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ABSTRACT

Electronic medical records (EMRSs) are vital for healthcare research, but their use
is limited by privacy concerns. Synthetic EMR generation offers a promising alter-
native, yet most existing methods merely imitate real records without adhering to
rigorous clinical quality principles. To address this, we introduce LLM-CARe, a
stage-wise cyclic refinement framework that progressively improves EMR quality
through three stages, each targeting a specific granularity: corpus, section and doc-
ument. At each stage, a Critic, an Adviser, and a Reviser collaborate iteratively to
evaluate, provide feedback, and refine the drafts. This structured, multi-stage pro-
cess produces records that better satisfy clinical quality standards. Experiments
show that LLM-CARe significantly enhances EMR quality across all levels com-
pared to strong baselines and yields improved performance on real-world clinical
tasks such as diagnosis prediction. Unlike prior work, our method requires no real
EMRs for training or prompting, demonstrating the effectiveness of stage-wise,
cyclic refinement for generating high-quality, privacy-preserving EMR datasets.

1 INTRODUCTION

Electronic Medical Records (EMRs) are a valuable resource for healthcare research (Ma et al.,[2017;,
Shang et al.,|2019; [Shen et al.|, 2025)), offering large-scale, clinically grounded insights that reflect
real-world medical practice. However, the sensitive nature of patient information poses significant
privacy challenges, which severely limit the open sharing and use of real EMRs (Iyengar et al.|
2018 Shah & Khan| |2020; Tertulino et al., [2024). To mitigate these concerns, researchers have
explored synthetic EMR generation methods that aim to preserve data utility while protecting patient
confidentiality (Yan et al.,|2022; |Murtaza et al., 2023} | Yuan et al.| [2024).

Existing EMR synthesis approaches primarily focus on mimicking real records (Leel|2018;|Baowaly
et al.l 2018} [Yoon et al., 2023)), without explicit ensuring clinical soundness. This imitation-based
strategy is risky: real EMRs may contain errors (Aerts et al.| [2021; Mohamed et al. |2023), which
can be inadvertently inherited by synthetic data (Figure [I[a)). In practice, EMRs are professional
medical documents whose reliability depends on satisfying key requirements such as completeness,
consistency, and distribution alignment. Synthetic records that fail to meet such requirements may
be less useful—or even misleading—for downstream clinical or research applications.

Recent advances in large language models (LLMs) make them a promising tool for EMR generation,
due to their text generation ability and rich internal knowledge. However, as shown in Figure [T[a),
our preliminary analysis reveals that LLM outputs often exhibit biased distributions—such as un-
realistic gender patterns—and insufficient coverage of less typical clinical cases. These challenges
highlight the need for more structured approaches to harness LLMs effectively for EMR synthesis.

To bridge this gap, we propose LLM-based Critic—Adviser—Reviser Cyclic Refinement (LLM-
CARe), a stage-wise framework that enhances synthetic EMR quality through progressive refine-
ment across corpus, section and document levels. As illustrated in Figure Ekb), LLM-CARe incor-
porates clinical quality principles into the generation process, producing records that align closely
with professional standards of medical documentation. These requirements are organized into con-
crete principles of corpus distributional alignment, section completeness, and document consistency,
forming the basis for refinement at different granularities. Guided by them, LLM-CARe proceeds
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Figure 1: (a) Traditional EMR generation that mimic real EMRs without considering quality often
leads to suboptimal outputs. (b) Our proposed LLM-CARe incorporates cyclic refinement based on
quality principles, synthesizing high-quality EMRs.

through three stages of refinement—corpus, section, and document—each targeting a distinct aspect
of EMR quality. Within every stage, a Critic, an Adviser, and a Reviser collaborate in a cyclic loop:
the Critic evaluates the drafts, the Adviser provides targeted feedback, and the Reviser updates the
records. While the interaction pattern is shared, the role of each agent adapts to the stage: corpus
stage aligns the dataset with realistic distributions, section stage enforces section completeness, and
document stage ensures logical consistency within record. This structured process enables system-
atic enhancement of EMRs from local detail to global corpus characteristics.

To validate the effectiveness of our approach, we conduct two types of evaluations on a real-world
EMR dataset containing 192k records across 302 disease categories. We assess the intrinsic quality
of generated records using a strong LLM as a judge, complemented by statistical comparisons to real
EMRs. Additionally, we evaluate downstream utility by training task-specific models on synthetic
EMRs and testing them on real records across three representative clinical tasks: diagnosis predic-
tion, examination recommendation, and treatment recommendation. Results show that LLM-CARe
consistently outperforms baseline methods in both record quality and task performance. Notably,
our method requires no access to real EMRs during generation, fully preserving patient privacy
while producing clinically meaningful and practically useful data.

Our main contributions are summarized as follows:

* We propose LLM-CARe, a stage-wise multi-agent framework for high-quality EMR syn-
thesis that employs cyclic refinement based on clinical quality principles.

* LLM-CARe consistently improves EMR quality compared to baselines across multiple
levels. Further analysis shows that all three agents play essential and complementary roles.

* Without using real EMRs, our synthetic data yields superior downstream task performance
compared to baselines, ensuring both utility and privacy.

2 RELATED WORK

There has been growing interest in synthesizing EMRs to address privacy concerns and facilitate
secure data sharing. We categorize existing methods into three main paradigms:

GAN-based EMR Generation. Generative adversarial networks (GANs) have been extensively
explored for EMR synthesis. Some works generate EMRs from random noise vectors (Choi et al.,
2017; Baowaly et al.| 2018; [Chin-Cheong et al.l 2019} [Yoon et al., |2023)), while other methods
incorporate structured conditions—such as diagnosis codes—to guide generation process (Rashidian
et al., 2020; [Zhang et al., |2020; |Guan et al., 2021} L1 et al., 2023). Although effective at modeling
data distributions, these methods typically ignore the clinical quality of the generated records.

Auto-regressive EMR Generation. Another line of research leverages auto-regressive models to
generate EMRs. Recurrent neural networks (RNNs) have been used to model sequential EMR data
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(Lee, [2018; Melamud & Shivade} |2019; Mosquera et al, [2023; |Ganguli et al.l [2023)), and more
recently, transformer-based architectures have been introduced to capture long-range dependencies
within records (Wang et al., 2019; /Amin-Nejad et al., 2020; [Theodorou et al., 2023 |[Karami et al.,
2024). While these models excel at learning temporal and structural patterns, they generally treat
EMRs as sequences of tokens without mechanisms to ensure clinically meaningful coherence.

LLM-based EMR Generation. With the emergence of large language models (LLMs), recent
studies have explored prompting LLMs to synthesize EMRs, either by providing brief clinical de-
scriptions or by asking the model to emulate real patient records (Litake et al.,|2024; [ Kumichev et al.,
2024;/Abdel-Khalek et al.|, 2024} Kweon et al.,[2024). While LLMs exhibit strong capabilities, direct
generation often results in outputs that diverge from realistic corpus-level distributions.

3 METHOD

In this section, we present LLM-CARe, a stage-wise cyclic refinement framework for enhancing the
quality of synthetic EMRs. Unlike ordinary free-form text, EMRs are structured medical documents
whose quality must be considered at multiple levels. At the corpus level, the dataset as a whole
should follow realistic clinical distributions. At the section level, each field within a record should
be sufficiently informative. At the document level, multiple fields must remain logically consistent
and clinically sound when viewed together. Details are provided in Appendix

To address these requirements, LLM-CARe refines EMRs in three successive stages—corpus, sec-
tion, and document. As illustrated in Figure 2] each stage involves the collaboration of three agents
in a cyclic loop: the Critic, who evaluates drafts against stage-specific objectives; the Adviser, who
pinpoints areas for improvement and suggests strategies; and the Reviser, who incorporates feedback
to update the drafts. This iterative process progressively improves EMRs from global distributional
alignment, to field-level completeness, and finally to record-level coherence.
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Figure 2: Overview of our proposed LLM-CARe framework for synthesizing high-quality EMRs.

3.1 INITIAL DRAFT GENERATION

The generation process begins with a generator agent M geperator, Which produces initial EMR drafts
based on an input prompt z. This prompt specifies key information such as the target primary diag-
nosis and required EMR fields (e.g., chief complaint, history of present illness). For each prompt,
the generator samples multiple drafts to form a starting draft pool:

DO = (B, B}, E[” ~ Myeneraor(0) (1)
where D(?) denotes the initial draft set and each EZ( is an EMR instance. These drafts may exhibit
omissions, inconsistencies, or clinically implausible details, but they provide the foundation for
subsequent stage-wise refinement.

0)

3.2 CoRrrPUS-LEVEL CARE

At the dataset scale, high-quality synthetic EMRs must preserve realistic and representative distri-
butions. We focus on two aspects: Demographic Typicality, ensuring variables such as age and
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gender reflect real-world patient populations (see Figure [0 for examples), and Knowledge Cover-
age, ensuring the corpus contains both common and rare clinical conditions (with detailed dimen-
sions listed in Table [9). These goals are addressed through corpus-level agent interactions, where
the critic, adviser, and reviser collaborate to align the overall distribution.

