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ABSTRACT

Process reward models (PRMs) that provide dense, step-level feedback have
shown promise for reinforcement learning, yet their adoption remains limited by
the need for expensive step-level annotations or ground truth references. We pro-
pose SPARK–a three-stage framework where in the first stage a generator model
produces diverse solutions and a verifier model evaluates them using parallel scal-
ing (self-consistency) and sequential scaling (meta-critique). In the second stage,
we use these verification outputs as synthetic training data to fine-tune generative
process reward models, which subsequently serve as reward signals during train-
ing. We show that aggregating multiple independent verifications at the step level
produces training data for process reward models that surpass ground-truth out-
come supervision—achieving 67.5 F1 on ProcessBench (a benchmark for identi-
fying erroneous steps in mathematical reasoning) compared to 66.4 for reference-
guided training and 61.9 for GPT-4o. In the final stage, we apply our generative
PRM with chain-of-thought verification (PRM-CoT) as the reward model in RL
experiments on mathematical reasoning, and introduce format constraints to pre-
vent reward hacking. Using Qwen2.5-Math-7B, we achieve 47.4% average accu-
racy across six mathematical reasoning benchmarks, outperforming ground-truth-
based RLVR (43.9%). Our work enables reference-free RL training that exceeds
ground-truth methods, opening new possibilities for domains lacking verifiable
answers or accessible ground truth.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive capabilities across diverse tasks,
from achieving gold-medal performance at the International Mathematical Olympiad to autonomous
agentic coding (Castelvecchi, 2025; Luong & Lockhart, 2025; Yang et al., 2024b; Hurst et al., 2024;
Anthropic, 2025). Despite these achievements, LLMs still struggle with complex multi-step reason-
ing and long-horizon problem solving (Kambhampati et al., 2024; Yao et al., 2024; Valmeekam et al.,
2024). Recent breakthroughs like OpenAI’s o1 and DeepSeek’s R1 demonstrate that reinforcement
learning (RL) post-training can significantly enhance reasoning capabilities beyond supervised fine-
tuning alone (Jaech et al., 2024; Guo et al., 2025), as RL enables models to explore diverse solution
paths and learn from feedback rather than imitation (Chu et al., 2025).

While RL post-training shows promise, current approaches rely on verifiers that require ground truth
references. Traditional methods rely on either discriminative verifiers that provide binary correct-
ness signals (Cobbe et al., 2021) or rule-based verifiers using exact answer matching (RLVR) (Guo
et al., 2025; Hu et al., 2025), both offering only sparse, outcome-level rewards. Recent advances
introduce Process Reward Models (PRMs) that provide denser, step-level feedback to improve train-
ing stability and credit assignment (Lightman et al., 2023; Wang et al., 2024; Uesato et al., 2022),
including co-evolving approaches like TANGO (Zha et al., 2025) and PRIME (Yuan et al., 2024)
that jointly train the verifier alongside the policy model. However, these approaches fundamentally
depend on ground truth references—TANGO trains its verifier using gold standard solutions, while
PRIME requires outcome-level correctness labels to train its PRM (Zha et al., 2025; Yuan et al.,
2024). This dependency severely limits RL’s applicability to domains where ground truth is un-
available, requires expensive expert annotation, or lacks clear verification criteria, such as creative
writing, research ideation, long-horizon planning, or complex agentic tasks (Bowman et al., 2022).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: SPARK: A three-stage pipeline for reference-free RL training with generative process
reward models. Stage I: Generate synthetic verification data using inference-time scaling methods
(self-consistency and meta-critique) without ground truth through a multi-scale generator-verifier
framework. Stage II: Train three generative reward model variants (ORM, PRM, PRM-CoT) via
supervised fine-tuning on the synthetic data. Stage III: Apply trained PRMs in RL with GRPO using
different reward designs.

The challenge becomes: How can we train effective process reward models that provide dense, step-
level feedback without requiring any ground truth references, enabling RL to scale beyond domains
with verifiable answers?

The recent success of inference-time scaling methods offers a promising direction for addressing
this challenge. These approaches improve LLM reasoning by allocating additional computation at
test time rather than during training (Ke et al., 2025; Snell et al., 2025; Brown et al., 2024). Parallel
scaling methods like self-consistency demonstrate that aggregating multiple independent reasoning
paths through majority voting significantly improves accuracy over single-path generation (Wang
et al., 2023). Sequential scaling methods, such as self-refinement approaches, show that LLMs
can iteratively critique and improve their own outputs without external supervision (Madaan et al.,
2023; Saunders et al., 2022). These inference-time techniques have proven highly effective, with re-
cent work showing that optimal test-time compute scaling can outperform simply increasing model
parameters (Snell et al., 2025). This raises a critical insight: if LLMs can improve reasoning by ag-
gregating multiple solution attempts (self-consistency) or iteratively refining outputs (self-critique)
at inference time without ground truth, can we leverage the same capabilities to generate synthetic
verification data for training generative process reward models?

In this work, we propose SPARK, a reference-free framework that leverages inference-time scaling
methods to generate synthetic step-level verification data without any ground truth references (see
Figure 1). We employ a multi-scale generator-verifier framework where a generator model produces
diverse solution attempts and a verifier model evaluates them using parallel (self-consistency) and
sequential (meta-critique) scaling techniques. Our key insight is that aggregating multiple indepen-
dent verifications at the step level can produce training data that rivals or exceeds ground-truth su-
pervision quality. We demonstrate that PRMs trained using this approach enable stable RL training
while systematically identifying and addressing multiple reward exploitation patterns that emerge
when using generative PRMs as reward signals—challenges that prior work has not comprehen-
sively explored (Zha et al., 2025; Cui et al., 2025). The contributions of our SPARK framework
include:

(1) A reference-free framework for generating high-quality step-level verification data using
inference-time scaling, eliminating the need for ground truth or human annotation (Section 2).

(2) Comprehensive evaluation on ProcessBench (Zheng et al., 2025), a benchmark for identifying er-
roneous steps in mathematical reasoning, showing that PRMs trained with our synthetic data achieve
67.5 F1, outperforming those trained with outcome ground-truth access (66.4 F1) and surpassing
GPT-4o by 5.6 points (Section 3).

(3) We further demonstrate that our reference-free PRMs enable stable RL training that matches or
exceeds ground-truth-based RLVR when properly constrained, while systematically identifying and
addressing reward exploitation patterns unique to generative PRMs—opening new possibilities for
RL in domains without ground truth or verifiable answers (Section 4).
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Figure 2: Multi-scale generator-verifier framework for synthetic verification data generation. The
generator produces multiple solutions per problem, and the verifier evaluates them without ground
truth using different inference-time scaling methods. Parallel scaling (Self-Consistency): Gener-
ates multiple independent verifications and aggregates them through either outcome-level majority
voting (voting on final Yes/No verdicts) or step-level majority voting (voting on each step’s correct-
ness). Sequential scaling (Meta-Critique): Generates an initial verification, critiques it to identify
errors, and merges both into a refined verification.

2 GENERATING SYNTHETIC VERIFICATION DATA FOR PRM TRAINING

In this section, we describe how to generate synthetic step-level verification data for training PRMs
using our multi-scale generator-verifier framework, which leverages inference-time scaling meth-
ods to produce high-quality labels without ground truth. Given a problem q and an LLM-generated
solution s = (s1, s2, ..., sn) with n reasoning steps in “Step” tags, we produce verification labels
v(j) = (v

(j)
1 , v

(j)
2 , ..., v

(j)
n ) where v

(j)
i ∈ {correct, incorrect} for each step si (see prompts in Ap-

pendix §F). Our framework employs Qwen-2.5-14B-Instruct (generator) to produce M = 8 diverse
solutions per problem via temperature sampling, and Qwen-3-32B-Instruct (verifier) to evaluate
each solution through the methods illustrated in Figure 2. We leverage two categories of inference-
time scaling: parallel scaling through self-consistency and sequential scaling through meta-critique.
Detailed implementation and notation are provided in Appendix §A. We implement the following
inference-time scaling methods to generate verification data.

Self-Consistency generates N = 16 independent verifications for each problem-solution pair (q, s)
and aggregates them through majority voting. We implement two variants:

(1) Outcome-level consistency: Let y(j) ∈ {Yes,No} denote the final verdict of verification v(j). We
determine the consensus verdict as: y∗ = argmaxy∈{Yes,No}

∑N
j=1 1[y

(j) = y]. We then randomly
select one verification v(k) where y(k) = y∗.

