
Knowledge Distillation Improves Graph Structure
Augmentation for Graph Neural Networks

Lirong Wu 1,2, Haitao Lin 1,2, Yufei Huang 1,2, and Stan Z. Li 1†
1 AI Lab, School of Engineering, Westlake University

2 College of Computer Science and Technology, Zhejiang University
{wulirong,linhaitao,huangyufei,stan.zq.li}@westlake.edu.cn

Abstract

Graph (structure) augmentation aims to perturb the graph structure through heuristic
or probabilistic rules, enabling the nodes to capture richer contextual information
and thus improving generalization performance. While there have been a few
graph structure augmentation methods proposed recently, none of them are aware
of a potential negative augmentation problem, which may be caused by overly
severe distribution shifts between the original and augmented graphs. In this paper,
we take an important graph property, namely graph homophily, to analyze the
distribution shifts between the two graphs and thus measure the severity of an
augmentation algorithm suffering from negative augmentation. To tackle this prob-
lem, we propose a novel Knowledge Distillation for Graph Augmentation (KDGA)
framework, which helps to reduce the potential negative effects of distribution
shifts, i.e., negative augmentation problem. Specifically, KDGA extracts the knowl-
edge of any GNN teacher model trained on the augmented graphs and injects it
into a partially parameter-shared student model that is tested on the original graph.
As a simple but efficient framework, KDGA is applicable to a variety of existing
graph augmentation methods and can significantly improve the performance of
various GNN architectures. For three popular graph augmentation methods, namely
GAUG, MH-Aug, and GraphAug, the experimental results show that the learned
student models outperform their vanilla implementations by an average accuracy
of 4.6% (GAUG), 4.2% (MH-Aug), and 4.6% (GraphAug) on eight graph datasets.
Codes are available at: https://github.com/LirongWu/KDGA.

1 Introduction

In many real-world applications, including social networks, chemical molecules, and citation net-
works, data can be naturally modeled as graphs. Recently, the emerging Graph Neural Networks
(GNNs) [4, 13, 48, 47, 22, 24, 28, 29] have demonstrated their powerful capability due to their supe-
rior performance in various graph-related tasks, including link prediction [59], node classification
[21, 50], and graph classification [7]. Despite their great success, GNNs usually suffer from weak
generalization due to its heavy reliance on the quantity of annotated labels and the quality of the graph
structure. To boost generalization capabilities, a natural solution is to increase the amount of training
data by creating plausible variations of existing data, which have been widely adopted in fields such
as computer vision [33, 30, 9, 39, 25, 31, 26, 27] and natural language processing [46, 1, 36, 5, 34].

The data augmentation on graphs can be mainly divided into two branches: node feature augmentation
and graph structure augmentation. While the former has been well studied by directly extending
existing approaches for image and text data to graph data [56, 19, 15], comparatively little work has
been done to study graph structure augmentation [35, 2, 62, 32]. Following the nomenclature of
existing works [62, 32], we directly abbreviate graph (structure) augmentation to graph augmentation

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/LirongWu/KDGA

for the sake of brevity in this paper. The purpose of graph augmentation is to reasonably perturb the
graph structure through heuristic or probabilistic rules, enabling the nodes to capture richer contextual
information and thus improving generalization performance. For example, DropEdge [35] randomly
removes a fraction of edges before each training epoch, in an approach reminiscent of dropout [40].
Besides, AdaEdge [2] iteratively adds (removes) edges between nodes predicted to have the same
(different) labels with high confidence. In contrast to these heuristic methods, GAUG [62] proposes to
optimize the graph augmentation and GNN parameters in an end-to-end manner. Similarly, MH-Aug
[32] proposes a novel framework that draws a sequence of augmented graphs from an explicit target
distribution, which enables flexible control of the strength and diversity of augmentation.

In this paper, we identify a potential negative augmentation problem for existing graph augmentation
methods, i.e., the augmentation may cause overly severe distribution shift between the augmented
graphs used for training and the original graph used for testing, which leads to suboptimal general-
ization. Moreover, we conduct extensive experiments to demonstrate the existence and hazard of
distribution shifts and find that the direction of distribution shifts may be opposed on homophily
and heterophily graphs. We propose a solution to the identified problem by adopting a Knowledge
Distillation for Graph Augmentation (KDGA) framework, which helps to reduce the potential nega-
tive effects of distribution shifts. Specifically, it extracts the knowledge of any GNN teacher model
trained on the augmented graphs and injects it into a partially parameter-shared student model that is
tested on the original graph. As a general framework, KDGA can significantly improve the vanilla
implementations of various popular graph augmentation methods and GNN architectures.

Our contributions are summarized as follows: (1) We are the first to identify a potential negative
augmentation problem for graph augmentation, and more importantly, we have described in detail
what it represents, how it arises, what impact it has, and how to deal with it. (2) We proposes a novel
Knowledge Distillation for Graph Augmentation (KDGA) framework for the identified problem by
directly distilling contextual information from augmented graphs. (3) We provide comprehensive
experimental results showing that KDGA is applicable to a variety of graph augmentation methods
and GNN models; it substantially outperforms the vanilla implementations across various datasets.

2 Background and Related Work

Structure Augmentation for Graphs. Data augmentation is an effective technique to improve
generalization. Despite the great progress on node feature augmentation [56, 19, 15], comparatively
little work study graph (structure) augmentation [35, 2, 62, 32, 6] due to the non-Euclidean property of
structures. For graph data, the mainstream algorithms for structure augmentation are divided into two
categories: heuristic and learning-based. As a typical heuristic algorithm, DropEdge [35] randomly
remove edges according to the hand-crafted probability. In a similar way, AdaEdge [2] iteratively
adds (removes) edges between nodes predicted to have the same (different) labels. Different from the
above heuristic methods, GAUG [62] propose to optimize the graph augmentation and learnable GNN
parameters in an end-to-end manner. Instead, MH-Aug [32] proposes a sampling-based augmentation,
where a sequence of augmented graphs are directly drawn from an explicit target distribution.