Corpus-level Critic. At the corpus stage, the critic focuses on dataset-wide properties, capturing how
well synthetic EMRs aligns with target distributions. For each attribute ccorpus,i (€.8., age, gender,

or a knowledge dimension), it measures the deviation of the current corpus DO from the reference
distribution 7 derived from the training set:

s = M (D, T e ?

corpus, k

Corpus-level Adviser. The adviser interprets the critic’s feedback to guide modifications at the
dataset level. Based on the deviations, it identifies a subset of records S lgt) c D® whose adjustment

would most effectively reduce distributional mismatch, and generates actionable feedback FC(OF)pug K

S(t) Fcofpm k Mzgﬁs:r (D(t)’ Ceorpus, k» 50(2pus,k) 3)

Corpus-level Reviser. The reviser applies the adviser’s instructions to the selected subset S ,(ct), mod-
ifying or enriching records to better match the reference distribution:

S = MR (S Flps) @

reviser

3.3 SECTION-LEVEL CARE

At the section scale, high-quality EMRs must ensure Content Completeness: each field should
contain the essential clinical elements expected for its type. To operationalize this, we define a set of
section-specific criteria derived from clinical guidelines (see Table [6]), and apply cyclic refinement
with critic, adviser, and reviser agents to supplement missing information.

Section-level Critic. The critic operates for each single section. For a section s( ) in record E( )

and a criterion ¢y 1 derived from clinical guidelines, it determines whether the crlterlon is met:

t N t
5s(ec) ik Mc?fnc( i, 1)717 Csec k) 6s(ec) ik S {O, 1} 5)

Section-level Adviser. For unmet criteria (5562 ik =0 the adviser examines the section and designs

specific instructions to indicate exactly which clinical elements should be added or clarified:
) _ g (t)
Fsec,i,k - Z:icviser (‘Si,ma csec,k:) (6)

Section-level Reviser. Using the adviser’s guidance, the reviser updates the section by incorporating
the recommended elements while preserving existing content and coherence:

1 sec
sgf:z ) = Mfeviser( gtv)n? Fs(:c)z k) (7)

Through this cycle, sections are progressively completed and made sufficient for their clinical role.

3.4 DOCUMENT-LEVEL CARE

At the document scale, EMRs must ensure both Medical Correctness—that clinical statements are
valid given the diagnosis—and Context Consistency—that information across sections does not
conflict. To make these requirements concrete, we define detailed criteria for both aspects (see
Tables and Table B]) To enforce them, we refine EMRs through document-level agent interactions,
where the focus is on coherence across multiple sections.

Document-level Critic. The critic evaluates each record as a whole, checking constraints across
sections for logical rigor and clinical plausibility. For a consistency rule cgoc, &, it outputs a judgment:

5((1:72: i,k T Mggfic (Ez(t)v Cdoc,k) 5 5((1271-7]6 S {07 1} (8)

4
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Document-level Adviser. When inconsistencies are flagged ((SSZ)C . = 0), the adviser generates

targeted feedback, often suggesting edits to the less influential section to restore harmony:
t d t
Fd(oc),i,]c = Mag\cliser (El( )7 Cdoc,k) 9)

Document-level Reviser. Finally, the reviser integrates this feedback to harmonize the conflicting
sections and yield an updated document:

BT = M (L i) (10)

Through this process, records are refined into coherent, consistent, and clinically valid narratives.

3.5 STAGE-WISE ORDERING

At each stage, the critic, adviser, and reviser interact in cycles to refine the drafts according to
stage-specific principles. Once the drafts have been improved at the current granularity, they are
passed to the next stage, where the agent interaction continues under a different focus. The staged
order is intentional: modifications at one level can influence others, so we proceed from the most
flexible to the most stringent stage. Corpus-level refinement is relatively soft, aiming to align
distributions without requiring exact matches, and is therefore performed first. While document-
level refinement enforces strict logical consistency across sections, where errors could introduce
serious contradictions, thus is performed last. By progressing in this order, each stage builds on the
previous one while minimizing unintended conflicts. Through this staged refinement, the synthetic
EMRs achieve high quality across corpus, section, and document levels.

4 EXPERIMENTAL SETUP

Dataset To validate the effectiveness of our method, we conduct experiments on a real-world
EMR dataset comprising 192k records across 302 diseases. The dataset is carefully de-identified
by removing all sensitive patient information. Unlike many prior studies that focus on synthesizing
a single field in isolation (e.g., chief complaint), we consider multiple fields that together capture
the clinical trajectory from admission to discharge to provide a comprehensive view of each clinical
episode. To ensure consistent disease distribution across subsets, we perform an 8:2 stratified split
based on disease categories, maintaining proportional representation in both the training and test
sets. Further details are provided in Appendix

Baselines We compare our method against three representative baselines: LSTM (Lee, 2018)), an
autoregressive model trained on real EMRs; mtGAN (Guan et al., [2021), a GAN-based method
conditioned on disease labels; and MedSyn (Kumichev et al., 2024)), which utilizes an LLM with
real EMRs as in-context examples. Additionally, we include LLM Direct, a straightforward baseline
that generates EMRs from instructions without explicit quality control. For all methods, we generate
the same number of EMRs as in the test set. Since generation is conditioned on disease labels, we
ensure that the disease distribution of the synthesized data exactly matches that of the real test set.

Evaluation Settings We employ two types of EMR Downstream Tasks
metrics to evaluate synthetic EMRs: Gendor Ml Ager 68 Dingnosis Prediction

Based on the patient's chief complaint and history of present illness,
Primary Diagnosis: E> choose the most likely diagnosis from the following options.

EMR quality is assessed based on the five prin- | cesbrl infucion Chiet Complant: Sulden . History of Present liness: The

. . . Candidate di
ciples introduced above. For medical correct- A Corebral i
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tency we adopt a ”LLM-as-a-Judge” approach History of Present Illness: |:> choose the most appropriate examination the patient is likely to need
s s story s

The patient developed

Chief Complaint: Sudden ... History of Present Illness: The
Candidate examinations:
A. Abdominal ultrasound B. Chest X-ray C. Urine test D. Cranial C'T

using a larger model to provide reliable evalu-
ations. For demographic typicality and knowl- | ;.. cou
edge coverage, we compute statistical similar- | |j‘> e e R SR A e

Treatment Recommendation
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ity to real EMRs and measure the concept cov- Discharge Insirucion Cotaweamens:
erage of clinical terms.

Downstream task performance provides an Figure 3: Construction of multiple-choice ques-
practical way to evaluate the utility of synthetic tions for three downstream tasks from an EMR.
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data. Following prior work, we train task-specific models on synthetic EMRs and evaluate their
performance on real-world test data. This setup reflects a common use case of synthetic data in
low-resource scenarios. We consider three representative tasks of high clinical relevance: diagnosis
prediction, examination recommendation, and treatment recommendation. These tasks collectively
span key aspects of medical decision-making. Each task is framed as a multiple-choice question,
where the model predicts answers based on the chief complaint and history of present illness. Illus-
trative examples are shown in Figure 3]

Implementation Details We use Qwen2.5-7B-Instruct (Yang et al.,[2025)) as the backbone model
for all agents in our framework. For EMR quality evaluation, we adopt Qwen2.5-32B-Instruct,
as larger models tend to provide more reliable judgments. For downstream tasks, we fine-tune
Qwen2.5-0.5B-Instruct on synthetic EMRs and evaluate performance on real test data. Detailed
experimental settings are provided in Appendix [C]

5 EXPERIMENTAL RESULTS AND DISCUSSION

5.1 COMPARISON OF EMR QUALITY

Table 1: Quality score (%) of generated EMRSs across principles, where higher values indicate better
performance. (¥) denotes standard deviation calculated from 3 runs with different random seeds.

Tyoe Method Rely on | Section Level Document Level Corpus Level
yp Real Content Medical Context | Demographic Knowledge

EMRs | Completeness | Correctness Consistency | Typicality  Coverage
Non- LSTM v 70.8(1.1) 65.0(0.4) 21.72.3) 93.3(0.6) 70.4(0.4)
LLM mtGAN v 55.8(2.9) 51.8(6.2) 21.44.2) 93.6(1.4) 76.3(3.7)
LLM- MedSyn v 84.8(0.3) 95.3(0.8) 91.9¢1.1) 84.1(0.9) 84.5(5.8)
Based LLM Direct X 77.1(0.1) 90.7(0.2) 87.9(0.1) 77.7¢0.1) 73.9(0.2)
LLM-CARe(ours) X 91.2(0.4) 98.6(0.0) 93.8(0.1) 96.8(1.4) 94.1(0.1)

Table [T| summarizes the performance of all methods across the five defined quality principles. Our
approach consistently outperforms all baselines on every metric, demonstrating its effectiveness in
enhancing both the quality of individual records and the overall corpus characteristics. Among the
baselines, LLM-based methods generally perform better than traditional models on section- and
document-level principles. However, without our structured cyclic refinement mechanism, they
sometimes fall behind traditional approaches on corpus-level principles. This suggests that simply
employing LLM:s is not sufficient to guarantee comprehensive EMR quality. In contrast, our
method achieves strong and balanced performance across all levels, underscoring the benefit of
integrating principle-based, stage-wise cyclic refinement into the generation process.