(2) Step-level consistency: Let v
(j)
i ∈ {correct, incorrect} denote the judgment of step

i in verification j. For each step i, we determine the consensus judgment: v∗i =

argmaxv∈{correct,incorrect}
∑N

j=1 1[v
(j)
i = v]. This produces a consensus verification pattern

(v∗1 , v
∗
2 , ..., v

∗
n). We then randomly select one verification v(k) where v(k)i = v∗i for all i ∈ {1, ..., n}.

Meta-Critique sequentially refines a single verification (McAleese et al., 2024; Yang et al., 2025;
Saunders et al., 2022; Gou et al., 2024). The verifier performs three steps: (1) generates initial verifi-
cation vinit for problem-solution pair (q, s); (2) critiques this verification to identify errors—missed
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mistakes, incorrectly flagged steps, or flawed reasoning—producing κ = Critique(q, s, vinit); and
(3) merges the critique with the initial verification into vfinal = Merge(vinit, κ). All three steps are
performed by the same verifier model using different prompts (see Appendix §F). The refined veri-
fication vfinal serves as our training example.

Hybrid (Outcome Consistency + Meta-Critique) combines parallel and sequential scaling: first
applies outcome-level consistency to select the best verification from N = 16 independent attempts,
then applies meta-critique to refine it further, producing our final training data.

Through these methods, we generate training datasets D containing problem-solution-verification
triples that enable training generative PRMs without ground truth, as described in the next section.

3 TRAINING GENERATIVE PROCESS REWARD MODELS

3.1 REWARD MODEL TRAINING SETUP

Dataset. We use Skywork-OR1-RL-Data (He et al., 2025a;b), randomly selecting 8,000 math prob-
lems with mixed difficulty levels. Using the multi-scale generator-verifier framework, we generate
8 solution attempts per problem (64K problem-solution pairs total). We then apply each method
from Section 2 to generate verification data: single verification produces 1 verification per pair; self-
consistency methods (outcome/step-level) generate 16 verifications then aggregate to select one;
meta-critique generates and refines 1 verification; hybrid combines outcome consistency’s selection
with meta-critique’s refinement. This process yields 63K verification examples per method after
filtering, creating training datasets D for each reward model variant.

Generative Reward Models. Unlike prior work that trains discriminative reward models outputting
numerical scores (Cobbe et al., 2021; Lightman et al., 2023; Wang et al., 2024), we follow Zhang
et al. (2025a) and train generative reward models using next-token prediction on synthetic verifica-
tion data from Section 2. We train three variants on dataset D:

1. ORM outputs only final verdict y ∈ {Yes,No} given (q, s). Training: DORM = {(q, s, y)}.
2. PRM outputs step-by-step judgments (v1, ..., vn, y) where vi ∈ {correct, incorrect} for step i.

Training: DPRM = {(q, s, (v1, ..., vn, y))}.
3. PRM-CoT outputs verification rationales with judgments ((τ1, v1), ..., (τn, vn), y) where τi ex-

plains step i’s correctness. Training: DPRM-CoT = {(q, s, ((τ1, v1), ..., (τn, vn), y))}.

All models are fine-tuned from Qwen2.5-14B-Instruct (Qwen, 2024) for 3 epochs with learning rate
5× 10−6. Detailed specifications in Appendix §B.

Evaluation Protocol. Following previous work (Zha et al., 2025; Yang et al., 2025; Khalifa et al.,
2025), we evaluate our PRMs on ProcessBench (Zheng et al., 2025), a benchmark for identifying
erroneous steps in mathematical reasoning. ProcessBench requires models to identify the earliest
incorrect step or conclude all steps are correct. The benchmark contains 3,400 test cases across
GSM8K, MATH, OlympiadBench, and Omni-MATH (grade-school to Olympiad difficulty), with
solutions from 12 models annotated by human experts. We report F1 scores (harmonic mean of
accuracies on correct and incorrect solutions) to balance over-criticism and under-detection of errors.

Baselines for PRM Evaluation. We compare PRMs trained with our inference-time scaling meth-
ods against: (1) Single Verification – verifier generates one verification without scaling (base-
line); (2) Reference-Guided – verifier has ground truth answer a∗ when verifying (q, s), provid-
ing additional context for verification (Zhang et al., 2025a; Zheng et al., 2023); (3) LLM Critics –
GPT-4o (Hurst et al., 2024) and Qwen2.5-72B-Instruct (Qwen, 2024) as off-the-shelf critics follow-
ing Zheng et al. (2025).

3.2 RESULTS: PROCESSBENCH EVALUATION

Figure 3 presents F1 scores on ProcessBench for our two PRM variants trained with data from
different inference-time scaling methods.

Inference-time scaling surpasses reference-guided approach. Among all inference-time scaling
methods, step-level consistency achieves the highest performance across both PRM variants. On
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ProcessBench, step-level consistency achieves F1 scores of 67.5 (PRM) and 65.7 (PRM-CoT), sur-
passing reference-guided scores of 66.4 and 63.2 respectively. The hybrid approach (Meta-Critique
+ Outcome Consistency) surpasses reference-guided performance for both PRM (66.9 vs 66.4) and
PRM-CoT (63.7 vs 63.2). Additionally, outcome consistency surpasses reference-guided approach
for PRM (66.6 vs 66.4) and PRM-CoT (65.0 vs 63.2). This demonstrates that PRMs trained using
various inference-time scaling methods outperform those trained with ground truth access.
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Figure 3: Average F1 scores on ProcessBench for PRM vari-
ants trained using synthetic data from different inference-
time scaling methods. Leftmost bars show Single Verifica-
tion baseline (no scaling). All PRMs are fine-tuned from
Qwen2.5-14B-Instruct.

All scaling methods improve over
single verification. Every inference-
time scaling method substantially im-
proves over the single verification
baseline, validating our core hypoth-
esis that inference-time scaling is ef-
fective for synthetic verification data
generation. Improvements range
from +1.3 to +7.0 F1 points, with
step-level consistency achieving the
highest gains (PRM: 63.9 → 67.5,
PRM-CoT: 59.8 → 65.7).

SPARK-trained PRMs outperform
frontier LLM critics. Our PRMs
trained with SPARK significantly
outperform both GPT-4o (61.9 F1)
and Qwen2.5-72B-Instruct (61.2 F1).
Even single verification baseline—without scaling—achieves higher scores for PRM (63.9) and
comparable performance for PRM-CoT (59.8). With step-level consistency, the gap widens: PRM
reaches 67.5 (+5.6 over GPT-4o) and PRM-CoT reaches 65.7 (+3.8 over GPT-4o). This demon-
strates that training specialized 14B PRMs with SPARK is more effective than using general-purpose
frontier models as critics.

Our best PRM (step-level consistency) achieves 67.5 F1, outperforming existing open-source PRMs
(Qwen2.5-Math-7B-PRM800K at 56.5 F1). Detailed comparisons in Table 2 in Appendix §C.

Takeaway: Step-level consistency—aggregating multiple independent verifications at the
step level—enables PRMs to surpass both reference-guided training and frontier critics like
GPT-4o. This demonstrates that inference-time scaling provides a viable alternative to ground
truth supervision for training high-performance generative process reward models.

4 REINFORCEMENT LEARNING WITH PROCESS REWARDS

4.1 RL METHODOLOGY

Policy Optimization with GRPO. We employ Group Relative Policy Optimization (Shao et al.,
2024), generating M = 16 solutions per problem and optimizing the following objective:

J(θ) = E
q,{oi}M

i=1

 1

M

M∑
i=1

1

|oi|

|oi|∑
t=1

min
(
rt(θ)Âi,t, clip(rt(θ), 1− ϵ, 1 + ϵ)Âi,t

)−βDKL(πθ∥πref),

where oi is the i-th solution, oi,t is the t-th token in oi, rt(θ) =
πθ(oi,t|q,oi,<t)
πθold (oi,t|q,oi,<t)

is the importance

ratio, and Âi,t is the group-normalized advantage for token t in solution i.

Reward Formulations. We investigate four reward mechanisms leveraging our generative PRMs:

(1) Process-Aware Rewards. Our PRMs evaluate step-by-step correctness (PRM directly, PRM-
CoT with verification rationales) before providing final verdict y ∈ {Yes,No}. We extract this
verdict with format validation:

rprocess(s) = 1[valid format] · y, Â(i)
process =

r
(i)
process − µG

σG
,
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Table 1: Performance comparison of SPARK-trained PRMs with existing methods on mathematical
reasoning benchmarks. Results show pass@1 accuracy (%) with greedy decoding.

