randomly sampled from other diagnoses in the dataset. For the
 982 test and treatment prediction tasks, incorrect options are selected to be incompatible with the gold
 983 diagnosis: we first exclude all tests or treatments that appear in EMRs with the same diagnosis, and
 984 then randomly sample from the remaining pool. Using this approach, we construct training examples
 985 from synthetic EMRs, and evaluate model performance on questions built from real EMRs in the
 986 held-out test set. The diagnosis prediction task contains exactly one question per EMR, yielding 38k
 987 samples in the test set. For examination and treatment recommendation, each extracted examination
 988 or treatment entity forms one question, resulting in 346k and 110k test questions respectively.
 989

990 C BASELINE IMPLEMENTATION DETAILS

991 For the non-LLM baselines (LSTM and mtGAN), we trained both models from scratch on the training
 992 set. Each model receives a one-hot disease vector as input and is optimized to generate the
 993 corresponding real EMR, treated as the supervision target.

994 For the LLM-based baselines (MedSyn, LLM Direct, and Self-Refine), we used the same backbone
 995 model as in LLM-CARe (Qwen2.5-7B-Instruct) to ensure a fair comparison. **MedSyn**: For each
 996 generation, we randomly sample one real EMR of the target disease from the training set as an
 997 in-context example, and randomly sample five symptoms associated with the disease as additional
 998 cues. The model then generates an EMR in a single pass conditioned on these inputs. **LLM Direct**:
 999 We generate EMRs using the same initial-draft prompt template as in LLM-CARe, without applying
 1000 any refinement or evaluation steps. **Self-Refine**: We aggregate all section-level and document-level
 1001 criteria into a single combined instruction. The model first identifies issues based on this unified
 1002 prompt and then produces a revised EMR accordingly, without multi-level decomposition.
 1003

1004 D EVALUATION DETAILS

1005 For the LLM-based evaluation of EMR quality, we prompt the model to assess each generated
 1006 EMR against the predefined criteria for medical correctness, content completeness, and context
 1007 consistency. Each criterion is formulated as a binary classification task—whether a given EMR
 1008 satisfies the criterion or not. The model outputs a yes/no response for each criterion per EMR, and
 1009 we compute the final score by averaging over all EMRs.

1010 For demographic typicality, we compare the distribution of demographic attributes in synthetic
 1011 EMRs to those in the real dataset. For gender, we use the total variation distance (TVD) between
 1012 the two distributions. For age, which is a continuous variable, we compute the Wasserstein
 1013 distance. Since lower distance values indicate higher similarity, we transform the scores by computing
 1014 $1 - \text{TVD}$ and $1 - \text{Wasserstein}$, respectively, so that higher values consistently reflect better quality
 1015 across all metrics.

1016 For knowledge coverage, we first extract medical entities associated with each diagnosis from the
 1017 real EMRs. We then measure the proportion of these entities that appear in synthetic EMRs with
 1018 the same diagnosis. To avoid the complexity and potential noise of semantic matching, we use exact
 1019 string-level matching to compare entity presence.

1020 For the downstream task evaluation, we report both macro and micro accuracy. Macro accuracy
 1021 averages the model performance across all diagnoses by first computing the accuracy within each
 1022 disease category, then averaging across categories. Micro accuracy, in contrast, computes the overall
 1023

1026 accuracy across all samples regardless of diagnosis. This dual evaluation provides a comprehensive
 1027 view of model generalizability across frequent and less frequent disease types.
 1028

1029 E EXPERIMENTAL DETAILS

1030 E.1 PROMPTS USED FOR EACH AGENT

1031 In this section, we list the prompts used for each agent in our LLM-CARe framework.
 1032

1033 Generator

1034 Please generate an electronic medical record according to the following require-
 1035 ments:

- 1036 1. The patient's primary diagnosis is: [diag].
- 1037 2. Include only the following sections: 'Gender', 'Age', 'Primary Diagnosis',
 1038 'Chief Complaint', 'History of Present Illness', 'Hospital Course', and 'Discharge
 1039 Instructions'.
- 1040 3. Section-specific instructions:
 1041 - The Chief Complaint should briefly describe the reason for admission.
 1042 - The History of Present Illness should describe the onset and development of the
 1043 condition in detail.
 1044 - The Hospital Course should mention the examinations and treatments the patient
 1045 received.
 1046 - The Discharge Instructions should specify post-discharge recommendations,
 1047 such as prescribed medications.
- 1048 4. Output the result in JSON format with the structure: "Section Name": "Section
 1049 Content", where each section content is a single string.

