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Abstract001

Multiple-choice question answering (MCQA)002
is a widely-used method for evaluating the per-003
formance of Large Language Models (LLMs).004
However, LLMs often exhibit selection bias005
in MCQA tasks, where their choices are influ-006
enced by factors like answer position or option007
symbols rather than the content. This bias un-008
dermines the reliability of MCQA as an evalu-009
ation framework. Most existing selection bias010
metrics require answer labels and measure di-011
vergences between prediction and answer dis-012
tributions, but do not fully capture the consis-013
tency of a model’s predictions across different014
orderings of answer choices. Existing selec-015
tion bias mitigation strategies have notable lim-016
itations: majority voting, though effective, is017
computationally prohibitive; calibration-based018
methods require validation sets and often fail019
to generalize across datasets. To address these020
gaps, we propose three key contributions: (1) a021
new unsupervised label-free Permutation Bias022
Metric (PBM) that directly quantifies incon-023
sistencies in model predictions across answer024
permutations, providing a more precise mea-025
sure of selection bias, (2) an efficient majority026
voting approach called Batch Question-Context027
KV caching (BaQCKV), to significantly reduce028
computational costs while preserving bias mit-029
igation effectiveness, and (3) an unsupervised030
Low-Rank Adaptation (LoRA)-1 fine-tuning031
strategy based on our proposed metric and the032
BaQCKV that mitigates selection bias, provid-033
ing a computationally efficient alternative that034
maintains model generalizability. Experiments035
across multiple MCQA benchmarks demon-036
strate that our approaches reduce bias, increas-037
ing consistency in accuracy while minimizing038
computational costs.039

1 Introduction040

Selection bias in Large Language Models (LLMs)041

has been increasingly recognized as a significant042

challenge, particularly in multiple-choice question043

(MCQ) answering tasks (Wei et al., 2024a; Zheng 044

et al., 2024; Zong et al., 2023). This bias occurs 045

when models exhibit a preference for certain an- 046

swer choices based on factors like their position 047

or symbolic representation, rather than the content 048

itself (Wei et al., 2024a). For instance, LLMs may 049

disproportionately favor the last option or option 050

“A” across different questions. Such biases are es- 051

pecially problematic in evaluation settings, where 052

multiple-choice formats are widely used for exam- 053

ple, in standardized testing, professional certifica- 054

tion exams, and educational assessments. These bi- 055

ases undermine the fairness and reliability of model 056

evaluations, as they can lead to inconsistent an- 057

swers across equivalent permutations, eroding trust 058

in LLM-based decision systems. 059

The presence of selection bias in LLMS was 060

highlighted by (Zheng et al., 2024), demonstrating 061

how factors like answer position and symbolic rep- 062

resentation can lead to systematic errors in MCQ 063

answering. Effectively addressing selection bias re- 064

quires a well-defined metric for bias quantification. 065

Several metrics have been proposed to measure the 066

selection bias such as the Choice Kullback-Leibler 067

Divergence (CKLD) (Choi et al., 2024), Standard 068

Deviation of Recalls (RStd) (Zheng et al., 2024), 069

and Relative Standard Deviation (RSD) (Croce 070

et al., 2021; Reif and Schwartz, 2024), which pri- 071

marily evaluate bias in terms of divergence from 072

ground truth distributions (i.e., CKLD) or vari- 073

ability in class-wise performance (i.e., RStd and 074

RSD). However, they do not adequately capture the 075

bias exhibited by models to option permutations. 076

Also, the Fluctuation Rate proposed by (Wei et al., 077

2024b) only considers two permutations of the op- 078

tions, which may not capture the full permutation 079

bias. We therefore introduce a new permutation 080

bias metric (PBM) that evaluates selection bias in 081

LLM without requiring ground truth distributions 082

while considering all possible option permutations. 083

The primary intuition behind our metric is that log- 084
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ically, an answer’s correctness does not change085