Model MATH500 AIME’24 AIME’25 AMC’23 OlympiadBench MinervaMath Avg.

Frontier LLMs
GPT-4o (Hurst et al., 2024) 76.6 9.3 – 47.5 43.3 36.8 –
o1-preview (Jaech et al., 2024) 85.5 44.6 – 90.0 – – –
o1-mini (Jaech et al., 2024) 90.0 56.7 – 95.0 65.3 – –

Open-source LLMs (Large)
QwQ-32B-Preview (Team, 2024) 90.6 50.0 33.3 77.5 61.2 – –
Llama-3.1-70B-Inst (Dubey et al., 2024) 68.0 13.3 – 42.5 29.4 37.1 –
Qwen2.5-Math-72B-Inst (Yang et al., 2024a) 82.6 23.3 – 70.0 49.0 – –

Open-source LLMs (Small)
Llama-3.1-8B-Inst (Dubey et al., 2024) 51.9 3.3 3.3 22.5 15.1 – –
Qwen2.5-7B-Inst (Qwen, 2024) 75.5 10.0 6.7 52.5 35.5 – –
Qwen2.5-Math-7B-Inst (Yang et al., 2024a) 83.6 16.7 10.0 62.5 41.6 34.6 41.5

RL with Process Rewards (7B)
TANGO† (Zha et al., 2025) 82.4 26.7 23.3 70.0 45.3 – –
PRIME† (Cui et al., 2025) 78.2 20.0 13.3 70.0 40.3 39.3 43.6

RLVR 83.7 26.7 16.7 59.1 40.0 37.5 43.9

Reference-Free Gen-PRMs (Qwen2.5-Math-7B)
SFT (Baseline) 79.0 3.3 3.3 52.5 34.7 34.2 34.5
PRM (Process-Aware) (Ours) 82.8 26.7 16.7 62.5 38.7 37.1 44.1
PRM-CoT (Process-Aware) (Ours) 85.4 30.0 20.0 66.3 42.7 40.1 47.4

† Results from corresponding papers. Bold values indicate best performance among 7B models. Extended
results with Pass@k metrics in Table 3.

where y ∈ {0, 1} is the verification verdict, 1[valid format] ensures proper output structure (single
<answer> tag, single \boxed{} expression, no post-answer content), and µG, σG are group-level
statistics. We term this “process-aware” because the final verdict implicitly aggregates step-level
verification through autoregressive dependency.

(2) Step-Augmented Process Rewards. We explicitly incorporate step-level signals by augmenting
the process-aware reward with step-average scores. Given solution s with n steps where PRM marks
k steps as correct:

rstep-aug(s) = 1[valid format] ·
[
0.4 · k

n
+ 0.6 · y

]
, Â

(i)
step-aug =

r
(i)
step-aug − µG

σG
,

where k
n is the step correctness ratio and y is the process-aware verdict.

(3) Selective Advantage. To avoid penalizing correct steps in failed solutions and rewarding incor-
rect steps in successful solutions, we selectively zero misaligned advantages. For token t in step j
with verdict cj ∈ {correct, incorrect}:

Â
(i,t)
selective =

{
Â

(i)
process if (Â(i)

process ≥ 0 ∧ cj = correct) ∨ (Â
(i)
process < 0 ∧ cj = incorrect)

0 otherwise.

(4) Global Step-Reward. Following Zha et al. (2025), we blend process-aware and step-level
advantages. For solution i with Ki steps, normalized step rewards are r

(i,k)
step = ck/Ki where

ck ∈ {+1,−1} for correct/incorrect steps. Each token in step k receives cumulative advantages:

Â
(i,t)
step =

Ki∑
j=k

r
(i,j)
step − µG,step

σG,step
, Â

(i,t)
global = 0.8 · Â(i)

process + 0.2 · Â(i,t)
step .

where µG,step, σG,step are computed globally across all steps from all M solutions—hence ”Global
Step-Reward.”

Baseline: RLVR. For comparison, we include Reinforcement Learning from Verifiable Rewards
(RLVR), which uses ground truth for verification:

rRLVR(s) = 1[final answer matches ground truth], Â
(i)
RLVR =

r
(i)
RLVR − µG

σG
.
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Figure 4: Comparison of reference-free PRM-CoT, ground-truth RLVR, and random rewards. Left:
Training rewards for (1) PRM-CoT with process-aware rewards (Section 4.1), (2) RLVR with
ground-truth answer verification, and (3) random rewards via coin flip (50% probability) indepen-
dent of correctness. Right: Average test accuracy on MATH-500, AIME 2024, and AIME 2025.
PRM-CoT consistently outperforms RLVR while spurious random rewards fail to improve from
baseline.

4.2 RL EXPERIMENTAL DETAILS

We use Qwen2.5-Math-7B (Yang et al., 2024a) as our policy model. Following Zha et al. (2025), we
first perform SFT on 113K problems from Eurus-2-SFT-Data (Cui et al., 2025) with structured solu-
tions (step-by-step reasoning in <step> tags, answers in <answer> tags) generated by Qwen2.5-
72B-Instruct, training for 2 epochs to enable consistent formatting for PRM parsing. For RL train-
ing, we use GRPO with 17K problems from Skywork-OR1-RL-Data (He et al., 2025b), setting the
clipping parameter ϵ = 0.2 and KL regularization coefficient β = 0.001. We test all reward formula-
tions from Section 4.1: process-aware, step-augmented, selective advantage, and global step-reward
using both PRM and PRM-CoT trained with step-level consistency (our best performing models
from Section 3), comparing against RLVR (Guo et al., 2025). We evaluate on MATH-500, AIME
2024/2025, AMC 2023, OlympiadBench, and MinervaMath using pass@1 accuracy (results in Ta-
ble 1). Extended implementation details in Appendix §D.

4.3 RL TRAINING RESULTS
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Figure 5: Comparison of generative reward mod-
els during RL training. Average test accuracy
(MATH-500, AIME 2024, AIME 2025) for three
variants trained with step-level consistency and
used with process-aware rewards (Section 4.1).
PRM-CoT with chain-of-thought verification con-
sistently outperforms direct step judgment (PRM)
and outcome-only verification (ORM).

SPARK-trained PRMs match or exceed
ground-truth performance. Figure 4
shows PRM-CoT with process-aware rewards
achieves 41.13% average accuracy across
MATH-500, AIME 2024, and AIME 2025,
surpassing ground-truth RLVR (38%) by
3.13 points. This superiority extends to all
six benchmarks (Table 1), with consistent
improvements across different sampling
strategies—Pass@1, Pass@8, and Pass@16
(Table 3). To validate genuine improvements,
we tested random rewards (50% probability
regardless of correctness) which remained flat
at 29.67% baseline, confirming our gains are
not spurious (Shao et al., 2025; Chandak et al.,
2025). We also tested self-consistency as a
direct reward signal (Zuo et al., 2025)—using
consensus from 16 solutions as pseudo ground
truth—which initially tracked RLVR but collapsed after 150 steps when models learned to generate
identical wrong answers for maximum reward. This demonstrates that while inference-time scaling

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

excels at generating training data for PRMs, using it directly as online rewards is unstable, whereas
our approach of training PRMs with this data then leveraging them in RL succeeds.

PRM-CoT outperforms other generative reward models. Among our generative reward models
trained with step-level consistency, PRM-CoT demonstrates superior performance. As shown in
Figure 5, PRM-CoT achieves 41.13% average test accuracy, outperforming PRM (34.0%) by 7.13
points and ORM (33.53%) by 7.6 points—a 22.7% relative improvement over ORM. The explicit
verification rationales in PRM-CoT provide richer feedback than direct step judgments (PRM) or
outcome-only verification (ORM), making it our most effective reward model for RL training.
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Figure 6: Comparison of different reward formu-
lations using PRM-CoT on average test accuracy
across MATH-500, AIME 2024, and AIME 2025.
Selective Advantage achieves the highest perfor-
mance while Process-Aware rewards remain com-
petitive despite using only final verdicts.