1050 Section-Level Critic

1051 Below is the '[section_name]' section from an electronic medical record:
 1052

1053 [section]

1054 Please determine whether the above '[section_name]' meets the following require-
 1055 ment: [requirement].

1056 Respond in the following JSON format:

1057 { "Meets Requirement": true/false }

1058 Section-Level Adviser

1059 Below is the '[section_name]' section from an electronic medical record:
 1060

1061 [section]

1062 This section does not meet the following requirement: [requirement]. Please pro-
 1063 vide a specific revision suggestion based on the section content, explaining how it
 1064 should be modified to meet the requirement.

1065 Respond in the following JSON format:

1066 { "Revision Suggestion": "specific suggestion" }

1067 Section-Level Reviser

1068 Below is the '[section_name]' section from an electronic medical record with an
 1069 issue:
 1070

1071 [section]

1072 The '[section_name]' section misses essential content. Please revise the record
 1073 based on the following suggestion: [feedback]

1074 Return the result in JSON format using the pattern "Section Name": "Section Con-
 1075 tent", and include only the "[section_name]" section. The content of the section
 1076 should be a single string.

1080
1081**Document-Level Critic**

1082

Below is an electronic medical record consisting of multiple sections:

1083

[record]

1084

Please evaluate whether the record satisfies the following requirement: [requirement]. Identify any conflicts or implausible statements across sections.

1085

1086

Respond in the following JSON format:

1087

{“Meets Requirement”: true/false}

1088

1089

Document-Level Adviser

1090

1091

The following record has issues violating the requirement: [requirement]:

1092

1093

[record]

1094

1095

Please provide targeted suggestions to resolve the problem. Prioritize changes to the sections that minimally disrupt overall coherence.

1096

1097

Respond in the following JSON format:

1098

{“Revision Suggestion”: “specific suggestion”}

1099

1100

Document-Level Reviser

1101

1102

Below is an electronic medical record with flagged issues:

1103

1104

[record]

1105

1106

Please revise the record according to the following suggestion: [feedback].

1107

1108

1109

1110

1111

Corpus-Level Agents: For the corpus-level stage, we use statistical analysis tools as the critic and adviser rather than LLMs. Therefore, no natural language instructions are required for these agents; their operations are fully automated and operate on dataset-wide distributions. For the corpus-level reviser, each sample in the selected subset is modified individually, using the same type of instructions as the document-level reviser.

1112

1113

E.2 LLM BACKBONES

1114

1115

We use the following pretrained large language models in our experiments:

1116

1117

- **Qwen2.5** (Yang et al., 2025): Licensed under the Apache 2.0 License¹. We use the model checkpoints available on Huggingface².
- **LLaMA 3.1** (Dubey et al., 2024): Licensed under the LLaMA 3.1 Community License³. We use the model checkpoints available on Huggingface⁴.
- **Meditron 3** (Chen et al., 2023): Licensed under the LLaMA 3.1 Community License⁵. We use the model checkpoints available on Huggingface⁶.
- **DeepSeek-R1-Distill-Llama** (Guo et al., 2025): Licensed under the MIT License⁷. We use the model checkpoints available on Huggingface⁸.

1127

1128

1129

1130

1131

1132

1133

¹<https://huggingface.co/Qwen/Qwen2.5-7B-Instruct/blob/main/LICENSE>

²<https://huggingface.co/Qwen>

³https://www.llama.com/llama3_1/license/

⁴<https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct>

⁵https://www.llama.com/llama3_1/license/

⁶<https://huggingface.co/OpenMeditron/Meditron3-8B>

⁷<https://github.com/deepseek-ai/DeepSeek-R1/blob/main/LICENSE>

⁸<https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B>

E.3 HYPERPARAMETERS

For LLM-CARe and LLM Direct—we adopt the default generation configuration provided with each model checkpoint. For all refinement stages (corpus, section, and document), the Critic, Adviser, and Reviser agents are iterated for two cycles before proceeding to the next stage. We empirically observed that additional iterations beyond two provided negligible improvements in EMR quality and downstream task performance.