Graph Structure Learning and Graph Contrastive Learning. Two closely related topics to graph
augmentation are Graph Structure Learning [18, 23, 58, 20, 3] and Graph Contrastive Learning
[19, 15, 57, 51, 63, 52], but they are quite different in terms of learning objectives and evaluation
protocols. The learning goal of structure learning is to estimate a new structure with high quality
[10, 8]. Instead, graph augmentation aims to reasonably perturb the graph structure during training to
produce a set of augmented graphs, enabling nodes to receive richer contextual information; such
augmentations allow the model to generalize better across those variations. As for the evaluation
protocol, the augmented graphs are only used during training and are not available during testing. In
contrast, for graph structure learning, the learned structure is used during both training and testing.

There are also some recent works [41, 65, 55] exploring how to perform data augmentation for graph
contrastive learning, but they focus on automatically selecting the most appropriate transformations
from a given pool to improve contrastive learning, rather than learning customized augmentation
strategies for GNNs. More importantly, graph contrastive learning aims to learn transferable knowl-
edge from abundant unlabeled data in an unsupervised setting and then generalize the learned
knowledge to downstream tasks. Instead, graph augmentation usually works in a semi-supervised

2

setting, i.e., the label information is available during training. The graph structure learning and
contrastive learning are not newly born topics, and we refer readers to the recent surveys [49, 64].

3 Preliminaries

Notions. Given a graph G = (V, E), where V is the set of N = |V| nodes with features X =
[x1,x2, · · · ,xN] ∈ RN×d and E denotes the edge set. Each node vi ∈ V is associated with a
d-dimensional features vector xi, and each edge ei,j ∈ E denotes a connection between node vi and
vj . The graph structure can also be denoted by an adjacency matrix A ∈ [0, 1]N×N with Ai,j = 1
if ei,j ∈ E and Ai,j = 0 if ei,j /∈ E . Consider a semi-supervised node classification task where
only a subset of node VL with corresponding labels YL are known, we denote the labeled set as
DL = (VL,YL) and unlabeled set as DU = (VU ,YU), where VU = V\VL. The node classification
task aims to learn a mapping Φ : V → Y on labeled data DL, so that it can be used to infer labels YU .

Background on Graph Homophily Ratio. The homophily ratio is an important graph property that
reflects the extent to which the graph structure adheres to the "label smoothness" criterion. The graph
homophily ratio r can be defined as the fraction of intra-class edges in the graph, as follows

r =
|{(i, j) : (i, j) ∈ E ∧ yi = yj}|

|E|
(1)

where yi and yj are the ground-truth labels of node vi and vj . In practice, the distribution space
size of a discrete graph structure A ∈ [0, 1]N×N is 2N

2

, making it tractable to directly estimate
the distribution differences between two discrete graph structures. In this paper, we take the graph
homophily as a desirable option to analyze the distribution shifts between the original and augmented
graphs, thus measuring the severity of an algorithm suffering from the negative augmentation problem.

4 Methodology
In this section, we first make problem statements for graph augmentation in Sec. 4.1, highlight
our motivations by analyzing the distribution shift between the original and augmented graphs
in Sec. 4.2, then present a novel teacher-student Knowledge Distillation for Graph Augmentation
(KDGA) framework in Sec. 4.3, and finally provide one of its specific instantiations in Sec. 4.4.

4.1 Problem Statement

Graph Representation Learning. From the perspective of statistical learning, the key of node
classification is to learn a mapping p(Y | X,A) based on node features X and graph structure A.
The learned mapping can be used to infer labels YU on the graph structure A as shown in Fig. 1(a).

Graph Structure Learning. The goal of graph structure learning is to estimate a more accurate
structure Â by another mapping p(Â | X,A) and then feed it into the mapping p(Y | X, Â) along
with node features X. Finally, the learned mapping p(Y | X, Â) can be used to infer labels YU on
the estimated (high-quality) structure Â instead of the original strucute A as shown in Fig. 1(b).

Graph Augmentation. Instead of directly working with the original graph, we would like to
leverage graph augmentation to reasonably perturb the graph structure and learn more generalizable
representations. In other words, we are interested in the following variant, as follows

p(Y | X,A) =
∑

Â∈[0,1]N×N

p(Y | X, Â)p(Â | X,A) (2)

where Â ∈ [0, 1]N×N is the augmented graph (structure). In practice, the distribution space size of
Â is 2N

2

, and it is intractable to enumerate all possible Â as well as estimate the exact values of the
mappings p(Y | X, Â) and p(Â | X,A). Therefore, we approximate them by tractable functions as

p(Y | X,A) =
∑

Â∈[0,1]N×N

qθ(Y | X, Â)qϕ(Â | X,A) (3)

where qθ(·) and qϕ(·) are approximation functions for p(Y | X, Â) and p(Â | X,A) parameterized
by θ and ϕ, respectively. In practice, the function qθ(Y | X, Â) can be generally implemented by

3

GNN
Classifier

?

Loss
Function

Original Structure

(a) Graph Representation Learning

?GNN
Classifier

Loss
Function

Structure
Learning

Estimated StructureOriginal Structure

(b) Graph Structure Learning

?GNN
Classifier

Loss
Function

Graph Augmentation

Original Structure

Augmented Structure

(c) Graph Augmentation

?

Teacher
Model

Loss
FunctionStudent

Model

Loss
Function

KL-divergence
Training Flow

Testing Flow
Graph Augmentation

Original Structure

Augmented Structure

(d) Knowledge Distillation for Graph Augmentation (KDGA)

Figure 1: Illustrations of graph representation learning, graph structure learning, graph augmentation,
and the proposed KDGA framework. For the sake of chart brevity, we omitted the node features X.

GNNs, and the function qϕ(Â | X,A) can be implemented by graph augmentation methods to model
the distributions of augmented graph structures. Once the model training is finished, the mapping
qθ(Y | X,A) can be used to infer labels YU on the original structure A as shown in Fig. 1(c).

In summary, unlike graph representation and graph structure learning that leverage the same struc-
ture (A or Â) for both training and testing, the graph structures for training and testing in graph
augmentation are completely different, which may lead to a potential negative augmentation problem.