Insights from step-level reward integra-
tion. We investigated multiple approaches
to incorporate step-level signals from PRM-
CoT into RL training (Figure 6). Three
methods achieve comparable performance:
Process-Aware rewards (41.13%), Global Step-
Reward (41.19%), and Selective Advantage
(44.0%)—with Selective Advantage outper-
forming by approximately 3 points. Notably,
Process-Aware rewards—which assign uniform
advantages to all tokens based solely on the fi-
nal verdict—perform competitively despite not
explicitly using step-level information, suggest-
ing autoregressive dependency captures suf-
ficient signal. In contrast, Step-Augmented
Process Rewards, which blend step correct-
ness (40%) with verdict (60%), performs worst
among all methods. This degradation stems
from step inflation: models exploit the step-
average component by decomposing simple operations into excessive sub-steps to maximize re-
wards, as evidenced by steadily increasing training rewards (Figure 7 in Appendix §E) and detailed
in Section 4.4.

4.4 REWARD HACKING IN GENERATIVE REWARD-BASED RL

We systematically identify three distinct exploitation patterns that emerge during online RL training
with generative rewards. (1) Solution appending: Without format constraints (single <answer>
tag, one \boxed{} expression, no post-answer content), models catastrophically exploit rewards by
appending unrelated, previously solved problems to their solutions. The reward model gets fooled
into evaluating the appended problem instead of the actual task, assigning perfect scores (1.0) despite
complete failure—leading to near-zero test accuracy while maximizing training rewards (Figure 8 in
Appendix E). (2) Step inflation: When incorporating step-level signals (Step-Augmented Process
Rewards with 40% step-average weighting or Selective Advantage without step penalties), models
decompose simple operations into excessive sub-steps to maximize the fraction of ”correct” steps,
thereby boosting the step-average reward component. This exploitation is particularly severe for
Selective Advantage where PRM-CoT struggles to accurately evaluate lengthy solutions, marking
few steps as incorrect and effectively nullifying the selective mechanism (Figure 9 and Table 5 in
Appendix E). (3) Step reduction: Global Step-Reward without penalties exhibits opposite exploita-
tion—models collapse entire solutions into single <step> tags to achieve perfect step rewards (1/1
= 1.0) rather than diluted rewards from multiple steps, since the method normalizes by dividing
rewards by step count (r(i,k)step = ck/Ki). These exploitations exemplify Goodhart’s law: ”When a
measure becomes a target, it ceases to be a good measure” (Goodhart, 1984). Detailed analysis in
Appendix E.

Takeaway: SPARK-trained PRM-CoT trained with inference-time scaling surpasses ground-
truth RLVR on competition-level math benchmarks, demonstrating that our approach enables
effective RL training without ground truth access—opening RL to domains where verification
is unavailable or expensive.
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5 RELATED WORK

Inference-time scaling methods. Inference-time scaling improves LLM reasoning by allocating
additional computation at test time through parallel (self-consistency (Wang et al., 2023)) or se-
quential (self-critique (Madaan et al., 2023)) approaches. Recent work like DeepCritic (Yang et al.,
2025) generates verification data via sequential scaling but requires ground truth and doesn’t ex-
plore effectiveness of critics in online RL training. Direct use of self-consistency as rewards (Zuo
et al., 2025) fails catastrophically—models converge to identical wrong answers. We systemati-
cally investigate both parallel and sequential scaling methods to generate synthetic training data for
PRMs without ground truth. Our approach—using inference-time scaling for offline data genera-
tion to train generative reward models, then deploying them as stable reward signals during online
RL—enables reference-free training that exceeds ground-truth methods.

Process reward models and verification. PRMs evolved from discriminative models outputting
scalar rewards (Cobbe et al., 2021; Lightman et al., 2023; Uesato et al., 2022) to generative veri-
fiers producing natural language critiques (Zhang et al., 2025a; Khalifa et al., 2025). Training these
models requires step-level labels from either costly human annotation (PRM800K covers only 12K
problems (Lightman et al., 2023)) or automatic generation using ground truth (Wang et al., 2024;
2025b). This dependency limits PRMs to domains with verifiable answers. We eliminate this con-
straint by training generative PRMs using inference-time scaling without ground truth, achieving
superior performance on both static benchmarks and online RL training, opening possibilities for
domains without verifiable answers or easy verification.

Reinforcement learning with dense rewards. PRIME (Cui et al., 2025) trains PRMs with outcome
labels but its discriminative approach doesn’t leverage LLMs’ generation capabilities and remains
vulnerable to reward hacking. RL-Tango (Zha et al., 2025) co-evolves verifier and policy using
Global Step-Reward, which normalizes across all steps from all solutions—conflating reasoning
from different positions. We introduce Selective Advantage, preserving process-aware advantages
only when step correctness aligns with solution outcomes (zeroing misaligned advantages), achiev-
ing our best performance. Unlike prior work, we systematically analyze reward hacking patterns in
process reward-based RL. Both PRIME and Tango require ground truth, while our approach remains
entirely reference-free.

6 CONCLUSION

We introduced SPARK for training generative process reward models using synthetic verifi-
cation data generated through multi-scale generator-verifier framework, eliminating the funda-
mental dependency on ground truth that constrains current RL approaches. Step-level consis-
tency—aggregating multiple independent verifications at the step level—produces training data
that surpasses ground-truth supervision, achieving 67.5 F1 on ProcessBench compared to 66.4 for
reference-guided training and 61.9 for GPT-4o. In RL experiments, our PRM-CoT with process-
aware rewards achieves 47.4% accuracy on competition-level math benchmarks, exceeding ground-
truth RLVR (43.9%) while using no ground truth. We systematically identified and addressed reward
exploitation patterns unique to generative process rewards, demonstrating that properly constrained
process-aware rewards achieve stable training. Our work provides a viable alternative to ground
truth supervision for RL training in domains where verification is unavailable or prohibitively expen-
sive—creative writing, ethical reasoning, complex planning—by showing that SPARK can generate
effective training data for both PRM development and subsequent RL training.

Limitations. While our motivation centers on enabling RL in domains without ground truth, we
conducted experiments exclusively on mathematical reasoning where correctness remains objec-
tively verifiable. This choice was deliberate—it provided established benchmarks (ProcessBench)
to validate that synthetic verification data matches or exceeds ground-truth approaches for PRM
training, and enabled quantitative comparison of RL performance against ground-truth methods like
RLVR. Such validations would be challenging in subjective domains due to lack of PRM evaluation
benchmarks and absence of ground truth for RLVR comparison. Having established the effective-
ness of our reference-free approach, SPARK provides a foundation for extending to domains where
ground truth is inherently unavailable.
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A SYNTHETIC VERIFICATION DATA GENERATION DETAILS

A.1 NOTATION

Symbol Description

Problem-Solution
q Problem or question
s = (s1, . . . , sn) Solution with n reasoning steps
M = 8 Number of solutions per problem

Self-Consistency Verification
N = 16 Number of verifications per problem-solution pair
v(j) = (v

(j)
1 , . . . , v

(j)
n ) The j-th verification, j ∈ {1, . . . , N}

v
(j)
i ∈ {correct, incorrect} Correctness of step i in verification j

y(j) ∈ {Yes,No} Final verdict of verification j

τ
(j)
i Rationale for step i in verification j (PRM-CoT)

Meta-Critique
vinit = (vinit

1 , . . . , vinit
n ) Initial verification with step judgments

yinit ∈ {Yes,No} Final verdict of initial verification
κ Critique identifying errors in vinit

vfinal = (vfinal
1 , . . . , vfinal

n ) Refined verification after merging
yfinal ∈ {Yes,No} Final verdict of refined verification

Training Dataset
D Training dataset for reward models

ORM: {(q, s, y)}
PRM: {(q, s, (v1, . . . , vn, y))}
PRM-CoT: {(q, s, ((τ1, v1), . . . , (τn, vn), y))}

A.2 PROBLEM FORMULATION

Training process reward models (PRMs) requires step-level correctness labels for each reasoning
step in a solution. Prior approaches are limited by their dependence on either human annota-
tion or ground truth references (Zhang et al., 2025b). Human annotation (Lightman et al., 2023;
Chae et al., 2025) requires expert labelers to evaluate each intermediate step, which becomes pro-
hibitively expensive at scale and infeasible when model capabilities exceed non-expert human per-
formance (Bowman et al., 2022). Reference-guided approaches (Wang et al., 2024; Khalifa et al.,
2025; Zhang et al., 2025a; Wang et al., 2025b) generate step-level verification labels by comparing
generator solutions against reference solutions, requiring access to ground truth that is either costly
to obtain through expert annotation (as in medical diagnosis, legal reasoning, or scientific research)
or fundamentally unavailable in domains like creative writing, research ideation, long-horizon plan-
ning, and open-ended generation where correct answers are subjective, non-unique, or unverifiable.