For EMR quality evaluation, we use greedy decoding to ensure deterministic outputs. For downstream tasks, we fine-tune Qwen2.5-0.5B-Instruct using the AdamW optimizer with a batch size of 16, a learning rate of $2e-5$, and a cosine learning rate scheduler with 5% warmup steps. The model is fine-tuned for 3 epochs on the synthetic dataset and evaluated on the real test set.

E.4 SOFTWARE

EMR generation with LLMs is conducted using vLLM (Kwon et al., 2023). PyTorch (Paszke et al., 2019) is used for training and inference of non-LLM baselines. Fine-tuning of downstream task models is performed using the Huggingface Transformers library (Wolf et al., 2020). Evaluations are also executed using vLLM.

E.5 COMPUTATIONAL RESOURCES

All experiments—except for EMR quality evaluation—are conducted on NVIDIA RTX 4090 GPU with 24GB of memory. EMR quality evaluation, which uses Qwen2.5-32B-Instruct, is performed on NVIDIA A100 GPU with 80GB of memory.

F ROBUSTNESS OF LLM-AS-JUDGE EVALUATIONS

Table 10: Quality scores evaluated by different LLMs.

Evaluation LLM	Method	Content Completeness	Medical Correctness	Context Consistency
Qwen2.5-32B	LSTM	70.8	65.0	21.7
	mtGAN	55.8	51.8	21.4
	MedSyn	84.8	95.3	91.9
	LLM Direct	77.1	90.7	87.9
	LLM-CARe (ours)	91.2	98.6	93.8
GPT-OSS-20B	LSTM	73.9	88.9	8.9
	mtGAN	62.8	87.7	13.4
	MedSyn	79.9	97.3	86.9
	LLM Direct	81.1	96.7	70.2
	LLM-CARe (ours)	93.4	99.0	91.3
Deepseek-V3.2-Exp	LSTM	69.9	72.5	2.6
	mtGAN	57.9	64.0	0.7
	MedSyn	80.6	97.5	85.0
	LLM Direct	79.9	96.8	77.8
	LLM-CARe (ours)	91.1	98.5	89.8

To examine whether our intrinsic quality evaluation is robust to the choice of LLM judge, we performed an extended cross-model assessment using three independent evaluators: Qwen2.5-32B, GPT-OSS-20B (OpenAI, 2025), and DeepSeek-V3.2-Exp (DeepSeek-AI, 2025). Qwen2.5-32B is our original judge; GPT-OSS-20B was included due to its reported strength in medical-language understanding tasks, and DeepSeek-V3.2-Exp (API) was added as a large commercial model to further test evaluation generality across architectures and training regimes. Owing to the computational cost of the API, DeepSeek evaluation was conducted on 10% sampled data.

1188 All three evaluators were provided with the same scoring instructions used in our main experiments.
 1189 As shown in Table 10, the absolute scores vary across models—as expected due to differences in
 1190 calibration and alignment—but the overall ranking pattern remains consistent, with LLM-CARe
 1191 achieving the top scores across all intrinsic quality dimensions under all judges. The baselines also
 1192 maintain broadly similar relative positions, with only minor ordering differences between closely
 1193 performing systems. These results indicate that our evaluation conclusions are not tied to a spe-
 1194 cific model family and that LLM-CARe demonstrates robust superiority under multiple independent
 1195 evaluators.

1197 G SUBGROUP ANALYSIS ACROSS DEMOGRAPHIC AND DISEASE 1198 FREQUENCY

1209 **Figure 12: Subgroup analysis of intrinsic EMR quality.**

1220 **Figure 13: Subgroup analysis of downstream task performance.**

1222 To examine whether LLM-CARe amplifies or mitigates subgroup disparities, we conducted a strat-
 1223 ified evaluation across three grouping dimensions: gender, age (0–17, 18–44, 45–64, 65+), and
 1224 disease-frequency strata. Figure 12 reports intrinsic EMR quality across subgroups, and Figure 13
 1225 shows downstream performance under the same partitions. LLM-CARe consistently achieves the
 1226 highest scores across all subgroups, and the variation across demographic and frequency groups is
 1227 comparable to or smaller than that of the baselines. These results indicate that LLM-CARe does not
 1228 reinforce demographic or clinical biases and maintains robustness across diverse subpopulations,
 1229 supporting its applicability to balanced synthetic EMR corpus construction.