Content Completeness

1.0
Section Level 0.0
_____________________ HPiCause _ _____ HWPLSymptom ______ HP:General _ __ __ HG:Examinafion __ ___ HC:Treatment _ ___ __DI:Medication ____
Medical Correctness Context Consistency
AN 1.0 1.0
0.5 % 05 %
Document Level 0.0 0.0
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Knowledge Coverage Demographic Typicality
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EES |
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Corpus Level Symptom Laboratory Examination Surgery Medication Gender Age

LSTM mtGAN MedSyn LLM Direct LLM-CARe (ours)

Figure 4: Detailed EMR quality evaluation across 3 levels. Abbreviations: CC-Chief Complaint,
HPI-History of Present Illness, HC-Hospital Course, DI-Discharge Instructions, Dx-Diagnosis.

Figure [4] presents a fine-grained breakdown of EMR quality across several representative and clin-
ically important criteria; complete results are provided in Appendix [D] Our method achieves the
best or competitive performance on the majority of criteria, demonstrating robustness across diverse
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quality dimensions. Notably, MedSyn underperforms even the LLM Direct on some criteria, such
as the completeness of the hospital course. This suggests that real EMRs—used by MedSyn
as in-context exemplars—may contain omissions that propagate into the generated records.
These findings further highlight the limitations of purely imitative approaches and emphasize the
importance of explicitly modeling and enforcing quality standards during generation.

5.2 COMPARISON OF DOWNSTREAM TASK PERFORMANCE

Table 2: Accuracy (%) of three downstream tasks, where micro and macro are averaged across
diseases. (*) denotes standard deviation calculated from 3 runs with different random seeds.

Rely on Diagnosis Examination Treatment
Type Method Real Prediction Recommendation | Recommendation
EMRs | Micro Macro | Micro Macro | Micro Macro

Non- LSTM v 74.02.0) 73.12.0)| 75.7(0.3) 76.4(0.2) | 56.7(0.6) 50.0(0.7)

LLM mtGAN v 81.922) 80.92.5) | 72.4(1.5) 73.4(1.4) | 58.6(2.8) 52.9(3.0)

LLM- MedSyn v 81.7(0.00 81.7(0.0) | 82.9(0.1) 82.2(0.1) | 74.5(0.1) 71.3(0.2)

Based LLM Direct X 81.8(0.0) 81.8(0.2) | 64.40.0) 65.4(0.0) | 60.9(0.2) 59.0(0.3)
X

LLM-CARe(ours) 82.6(0.3) 82.4(0.4) | 85.3(0.1) 85.2(0.1)|76.90.3) 74.1(0.5)

To evaluate the utility of synthetic EMRs, we assess their effectiveness in training models for down-
stream tasks. As shown in Table 2| LLM-CARe achieves the best performance across all three
tasks, without using any real EMR text. In contrast, most baselines rely on real records, either for
model training or as in-context examples, which raises privacy concerns. Notably, baseline methods
perform relatively well on the diagnosis task, but show larger performance gaps on examination and
treatment tasks. We attribute this to their higher coverage of symptom-related knowledge (which is
directly relevant to diagnosis) but limited representation of clinical concepts related to examinations,
procedures, and medications—key to the latter two tasks. These results highlight the advantage of
our principled framework in producing semantically rich and clinically useful synthetic records.

Diagnosis Prediction Examination Recommendation Treatment Recommendation
1.0 1. ° ° ° ° ° 1.0 ° ° ° °
°
> 08 % - 09 - . 08
%) [9) H [9)
g 0.6 g 0.8 g 0.6
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LSTM mtGAN MedSyn LLM Direct LLM-CARe (ours)

Figure 5: Accuracy distribution across diseases of different methods on three downstream tasks.

Figure 5] further illustrates the performance distribution across diseases. The box plots show that our
method not only achieves higher average performance but also exhibits narrower variance across dis-
eases. This consistency suggests that our approach is broadly effective and robust across a wide
range of clinical conditions. In contrast, some baselines display wide performance fluctuations,
indicating limited generalization to diverse disease types. These findings underscore the reliability
of our method in real-world clinical settings, where robustness across varied diseases is critical.

5.3 ANALYSIS OF PERFORMANCE ACROSS STAGES

Figure [shows how EMR quality and downstream task performance evolve through the three refine-
ment stages. Quality dimensions improve most notably in their corresponding stages (e.g., complete-
ness during the section stage). While some dimensions may show temporary fluctuations at other
stages, the staged design—progressing from softer corpus-level constraints to stricter document-
level checks—ensures that all dimensions ultimately exceed direct generation by a clear margin.
For downstream tasks, examination and treatment recommendation benefit most from corpus-level
refinement, since they rely on broad and diverse clinical concepts present in the training data. In
contrast, diagnosis prediction depends more directly on complete histories and symptom—diagnosis
alignment, thus improves primarily at the section and document stages.
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Figure 6: Trends on (a) EMR quality and (b) downstream task performance across stages.

5.4 ABLATION STUDY OF MULTI-AGENT COMPONENTS

To assess the contribution of each agent in our framework, we conduct an ablation study by indi-
vidually removing the Critic, Adviser, and Reviser agents. When the Critic is removed, the Adviser
generates feedback for all quality criteria, regardless of whether they are already satisfied. Without
the Adviser, the Reviser receives only high-level information about unmet criteria, without action-
able suggestions. When the Reviser is removed, the system cannot update existing drafts—instead,
we prompt the Generator to regenerate EMRs using all quality criteria as input.

0.95 0.85
) )
8 0.90 § 0.80
3 3
8 085 8 075
< <

0.80 0.70

EMR Quality Downstream Task (Micro) Downstream Task (Macro)
LLM-CARe w/o Critic LLM-CARe w/o Adviser LLM-CARe w/o Reviser LLM-CARe (ours)

Figure 7: Impact of removing each agent on EMR quality and downstream task performance.

Figure [/| shows that removing any of the agents leads to a noticeable performance drop in both
EMR quality and downstream tasks. The most significant declines occur when either the Critic or
Reviser is ablated, highlighting two key insights: accurate assessment of the current draft is crucial
for targeted refinement; and large language models struggle to satisfy all quality criteria in a
single generation step, underscoring the need for cyclic refinement. Besides, removing the Adviser
also results in a performance drop, suggesting that concrete, actionable feedback is more effective
than abstract criterion-level input in guiding successful revisions.

5.5 ANALYSIS OF ROBUSTNESS ACROSS LLM BACKBONE

Table [3] compares our framework with the Table 3: EMR quality and downstream performance
LLM Direct baseline across three different (%) across LLM backbones, averaged over principles
LLM backbones: a general-purpose model and tasks.

(LLaMA 3.1) (Dubey et al.,[2024)), a med-
ically pre-trained model (Meditron) (Chen Backbone
et al.l [2023), and a reasoning-oriented
model (R1) (Guo et al.| 2025). Without
any prompt tuning or model-specific adap- Llama3.1 | LLM Direct | 49.3 54.9 55.8
tation, our method consistently improves ~ _-SB-Instruct| LLM-CARe | 77.5 | 73.1 71.7
both EMR quality and downstream task Meditron3 | LLM Direct | 53.9 53.7 54.8

erformance across all backbones -8B LLM-CARe| 76.4 73.6 724
P ' R1-Distill | LLM Direct | 55.5 51.3 52.4

Notably, although Meditron is explic- -Llama-8B | LLM-CARe| 80.5 | 72.8 715
itly trained for medical domains, it still

struggles to directly generate high-quality EMRs and gains substantial improvements when in-
tegrated into our framework. Similarly, R1 does not significantly outperform the general model
in direct generation, indicating that internal reasoning alone is insufficient to meet the nuanced
requirements of EMR. These findings emphasize the necessity of principle-driven refinement that
complements backbone capabilities and cannot be replaced by pretraining or reasoning alone.