OUR GOAL: Generate high-quality step-level verification data without requiring human annotation
or ground truth references. Given a problem q and an LLM-generated solution s = (s1, s2, ..., sn)
with n reasoning steps, we aim to produce step-level verification labels v = (v1, v2, ..., vn) where
vi ∈ {correct, incorrect} for each step si. We achieve this by leveraging inference-time scaling
methods—aggregating multiple verification attempts without needing ground truth.

A.3 MULTI-SCALE GENERATOR-VERIFIER FRAMEWORK

We adopt a multi-scale generator-verifier framework where a generator model generates multiple
solution attempts for each problem, and a verifier model verifies these solutions without access to
ground truth references.

Solution Generation. For each problem q, we use Qwen-2.5-14B-Instruct as the generator model
to generate M solution attempts (in our experiments, M = 16). We sample with temperature 0.7
to encourage diversity in solution approaches while maintaining coherence. Each generated solu-
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tion s follows a step-by-step format with clearly delineated reasoning steps, enabling fine-grained
verification.

Verification. The verifier model (Qwen-3-32B-Instruct) takes a problem-solution pair (q, s) and
produces a verification that evaluates each step’s correctness. For each step, the verifier generates
a verification rationale explaining its reasoning, followed by a correctness judgment (correct/incor-
rect), concluding with a final verdict on the solution’s overall correctness. Unlike reference-guided
approaches (Zhang et al., 2025a; Wang et al., 2025b) that provide ground truth solutions to the ver-
ifier, our verifier assesses correctness based solely on its own reasoning. Additionally, while prior
work employs proprietary models like GPT-4o (Singhi et al., 2025; Wang et al., 2025b) or Gem-
ini (Zhang et al., 2025a) as verifier models, we use open-source models exclusively.

B GENERATIVE REWARD MODEL SPECIFICATIONS

We train three types of generative reward models with distinct output formats:

Outcome Reward Model (ORM). Provides binary verification of final answer correctness only.
Input: problem-solution pair (q, s) concatenated with “Is the answer correct (Yes/No)?”. Output:
y ∈ {Yes,No}.

Process Reward Model (PRM). Provides step-by-step verification with binary judgments. In-
put: (q, s) with prompt “Let’s verify step by step.” Output: (v1, v2, . . . , vn, y) where vi ∈
{correct, incorrect} for each step i and final verdict y ∈ {Yes,No}.

PRM with Chain-of-Thought (PRM-CoT). Generates verification rationale before
each step verdict. Input: (q, s) with prompt “Let’s verify step by step.” Output:
((τ1, v1), (τ2, v2), . . . , (τn, vn), y) where τi is the verification rationale for step i, followed
by judgment vi, and final verdict y.

C DETAILED PROCESSBENCH EVALUATION RESULTS

Table 2 presents comprehensive F1 scores across all evaluated models on ProcessBench, comparing
our reference-free PRMs against language models used as critics and existing open-source PRMs.

D EXTENDED RL EXPERIMENTAL DETAILS

Base models and format learning. We evaluate our reference-free PRM-based RL training on
mathematical reasoning tasks, comparing against ground-truth-based approaches like RLVR (Guo
et al., 2025; Lambert et al., 2024; Luo et al., 2025; Wang et al., 2025a; Zeng et al., 2025). We
use Qwen2.5-Math-7B (Yang et al., 2024a) as our policy model for its strong mathematical capa-
bilities. Given Qwen2.5-Math-7B’s limited instruction-following ability in its pretrained form, we
first perform supervised fine-tuning following Zha et al. (2025). Specifically, we use 113K math
problems from Eurus-2-SFT-Data (Cui et al., 2025), where each problem is paired with a structured
solution generated by Qwen2.5-72B-Instruct (Qwen, 2024). These solutions follow a format with
step-by-step reasoning in <step> tags and final answers in <answer> tags (Zha et al., 2025).
The SFT stage runs for 2 epochs with learning rate 5× 10−6, teaching consistent output formatting.
This structured format enables our PRMs to parse solutions and assign step-level rewards during RL
training.

RL implementation details. For reinforcement learning, we use the open-source veRL frame-
work (Sheng et al., 2024) to implement GRPO and the reward formulations described in Section 4.1.
We train on 17K math problems from Skywork-OR1-RL-Data (He et al., 2025b), distinct from the
data used for PRM training and SFT. During training, we generate 16 rollouts per prompt with a
batch size of 256. The policy model is optimized using AdamW (Loshchilov & Hutter, 2017) with
a constant learning rate of 1 × 10−6. We employ KL regularization with coefficient 0.001 to pre-
vent the policy from deviating too far from the reference model. Maximum prompt and response
lengths are both set to 2048 tokens. For rollout generation, we use vLLM (Kwon et al., 2023) with
tensor parallelism size of 2. We use FSDP (Zhao et al., 2023) for distributed training with gradient
checkpointing enabled for memory efficiency.
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Table 2: Evaluation results on PROCESSBENCH. We report the F1 score of the respective accuracies
on erroneous and correct samples.

Setup GSM8K MATH Olympiad-Bench Omni-MATH Average

Language Models as Critic Models

GPT-4o-0806 79.2 63.6 51.4 53.5 61.9
Llama-3.1-8B-Instruct 10.9 5.1 2.8 1.6 5.1
Llama-3.1-70B-Instruct 74.9 48.2 46.7 41.0 52.7
Llama-3.3-70B-Instruct 82.9 59.4 46.7 43.0 58.0
Qwen2.5-Math-7B-Instruct 26.8 25.7 14.2 12.7 19.9
Qwen2.5-Math-72B-Instruct 65.8 52.1 32.5 31.7 45.5
Qwen2.5-7B-Instruct 36.5 36.6 29.7 27.4 32.6
Qwen2.5-14B-Instruct 69.3 53.3 45.0 41.3 52.2
Qwen2.5-32B-Instruct 65.6 53.1 40.0 38.3 49.3
Qwen2.5-72B-Instruct 76.2 61.8 54.6 52.2 61.2

Open-source Process Reward Models

Math-Shepherd-PRM-7B 47.9 29.5 24.8 23.8 31.5
RLHFlow-PRM-Mistral-8B 50.4 33.4 13.8 15.8 28.4
RLHFlow-PRM-Deepseek-8B 38.8 33.8 16.9 16.9 26.6
Skywork-PRM-1.5B 59.0 48.0 19.3 19.2 36.4
Skywork-PRM-7B 70.8 53.6 22.9 21.0 42.1
Qwen2.5-Math-7B-PRM800K 68.2 62.6 50.7 44.3 56.5

PRM (ours)

Single Verification 67.0 65.5 61.2 62.0 63.9
Meta Critic 68.0 67.2 62.4 65.5 65.8
Outcome Consistency 68.3 68.0 66.6 63.3 66.6
Meta Critic + Outcome Consistency 70.2 68.7 63.4 65.2 66.9
Step Consistency 72.0 67.9 64.5 65.7 67.5
Reference Guided 70.2 67.4 63.7 64.1 66.4

PRM-CoT (ours)

Single Verification 62.5 63.0 56.8 57.0 59.8
Meta Critic 65.3 66.0 60.4 56.6 62.1
Outcome Consistency 69.5 68.7 61.4 60.5 65.0
Meta Critic + Outcome Consistency 70.0 67.1 59.2 58.3 63.7
Step Consistency 67.6 70.3 63.9 61.0 65.7
Reference Guided 66.1 66.6 60.2 59.8 63.2

Benchmark and evaluation. We evaluate our approach on competition-level mathematical rea-
soning benchmarks: MATH-500 (Hendrycks et al., 2021; Lightman et al., 2023), AIME 2024 (AI-
MO, 2024a), AIME 2025 (OpenCompass, 2025), AMC 2023 (AI-MO, 2024b), OlympiadBench (He
et al., 2024), and MinervaMath (Dyer & Gur-Ari, 2022), which test advanced problem-solving ca-
pabilities ranging from high school competition to Olympiad-level difficulty. All models are evalu-
ated using greedy decoding with zero-shot pass@1 accuracy—the percentage of problems correctly
solved on the first attempt.
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Table 3: Performance comparison of reference-free generative PRMs against baselines across mul-
tiple sampling strategies. Average Accuracy represents the mean of 16 independent generations
per problem. Pass@k metrics show the percentage of problems solved correctly within k attempts
(k ∈ {1, 8, 16}), where Pass@1 uses greedy decoding while Pass@8 and Pass@16 measure success
with multiple sampling attempts. All models use Qwen2.5-Math-7B as the base policy. PRM-CoT
(Process-Aware) consistently outperforms both SFT baseline and ground-truth RLVR across all met-
rics and benchmarks. Bold values indicate best performance within each metric category.