4.2 Motivation: Potential Negative Augmentation Problem

One may create a model by specifying specific implementations for functions qθ(Y | X, Â) and
qϕ(Â | X,A) and then optimize it by maximizing the posterior p(Y | X,A) defined in Eq. (3). As
we will explain here, however, this model may suffer from a potential negative augmentation problem
caused by overly severe distribution shifts between the original and augmented graphs.

G
raph

Augm
entation

Original Structure Augmented StructureDistribution Shift

Class C2

Class C1

Class C2

Class C2

Class C1
Class C1

Class C1

Class C1

Class C1Class C1

Class C1

Class C1
Class C2

Class C2

Class C2

Class C1

(a) Distribution shift on the real-world Wisconsin dataset

0.0 0.2 0.4 0.6 0.8 1.0
Homophily Ratio on Original Graph

0.0

0.2

0.4

0.6

0.8

1.0

Ho
m

op
hi

ly
 ra

tio
 o

n
Au

gm
en

te
d

Gr
ap

h

Distribution Shift

Cora
Citeseer
Cornell
Wisconsin

Texas
Actor
Chameleon
Squirrel

(b) Statistics of homophily ratios

Figure 2: Illustrations of how the distribution shift is arising and how it behaves on different datasets.

The distribution shift itself is not necessarily harmful; it is actually a neutral phenomenon. A proper
distribution shift helps the model “see" more different graphs, enabling the nodes to receive more
contextual information, thus improving generalization; however, an overly severe distribution shift
can lead to a potential negative augmentation problem. To illustrate it, we consider a node vi (id
129) of class C1 from the real-world Wisconsin dataset in Fig. 2(a), it is initially connected to a node
with the same class C1 and three nodes from another class C2 in the original structure A. During the
training process, the original structure A and node features X are fed together into qϕ(Â | X,A)

to generate an augmented structure Â. Under the downstream supervision, it disconnects from
three nodes from class C2 and reconnects with three nodes from the same class C1, resulting in an

4

augmented structure Â with a much higher homophily ratio, that is, an overly severe distribution
shift between the original and augmented graphs from the perspective of graph homophily property.
As a result, a model trained on the augmented structure Â can successfully predict node i as class C1,
but make a wrong prediction C2 for node i when tested on the original structure A, which is termed
as "negative augmentation". Furthermore, we plot the homophily ratios of the original structure A

and augmented structure Â on eight datasets in Fig. 2(b), from which we can observe significant
distribution shifts between the two graphs. Moreover, while the above analysis is developed on a
heterophily (Wisconsin) graph, we find that the identified distributional shift also exists in homophily
graphs, only in a different direction. Please see Sec. 5.3 for detailed experimental settings and results.

4.3 Knowledge Distillation for Graph Augmentation (KDGA)

The distribution shift is essentially a trade-off between better generalizability and higher risks of
negative augmentation. However, the optimal distribution shift may vary from dataset to dataset, or
even from node to node, making it challenging to directly control the levels of distribution shifts. In
this paper, we have not attempted to control or prevent distribution shifts. Instead, we allow for the
existence of any level of distribution shifts, but we reduce their negative impact, i.e., the potential
negative augmentation problem, by the proposed KDGA framework, which gradually distills the
contextual information from the augmented graphs into a student model tested on the original graph.
The idea of KDGA is straightforward, yet as we will see, extremely effective. In our case, we first
generate soft distributions zTi and zSi for node vi with the teacher and student models, respectively.
The knowledge distillation is first introduced in [14], where knowledge was transferred from a
cumbersome teacher to a simpler student by optimizing the following objective function, as follows

LKD =
1

|V|
∑
i∈V

DKL

(
softmax

(
zTi

)
, softmax

(
zSi

))
(4)

In this paper, not to get a simpler student model, we adopt the knowledge distillation framework
to address the identified negative augmentation problem caused by overly severe distribution shifts
between the two graphs. In short, we extract the knowledge of any teacher model trained on the
augmented graphs and inject it into a student model tested on the original graph as in Fig. 1(d).

Teacher Model. The teacher model can be implemented by any GNN, which takes node features X
and augmented structure Â as input and learn latent node representations via neighborhood feature
aggregation. Considering a L-layer GNN fθ(X, Â), the formulation of the l-th layer is as follows

h
(l+1)
i,T = UPDATE(l)

(
h
(l)
i,T ,AGGREGATE(l)

({
h
(l)
j,T : vj ∈ N Â

i

}))
(5)

where 0 ≤ l ≤ L− 1, h(0)
i,T = xi is the input feature, and N Â

i is the neighborhood of node vi in the

augmented structure Â. After L message-passing layers, the final node embedding h
(L)
i,T is passed to

a linear prediction head gT (·) to obtain logits zTi = gT (h
(L)
i,T), and the model is trained by a cross-

entropy loss H(·) with ground-truth labels YL, given by LT
SUP =

∑
i∈VL

H
(
yi; softmax

(
zTi

))
.

Student Model. The student model fθ(X,A) shares the parameters θ with the teacher model, but
differs in that the it takes the original structure A as input, as shown in Fig. 3(c). Besides, an additional
linear prediction head gS(·) is used to map the node embedding h

(L)
i,S to logits zSi = gS(h

(L)
i,S). As

already explained earlier, the augmented graphs enable the teacher model to receive richer contextual
information, which helps to improve model generalization. To allow the student model tested on the
original structure to also benefit from it, we consider the contextual neighborhood information from
both original and augmented structures and distill them into the student model, defined as

LGKD =
τ21
|V|

∑
i∈V

∑
j∈(NA

i ∩N Â
i)∪i

DKL

(
softmax

(
zTj /τ1

)
, softmax

(
zSi /τ1

))
(6)

where τ1 is the distillation temperature, and τ21 is used to keep the gradient stability of this loss [14].