Generation | EMR | Downstream Task
Strategy | Quality | Micro = Macro
Average Average
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5.6 CLINICIAN EVALUATION

To validate the reliability of Table 4: Agreement between human clinicians and LLM-based
using LLM as a judge, we evaluation on EMR quality.

conducted a human evaluation
study. A total of 100 syn- Quality | Clinician-LLM Agreement | Inter-Clinician Agreement

thetic EMRs were sampled (20 Level Cohen’s Confidence Fleiss’s Confidence
from each of five methods) and Kappa Interval (95%) | Kappa Interval (95%)

independently assessed by four Section | 0.866  [0.817,0.910] | 0.953  [0.923,0.979]
licensed Clinicians’ who rated Document | 0.813 [0.768, 0.856] 0.941 [0.915, 0.964]
completeness, consistency, and Overall | 0.837  [0.804,0.868] | 0.947  [0.928,0.964]
correctness for each record. As
shown in Table[d] the agreement
between clinicians and LLM is consistently high (Cohen’s Kappa = 0.837 overall, where values ex-
ceeding 0.8 indicate near-perfect agreement), with tight confidence intervals. Inter-clinician agree-
ment is also strong (Fleiss’s Kappa = 0.947 overall), confirming that the evaluation criteria are
well-defined and consistently interpretable by human experts. Together, these results demonstrate
that the LLM-based evaluation closely aligns with human judgment, supporting its validity as
an efficient proxy for large-scale quality assessment. More details are provided in Appendix [E]

5.7 CASE STUDY

Table [5] presents examples of quality is- Table 5: Examples of quality issues in synthetic EMRs.
sues that commonly arise when genera- Abbreviations: CC-Chief Complaint, HPI-History of
tion methods lack explicit adherence to Present Illness, HC-Hospital Course, Dx-Diagnosis.

quality standards. These cases reveal that
without structured quality control, gener- ~ Method | Example | Problem

ated EMRs often exhibit missing details, LSTM Dx: Uterine leiomyomas Males do not
medical inaccuracies, or inconsistencies. Gender: Male have a uterus.

. HC: Discharged after No treatments are
In contrast, Figure dempnstrates how  mtGAN feeling stable. mentioned in HC.
LLM-CARe progressively improves draft CC: Diarrhea for 2 days. | CC mentions diarrhea,
quality through refinement on different MedSyn HPI. ... no diarrhea ... but HPI denies it.

levels. This underscores the importance
of stage-wise cyclic refinement in producing high-quality EMRs.

Initial EMR Draft EMR After Section-Level CARe EMR After Document-Level CARe
Chief Complaint: Chest pain with cough Chief Complaint : Chest pain for 2 months, cough for | week Chief Complaint : Chest pain for 2 months, cough for 1 week
History of Present Illness: The patient began experiencing ooo History of Present Illness: The patient began experiencing History of Present Iiness: The patient has experienced chest
chest pain and cough approximately two months ago... chest pain and cough approximately two months ago... pain for two months and developed a cough | week ago...

<% Quality Check <% Quality Check < Quality Check

Content Completeness: Chief Complaint should X Content Completeness: Chief Complaint should J Content Completeness: Chief Complaint should J
include the onset time. include the onset time. include the onset time.
Context Consistency: The onset time in Chief Context Consistency: The onset time in Chief Context Consistency: The onset time in Chief J
Complaint and History of Present Illness should align. 2< Complaint and History of Present Illness should align. 2<. Complaint and History of Present Iliness should align.

Figure 8: Illustration of quality improvements through LLM-CARe. Revisions are marked in blue.

6 CONCLUSION

In this work, we tackle the limitations of existing EMR synthesis methods which mimic real records
without considering quality requirements. To overcome these, we propose LLM-CARe, a stage-
wise cyclic refinement framework driven by the collaboration of Critic, Adviser, and Reviser
agents. Instead of single-pass generation, LLM-CARe progressively enhances drafts through three
dedicated stages: aligning corpus-level distributions, ensuring section-level completeness, and en-
forcing document-level consistency and correctness. Experiments on a large real-world dataset
demonstrate that LLM-CARe substantially improves the quality of EMRs across all granularities.
Moreover, models trained on the refined synthetic corpus achieve superior performance on vari-
ous downstream tasks, highlighting the practical value of our approach. These results show the
effectiveness of LLM-CARe in generating synthetic EMRs that are both high-quality and clinically
meaningful, offering a reliable and privacy-preserving foundation for healthcare Al development.
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and was conducted under the oversight of the relevant data governance framework.

REPRODUCIBILITY STATEMENT

The collection and preprocessing of the EMR dataset are described in Section [ and Appendix
Experimental settings, model configurations, and evaluation protocols are detailed in Section 4 and
Appendix [C] The code for our experiments will be publicly released upon publication to further
facilitate reproducibility.

REFERENCES

Sayed Abdel-Khalek, Abeer D. Algarni, Ghada Amoudi, Salem Alkhalaf, Fahad Mohammed Al-
homayani, and Shankar Kathiresan. Leveraging ai-generated content for synthetic electronic
health record generation with deep learning-based diagnosis model. IEEE Transactions on Con-
sumer Electronics, pp. 1-1, 2024. doi: 10.1109/TCE.2024.3415626.

Hannelore Aerts, Dipak Kalra, Carlos Saez, Juan Manuel Ramirez-Anguita, Miguel-Angel Mayer,
Juan M Garcia-Gomez, Marta Dura-Herndndez, Geert Thienpont, and Pascal Coorevits. Quality
of hospital electronic health record (ehr) data based on the international consortium for health
outcomes measurement (ichom) in heart failure: Pilot data quality assessment study. JMIR Medi-
cal Informatics, 9(8), 2021. ISSN 2291-9694. doi: https://doi.org/10.2196/27842. URL https:
//www.sciencedirect.com/science/article/pii/S2291969421002568.

Ali Amin-Nejad, Julia Ive, and Sumithra Velupillai. Exploring transformer text generation for
medical dataset augmentation. In Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid
Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard,
Joseph Mariani, Hélene Mazo, Asuncion Moreno, Jan Odijk, and Stelios Piperidis (eds.), Pro-
ceedings of the Twelfth Language Resources and Evaluation Conference, pp. 4699-4708, Mar-
seille, France, May 2020. European Language Resources Association. ISBN 979-10-95546-34-4.
URLhttps://aclanthology.org/2020.1rec-1.578/.

Mrinal Kanti Baowaly, Chia-Ching Lin, Chao-Lin Liu, and Kuan-Ta Chen. Synthesizing electronic
health records using improved generative adversarial networks. Journal of the American Medical
Informatics Association, 26(3):228-241, 12 2018. ISSN 1527-974X. doi: 10.1093/jamia/ocy142.
URL https://doi.org/10.1093/jamia/ocyl42.

Zeming Chen, Alejandro Herndndez Cano, Angelika Romanou, Antoine Bonnet, Kyle Matoba,
Francesco Salvi, Matteo Pagliardini, Simin Fan, Andreas K&pf, Amirkeivan Mohtashami, Alexan-
dre Sallinen, Alireza Sakhaeirad, Vinitra Swamy, Igor Krawczuk, Deniz Bayazit, Axel Marmet,
Syrielle Montariol, Mary-Anne Hartley, Martin Jaggi, and Antoine Bosselut. Meditron-70b: Scal-
ing medical pretraining for large language models, 2023. URL https://arxiv.org/abs/
2311.16079.

Kieran Chin-Cheong, Thomas Sutter, and Julia E Vogt. Generation of heterogeneous synthetic
electronic health records using gans. In workshop on machine learning for health (ML4H) at the
33rd conference on neural information processing systems (NeurIPS 2019). ETH Zurich, Institute
for Machine Learning, 2019.

Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F. Stewart, and Jimeng Sun.
Generating multi-label discrete patient records using generative adversarial networks. In Fi-
nale Doshi-Velez, Jim Fackler, David Kale, Rajesh Ranganath, Byron Wallace, and Jenna Wiens
(eds.), Proceedings of the 2nd Machine Learning for Healthcare Conference, volume 68 of

10


https://www.sciencedirect.com/science/article/pii/S2291969421002568
https://www.sciencedirect.com/science/article/pii/S2291969421002568
https://aclanthology.org/2020.lrec-1.578/
https://doi.org/10.1093/jamia/ocy142
https://arxiv.org/abs/2311.16079
https://arxiv.org/abs/2311.16079

Under review as a conference paper at ICLR 2026

Proceedings of Machine Learning Research, pp. 286-305. PMLR, 18-19 Aug 2017. URL
https://proceedings.mlr.press/v68/choil7a.htmll

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Reetam Ganguli, Rishik Lad, Alice Lin, and Xiaotian Yu. Novel generative recurrent neural network
framework to produce accurate, applicable, and deidentified synthetic medical data for patients
with metastatic cancer. JCO Clinical Cancer Informatics, (7):2200125, 2023. doi: 10.1200/
CCI.22.00125. URL https://ascopubs.org/doi/abs/10.1200/CCI.22.00125.
PMID: 37130342.

Jiaqi Guan, Runzhe Li, Sheng Yu, and Xuegong Zhang. A method for generating synthetic electronic
medical record text. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18
(1):173-182, 2021. doi: 10.1109/TCBB.2019.2948985.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
ment learning. Nature, 645(8081):633-638, 2025.

Arun Iyengar, Ashish Kundu, and George Pallis. Healthcare informatics and privacy. IEEE Internet
Computing, 22(2):29-31, 2018. doi: 10.1109/MIC.2018.022021660.