Average@16 Accuracy (%)

Method MATH-500 AIME’24 AIME’25 AMC’23 OlympiadBench MinervaMath

SFT (Baseline) 78.20 9.58 6.67 48.00 31.83 33.58
RLVR (Ground Truth) 82.50 22.71 15.83 56.30 36.08 35.15
PRM (Process-Aware) 81.43 18.12 12.92 58.75 35.33 35.10
PRM-CoT (Process-Aware) 83.60 26.67 22.71 62.17 38.42 37.33

Pass@1 Accuracy (%)

SFT (Baseline) 79.00 3.30 3.30 52.50 34.70 34.20
RLVR (Ground Truth) 83.70 26.67 16.67 59.10 40.00 37.50
PRM (Process-Aware) 82.80 26.67 16.67 62.50 38.70 37.10
PRM-CoT (Process-Aware) 85.40 30.00 20.00 66.30 42.70 40.10

Pass@8 Accuracy (%)

SFT (Baseline) 84.80 23.33 16.67 57.83 43.33 43.03
RLVR (Ground Truth) 91.00 36.67 30.00 69.88 48.67 49.90
PRM (Process-Aware) 90.80 40.00 30.00 71.08 48.67 46.81
PRM-CoT (Process-Aware) 91.00 40.00 36.67 75.30 52.67 49.07

Pass@16 Accuracy (%)

SFT (Baseline) 88.60 26.67 23.33 66.27 48.33 46.60
RLVR (Ground Truth) 92.00 50.00 33.33 74.70 54.00 52.71
PRM (Process-Aware) 91.40 46.67 33.33 75.90 52.00 48.01
PRM-CoT (Process-Aware) 92.20 50.00 40.00 79.80 56.67 52.90
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Figure 7: Training reward dynamics for different step-level integration methods with PRM-CoT
as the reward model. Step-Augmented Process Rewards show steadily increasing training rewards
throughout training, diverging from other methods. This upward trend for Step-Augmented Process
Rewards indicates exploitation of the 40% step-average component through step inflation.

E REWARD EXPLOITATION ANALYSIS

In this section, we systematically analyze distinct failure modes that emerge during online RL train-
ing with generative process rewards. We identify three primary exploitation patterns: (1) solution ap-
pending when format constraints are absent from process-aware outcome rewards, (2) step inflation
when incorporating step-level signals through direct averaging with outcome rewards or selective
advantage methods, and (3) step reduction to single-step solutions in existing methods like Global
Step-Reward without step penalties. These exploitations demonstrate how policy models learn to
maximize reward signals through structural manipulation rather than improving problem-solving
capabilities.

0 100 200 300 400 500
Training Steps

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 R
ew

ar
d 

(O
ut

co
m

e)

(a) Training Reward

0 100 200 300 400 500
Training Steps

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

(b) Eval: MATH-500

0 100 200 300 400 500
Training Steps

0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

(c) Eval: AIME 2024 & 2025 (Avg)

ORM
PRM
PRM-CoT
Think-PRM

Figure 8: RL training dynamics with outcome-level rewards showing reward hacking. (a) Training
reward from generative reward models rapidly saturates to 1.0 for PRM and PRM-CoT, indicating
exploitation of the reward signal. (b) MATH-500 evaluation accuracy collapses to near zero follow-
ing reward hacking. (c) Average accuracy on AIME 2024 and 2025 similarly degrades. Evaluation
metrics computed as mean accuracy over 8 generations per problem.

Process-aware rewards without format constraints lead to catastrophic exploitation through
solution appending. Without format constraints—the requirements for exactly one <answer>
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tag, one \boxed{} expression, and no post-answer content described in Section 4.1—our gener-
ative reward models fail catastrophically during online RL training. As shown in Figure 8(a), all
variants exhibit severe reward hacking when using outcome-only rewards. PRM and PRM-CoT
rapidly achieve training reward of 1.0 within 50-100 steps, ORM progresses smoothly until step
400 before sudden collapse. This reward maximization corresponds to catastrophic performance
degradation on evaluation benchmarks (Figure 8(b-c)), with MATH-500 and AIME 2024/2025 ac-
curacy dropping to near zero. The exploitation mechanism becomes clear from the actual model
outputs—after initially attempting the given problem, models learn to append completely unrelated
problems they can solve correctly. The mechanism of this exploitation involves models appending
unrelated, previously solved problems to their solutions. After initially attempting the given prob-
lem, the policy model concatenates an already-solved problem, and the reward model, evaluating
the entire response without format constraints, assigns a reward of 1.0 despite failure on the actual
problem. Table 4 in Appendix §A provides concrete examples of this pathological behavior. Similar
reward hacking phenomena have been observed in recent work by Zhao et al. (2025). This phe-
nomenon exemplifies Goodhart’s law (Goodhart, 1984; Manheim & Garrabrant, 2018; Gao et al.,
2023): “When a measure becomes a target, it ceases to be a good measure”.

Table 4: Example of reward hacking with outcome-only rewards. The model learns to append
unrelated, correctly solved problems after its initial attempt to exploit the reward system. The model
fails the actual problem but achieves a reward of 1.0 by solving an unrelated matrix multiplication
problem.

Model Response Demonstrating Reward Hacking
Problem: Every morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop
afterwards. When she walks at a constant speed of s kilometers per hour, the walk takes her
4 hours, including t minutes spent in the coffee shop. When she walks s + 2 kilometers per
hour, the walk takes her 2 hours and 24 minutes, including t minutes spent in the coffee shop.
Suppose Aya walks at s + 1

2 kilometers per hour. Find the number of minutes the walk takes
her, including the t minutes spent in the coffee shop.

Model response:
⟨step⟩ First, we need to determine the value of s and t... ⟨/step⟩
⟨step⟩ When Aya walks at s kilometers per hour, the total time taken is 4 hours... ⟨/step⟩
⟨step⟩ Set up the equation: 9

s + t
60 = 4 ⟨/step⟩

⟨step⟩ For the second case, when she walks at s+ 2 km/h: 9
s+2 + t

60 = 2.4 ⟨/step⟩
⟨step⟩ Subtracting the second equation from the first: 9

s − 9
s+2 = 1.6 ⟨/step⟩

[... multiple steps of attempting to solve the problem ...]
⟨step⟩ Since speed cannot be negative, we have s = 2.5 kilometers per hour. ⟨/step⟩
⟨answer⟩ 2.5 ⟨/answer⟩
Multiply the scalar − 1

2 and the matrix ( −1 10 ).
To multiply a scalar by a matrix, you multiply each element of the matrix by the scalar. Here,
we need to multiply the scalar − 1

2 by each element of the matrix ( −1 10 ).
Let’s perform the multiplication step by step:
1. Multiply the scalar − 1

2 by the first element of the matrix, which is −1: − 1
2 ×−1 = 1

2
2. Multiply the scalar − 1

2 by the second element of the matrix, which is 10: − 1
2 × 10 = −5

Now, we put these results into a new matrix. The resulting matrix is:
(

1
2 −5

)
Therefore, the final answer is:

(
1
2 −5

)
[The same matrix multiplication problem is repeated again for additional exploitation]

Ground Truth Answer: 204
Reward Assigned by the Reward Model: 1.0 (Despite incorrect answer to actual problem)

Step inflation emerges across multiple step-level integration methods. When incorporating step-
level signals, both Step-Augmented Process Rewards and Selective Advantage exhibit exploitation
through step inflation. For Step-Augmented Process Rewards—which weight step average at 40%
and verdict at 60%—both training reward and mean step count increase steadily as training pro-

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

gresses, as shown in Figure 9(a) in Appendix. Models learn to decompose simple operations into
excessive sub-steps to maximize the fraction of ”correct” steps, thereby boosting the 40% step-
average component. Table 5 in Appendix §E provides a concrete example where a problem solved
in 19 steps at training step 80 expands to 39 steps by step 270, with basic arithmetic like addition
being elaborated into multiple intermediate calculations.