1231 H FULL RESULTS OF EMR QUALITY

1233 Figure 14 provides the complete breakdown of EMR quality across all evaluated criteria, extending
 1234 the representative results presented in Figure 5 of the main text. These detailed results offer a more
 1235 comprehensive view of how different methods perform with respect to each quality dimension.

1237 I PRIVACY EVALUATION VIA MEMBERSHIP INFERENCE ATTACK

1239 To assess whether synthetic EMRs generated by differ-
 1240 ent methods inadvertently reveal information from real
 1241 patient records, we conduct a membership inference at-
 1242 tack (MIA)—a standard privacy evaluation technique that

1238 **Table 11: Membership inference attack**
 1239 **accuracy (closer to 0.50 is better).**

Method	Attack Accuracy
LSTM	0.499
mtGAN	0.504
MedSyn	0.533
LLM Direct	0.500
LLM-CARe (ours)	0.504

Figure 14: Fine-Grained EMR quality evaluation across three levels of criteria. Abbreviations of EMR sections: CC-Chief Complaint, HPI-History of Present Illness, HC-Hospital Course, DI-Discharge Instructions, Dx-Diagnosis.

tests whether an attacker can distinguish training examples from non-members. An accuracy of 0.50 corresponds to random guessing; values close to 0.50 therefore indicate stronger privacy, as the attacker cannot reliably infer membership.

Table 11 reports the attack accuracy across all methods. LLM-CARe and LLM Direct both achieve values near 0.50, as expected, since neither method accesses real EMR text during generation. LSTM and mtGAN also remain close to 0.50. Although these models are trained on real EMRs, their limited model capacity—combined with the complexity of multi-section EMRs used in our setting—reduces their ability to memorize full clinical notes. In contrast, MedSyn, which directly uses real EMRs as in-context exemplars, exhibits higher attack accuracy, indicating elevated privacy risk due to closer exposure to specific real records.

These results show that LLM-CARe introduces no observable privacy risk and that its generation process remains indistinguishable from non-member data, consistent with the fact that it operates without using any real EMR text.

J ADDITIONAL VALIDATION OF DOWNSTREAM TASK RELIABILITY

To further examine the robustness of downstream task results, we conducted two complementary evaluations.

Table 12: Downstream task performance using Llama-3.2-1B-Instruct as the backbone model.

Method	Diagnosis Prediction		Examination Recommendation		Treatment Recommendation	
	Micro	Macro	Micro	Macro	Micro	Macro
LSTM	68.5	67.1	74.7	75.4	55.6	48.6
mtGAN	78.8	77.7	72.8	73.6	58.9	53.1
MedSyn	77.2	77.8	82.4	81.7	72.0	68.7
LLM Direct	78.9	79.0	61.9	62.8	59.4	57.0
LLM-CARe (ours)	80.1	79.8	83.3	83.2	74.7	71.8

First, we replaced the backbone model used for downstream classifiers and retrained all methods using Llama-3.2-1B-Instruct. As reported in Table 12, the relative ordering of all methods remained stable, with LLM-CARe achieving the highest accuracy on diagnosis prediction, examination recommendation, and treatment recommendation. This consistency under a different model architecture

1296 indicates that performance gains do not depend on properties of the Qwen family, but instead arise
 1297 from the proposed multi-level refinement framework.
 1298

1300 **Table 13: Diagnosis prediction accuracy on MIMIC-IV-Note dataset.**

Method	Micro Average	Macro Average
LSTM	0.587	0.552
mtGAN	0.589	0.555
MedSyn	0.584	0.571
LLM Direct	0.589	0.532
LLM-CARe (ours)	0.606	0.590

1308 Second, to test whether models benefit from superficial alignment with the textual format of the
 1309 generation prompts, we constructed an additional diagnosis-prediction task using MIMIC-IV-Note.
 1310 We selected only records corresponding to the same disease categories but originating from a
 1311 different clinical institution and written in a distinctly different narrative style. All models trained on
 1312 synthetic corpora exhibit lower accuracy due to the distributional and stylistic shift, yet LLM-CARe
 1313 again achieves the best performance (Table 13), demonstrating that the downstream advantages are
 1314 not tied to prompt-format similarity but to improved clinical quality in the synthesized EMRs.
 1315