Discussions. While a large number of methods on graph knowledge distillation [61, 53, 60] have
been proposed, most of them adopt the standard teacher-student knowledge distillation framework

5

as shown in Fig. 3(a), where the inputs to both teacher and student models are the same (structure).
Despite many progresses, their contributions have mostly focused on the special design of the teacher
or student models. For example, CPF [54] proposes to distill knowledge from a teacher GNN to a
student MLP, but it specifically incorporates label propagation [16] into the student model to improve
performance. In contrast, GDK [11] utilizes label propagation in the teacher model to fully exploit
both feature and topological information. In our proposed KDGA framework, the graph structures fed
to the teacher and student models are completely different. Moreover, unlike the scheme in Fig. 3(b)
where two parameter-independent teacher and student models are used, we adopt the architecture
shown in Fig. 3(c) where the GNN parameters are shared but with two independent prediction heads
to increase discriminability. The behind motivation is that a parameter-independent student model has
the risk of quickly fitting with the original structure under the optimization of downstream supervision,
while failing to take full advantage of rich contextual information from the augmented graphs. A
detailed comparison of parameter-independent and parameter-shared schemes is reported in Table. 2.

Student
Model

Teacher

Model

KL-divergence

Original Graph Original Graph

(a) Standard Scheme

Student
Model

Teacher

Model

KL-divergence

G
raph

Augm
entation

Original Graph Augmented Graph

(b) Parameter-Independent (Param-I)

GNN GNN

KL-divergence

G
raph

Augm
entation

Student Prediction
Head

Teacher Prediction
Head

Student Model Teacher Model

Parameter-

Shared

Original Graph Augmented Graph

(c) Parameter-Shared (Param-S)

Figure 3: (a) standard teacher-student distillation; (b) distillation with parameter-independent teacher
and student models; (c) distillation with parameter-shared teacher and student models.

4.4 Instantiating KDGA with GraphAug
In practice, any existing graph augmentation method can be used to instantiate the proposed KDGA
framework and achieve consistent improvements over the vanilla implementations, as shown in
Table. 1. In this subsection, we adopt a probabilistic generative-based graph augmentation method to
model the function qϕ(Â | X,A), termed GraphAug, and use it to instantiate our KDGA framework.
Specifically, we introduce a set of discrete variables Λ = {λi,j}Ni,j=1 to model the distribution of the
augmented graph, where λi,j ∈ {0, 1} denotes the augmentation probability between node vi and
vj . Moreover, we avoid estimating the probability p (λi,j | µi,j) using independent local parameter
µi,j and instead fits a shared neural network to estimate it. Specifically, we first transform the input
to a low-dimensional hidden space, done by multiplying the node features with a parameter matrix
W ∈ RF×d, that is, ei = Wxi. Then, we directly parameterize the probability λi,j as

p (λi,j | X,A) = σ
(
eie

T
j

)
(7)

where σ(·) is an element-wise sigmoid function. Next, to sample discrete augmented graphs from the
learned augmentation distribution and make the sampling process differentiable, we adopt Gumbel-
Softmax sampling [17]. Specifically, the sampling process can be formulated as

Âi,j =

⌊
1

1 + exp−
(
logMi,j+G

)
/τ2

+
1

2

⌋
,where Mi,j = αp (λi,j | X,A) + (1− α)Ai,j (8)

where α ∈ [0, 1] is the fusion factor to control the intensity of the graph augmentation, τ2 is the
augmentation temperature, and G ∼ Gumbel(0, 1) is a gumbel random variate.

To warm-up the proposed GraphAug module, we first pre-train it with loss LAug = 1
N2H(Ai,j , Âi,j),

where H(·) denotes the cross-entropy loss. Besides, we use classification loss LCla =
1

|VL|
∑

i∈VL

(
H

(
yi, softmax(zTi)

)
+H

(
yi, softmax(zSi)

))
to pre-train the teacher and student mod-

els until it converges. Finally, the total loss to train the whole framework is defined as follows

Ltotal = LCla + λLAug + κLGKD (9)

where λ and κ are the weights to balance the influence of the two losses LAug and LGKD.

6

Table 1: Accuracy ± std (%) on eight datasets (as well as their homophily ratios), with three GNN
architectures and five graph augmentation methods considered. The best metrics are marked by bold.

BaseGNN Method Cora Citeseer Cornell Chameleon Squirrel Actor Wisconsin Texas
0.81 0.74 0.30 0.23 0.22 0.22 0.21 0.11

GCN

Vanilla 81.5±0.8 71.6±0.3 57.0±4.7 59.8±2.6 36.9±1.3 30.3±0.8 59.8±7.0 59.5±5.3

DropEdge [35] 82.2±0.7 71.9±0.3 59.3±3.9 61.2±1.8 38.1±1.5 30.9±1.0 61.8±5.4 62.3±4.6

AdaEdge [2] 82.3±0.8 69.7±0.9 57.8±4.3 59.5±2.3 37.6±1.4 31.4±1.2 60.4±4.7 58.8±4.0

SSL [63] 83.8±0.7 72.9±0.6 58.8±3.2 60.4±2.1 39.5±1.9 30.5±1.2 62.8±4.5 63.3±4.6

GraphMix [44] 83.9±0.6 74.7±0.6 60.5±3.7 61.2±2.3 41.1±1.5 31.4±0.9 62.4±5.0 62.3±4.6

GAUG [62] 83.6±0.5 73.3±1.1 55.8±4.0 59.3±1.4 36.3±0.8 29.7±0.9 57.5±5.1 58.0±4.2

GAUG (w/ KDGA) 85.4±0.7 73.6±0.6 63.2±3.6 63.0±1.2 46.2±0.9 33.3±0.8 65.0±2.5 67.4±3.8

∆Acc 1.8 0.3 7.4 3.7 9.9 3.6 7.5 9.4

MH-Aug [32] 83.6±0.3 73.0±0.5 58.4±3.5 59.2±2.0 35.9±1.0 31.2±0.7 58.1±5.3 58.9±3.9

MH-Aug (w/ KDGA) 85.0±0.5 73.8±0.8 63.5±2.7 63.3±1.7 45.4±1.1 34.8±1.0 65.7±2.7 67.2±2.6

∆Acc 1.4 0.8 5.1 4.1 9.5 3.6 7.6 8.3

GraphAug 83.2±0.9 73.2±0.8 56.6±2.4 58.8±1.8 37.2±1.2 28.8±0.9 59.3±2.6 59.4±3.3

GraphAug (w/ KDGA) 85.2±0.7 73.9±0.7 63.8±3.2 62.7±1.5 46.9±0.6 32.5±0.6 66.3±1.9 68.0±2.3
∆Acc 2.0 0.7 7.2 3.9 9.7 3.7 6.9 8.6