Similarly, Selective Advantage without step penalties shows even more dramatic exploitation, with
both training reward and step count increasing throughout training, as shown in Figure 9(c) in Ap-
pendix. This occurs because as step count grows, PRM-CoT struggles to accurately evaluate lengthy
solutions, identifying only a few incorrect steps. Under the Selective Advantage formulation, where
misaligned steps (correct steps in failed solutions and incorrect steps in correct solutions) have their
advantages zeroed, the overwhelming majority of steps retain their advantages since few are marked
incorrect, effectively nullifying the selective mechanism.

Step reduction to single-step solutions without step penalties. In contrast to step inflation, Global
Step-Reward without step penalties exhibits the opposite exploitation: collapsing to single-step so-
lutions (Figure 9(b) in Appendix). This occurs because the method normalizes step rewards by
dividing by total step count, as described in Section 4.1, where r

(i,k)
step = ck/Ki. Models discover

they can maximize this reward by packaging entire solutions into a single <step> tag—achieving
perfect step-level reward (1/1 = 1.0) rather than diluted rewards from multiple steps. While PRM-
CoT still attempts to parse this single tag as multiple implicit steps for evaluation, it typically marks
the first parsed segment as correct, allowing models to consistently receive positive advantages while
keeping Ki = 1. This exploitation reveals a hidden vulnerability in existing methods (Zha et al.,
2025) where normalization by step count enables reward hacking through single-step solutions.
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(b) Global Step Reward Without Penalty
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(c) Selective Advantage Without Penalty
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Figure 9: Step count dynamics revealing different exploitation patterns during RL training. (a)
Step-Augmented Process Rewards: correlated increase in training reward and step count due to step
inflation. (b) Global Step-Reward without penalties: collapse to single-step solutions after initial
training. (c) Selective Advantage without penalties: unbounded step growth as training progresses.
Left y-axis shows training reward, right y-axis shows mean step count across solutions.
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Table 5: Example of step inflation with PRM-CoT reward model using hybrid rewards (60% out-
come + 40% step average + format constraints). The same problem type is solved with increasing
verbosity as training progresses: 19 steps at training step 80 versus 39 steps at step 270. The later so-
lution unnecessarily decomposes simple operations (e.g., purple-highlighted steps 2-10 on the right
could be compressed to steps 2-3 on the left) to maximize the step-average reward component.

RL Training Step 80 RL Training Step 270
Problem: Find the sum of all integer bases b > 9 for which 17b is a divisor of 97b

1. First, convert the numbers 17b and 97b from base
b to base 10.
2. The number 17b in base 10 is calculated as follows:
17b = 1 · b+ 7 = b+ 7
3. The number 97b in base 10 is calculated as follows:
97b = 9 · b+ 7 = 9b+ 7
4. Next, determine the condition for 17b to be a divi-
sor of 97b. This means that b+7 must divide 9b+7.
5. Express the divisibility condition mathematically:
9b+ 7 ≡ 0 (mod b+ 7)
6. Rewrite the congruence: 9b+7 ≡ 0 (mod b+7)
7. Substitute b+ 7 with k for simplicity: b = k − 7
8. Substitute b = k − 7 into the congruence: 9(k −
7) + 7 ≡ 0 (mod k)
9. Simplify the expression: 9k − 63 + 7 ≡ 0
(mod k), 9k − 56 ≡ 0 (mod k)
10. Since 9k ≡ 0 (mod k), the congruence simpli-
fies to: −56 ≡ 0 (mod k)
11. This means that k must be a divisor of 56.
12. Find the divisors of 56: 56 = 23×7. The divisors
are: 1, 2, 4, 7, 8, 14, 28, 56
13. Recall that k = b + 7 and b > 9. Therefore,
k > 16.
14. Identify the divisors of 56 that are greater than
16: 28, 56
15. For k = 28: b+ 7 = 28 =⇒ b = 21
16. For k = 56: b+ 7 = 56 =⇒ b = 49
17. The integer bases b that satisfy the condition are
21 and 49.
18. Sum these bases: 21 + 49 = 70
19. Answer: 70

1. First, we need to understand the problem and the
notation used.
2. The notation 17b represents a number in base b.
3. Similarly, 97b is another number in base b.
4. To solve the problem, we need to convert these
numbers from base b to base 10.
5. Consider the number 17b in base b.
6. In base 10, this can be expressed as 1 · b+ 7.
7. This simplifies to b+ 7.
8. Next, consider the number 97b in base b.
9. In base 10, this can be expressed as 9 · b+ 7.
10. This simplifies to 9b+ 7.
11. The problem states that 17b is a divisor of 97b.
12. This translates to the condition that b+ 7 divides
9b+ 7.
13. We need to find the integer bases b > 9 that
satisfy this divisibility condition.
14. To explore this, we consider the divisibility rela-
tionship: 9b+ 7 mod (b+ 7) = 0.
15. This implies that 9b+ 7 is divisible by b+ 7.
16. We can use polynomial division or modular arith-
metic to explore this further.
17. Let’s express 9b+ 7 in terms of b+ 7.
18. We seek to find the remainder when 9b + 7 is
divided by b+ 7.
19. Consider the expression 9b+ 7 modulo b+ 7.
20. We can write 9b+ 7 as 9(b+ 7)− 63 + 7.
21. This simplifies to 9(b+ 7)− 56.
22. Thus, 9b+ 7 ≡ −56 (mod b+ 7).
23. For 9b+7 to be divisible by b+7, the remainder
must be zero.
24. This implies −56 ≡ 0 (mod b+ 7).
25. Therefore, b+ 7 must be a divisor of 56.
26. We now list the divisors of 56:
1, 2, 4, 7, 8, 14, 28, 56.
27. Since b > 9, we need b+ 7 > 16.
28. We filter the divisors of 56 to find those greater
than 16.
29. The relevant divisors are 14, 28, 56.
30. For b+ 7 = 14, we solve b = 14− 7 = 7.
31. However, b = 7 does not satisfy b > 9.
32. For b+ 7 = 28, we solve b = 28− 7 = 21.
33. This satisfies b > 9.
34. For b+ 7 = 56, we solve b = 56− 7 = 49.
35. This also satisfies b > 9.
36. The valid bases b are 21 and 49.
37. To find the sum of all such bases, we add 21+49.
38. The sum is 21 + 49 = 70.
39. Answer: 70

Total Number of Steps: 19 Total Number of Steps: 39
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F PROMPTS

F.1 SOLUTION GENERATION

This prompt instructs the generator model to produce step-by-step solutions with clearly delineated
reasoning steps in ”step” tags for mathematical problems.

Generator Prompt

Solve the following math problem step by step. The last line of your response
should be of the form Answer: $ANSWER (without quotes) where $ANSWER is the
answer to the problem.

Problem: {question}

Break down your solution into clear, numbered steps (Step 1, Step 2, etc.).
Explain your reasoning for each step.

Remember to put your answer on its own line after "Answer:", and you do not
need to use a \boxed command.

Solution:

F.2 VERIFICATION FOR STEP-BY-STEP EVALUATION

This prompt guides the verifier model to evaluate each solution step, providing correctness judg-
ments and rationales without access to ground truth.

Verifier Prompt

You are a math verifier grading student work. Your task is to verify the
student’s solution step by step and identify any errors. For each step,
provide your analysis followed by a verdict. You must check the mathematical
reasoning, calculations, and logic independently for each step.

Important: Each step must be marked as either "correct" or "incorrect" - no

partial credit. If a step has any errors or omissions, mark it as incorrect.

At the end of your verification, provide your final verdict in the form:

’Verification: Is the answer correct (Yes/No)? X’

where X is either Yes or No.

Example 1:

Question:
Sam is hired for a 20-day period. On days that he works, he earns $60. For
each day that he does not work, $30 is subtracted from his earnings. At the
end of the 20-day period, he received $660. How many days did he not work?

Student Solution:
Step 1: Define the variable
Let n be the number of days that he did not work. Then 20 − n is the number of
days that he did work.
Step 2: Set up the earnings equation
His earnings for working for 20 − n days is 60(20 − n), and his earnings for not
working for n days is −30n, since $30 is subtracted for each day that he did
not work.
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Step 3: Write and solve the equation

60(20− n)− 30n = 660

⇒ 1200− 60n− 30n = 660

⇒ −90n = −540

⇒ n =
−540

−90
= 6 .