Hojjat Karami, David Atienza, and Anisoara Paraschiv-Ionescu. SynEHRgy: Synthesizing mixed-
type structured electronic health records using decoder-only transformers. In GenAl for Health:
Potential, Trust and Policy Compliance, 2024. URL https://openreview.net/forum?
1d=k4CTvnQZxx.

Gleb Kumichev, Pavel Blinov, Yulia Kuzkina, Vasily Goncharov, Galina Zubkova, Nikolai Zen-
ovkin, Aleksei Goncharov, and Andrey Savchenko. Medsyn: Llm-based synthetic medical text
generation framework. In Machine Learning and Knowledge Discovery in Databases. Applied
Data Science Track: European Conference, ECML PKDD 2024, Vilnius, Lithuania, September
9-13, 2024, Proceedings, Part X, pp. 215-230, Berlin, Heidelberg, 2024. Springer-Verlag. ISBN
978-3-031-70380-5. doi: 10.1007/978-3-031-70381-2_14. URL https://doi.org/10.
1007/978-3-031-70381-2_14.

Sunjun Kweon, Junu Kim, Jiyoun Kim, Sujeong Im, Eunbyeol Cho, Seongsu Bae, Jungwoo Oh,
Gyubok Lee, Jong Hak Moon, Seng Chan You, Seungjin Baek, Chang Hoon Han, Yoon Bin
Jung, Yohan Jo, and Edward Choi. Publicly shareable clinical large language model built on
synthetic clinical notes. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of
the Association for Computational Linguistics: ACL 2024, pp. 5148-5168, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.
305. URL|https://aclanthology.org/2024.findings—acl.305/!

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Scott H. Lee. Natural language generation for electronic health records. npj Digital Medicine, 1
(1):63, Nov 2018. ISSN 2398-6352. doi: 10.1038/s41746-018-0070-0. URL https://doi.
org/10.1038/s41746-018-0070-0!

Jin Li, Benjamin J. Cairns, Jingsong Li, and Tingting Zhu. Generating synthetic mixed-type lon-
gitudinal electronic health records for artificial intelligent applications. npj Digital Medicine,
6(1):98, May 2023. ISSN 2398-6352. doi: 10.1038/s41746-023-00834-7. URL https:
//doi.org/10.1038/s41746-023-00834-7.

Onkar Litake, Brian H Park, Jeffrey L Tully, and Rodney A Gabriel. Constructing synthetic datasets
with generative artificial intelligence to train large language models to classify acute renal failure
from clinical notes. Journal of the American Medical Informatics Association, 31(6):1404-1410,
04 2024. ISSN 1527-974X. doi: 10.1093/jamia/ocac081. URL https://doi.org/10.
1093/jamia/ocae081.

11


https://proceedings.mlr.press/v68/choi17a.html
https://ascopubs.org/doi/abs/10.1200/CCI.22.00125
https://openreview.net/forum?id=k4CTvnQZxx
https://openreview.net/forum?id=k4CTvnQZxx
https://doi.org/10.1007/978-3-031-70381-2_14
https://doi.org/10.1007/978-3-031-70381-2_14
https://aclanthology.org/2024.findings-acl.305/
https://doi.org/10.1038/s41746-018-0070-0
https://doi.org/10.1038/s41746-018-0070-0
https://doi.org/10.1038/s41746-023-00834-7
https://doi.org/10.1038/s41746-023-00834-7
https://doi.org/10.1093/jamia/ocae081
https://doi.org/10.1093/jamia/ocae081

Under review as a conference paper at ICLR 2026

Fenglong Ma, Radha Chitta, Jing Zhou, Quanzeng You, Tong Sun, and Jing Gao. Dipole: Di-
agnosis prediction in healthcare via attention-based bidirectional recurrent neural networks. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’17, pp. 1903-1911, New York, NY, USA, 2017. Association for Com-
puting Machinery. ISBN 9781450348874. doi: 10.1145/3097983.3098088. URL https:
//doi.org/10.1145/3097983.3098088.

Oren Melamud and Chaitanya Shivade. Towards automatic generation of shareable synthetic clinical
notes using neural language models. In Anna Rumshisky, Kirk Roberts, Steven Bethard, and
Tristan Naumann (eds.), Proceedings of the 2nd Clinical Natural Language Processing Workshop,
pp- 3545, Minneapolis, Minnesota, USA, June 2019. Association for Computational Linguistics.
doi: 10.18653/v1/W19-1905. URL https://aclanthology.org/W19-1905/.

Yahia Mohamed, Xing Song, Tamara M McMahon, Suman Sahil, Meredith Zozus, Zhan Wang,
Greater Plains Collaborative, and Lemuel R Waitman. Electronic health record data quality vari-
ability across a multistate clinical research network. J Clin Transl Sci, 7(1):e130, May 2023.

Lucy Mosquera, Khaled El Emam, Lei Ding, Vishal Sharma, Xue Hua Zhang, Samer El Kababji,
Chris Carvalho, Brian Hamilton, Dan Palfrey, Linglong Kong, Bei Jiang, and Dean T. Eurich. A
method for generating synthetic longitudinal health data. BMC Medical Research Methodology,
23(1):67, Mar 2023. ISSN 1471-2288. doi: 10.1186/s12874-023-01869-w. URL https:
//doi.org/10.1186/512874-023-01869—w.

Hajra Murtaza, Musharif Ahmed, Naurin Farooq Khan, Ghulam Murtaza, Saad Zafar, and Am-
breen Bano. Synthetic data generation: State of the art in health care domain. Computer
Science Review, 48:100546, 2023. ISSN 1574-0137. doi: https://doi.org/10.1016/j.cosrev.
2023.100546. URL https://www.sciencedirect.com/science/article/pii/
S1574013723000138.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019. URL https://arxiv.org/abs/1912.01703|

Sina Rashidian, Fusheng Wang, Richard Moffitt, Victor Garcia, Anurag Dutt, Wei Chang, Vishwam
Pandya, Janos Hajagos, Mary Saltz, and Joel Saltz. Smooth-gan: Towards sharp and smooth
synthetic ehr data generation. In Martin Michalowski and Robert Moskovitch (eds.), Artificial
Intelligence in Medicine, pp. 37-48, Cham, 2020. Springer International Publishing. ISBN 978-
3-030-59137-3.

Shahid Munir Shah and Rizwan Ahmed Khan. Secondary use of electronic health record: Oppor-
tunities and challenges. IEEE Access, 8:136947-136965, 2020. doi: 10.1109/ACCESS.2020.
3011099.

Junyuan Shang, Cao Xiao, Tengfei Ma, Hongyan Li, and Jimeng Sun. Gamenet: Graph augmented
memory networks for recommending medication combination. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 33(01):1126—1133, Jul. 2019. doi: 10.1609/aaai.v33i01.33011126.
URLhttps://ojs.aaai.org/index.php/AAAI/article/view/3905.

Yun Shen, Jiamin Yu, Jian Zhou, and Gang Hu. Twenty-five years of evolution and hurdles
in electronic health records and interoperability in medical research: Comprehensive review.
Journal of Medical Internet Research, 27, 2025. ISSN 1438-8871. doi: https://doi.org/
10.2196/59024. URL https://www.sciencedirect.com/science/article/pii/
S51438887125000378.

Rodrigo Tertulino, Nuno Antunes, and Higor Morais. Privacy in electronic health records:
a systematic mapping study. Journal of Public Health, 32(3):435-454, Mar 2024. ISSN
1613-2238.  doi: 10.1007/s10389-022-01795-z. URL https://doi.org/10.1007/
s10389-022-01795-2z,

12


https://doi.org/10.1145/3097983.3098088
https://doi.org/10.1145/3097983.3098088
https://aclanthology.org/W19-1905/
https://doi.org/10.1186/s12874-023-01869-w
https://doi.org/10.1186/s12874-023-01869-w
https://www.sciencedirect.com/science/article/pii/S1574013723000138
https://www.sciencedirect.com/science/article/pii/S1574013723000138
https://arxiv.org/abs/1912.01703
https://ojs.aaai.org/index.php/AAAI/article/view/3905
https://www.sciencedirect.com/science/article/pii/S1438887125000378
https://www.sciencedirect.com/science/article/pii/S1438887125000378
https://doi.org/10.1007/s10389-022-01795-z
https://doi.org/10.1007/s10389-022-01795-z

Under review as a conference paper at ICLR 2026

Brandon Theodorou, Cao Xiao, and Jimeng Sun. Synthesize high-dimensional longitudinal elec-
tronic health records via hierarchical autoregressive language model. Nature Communica-
tions, 14(1):5305, Aug 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-41093-0. URL
https://doi.org/10.1038/s41467-023-41093-0.

Zixu Wang, Julia Ive, Sumithra Velupillai, and Lucia Specia. Is artificial data useful for biomedi-
cal natural language processing algorithms? In Dina Demner-Fushman, Kevin Bretonnel Cohen,
Sophia Ananiadou, and Junichi Tsujii (eds.), Proceedings of the 18th BioNLP Workshop and
Shared Task, pp. 240-249, Florence, Italy, August 2019. Association for Computational Linguis-
tics. doi: 10.18653/v1/W19-5026. URL https://aclanthology.org/W19-5026/l

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Qun Liu and David Schlangen (eds.), Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38—
45, Online, October 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-demos.6. URL https://aclanthology.org/2020.emnlp—-demos.6/.