based on its position in a list of options and we086

therefore want language models to possess this be-087

haviour.088

Addressing the problem of bias requires not just089

quantifying but also mitigating bias. Prior miti-090

gation strategies like majority voting (Zong et al.,091

2023) that aggregates predictions across all per-092

mutations of answer choices - has been shown to093

reduce bias. However, its computational cost in-094

creases factorially with the number of choices, mak-095

ing it impractical for real-time inference. Thus, a096

key challenge is to develop an efficient method for097

bias quantification and bias mitigation that can be098

integrated into real-world systems. We therefore099

propose Batch Question-Context KV caching100

(BaQCKV), an efficient implementation of major-101

ity voting that reduces computational cost consid-102

ering all permutations. Additionally, we introduce103

an unsupervised Low-Rank Adaptation finetuning104

strategy that optimizes the model on our proposed105

metric.106

Our contributions can be summarized as follows:107

• We propose a novel, unsupervised, and label-108

free Permutation Bias metric (PBM) that109

captures inconsistencies in model predictions110

across all permutations of answer choices. Un-111

like prior metrics, it requires no access to112

ground-truth labels and directly measures per-113

mutation sensitivity.114

• We introduce BaQCKV (Batch Question-115

Context KV caching), a computationally ef-116

ficient variant of majority voting that signifi-117

cantly reduces the overhead associated with118

evaluating all permutations of multiple-choice119

questions.120

• We develop a LoRA-based fine-tuning strat-121

egy that leverages our proposed bias metric as122

a differentiable objective, enabling parameter-123

efficient debiasing without the need for la-124

beled data or full model retraining.125

Our efficient BaQCKV method achieves token sav-126

ings of up to 54.4%, while our unsupervised LoRA-127

1 fine-tuning reduces the PBM bias by an average128

of 58% and improves standard deviation of accu-129

racy by 27%, outperforming existing approaches.130

BaQCKV is particularly well-suited for evaluation131

or deployment scenarios where deterministic and132

fully permutation-invariant responses are required,133

as it can achieve 0 bias but with additional compute 134

and latency. In contrast, LoRA-1 fine-tuning offers 135

a lightweight, one-pass inference alternative prac- 136

tical for large-scale LLM deployments or latency- 137

sensitive settings.Together, these contributions can 138

lead to a unified framework for quantifying and 139

mitigating selection bias in LLMs, particularly in 140

the context of multiple-choice question answering 141

2 Related Work 142

Large Language Models (LLMs) exhibit system- 143

atic selection biases in multiple-choice question 144

answering (MCQA), favoring options by position 145

(e.g., last choice) or by identifier (e.g., option “A”) 146

rather than semantic content. In this review, we fo- 147

cus on existing approaches for bias quantification 148

and mitigation. 149

2.1 Bias Evaluation in LLMs 150

Several metrics have been proposed to quantify se- 151

lection bias in LLMs’ predictions. A common ap- 152

proach is to compute some divergence between the 153

predicted answer distribution and the ground truth 154

answer distribution. Choice Kullback–Leibler Di- 155

vergence (CKLD) (Choi et al., 2024) measures the 156

divergence between the model’s answer frequency 157

and the ground-truth answer frequency (e.g., how 158

often the correct answer is A, B, C, etc.). How- 159

ever, CKLD requires access to the labelled answers. 160

Other metrics focus on variability in per-option ac- 161

curacy or recall. The Relative Standard Deviation 162

(RSD) (Reif and Schwartz, 2024) computes the 163

standard deviation of the model’s accuracy for each 164

answer option ID, while the Standard Deviation of 165

Recall (RStd) (Zheng et al., 2024) uses recall in- 166

stead of accuracy. These capture whether the model 167

performs significantly better on one option (e.g., 168

’A’) than on others, which could indicate the pres- 169

ence of bias. While useful, such label-dependent 170

metrics fail to capture inconsistency across permu- 171

tations: they only consider the original order of 172

options, but not all possible permutations. They 173

do not consider if a model would answer the same 174

question differently when choices are presented in 175

a different option permutation, since they only eval- 176

uate against the single correct label in the original 177

ordering. 178

Wei et al. (2024a) introduced the Fluctuation 179

Rate (FR) as a label-free measure of sensitivity. 180

FR computes the rate at which an LLM’s answer 181

changes when the order of options is reversed, 182
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quantifying how option shuffling alone affects its183