1316

K ROBUSTNESS TO PROMPTING STYLES AND INITIAL DRAFT QUALITY

1320 **Table 14: Intrinsic EMR quality under prompt rephrasing and improved initial drafts.**

Method	Section Level		Document Level		Corpus Level	
	Content Completeness	Medical Correctness	Context Consistency	Demographic Typicality	Knowledge Coverage	
LLM-CARe (ours)	91.2	98.6	93.8	96.8	94.1	
+Rephrased Prompts	94.1	98.0	93.8	96.8	95.1	
+Better Initial Draft	93.3	98.6	94.0	96.8	96.2	

1330 **Table 15: Downstream prediction performance (micro/macro accuracy) under prompt and draft per-
 1331 turbations.**

Method	Diagnosis Prediction		Examination Recommendation		Treatment Recommendation	
	Micro	Macro	Micro	Macro	Micro	Macro
LLM-CARe (ours)	82.6	82.4	85.3	85.2	76.9	74.1
+Rephrased Prompts	81.1	80.7	83.4	83.4	75.3	73.0
+Better Initial Draft	82.6	81.8	84.7	84.4	76.8	73.9

1340 We evaluated the stability of LLM-CARe under variations in prompting style and initial draft quality.
 1341 First, all agent prompts were substantially rephrased using GPT-5 while preserving only high-level
 1342 intent. Second, to test sensitivity to draft quality, we replaced the LLM-Direct drafts with higher-
 1343 quality MedSyn drafts. Tables 14 and 15 report intrinsic quality and downstream task performance.

1344 Across both perturbations, numerical differences are small and the overall ranking of methods re-
 1345 mains unchanged. This robustness reflects the structure of LLM-CARe: quality requirements are
 1346 decomposed into explicit criteria, and each agent operates on a single criterion at a time, making
 1347 the refinement cycle insensitive to prompt wording. Likewise, the staged refinement progressively
 1348 corrects deficiencies from multiple dimensions, reducing dependence on the initial draft. These
 1349 properties together ensure that moderate changes in prompt phrasing or draft quality do not materi-
 1350 ally affect the final refined EMRs.

1350 **L DETAILS OF CLINICIAN EVALUATION**
13511352 **L.1 RELIABILITY OF CLINICIAN EVALUATION**
13531354 **Table 16: Agreement between clinicians and LLM-based evaluation across different sample sizes.**
1355

# Samples	Clinician-LLM Agreement		Inter-Clinician Agreement	
	Cohen's Kappa	Confidence Interval (95%)	Fleiss's Kappa	Confidence Interval (95%)
100	0.837	[0.804, 0.868]	0.947	[0.928, 0.964]
150	0.842	[0.816, 0.868]	0.948	[0.933, 0.962]
200	0.833	[0.809, 0.855]	0.950	[0.937, 0.962]

1363
1364
1365 To ensure that clinician evaluation reflects a broad range of clinical scenarios, all clinician-labeled
1366 samples were obtained through stratified sampling. Diseases were grouped by frequency, and each
1367 group contributed proportionally to the evaluation set. The sampling was likewise balanced across
1368 generation methods, gender, and age groups, ensuring that the annotated EMRs covered both com-
1369 mon and less-common situations and represented diverse demographic and clinical patterns.
1370

1371 To examine the stability of human evaluation, we increased the evaluation size from 100 to 150 and
1372 then to 200 EMRs. As shown in Table 16, clinician-LLM agreement (Cohen's Kappa) remains con-
1373 sistently above 0.8 across all three subset sizes, and inter-clinician agreement (Fleiss's Kappa) stays
1374 above 0.9. Confidence intervals narrow as sample size increases, but the agreement values them-
1375 selves remain highly similar, indicating that both human annotations and LLM-based evaluations
1376 are stable and reliable.
1377

1378 **L.2 EXAMPLES OF DISAGREEMENT BETWEEN LLM AND CLINICIANS**
1379

1380 We present examples of disagreement observed in our human evaluation.
1381

1382 **LLM–Clinician Disagreement**
1383

1384 *Criterion:* Discharge instructions should specify both the medication name and its
1385 dosage/usage.
1386

1387 *Discharge Instruction:* Continue oral antibiotic therapy...