Chao Yan, Yao Yan, Zhiyu Wan, Ziqi Zhang, Larsson Omberg, Justin Guinney, Sean D. Mooney,
and Bradley A. Malin. A multifaceted benchmarking of synthetic electronic health record gener-
ation models. Nature Communications, 13(1):7609, Dec 2022. ISSN 2041-1723. doi: 10.1038/
s41467-022-35295-1. URL https://doi.org/10.1038/s41467-022-35295-1.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi Tang,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Jinsung Yoon, Michel Mizrahi, Nahid Farhady Ghalaty, Thomas Jarvinen, Ashwin S. Ravi, Pe-
ter Brune, Fanyu Kong, Dave Anderson, George Lee, Arie Meir, Farhana Bandukwala, Elli
Kanal, Sercan O. Arik, and Tomas Pfister. Ehr-safe: generating high-fidelity and privacy-
preserving synthetic electronic health records. npj Digital Medicine, 6(1):141, Aug 2023.
ISSN 2398-6352. doi: 10.1038/s41746-023-00888-7. URL https://doi.org/10.1038/
s41746-023-00888-7.

Hongyi Yuan, Songchi Zhou, and Sheng Yu. EHRDiIff : Exploring realistic EHR synthesis with
diffusion models. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=DIGkJhGeqgi.

Ziqi Zhang, Chao Yan, Thomas A Lasko, Jimeng Sun, and Bradley A Malin. Synteg: a framework
for temporal structured electronic health data simulation. Journal of the American Medical In-
Sformatics Association, 28(3):596-604, 11 2020. ISSN 1527-974X. doi: 10.1093/jamia/ocaa262.
URLhttps://doi.org/10.1093/jamia/ocaal262.

13


https://doi.org/10.1038/s41467-023-41093-0
https://aclanthology.org/W19-5026/
https://aclanthology.org/2020.emnlp-demos.6/
https://doi.org/10.1038/s41467-022-35295-1
https://arxiv.org/abs/2412.15115
https://doi.org/10.1038/s41746-023-00888-7
https://doi.org/10.1038/s41746-023-00888-7
https://openreview.net/forum?id=DIGkJhGeqi
https://doi.org/10.1093/jamia/ocaa262

Under review as a conference paper at ICLR 2026

A DETAILS OF EMR QUALITY PRINCIPLES

In this section, we provide a detailed description of each criterion corresponding to the EMR quality
principles, along with representative examples.

A.1 CONTENT COMPLETENESS

Table @ lists the criteria used to assess content completeness, which evaluate whether each field
contains all essential information.

Table 6: Description of quality criteria for content completeness, along with representative exam-
ples. Abbreviations: CC-Chief Complaint, HPI-History of Present Illness, HC-Hospital Course,

DI-Discharge Instructions.

Positive Example

Negative Example

Criterion Abbreviation
Chief complaint cc
states reason
Reason

for admission

* CC: Cough for 1 day
* CC: Thyroid nodule
noted for 2 months

¢ CC: Admitted on
2025/05/16

e CC: Fever for 6 days
* CC: Chest pain for 1 year,
worsened over past month

* CC: Dizziness
accompanied by nausea
* CC: Poor recent
glycemic control

* HPI: Sudden-onset
headache 1 week ago

* HPI: Gradual onset of
unsteady gait for 4 months

* HPI: Experienced
headache over a month ago
* HPI: Developed gait
instability recently

* HPI: Abdominal pain after
alcohol intake 1 day ago

* HPI: Dizziness for 2 weeks
without obvious cause

e HPI: Sudden right eye
vision loss one week ago
* HPI: Cough onset 3
days ago

* HPI: Vomited 4-5 times
over the past half day

* HPI: Poor appetite and
fatigue over past 2 weeks

» HPI: Experienced
dizziness for days

* HPI: Normal mental
status, sleep, appetite, bowel
and bladder function; no
significant weight change

* HPI: Appetite
decreased

e HC: Chest CT revealed
a pulmonary mass lesion
¢ HC: Admission labs
showed CRP: 12.3 mg/L

e HC: Patient underwent
further examinations
after admission

* HC: Appendectomy
under general anesthesia
* HC: Aspirin given
for antiplatelet therapy

* HC: Given
pharmacological therapy

Chief complaint CC
includes onset time Onset
Hlstory of present HPI
illness describes .
. Acuity
acuity of onset
Hlstory of present HPI
illness mentions
. Cause
possible causes
History of present
illness lists HPI
major symptoms Symptom
and onset time
Hlstory Qf present HPI
illness includes
.. General
all general conditions
Hospital course includes HC
auxiliary examinations ..
.. Examination
or laboratory examinations
Hospital course
. HC
includes treatment
. . Treatment
1nterventions
Discharge instruction
. .. DI
includes medication ..
Medication

dosage and usage

¢ DI: Atorvastatin
1 tablet nightly
¢ DI: Amoxicillin
1g twice daily

e DI: Take antibiotics
regularly

A.2 MEDICAL CORRECTNESS

Tableoutlines the criteria for medical correctness, which assess whether the clinical content aligns

with the patient’s diagnosis.
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Table 7: Description of quality criteria for medical correctness, along with representative exam-
ples. Abbreviations: CC-Chief Complaint, HPI-History of Present Illness, HC-Hospital Course,
DI-Discharge Instructions, Dx-Diagnosis, PD-Patient Demographics.

Criterion Abbreviation Positive Example Negative Example
Igti%lré(s)stﬁe Dx-PD * Dx: Pregnancy * Dx: Pregnancy
. Gender Gender: Female Gender: Male
patient’s gender
c}Sli}(;I;ngI)nn;i:iI:lt Dx-CC * Dx: Pneumonia * Dx: Pneumonia
align with diagnosis Symptom  CC: Cough for 1 day = CC: Knee pain for 3 days
Symptoms in histor ¢ Dx: Cerebral e Dx: Acute
{)f present illness Y Dx-HPI infarction appendicitis
O present 1HNess Symptom  HPI: Sudden slurred HPI: Sudden blurred
align with diagnosis .
speech 1 day ago vision 2 weeks ago
* Dx: Cerebral
Examinations in Dx-HC ¢ Dx: Pneumonia infarction
hospital course . HC: Chest CT indicated HC: Abdominal
. . . . Examination .
align with diagnosis pneumonia ultrasound showed

appendiceal thickening
* Dx: Type 2 diabetes * Dx: Pneumonia

Medications in Dx-DI
discharge instructions Medication DI: Metformin (0.5g), DI: Insulin injection
align with diagnosis one tablet twice daily before meals

A.3 CONTEXT CONSISTENCY

Table [] presents the criteria for context consistency, which evaluate whether information across
different EMR sections is logically coherent.

Table 8: Description of quality criteria for context consistency, along with representative examples.
Abbreviations: CC-Chief Complaint, HPI-History of Present Illness, HC-Hospital Course.

Criterion Abbreviation Positive Example Negative Example
Symptoms in chief
complaint are consistent CC-HPI * CC: Cough for 1 day < CC: Cough for 1 day
with those in history Symptom  HPI: ... wich cough... HPI: ... wichout cough ...
of present illness
Onset time in chief * CC: Chest pain for ¢ CC: Chest pain for
complaint is consistent CC-HPI 1 month 1 month
with that in history Onset HPI: Chest pain over HPI: Chest pain over
of present illness past 1 month past 2 months
Affected site in history of * HPI: Left leg pain * HPI: Left leg pain
present illness is consistent HPI-HC  after a fall after a fall
with the site of examination Site HC: X-ray showed a HC: X-ray showed a

or treatment in hospital course fracture of the left leg.  fracture of the right leg.

A.4 DEMOGRAPHIC TYPICALITY

For demographic typicality, we focus on two key patient attributes: gender and age. We evaluate
whether the distributions of these attributes in the synthetic EMRs align with the target distributions.
FigureJ)illustrates representative examples of gender and age distributions that are aligned with and

deviate from the target distribution.
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Attribute Positive Example Negative Example
Target Distribution Target Distribution
Gender
Synthetic Distribution Synthetic Distribution
Target Distribution Target Distribution
Age
Synthetic Distribution Synthetic Distribution

Figure 9: Examples of synthetic data distributions that are either consistent or inconsistent with the
target distribution.

A.5 KNOWLEDGE COVERAGE
For knowledge coverage, we focus on five key categories of clinical knowledge: symptoms, auxil-

iary examinations, laboratory examinations, surgeries, and medications. Table [J]lists representative
entities from each category.

Table 9: Knowledge categories and representative entities.