SAGE

Vanilla 79.8±0.7 71.1±0.6 76.0±5.0 58.7±1.7 41.6±0.7 34.2±1.0 81.2±5.6 82.4±6.1

DropEdge [35] 80.4±0.8 71.5±0.6 77.4±3.6 60.2±2.0 42.5±1.3 36.4±1.3 82.7±4.4 83.0±4.8

AdaEdge [2] 80.2±1.2 69.4±0.8 76.5±4.6 59.5±1.6 40.3±1.6 34.9±0.8 82.0±5.3 81.6±5.3

SSL [63] 82.5±0.8 71.2±0.5 76.8±3.4 59.1±1.8 42.0±1.5 35.2±1.2 82.4±3.6 82.6±4.4

GraphMix [44] 82.3±0.6 69.6±0.4 78.0±4.2 59.9±2.0 42.6±1.6 35.8±1.0 83.1±4.1 83.5±3.9

GAUG [62] 82.0±0.5 72.7±0.7 74.8±4.2 58.2±1.3 40.5±0.9 34.4±1.1 80.7±4.6 82.0±4.5

GAUG (w/ KDGA) 84.5±0.8 73.4±0.7 80.6±3.5 61.8±1.6 46.4±1.1 36.4±0.7 85.5±3.2 84.5±3.6

∆Acc 2.5 0.7 5.8 3.6 5.9 2.0 4.8 2.5

MH-Aug [32] 82.6±0.7 72.1±1.0 75.3±3.9 59.4±1.5 41.0±0.8 33.8±0.8 80.5±5.0 81.2±5.2

MH-Aug (w/ KDGA) 84.3±0.7 73.7±0.8 80.3±3.2 62.1±1.3 45.9±1.4 35.9±0.7 84.9±4.0 83.8±4.4

∆Acc 1.7 1.6 5.0 2.7 4.9 2.1 4.4 2.6

GraphAug 82.4±1.0 72.4±0.9 75.8±3.0 58.8±1.4 40.2±1.3 33.2±0.7 79.9±4.2 81.9±4.6

GraphAug (w/ KDGA) 84.8±0.8 73.5±0.5 81.4±2.8 61.0±1.8 45.6±0.9 36.9±1.4 84.5±3.3 84.8±3.8
∆Acc 2.4 1.1 5.6 2.2 5.4 3.7 4.6 2.9

GAT

Vanilla 82.2±0.5 71.4±0.9 58.9±3.3 54.7±2.0 30.6±2.1 26.3±1.7 55.3±8.7 58.4±4.5

DropEdge [35] 83.0±0.4 72.2±0.9 60.2±3.8 55.6±2.5 34.1±1.7 28.2±1.5 57.8±5.5 60.5±3.8

DropEdge [35] 77.9±2.0 69.1±0.8 57.7±4.5 54.0±2.2 32.8±2.0 27.5±1.4 56.4±6.1 57.8±4.2

SSL [63] 83.7±0.6 72.7±0.7 60.6±3.2 55.8±2.2 35.0±1.3 27.6±1.3 57.2±5.1 60.5±3.3

GraphMix [44] 83.3±0.2 73.1±0.2 61.0±4.1 56.4±1.7 35.6±1.0 28.7±0.9 58.5±4.5 61.1±2.8

GAUG [62] 82.2±0.8 71.6±1.1 57.6±3.8 53.4±1.4 30.1±1.5 25.8±1.0 54.8±5.7 56.9±3.6

GAUG (w/ KDGA) 84.2±1.1 73.0±0.7 62.2±3.4 58.2±1.1 39.1±1.3 31.3±1.2 60.9±5.3 63.1±3.2

∆Acc 2.0 1.4 4.6 4.8 9.0 5.5 6.1 6.2

MH-Aug [32] 83.5±0.7 72.8±1.0 58.0±4.0 55.3±1.8 29.5±1.1 25.7±1.2 55.8±4.0 57.8±4.0

MH-Aug (w/ KDGA) 84.5±0.9 73.4±0.8 62.7±2.8 59.5±1.6 37.3±0.8 30.8±0.9 61.4±5.0 64.4±2.8
∆Acc 1.0 0.6 4.7 4.2 7.8 5.1 5.6 6.6

GraphAug 83.2±0.8 72.5±0.7 58.6±3.4 54.0±1.7 29.8±1.6 24.8±1.3 54.4±3.6 57.1±4.4

GraphAug (w/ KDGA) 84.7±0.7 73.2±0.8 63.1±2.5 58.8±1.3 38.9±1.4 30.0±1.0 61.8±4.7 62.7±2.0

∆Acc 1.5 0.7 4.5 4.8 9.1 5.2 7.4 5.6

5 Experiments

Datasets. The effectiveness of the proposed KDGA framework is evaluated on eight datasets. We use
two commonly used homophily graph datasets, namely Cora [38] and Citeseer [12] as well as six
heterophily graph datasets: Cornell, Texas, Wisconsin, Aactor [42], Chameleon and Squirrel [37]. A
statistical overview of these datasets is available in Appendix A. We defer the implementation details
and the best hyperparameter settings for each dataset to Appendix B and supplementary material.

Baselines. As a general framework, KDGA can be combined with any GNN architecture and
existing graph augmentation methods. In this paper, we consider three GNN architectures, GCN
[21], GraphSAGE [13], and GAT [43]. Besides, to demonstrate the applicability of KDGA to various
graph augmentation methods in addition to the proposed GraphAug, we also consider two state-
of-the-art learning-based baselines, GAUG [62] and MH-Aug [32]. In particular, two heuristics
methods, DropEdge and AdaEdge, are also included in the comparison as baselines. Moreover, we
also compare KDGA with two semi-supervised methods: (1) GraphMix [44], a regularization method
that performs linear interpolation between two data on graphs, and (2) SSL [63], that proposes two
self-supervised tasks to fully exploit available information embedded in the graph structure. Each set
of experiments is run five times with different random seeds, and the average performance is reported.