1388 *LLM:* Correct

1389 *Clinician:* Wrong

1390 In such cases, the LLM treats non-specific statements (e.g., “continue oral antibiotic therapy”) as
1391 sufficiently informative, whereas clinicians regard them as incomplete because essential details such
1392 as drug name and dosage are missing. This reflects the LLM’s more permissive interpretation of
1393 medication-related content.
1394

1395 **Inter–Clinician Disagreement**
1396

1397 *Criterion:* The history of present illness should describe general conditions (diet,
1398 sleep, mental status, bowel/urination, weight change).
1399

1400 *History of Present Illness:* The patient developed dizziness and fatigue two days
1401 ago... Appetite and sleep are normal; bowel and urination regular; no weight
1402 change.
1403

Clinician A: Correct

Clinician B: Wrong

1404 Here, clinicians differ in how they interpret the requirement to document mental status. Some con-
1405 sider dizziness and fatigue to implicitly convey reduced alertness, whereas others expect an explicit
1406 statement. Such differences reflect variation in documentation style rather than clinical competence
1407 and represent a common source of mild disagreement in narrative EMR review.
1408

1404 L.3 EVALUATION SCHEMA
1405

1406 To verify the reliability of our evaluation, we asked licensed clinicians to assess the quality of syn-
1407 thetic EMRs. Clinicians were instructed to read each synthetic record carefully and then answer sev-
1408 eral yes/no questions regarding **completeness**, **consistency**, and **correctness**. The questions were
1409 designed to be simple binary judgments to ensure reproducibility. The detailed labeling instructions
1410 are as follows:

1411 Please review the synthetic EMR text shown below.
1412

1413 **Synthetic EMR:**
1414

1415 **Gender:** Male

1416 **Age:** 45 years old

1417 **Primary Diagnosis:** Pneumonia

1418 **Chief Complaint:** Fever and cough for 3 days ...

1419 **History of Present Illness:** Patient developed fever three days ago, accompanied
1420 by cough and mild chest pain ...
1421

1422 Based on the above synthetic EMR, please answer the following questions. For
1423 each question, mark your judgment in the blank: Yes if the requirement is satis-
1424 fied, No otherwise.

1425 **Completeness**

- 1426 • Does the history of present illness include major symptoms? Answer: ____
(Yes/No)
- 1427 • ...

1428 **Consistency**

- 1429 • Are the symptoms in the chief complaint consistent with those in the history
1430 of present illness? Answer: ____ (Yes/No)
- 1431 • ...

1432 **Correctness**

- 1433 • Is the patient's sex valid given the diagnosis? Answer: ____ (Yes/No)
- 1434 • ...

1435 **Confidence interval estimation:** To quantify agreement, we report Cohen's Kappa and Fleiss's
1436 Kappa with 95% confidence intervals. The intervals were computed using a non-parametric boot-
1437 strap procedure with 10,000 resamples, which provides uncertainty estimates without assuming nor-
1438 mality of the statistics.

1439

1440 **M COMPUTATIONAL COST**

1441

1442 On a single RTX 4090 GPU, producing 38k synthetic EMRs takes approximately 13 hours
1443 with direct generation, whereas LLM-CARe requires about 36 hours, which includes initial draft
1444 generation and all three refinement stages. Although the framework performs three levels of
1445 Critic–Adviser–Reviser interactions, the actual overhead is moderated by two factors. First, the
1446 outputs of these agents are much shorter than full EMRs, making each refinement step relatively
1447 lightweight. Second, if a draft already satisfies the criteria at a given stage, it bypasses subsequent
1448 agents, avoiding unnecessary iterations. Moreover, the computational cost scales linearly with the
1449 number of EMRs, and the cyclic refinement process can be parallelized across disease categories,
1450 making the framework feasible for scaling to larger corpora.

1451

1452

1453 **N USE OF LLMs**

1454

1455 In preparing this manuscript, we used LLM solely as an assistive tool for text refinement, including
1456 grammar correction, and language polishing. The research ideas, experimental design, implemen-
1457 tation, and analysis were entirely conceived and executed by the authors.