Category Example
Symptom Cough, Fever, Headache, Nausea, ...
Auxiliary Examination Chest CT, Brain MRI, ECG, Abdominal Ultrasound, ...
Laboratory Examination ~Complete Blood Count, Liver Function Test, C-Reactive Protein, ...
Surgery Appendectomy, Tonsillectomy, Cataract Surgery, Cholecystectomy, ...
Medication Aspirin, Penicillin, Metformin, Atorvastatin, ...

B DETAILS OF DATASET

B.1 DATASET CONSTRUCTION

We conduct our experiments on a large-scale real-world EMR dataset containing 1.82 million de-
identified medical records collected from hospitals. Personally identifiable information (e.g., patient
and clinician names, phone numbers, locations) had already been removed by the data provider,
ensuring compliance with privacy standards. All experiments were conducted on hospital-controlled
infrastructure to ensure data security and prevent risk of privacy leakage.

To ensure data quality, we first remove records that are missing critical information, such as patient
age or gender, primary diagnosis, or any of the four target fields: chief complaint, history of present
illness, hospital course, and discharge instruction. After this filtering step, 905k records remain.

We then apply a length-based filtering criterion to further improve data quality. During inspection,
we found that overly short entries often contain placeholders or incomplete content, while exces-
sively long entries are more likely to include unintelligible text. Therefore, we retain only records
where the chief complaint is under 20 words, and each of the other fields falls within the 10 to 1,000
word range. This step yields a subset of 710k high-quality records.
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Lastly, to ensure the reliability and stability of downstream evaluation, we retain only common
diseases with sufficient data volume. Specifically, we exclude any diagnosis category with fewer
than 500 records. This ensures that each disease has at least 100 samples in the test set after an
80/20 train-test split. Diseases with very few examples can lead to high-variance estimates and lack
statistical significance in evaluation. After this final filtering step, we obtain 192k EMRs spanning
302 distinct disease categories.

B.2 CONSTRUCTION OF DOWNSTREAM TASKS

For all downstream tasks, the correct options are extracted directly from the EMR. For the diagnosis
prediction task, incorrect options are randomly sampled from other diagnoses in the dataset. For the
test and treatment prediction tasks, incorrect options are selected to be incompatible with the gold
diagnosis: we first exclude all tests or treatments that appear in EMRs with the same diagnosis, and
then randomly sample from the remaining pool. Using this approach, we construct training examples
from synthetic EMRs, and evaluate model performance on questions built from real EMRs in the
held-out test set.

C EXPERIMENTAL DETAILS

C.1 PRrROMPTS USED FOR EACH AGENT

In this section, we list the prompts used for each agent in our LLM-CARe framework.

Generator

Please generate an electronic medical record according to the following require-
ments:

1. The patient’s primary diagnosis is: [diag].
2. Include only the following sections: ’Gender’, *Age’, ’Primary Diagnosis’,

"Chief Complaint’, "History of Present Illness’, ’Hospital Course’, and *Discharge
Instructions’.

3. Section-specific instructions:
- The Chief Complaint should briefly describe the reason for admission.

- The History of Present Illness should describe the onset and development of the
condition in detail.

- The Hospital Course should mention the examinations and treatments the patient
received.

- The Discharge Instructions should specify post-discharge recommendations,
such as prescribed medications.

4. Output the result in JSON format with the structure: ”Section Name”: ~’Section
Content”, where each section content is a single string.

Section-Level Critic

Below is the ’[section_name]’ section from an electronic medical record:
[section]

Please determine whether the above ’[section_name]’ meets the following require-
ment: [requirement].

Respond in the following JSON format:
{”Meets Requirement”: true/false}

Section-Level Adviser

Below is the ’[section_name]’ section from an electronic medical record:
[section]

This section does not meet the following requirement: [requirement]. Please pro-
vide a specific revision suggestion based on the section content, explaining how it
should be modified to meet the requirement.
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Respond in the following JSON format:

99, 9

{"Revision Suggestion”: specific suggestion”}
Section-Level Reviser

Below is the ’[section_name]’ section from an electronic medical record with an
issue:

[section]

The ’[section_name]’ section misses essential content. Please revise the record
based on the following suggestion: [feedback]

Return the result in JSON format using the pattern ’Section Name”: ”’Section Con-
tent”, and include only the “’[section_name]” section. The content of the section
should be a single string.

Document-Level Critic

Below is an electronic medical record consisting of multiple sections:
[record]

Please evaluate whether the record satisfies the following requirement: [require-
ment]. Identify any conflicts or implausible statements across sections.

Respond in the following JSON format:
{"Meets Requirement”: true/false}

Document-Level Adviser

The following record has issues violating the requirement: [requirement]:
[record]

Please provide targeted suggestions to resolve the problem. Prioritize changes to
the sections that minimally disrupt overall coherence.
Respond in the following JSON format:

99, 99

{”Revision Suggestion”: ”specific suggestion”}
Document-Level Reviser

Below is an electronic medical record with flagged issues:
[record]
Please revise the record according to the following suggestion: [feedback].

Return the updated record in JSON format, including all sections. The content of
each section should be a single string.

Corpus-Level Agents: For the corpus-level stage, we use statistical analysis tools as the critic and
adviser rather than LLMs. Therefore, no natural language instructions are required for these agents;
their operations are fully automated and operate on dataset-wide distributions. For the corpus-level
reviser, each sample in the selected subset is modified individually, using the same type of instruc-
tions as the document-level reviser.

C.2 LLM BACKBONES
We use the following pretrained large language models in our experiments:

* Qwen2.5 (Yang et al., [2025): Licensed under the Apache 2.0 Licenseﬂ We use the model
checkpoints available on Huggingfaceﬂ

e LLaMA 3.1 (Dubey et al.,|2024): Licensed under the LLaMA 3.1 Community Licens
We use the model checkpoints available on Huggingfaceﬂ

'"https://huggingface.co/Qwen/Qwen2.5-7B-Instruct/blob/main/LICENSE
Zhttps://huggingface.co/Qwen
*https://www.llama.com/llama3_1/license/
‘nttps://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
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* Meditron 3 (Chen et al.,[2023): Licensed under the LLaMA 3.1 Community Licenseﬂ We
use the model checkpoints available on Huggingfaceﬂ

* DeepSeek-R1-Distill-Llama (Guo et al., 2025): Licensed under the MIT Licenseﬂ We
use the model checkpoints available on Huggingfac

C.3 HYPERPARAMETERS

For all established baselines, we follow the original hyperparameter settings as described in their
respective papers. For LLM-CARe and LLM Direct—we adopt the default generation configuration
provided with each model checkpoint. For all refinement stages (corpus, section, and document), the
Critic, Adviser, and Reviser agents are iterated for two cycles before proceeding to the next stage.
We empirically observed that additional iterations beyond two provided negligible improvements in
EMR quality and downstream task performance.

For EMR quality evaluation, we use greedy decoding to ensure deterministic outputs. For down-
stream tasks, we fine-tune Qwen2.5-0.5B-Instruct using the AdamW optimizer with a batch size of
16, a learning rate of 2e-5, and a cosine learning rate scheduler with 5% warmup steps. The model
is fine-tuned for 3 epochs on the synthetic dataset and evaluated on the real test set.

C.4 EVALUATION DETAILS

For the LLM-based evaluation of EMR quality, we prompt the model to assess each generated
EMR against the predefined criteria for medical correctness, content completeness, and context
consistency. Each criterion is formulated as a binary classification task—whether a given EMR
satisfies the criterion or not. The model outputs a yes/no response for each criterion per EMR, and
we compute the final score by averaging over all EMRs.

For demographic typicality, we compare the distribution of demographic attributes in synthetic
EMRs to those in the real dataset. For gender, we use the total variation distance (TVD) between
the two distributions. For age, which is a continuous variable, we compute the Wasserstein dis-
tance. Since lower distance values indicate higher similarity, we transform the scores by computing
1 — TVD and 1 — Wasserstein, respectively, so that higher values consistently reflect better quality
across all metrics.

For knowledge coverage, we first extract medical entities associated with each diagnosis from the
real EMRs. We then measure the proportion of these entities that appear in synthetic EMRs with
the same diagnosis. To avoid the complexity and potential noise of semantic matching, we use exact
string-level matching to compare entity presence.

For the downstream task evaluation, we report both macro and micro accuracy. Macro accuracy
averages the model performance across all diagnoses by first computing the accuracy within each
disease category, then averaging across categories. Micro accuracy, in contrast, computes the overall
accuracy across all samples regardless of diagnosis. This dual evaluation provides a comprehensive
view of model generalizability across frequent and less frequent disease types.

C.5 SOFTWARE

EMR generation with LLMs is conducted using VLLM (Kwon et al., 2023). PyTorch (Paszke et al.,
2019) is used for training and inference of non-LLM baselines. Fine-tuning of downstream task
models is performed using the Huggingface Transformers library (Wolf et al.| [2020). Evaluations
are also executed using vVLLM.