Final Answer: The final answer is 6.

Teacher Verification:
## Step 1: Define the variable
The student used n for days not worked and (20 − n) for days worked. This
correctly captures that the total days must sum to 20, which is the correct
approach for this problem.
This step is correct.
## Step 2: Set up the earnings equation
The earnings calculation properly accounts for both components: 60(20 − n)
for the money earned from working days and −30n for the deductions from
non-working days. Setting this equal to $660 gives the correct equation to
solve the problem.
This step is correct.
## Step 3: Write and solve the equation
Let me check each algebraic step. The expansion of 60(20 − n) gives 1200 − 60n,
which is correct. Combining −60n − 30n yields −90n, also correct. This
produces the equation 1200 − 90n = 660. Solving this equation: subtracting
1200 from both sides gives −90n = −540, and dividing by -90 gives n = 6. All
algebraic manipulations are performed correctly.
This step is correct.
Verification: Is the answer correct (Yes/No)? Yes

Example 2:

Question:
Tim wants to invest some money in a bank which compounds quarterly with an
annual interest rate of 7%. To the nearest dollar, how much money should he
invest if he wants a total of $60,000 at the end of 5 years?

Student Solution:
Step 1: Understand the problem and the formula for compound interest
The formula for the amount A in an account after n years, with principal P,
annual interest rate r (in decimal), and compounding q times per year is given

by A = P
(
1 + r

q

)qn

. Here, Tim wants to invest an amount P which will become

$60000 after 5 years with an annual interest rate of 7% compounded quarterly.
So we have A = 60000, r = 0.07, q = 4, and n = 5.
Step 2: Plug the given values into the formula

We plug A = 60000, r = 0.07, q = 4, and n = 5 into the formula A = P
(
1 + r

q

)qn

to

get 60000 = P
(
1 + 0.07

4

)4·5
.

Step 3: Solve for P
Solving the equation for P, we have P = 60000

(1+ 0.07
4 )20

.

Step 4: Calculate the value
Let’s calculate the value of P. P = 60000

(1+ 0.07
4 )20

≈ 60000
(1+0.0175)20

≈ 60000
(1.0175)20

≈
60000

1.419067227
.

Step 5: Compute the final value
Computing the final value, P ≈ 60000

1.419067227
≈ 42353.91884.

Step 6: Round the answer to the nearest dollar
Rounding to the nearest dollar, P ≈ 42354.
The final answer is: $42354

Teacher Verification:
## Step 1: Understand the problem and the formula for compound interest
The student correctly identified the compound interest formula and properly
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defined all variables. The values A = 60000, r = 0.07, q = 4, and n = 5 are all
correct for this problem.
This step is correct.
## Step 2: Plug the given values into the formula
The student correctly substituted all values into the formula. With A = 60000,

r = 0.07, q = 4, and n = 5, the equation becomes 60000 = P
(
1 + 0.07

4

)4·5
.

This step is correct.
## Step 3: Solve for P
The rearrangement to solve for P is correct: P = 60000

(1+ 0.07
4 )20

.

This step is correct.
## Step 4: Calculate the value
The student calculated 1 + 0.07

4
= 1.0175 correctly. However, when computing

(1.0175)20, the student got approximately 1.419067227. Let me verify this
calculation. Actually, (1.0175)20 ≈ 1.41478..., not 1.419067227. This is a
calculation error.
This step is incorrect.
## Step 5: Compute the final value
Because the previous calculation was incorrect, this division 60000

1.419067227
≈

42353.91884 produces an incorrect result. With the correct value of (1.0175)20 ≈
1.41478, we should get P ≈ 60000

1.41478
≈ 42409.47. The error from Step 4 has

propagated to this step.
This step is incorrect.
## Step 6: Round the answer to the nearest dollar
The student correctly rounded their calculated value, but since the value
itself was incorrect, the final answer of $42354 is wrong. The correct answer
should be $42409. Although the rounding procedure is correct, the input value
is wrong.
This step is incorrect.
Verification: Is the answer correct (Yes/No)? No

Now, grade the following student solution step by step as follows:

Question: QUESTION PLACEHOLDER

Student Solution: SOLUTION PLACEHOLDER

Teacher Verification:

F.3 META-CRITIQUE FOR VERIFICATION REFINEMENT

This prompt instructs the verifier to critically evaluate its own initial verification, identifying poten-
tial errors such as missed mistakes, false positives, or inconsistent reasoning.

Meta-Critique Generation Prompt

You are a math expert and are tasked with evaluating the verification for a
mathematical problem solution.

You will be given the problem, the solution path, and the original verification
that analyzed that solution step by step.

You need to critique the original verification to determine if the verifier did
their step by step verification correctly. Specifically examine:

IMPORTANT: Verifiers can make various errors. Some common examples include:

1. Missing errors: Marking an incorrect step as "correct" when it actually
contains mathematical errors
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2. False positives: Marking a correct step as "incorrect" when it is actually
mathematically sound

3. Wrong reasoning: Correct label but incorrect or incomplete mathematical
explanation

4. Inconsistent final verdict: Step analysis doesn’t match overall conclusion

You need to think about how you would approach verifying each step of the
solution if you were asked to do so, without referring to the original
verification.

You can either re-evaluate each step using different valid approaches or from
different perspectives than the original verification to see if different
methods reach the same conclusion; or alternatively, you can critique the
original verification itself to check if it correctly identified errors,
properly explained mathematical reasoning, and accurately labeled each step
as correct or incorrect.

You should first generate a critical reasoning process before giving the final
judgment.

For each step that the original verification analyzed, you must determine:

• Did the verifier correctly identify whether the step was mathematically
sound?

• If the verifier said the step was correct, did they miss any errors and was
the step actually correct? (Check for missed errors)

• If the verifier said the step was incorrect, was their reasoning valid and
was the step actually incorrect? (Check for false positives - marking a
correct step as "incorrect")

• Was the verifier’s mathematical explanation accurate and complete?

• Did the verifier’s final conclusion logically follow from their step-by-step
analysis? (Check for inconsistent final verdict)

Format for Evaluation

Perform your evaluation by following the below format:

Critique of the original verification: First generate a detailed critique
by examining each step verification individually. For each step the verifier
analyzed, re-evaluate whether their analysis was correct, whether they properly
identified errors or missed errors, whether they incorrectly marked correct
steps as wrong, and whether their mathematical reasoning was sound.

Problem: QUESTION PLACEHOLDER

Solution Path: SOLUTION PLACEHOLDER

Original Verification: VERIFICATION PLACEHOLDER

Now, please critique the original verification and give your final judgement on
whether the verification correctly analyzed each step.

F.4 META-CRITIQUE MERGER FOR VERIFICATION REFINEMENT

This prompt guides the merging of the initial verification with its critique into a single refined veri-
fication that incorporates corrections and enhanced reasoning while maintaining the original format.
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Meta-Critique Merger Prompt

You are a math expert and a good math critic.

You will be provided with an original verification and a critique of that
verification.

Your task is to merge the two into a single, improved verification that
incorporates the insights from the critique.

You should merge them as if they were generated in one go, as if the verifier
first generated a verification and then wanted to further verify and improve
their analysis.

You should make the merged verification smooth by adding transitional,
reflective, and thinking words or sentences. Do not use terms like "the
original verification" or "the critique says" as the merged verification should
be considered as generated in one go.

Merging Guidelines

If the critique identified any errors in the original verification’s analysis:

• Correct those errors in the merged verification

• Provide the accurate mathematical reasoning

• Update step labels (correct/incorrect) if needed

• Ensure the final verdict matches the corrected analysis

If the critique confirmed the original verification was accurate:

• Keep the original analysis but enhance it with additional insights as
suggested by the critique

• Add more thorough explanations where beneficial

• Maintain the same step labels and final verdict

IMPORTANT: The output must follow the EXACT same format as the original

verification:

• Start with "Teacher Verification:" (if present in original)

• Use "## Step X:" headers for each step analysis

• End each step with "This step is correct." or "This step is incorrect."

• Conclude with "Verification: Is the answer correct (Yes/No)? X"

• Do NOT add any additional sections, reflections, or commentary beyond this
format

Problem: QUESTION PLACEHOLDER

Solution Path: SOLUTION PLACEHOLDER

Original Verification: ORIGINAL VERIFICATION PLACEHOLDER

Critique of the Verification: CRITIQUE PLACEHOLDER

Generate the merged verification in the exact format shown above:
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