7

5.1 Comparative Results
To evaluate the powerful capabilities of the proposed KDGA framework, we instantiate it with three
learning-based graph augmentation methods, GAUG, MH-Aug, and GraphAug. The experiments are
conducted on eight datasets with three different GNN architectures. From the experimental results
shown in Table. 1, we can make the following observations: (1) Two heuristic graph augmentation
methods, DropEdge and AdaEdge, can improve the performance of the vanilla GNNs overall.
However, such improvements are usually very limited and do not work for all datasets and GNN
architectures. For example, on the Citeseer dataset, the performance of AdaEdge drops over the
vanilla GNNs by 1.9% (GCN), 1.7% (GraphSAGE), and 2.3% (GAT), respectively. (2) There are
huge gaps in the effectiveness of three learning-based augmentation methods on homophily and
heterophily graphs. While these methods can significantly improve performance on homophily
graphs, their performance gains on heterophily graphs are greatly reduced and even detrimental. For
example, with GCN as the GNN architecture, the performance of GAUG improves by 2.1% on Cora,
but drops by 1.5% and 1.2% on Texas and Cornell. Such negative augmentation is mainly caused
by the overly severe distribution shift between the original and augmented graphs as analyzed in
Sec. 4.2. (3) The proposed KDGA framework can consistently improve the performance of vanilla
graph augmentation methods across three GNN architectures on all eight datasets, especially for those
heterophily graphs. For example, with GCN as the GNN architecture, the performance of GraphAug
can be improved by 9.7% and 8.6% on the Squirrel and Texas datasets. (4) Two semi-supervised
approaches, SSL and GraphMix, can achieve comparable or even better performance than learning-
based graph augmentation, especially on heterophily graphs. However, by combining with KDGA,
GAUG, MH-Aug, and GraphAug outperform both SSL and GraphMix by a large margin overall.

Original

Graph

Augmented
Graph

Cora (id 1617) Citeseer (id 1945) Wisconsin (id 129) Actor (id 2554) Chameleon (id 1088) Squirrel (id 1516)

Figure 4: Case studies for each dataset, where we pick a node with the most drastic neighborhood
variations and visualize its neighborhood on the original graph structure (top) and augmented graph
structure (bottom), where each node is colored according to its ground-truth label.

5.2 Analysis on the Distribution Shift and Negative Augmentation
Next, we qualitatively and quantitatively analyze the distribution shift between the original and
augmented graphs and explain how it can cause a potential negative augmentation. Without loss of
generality, we consider GCN as the GNN architecture and GraphAug as the augmentation method.

Visualizations of Neighborhood Variations. First, we pick a node with the most drastic neighbor-
hood variations and visualize its neighborhood of the original and augmented graphs in Fig. 4, where
each node is colored according to its ground-truth label. The visualizations show that there would be
a huge gap between the neighborhoods of the original and augmented graphs, which causes a model
that is well trained on the augmented graph to predict poorly on the original graph during testing.
Taking the Wisconsin dataset as an example, the selected node is connected to four nodes from the
same class in the augmented graph, so it can be well trained to make correct predictions. However,
its neighborhood context is completely changed in the original graph, where the node is connected to
three nodes from different classes, so it will be predicted with high confidence to an incorrect class.

Training Curves of Homophily Ratios. We plot in Fig. 5 the training curves (w/o GKD Loss) of
the homophily ratios of the original and augmented graphs during training. It can be seen that their
gaps are enlarged as training proceeds, which indicates that the distribution of the augmented graphs
is gradually shifting from the original graph. This shift may even reach 0.5 for some datasets (e.g.,
Texas), in which case the graph homophily property is completely reversed. More importantly, we
find that the direction of distribution shifts may be completely opposite for homophily and heterophily
graphs, which makes it more challenging to solve the negative augmentation problem.

8

0 100 200
Epochs

0.5

0.6

0.7

0.8

0.9

Ho
m

op
hi

ly
 R

at
io

Cora

Original Graph
Augmented Graph

0 100 200
Epochs

0.60

0.65

0.70

0.75

Ho
m

op
hi

ly
 R

at
io

Citeseer

Original Graph
Augmented Graph

0 50 100 150 200
Epochs

0.2

0.4

0.6

0.8

Ho
m

op
hi

ly
 R

at
io

Cornell

Original Graph
Augmented Graph

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

0.8

Ho
m

op
hi

ly
 R

at
io

Wisconsin

Original Graph
Augmented Graph

0 50 100 150
Epochs

0.2

0.4

0.6

0.8
Ho

m
op

hi
ly

 R
at

io
Texas

Original Graph
Augmented Graph

0 100 200 300
Epochs

0.15

0.20

0.25

0.30

0.35

Ho
m

op
hi

ly
 R

at
io

Actor

Original Graph
Augmented Graph

0 200 400
Epochs

0.20

0.22

0.24

0.26

0.28

0.30

Ho
m

op
hi

ly
 R

at
io

Chameleon

Original Graph
Augmented Graph

0 200 400
Epochs

0.18

0.20

0.22

0.24

0.26

0.28

Ho
m

op
hi

ly
 R

at
io

Squirrel

Original Graph
Augmented Graph

Figure 5: Training curves (w/o GKD Loss) of homophily ratios in the original and augmented graphs.

5.3 Ablation Study and Parameter Sensitivity

Table 2: Ablation study on student model designs.
Method Cora Citeseer Chameleon Squirrel Actor