5https ://www.llama.com/llama3_1/license/
®https://huggingface.co/OpenMeditron/Meditron3-8B
"nttps://github.com/deepseek-ai/DeepSeek-R1/blob/main/LICENSE
$https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
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C.6 COMPUTATIONAL RESOURCES
All experiments—except for EMR quality evaluation—are conducted on NVIDIA RTX 4090 GPU

with 24GB of memory. EMR quality evaluation, which uses Qwen2.5-32B-Instruct, is performed
on NVIDIA A100 GPU with 80GB of memory.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 FULL RESULTS OF EMR QUALITY
Figure [0 provides the complete breakdown of EMR quality across all evaluated criteria, extending
the representative results presented in Figure 5 of the main text. These detailed results offer a more

comprehensive view of how different methods perform with respect to each quality dimension.

Content Completeness

=) o
Section Level 0.0
cc cCc HPI HPI HPI HPI HC HC DI
Reason Onset Acuity Cause Symptom General Examination Treatment Medication
Medical Correctness Context Consistency
1.0 1.0
0.5 0.5
Document Level 0.0 0.0
Dx-PD Dx-CC Dx-HPI Dx-HC Dx-DI CC-HPI CC-HPI HPI-HC
Gender Symptom Symptom Examination Medication Symptom Onset Site
Knowledge Coverage Demographic Typicality
é‘\\ 1.0 1.0
0.5 0.5
Corpus Level 0.0 0.0
Symptom Aucxiliary Laboratory Surgery Medication Gender Age
Examination Examination

LSTM mtGAN MedSyn LLM Direct = LLM-CARe (ours)

Figure 10: Fine-Grained EMR quality evaluation across three level of criteria. Abbreviations of
EMR sections: CC-Chief Complaint, HPI-History of Present Illness, HC-Hospital Course, DI-
Discharge Instructions, Dx-Diagnosis.

D.2 EXAMPLES OF VIOLATIONS ON QUALITY PRINCIPLES

To further illustrate the limitations of baseline models in generating high-quality EMRs, we provide
additional examples of generated records that violate specific quality requirements.

D.2.1 EXAMPLES OF VIOLATIONS IN CONTENT COMPLETENESS

Method: LSTM
Generated EMR:

History of Present Illness: In 2018, the patient was discharged after recover-
ing well from left breast cancer surgery.

Violation: The history of present illness does not include the patient’s major
symptoms and onset time.

Method: mtGAN
Generated EMR:

Chief Complaint: Has been eating normally for over 3 hours.
Violation: The chief complaint does not state the reason for admission.

Method: LLM Direct

Generated EMR:
History of Present Illness: The patient has a history of chronic congestive
heart failure. This time, symptoms have worsened, accompanied by fa-
tigue, chest tightness, edema, and lower limb pain. Examination revealed
pulmonary moist rales and an increased heart rate.
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D.2.2

D.23

Violation: The history of present illness does not include the patient’s general
condition.

Method: MedSyn
Generated EMR:

Discharge Instruction: It is recommended to maintain a regular diet and avoid
spicy and irritating foods; take medications such as omeprazole for treatment;
undergo regular endoscopic follow-ups and continue follow-up visits with the
gastroenterology department.
Violation: The discharge instruction does not include medication dosage and us-
age.

EXAMPLES OF VIOLATIONS IN MEDICAL CORRECTNESS

Method: LSTM
Generated EMR:

Diagnosis: Rheumatoid arthritis.

Hospital Course: After admission, relevant tests were completed, and a colon

polyp repair was performed under colonoscopy.
Violation: The treatment described (colon polyp repair under colonoscopy) is not
related to the diagnosis of rheumatoid arthritis, which primarily affects joints and
typically involves rheumatologic evaluations and treatments, not gastrointestinal
procedures.

Method: mtGAN
Generated EMR:

Diagnosis: Synovitis of the knee joint.
History of Present Illness: The patient developed a headache about twenty
days ago and was admitted for further evaluation. Since the onset, the pa-
tient has had good mental status, appetite, and sleep, with normal bowel and
bladder function.
Violation: The symptoms described in the history of present illness (headache)
do not align with the diagnosis (knee joint synovitis), which typically presents
with joint pain, swelling, or restricted mobility, not neurological symptoms like
headache.

Method: LLM Direct
Generated EMR:
Diagnosis: Iron Deficiency Anemia.
Discharge Instruction: 1.Continue oral ferrous succinate 60 mg, three times
daily. 2.Mecobalamin tablets 0.5 mg, once daily, to promote DNA synthesis.
3.Glimepiride tablets 2 mg, once daily, to control blood glucose.
Violation: The prescribed medications include agents that are not indicated for
iron deficiency anemia, such as mecobalamin and glimepiride, which lack sup-
porting diagnoses.

Method: MedSyn
Generated EMR:
Diagnosis: Pulmonary embolism.
Chief Complaint: Sudden onset of right-sided limb weakness with speech
difficulty for 2 hours.
Violation: The chief complaint describes neurological symptoms suggestive of
a stroke, which are not typically consistent with a diagnosis of pulmonary em-
bolism.

EXAMPLES OF VIOLATIONS IN CONTEXT CONSISTENCY

Method: LSTM
Generated EMR:
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History of Present Illness: The patient experienced left knee joint pain with-
out obvious cause one month ago and was admitted to our department for fur-
ther diagnosis and treatment. Since onset, the patient has had normal mental
status, appetite, sleep, and bowel and bladder function.
Hospital Course: After admission, the patient underwent relevant examina-
tions. On 2018-03-11, a laparoscopic appendectomy was performed under
general anesthesia. Postoperative treatment included anti-inflammatory ther-
apy, fluid replacement, and symptomatic management.
Violation: The site of illness described in the history of present illness (left knee
pain) is inconsistent with the site of treatment in the hospital course (appendec-
tomy), indicating a mismatch in affected anatomical locations.

Method: mtGAN
Generated EMR:

Chief Complaint: Low back pain for 4 years, worsened over the past 5
months.
History of Present Illness: The patient experienced radiating pain in the lower
limbs without obvious cause 2 years ago.
Violation: There is an inconsistency between the chief complaint and the history
of present illness in both symptoms and timing. The chief complaint mentions low
back pain for 4 years with recent worsening, while the history of present illness
only describes lower limb radiating pain starting 2 years ago, with no mention of
low back pain.

Method: LLM Direct
Generated EMR:

Chief Complaint: Sudden hearing loss with decreased hearing in the left ear,
symptoms present for less than 1 day.

History of Present Illness: Two days ago, the patient experienced a sudden
and significant decrease in hearing in the left ear without an obvious trigger.
The hearing loss progressed to complete deafness. No associated symptoms
such as vertigo, dizziness, tinnitus, ear discharge, chills, or fever were re-
ported. The condition worsened in a stepwise manner without prior specialist
treatment. The patient visited the ENT department one day before admission
and was advised to be hospitalized.

Violation: The time of symptom onset stated in the chief complaint (“less than 1
day”) is inconsistent with the history of present illness (“2 days ago”™).

Method: MedSyn
Generated EMR:

Chief Complaint: Sudden onset of chest tightness and chest pain accompa-
nied by cold sweats for 4 hours.
History of Present Illness: Since onset, the patient has not experienced ob-
vious fever, cough, or sputum production. Mental state is poor; appetite and
sleep are average; bowel and bladder functions are normal.
Violation: The symptoms mentioned in the chief complaint are not addressed in
the history of present illness.

E DETAILS OF HUMAN EVALUATION

To verify the reliability of our evaluation, we asked licensed clinicians to assess the quality of syn-
thetic EMRs. Clinicians were instructed to read each synthetic record carefully and then answer sev-
eral yes/no questions regarding completeness, consistency, and correctness. The questions were
designed to be simple binary judgments to ensure reproducibility. The detailed labeling instructions
are as follows:

Please review the synthetic EMR text shown below.
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Synthetic EMR:

Gender: Male

Age: 45 years old

Primary Diagnosis: Pneumonia

Chief Complaint: Fever and cough for 3 days ...

History of Present Illness: Patient developed fever three days ago, accompanied
by cough and mild chest pain ...

Based on the above synthetic EMR, please answer the following questions. For
each question, mark your judgment in the blank: Yes if the requirement is satis-
fied, No otherwise.

Completeness
* Does the history of present illness include major symptoms? Answer: ____
(Yes/No)
Consistency
* Are the symptoms in the chief complaint consistent with those in the history
of present illness? Answer: ____ (Yes/No)
Correctness
* Is the patient’s sex valid given the diagnosis? Answer: ____(Yes/No)

Confidence interval estimation: To quantify agreement, we report Cohen’s Kappa and Fleiss’s
Kappa with 95% confidence intervals. The intervals were computed using a non-parametric boot-
strap procedure with 10,000 resamples, which provides uncertainty estimates without assuming nor-
mality of the statistics.

F USE oF LLMS

In preparing this manuscript, we used LLM solely as an assistive tool for text refinement, including
grammar correction, and language polishing. The research ideas, experimental design, implementa-
tion, and analysis were entirely conceived and executed by the authors.
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