Vanilla GCN 81.5±0.8 71.6±0.3 59.8±2.6 36.9±1.3 30.3±0.8

GraphAug 83.2±0.9 73.2±0.8 58.8±1.8 37.2±1.2 28.8±0.9

KDGA w/ Param-S 85.2±0.7 73.9±0.7 62.7±1.5 46.9±0.6 32.5±0.6

∆Acc 2.0 0.7 3.9 9.7 3.7

KDGA w/ Param-I 84.0±0.6 72.7±0.5 60.6±1.7 40.5±1.0 30.7±0.9

∆Acc 0.8 -0.5 1.8 3.3 1.9

Vanilla MLP 55.2±0.5 46.5±0.5 46.4±2.5 29.7±1.8 35.8±1.0

KDGA w/ MLP 83.2±1.1 73.5±0.7 58.1±1.0 38.8±0.7 38.1±0.8

∆Acc 28.0 27.0 11.7 9.1 2.3

Ablation on Student Model Designs. The
parameter-shared GNN shown in Fig. 3(c)
is adopted as the student model by default
in this paper for a fair comparison. In this
subsection, we delve into the applicability
of the proposed KDGA framework to dif-
ferent student model designs. Specifically,
with the vanilla GCN as the base architecture
and GraphAug as the graph augmentation
method, we compare the performance of the
parameter-shared model (w/ Param-S) in Fig. 3(c) and the parameter-independent model (w/ Param-I)
in Fig. 3(b) on five datasets. It can be seen from Table. 2 that although the Param-I model can also
improve the performance of GraphAug overall, it may fail on a few datasets, such as a 0.5% accuracy
drop on Citeseer; more importantly, its performance gain falls far behind the Param-S model on all
five datasets. The reason behind this may be that a parameter-independent model may be quickly
fitted with the original graph structure while failing to take full advantage of the rich contextual
information embedded in the augmented graphs. Moreover, we also consider a variant of the Param-I
model by directly taking a parameter-independent MLP (w/ MLP) as the student mode. We find from
Table. 2 that even with a simple MLP, it can still benefit from the augmented graphs and achieves
performance beyond that of its vanilla implementations.

Sensitivity Analysis on Hyperparameters. We have evaluated the parameter sensitivity w.r.t two
key hyperparameters: fusion factor α and loss weight κ. However, due to space limitations, we have
placed the corresponding results of sensitivity analysis in Appendix C.

6 Conclusion

In this paper, we identified a potential negative augmentation problem for graph augmentation,
which is caused by overly severe distribution shifts between the original and augmented graphs. To
address this problem, we propose a novel Knowledge Distillation for Graph Augmentation (KDGA)
framework by directly distilling contextual information from a teacher model trained on the augmented
graphs into a partially parameter-shared student model. Extensive experiments show that KDGA
outperforms the vanilla implementations of existing augmentation methods and GNN architectures.
Limitations still exist, such as KDGA requires an initial raw graph structure for augmentation and
cannot be applied to those structure-unknown scenarios, which will be left for future work.

7 Acknowledgement

This work is supported in part by Ministry of Science and Technology of the People’s Republic of
China (No. 2021YFA1301603) and National Natural Science Foundation of China (No. U21A20427).

9

References
[1] Markus Bayer, Marc-André Kaufhold, and Christian Reuter. A survey on data augmentation for text

classification. arXiv preprint arXiv:2107.03158, 2021.

[2] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-smoothing
problem for graph neural networks from the topological view. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 3438–3445, 2020.

[3] Yu Chen, Lingfei Wu, and Mohammed Zaki. Iterative deep graph learning for graph neural networks:
Better and robust node embeddings. Advances in Neural Information Processing Systems, 33:19314–19326,
2020.

[4] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. arXiv preprint arXiv:1606.09375, 2016.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[6] Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu. Data augmentation for deep graph learning: A survey.
arXiv preprint arXiv:2202.08235, 2022.

[7] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph neural
networks for graph classification. arXiv preprint arXiv:1912.09893, 2019.

[8] Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. Slaps: Self-supervision improves structure
learning for graph neural networks. arXiv preprint arXiv:2102.05034, 2021.

[9] Alhussein Fawzi, Horst Samulowitz, Deepak Turaga, and Pascal Frossard. Adaptive data augmentation for
image classification. In 2016 IEEE international conference on image processing (ICIP), pages 3688–3692.
Ieee, 2016.

[10] Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures for
graph neural networks. In International conference on machine learning, pages 1972–1982. PMLR, 2019.

[11] Mahsa Ghorbani, Mojtaba Bahrami, Anees Kazi, Mahdieh Soleymani Baghshah, Hamid R Rabiee, and
Nassir Navab. Gkd: Semi-supervised graph knowledge distillation for graph-independent inference.
In International Conference on Medical Image Computing and Computer-Assisted Intervention, pages
709–718. Springer, 2021.

[12] C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing system. In
Proceedings of the third ACM conference on Digital libraries, pages 89–98, 1998.

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in neural information processing systems, pages 1024–1034, 2017.

[14] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7), 2015.

[15] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265, 2019.

[16] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej Chum. Label propagation for deep semi-
supervised learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5070–5079, 2019.

[17] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

[18] Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. Semi-supervised learning with graph learning-
convolutional networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 11313–11320, 2019.

[19] Wei Jin, Tyler Derr, Haochen Liu, Yiqi Wang, Suhang Wang, Zitao Liu, and Jiliang Tang. Self-supervised
learning on graphs: Deep insights and new direction. arXiv preprint arXiv:2006.10141, 2020.

[20] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure learning
for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 66–74, 2020.

10

[21] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[22] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

[23] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learning.
Advances in Neural Information Processing Systems, 32, 2019.

[24] Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 338–348,
2020.

[25] Xiaofeng Liu, Yang Zou, Lingsheng Kong, Zhihui Diao, Junliang Yan, Jun Wang, Site Li, Ping Jia, and Jane
You. Data augmentation via latent space interpolation for image classification. In 2018 24th International
Conference on Pattern Recognition (ICPR), pages 728–733. IEEE, 2018.

[26] Zicheng Liu, Siyuan Li, Ge Wang, Cheng Tan, Lirong Wu, and Stan Z Li. Decoupled mixup for data-
efficient learning. arXiv preprint arXiv:2203.10761, 2022.

[27] Zicheng Liu, Siyuan Li, Di Wu, Zhiyuan Chen, Lirong Wu, Jianzhu Guo, and Stan Z Li. Unveiling the
power of mixup for stronger classifiers. arXiv preprint arXiv:2103.13027, 2021.

[28] Zihan Liu, Yun Luo, Lirong Wu, Siyuan Li, Zicheng Liu, and Stan Z Li. Are gradients on graph structure
reliable in gray-box attacks? arXiv preprint arXiv:2208.05514, 2022.

[29] Zihan Liu, Yun Luo, Zelin Zang, and Stan Z Li. Surrogate representation learning with isometric mapping
for gray-box graph adversarial attacks. In Proceedings of the Fifteenth ACM International Conference on
Web Search and Data Mining, pages 591–598, 2022.

[30] Agnieszka Mikołajczyk and Michał Grochowski. Data augmentation for improving deep learning in image
classification problem. In 2018 international interdisciplinary PhD workshop (IIPhDW), pages 117–122.
IEEE, 2018.

[31] Sarah O’Gara and Kevin McGuinness. Comparing data augmentation strategies for deep image classifica-
tion. 2019.

[32] Hyeonjin Park, Seunghun Lee, Sihyeon Kim, Jinyoung Park, Jisu Jeong, Kyung-Min Kim, Jung-Woo Ha,
and Hyunwoo J Kim. Metropolis-hastings data augmentation for graph neural networks. Advances in
Neural Information Processing Systems, 34, 2021.

[33] Luis Perez and Jason Wang. The effectiveness of data augmentation in image classification using deep
learning. arXiv preprint arXiv:1712.04621, 2017.

[34] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[35] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convolu-
tional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

[36] Ryan Robert Rosario. A data augmentation approach to short text classification. University of California,
Los Angeles, 2017.

[37] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. arXiv preprint
arXiv:1909.13021, 2019.

[38] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[39] Jia Shijie, Wang Ping, Jia Peiyi, and Hu Siping. Research on data augmentation for image classification
based on convolution neural networks. In 2017 Chinese automation congress (CAC), pages 4165–4170.
IEEE, 2017.

[40] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine learning research,
15(1):1929–1958, 2014.

[41] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to improve graph
contrastive learning. Advances in Neural Information Processing Systems, 34, 2021.

11

[42] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 807–816, 2009.

[43] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[44] Vikas Verma, Meng Qu, Kenji Kawaguchi, Alex Lamb, Yoshua Bengio, Juho Kannala, and Jian Tang.
Graphmix: Improved training of gnns for semi-supervised learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 10024–10032, 2021.

[45] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma, Lingfan Yu,
Yu Gai, Tong He, George Karypis, Jinyang Li, and Zheng Zhang. Deep graph library: A graph-centric,
highly-performant package for graph neural networks. arXiv preprint arXiv:1909.01315, 2019.

[46] Jason Wei and Kai Zou. Eda: Easy data augmentation techniques for boosting performance on text
classification tasks. arXiv preprint arXiv:1901.11196, 2019.

[47] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying
graph convolutional networks. In International conference on machine learning, pages 6861–6871. PMLR,
2019.

[48] Lirong Wu, Haitao Lin, Zhangyang Gao, Cheng Tan, Stan Li, et al. Graphmixup: Improving
class-imbalanced node classification on graphs by self-supervised context prediction. arXiv preprint
arXiv:2106.11133, 2021.

[49] Lirong Wu, Haitao Lin, Cheng Tan, Zhangyang Gao, and Stan Z Li. Self-supervised learning on graphs:
Contrastive, generative, or predictive. IEEE Transactions on Knowledge and Data Engineering, 2021.

[50] Lirong Wu, Haitao Lin, Jun Xia, Cheng Tan, and Stan Z Li. Multi-level disentanglement graph neural
network. Neural Computing and Applications, 34(11):9087–9101, 2022.

[51] Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. Simgrace: A simple framework for graph
contrastive learning without data augmentation. In Proceedings of the ACM Web Conference 2022, pages
1070–1079, 2022.

[52] Jun Xia, Lirong Wu, Ge Wang, Jintao Chen, and Stan Z Li. Progcl: Rethinking hard negative mining
in graph contrastive learning. In International Conference on Machine Learning, pages 24332–24346.
PMLR, 2022.

[53] Bencheng Yan, Chaokun Wang, Gaoyang Guo, and Yunkai Lou. Tinygnn: Learning efficient graph neural
networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 1848–1856, 2020.

[54] Cheng Yang, Jiawei Liu, and Chuan Shi. Extract the knowledge of graph neural networks and go beyond
it: An effective knowledge distillation framework. In Proceedings of the Web Conference 2021, pages
1227–1237, 2021.

[55] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning automated. In
International Conference on Machine Learning, pages 12121–12132. PMLR, 2021.

[56] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph contrastive
learning with augmentations. Advances in Neural Information Processing Systems, 33, 2020.

[57] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. When does self-supervision help graph
convolutional networks? In International Conference on Machine Learning, pages 10871–10880. PMLR,
2020.

[58] Donghan Yu, Ruohong Zhang, Zhengbao Jiang, Yuexin Wu, and Yiming Yang. Graph-revised convolutional
network. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 378–393. Springer, 2020.

[59] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. arXiv preprint
arXiv:1802.09691, 2018.

[60] Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. Graph-less neural networks: Teaching old mlps
new tricks via distillation. arXiv preprint arXiv:2110.08727, 2021.

12

[61] Wentao Zhang, Xupeng Miao, Yingxia Shao, Jiawei Jiang, Lei Chen, Olivier Ruas, and Bin Cui. Reliable
data distillation on graph convolutional network. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 1399–1414, 2020.

[62] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data augmentation
for graph neural networks. arXiv preprint arXiv:2006.06830, 2020.

[63] Qikui Zhu, Bo Du, and Pingkun Yan. Self-supervised training of graph convolutional networks. arXiv
preprint arXiv:2006.02380, 2020.

[64] Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Qiang Liu, Shu Wu, and Liang Wang. Deep graph structure
learning for robust representations: A survey. arXiv preprint arXiv:2103.03036, 2021.

[65] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive learning with
adaptive augmentation. In Proceedings of the Web Conference 2021, pages 2069–2080, 2021.

13

	Introduction
	Background and Related Work
	Preliminaries
	Methodology
	Problem Statement
	Motivation: Potential Negative Augmentation Problem
	Knowledge Distillation for Graph Augmentation (KDGA)
	Instantiating KDGA with GraphAug

	Experiments
	Comparative Results
	Analysis on the Distribution Shift and Negative Augmentation
	Ablation Study and Parameter Sensitivity

	Conclusion
	Acknowledgement