output. This metric revealed substantial instability184

in model answers due to option order. However,185

FR considers only two permutations (original vs.186

reversed), which limits its expressiveness—real-187

world biases may span more complex permutation188

patterns. Moreover, FR captures only discrete pre-189

diction flips (i.e., changes in the argmax choice)190

and ignores subtle changes in model confidence.191

This limitation also makes FR non-differentiable,192

which prevents it from being directly used as an op-193

timization objective in gradient-based fine-tuning.194

In summary, current metrics are either label-195

dependent (CKLD, RSD/RStd) or permutation-196

limited (FR), offering incomplete views of bias. To197

address this, we propose a permutation-sensitive,198

label-agnostic metric that captures prediction con-199

sistency across all answer orderings. Our approach200

enables broad applicability on unlabeled datasets201

and introduces a differentiable objective for debi-202

asing during fine-tuning (section 3.3.2).203

2.2 Bias Mitigation Strategies204

Several research works have explored various205

strategies to mitigate selection bias in LLMs, rang-206

ing from calibration, voting, to finetuning-based207

approaches.208

Calibration-based methods aim to adjust the209

model’s output probabilities to compensate for the210

skewed bias distributions. Most of these methods211

target the recalibration to improve accuracy. Cal-212

ibraEval (Li et al., 2024) reweights predictions to213

reduce positional bias in model evaluation, while214

label bias calibration (Reif and Schwartz, 2024) im-215

proves few-shot accuracy using known label statis-216

tics. (Zheng et al., 2024), proposed PriDe, which217

estimates a prior probability for all options IDs (the218

symbol that precedes an option content. For exam-219

ple A,B,C, or D) and debiases model predictions220

by dividing predictions by the priors and normaliz-221

ing the resulting probabilities. The approach was222

shown to reduce selection bias as measured by the223

RStd metric. These approaches usually require an224

in-domain validation set or known answer statistics225

to compute the calibration parameters (prior proba-226

bilities). Even though calibration can correct distri-227

butional bias (making the overall frequency of each228

option more balanced), it may not ensure consis-229

tency across permutations because it uses the same230

calibration parameters across all permutations. A231

model could still change its answer when options232

are permuted, even if its overall option frequencies233

look unbiased. Prompt-level tactics like Auxiliary 234

Option Injection (AOI) (Choi et al., 2024) offer a 235

lightweight alternative by inserting a dummy op- 236

tion to nudge the model toward balanced outputs. 237

While simple and requiring no model changes, such 238

prompt-level fixes may only partially reduce bias 239

and might not generalize across different prompt 240

formats or tasks. 241

Majority voting across permutations is a simple 242

but effective method to mitigate permutation bias 243

by aggregating predictions over multiple answer 244

orderings, biases tied to option positions can be 245

reduced (Zong et al., 2023). In practice, this means 246

querying the LLM with every possible ordering of 247

the options and taking the majority or consensus an- 248

swer (Wei et al., 2024b). However, this approach is 249

computationally prohibitive: with k options, there 250

are k! permutations, which grows factorially. Even 251

for a 4-option multiple choice, 24 passes through 252

the model are needed per question, which is in- 253

feasible for large-scale or real-time use. Recent 254

works attempt to retain the benefits of majority vot- 255

ing while cutting down its cost. Zhou et al. (2024) 256

introduced a batch prompting and calibration tech- 257

nique that allows the model to consider multiple 258

re-ordered options in a single forward pass, mak- 259

ing the process more efficient. Guda et al. (2024) 260

showed that a smaller subset of random permuta- 261

tions can be used to approximate the full majority 262

vote, achieving a more uniform selection without 263

evaluating all orderings. Another line of work is 264

self-consistency: rather than permuting inputs, the 265

model is run multiple times with variations in its 266

reasoning process (e.g., different sampled chains- 267

of-thought) and the most consistent answer is cho- 268

sen (Wang et al., 2024; Kim et al., 2024). (Chen 269

et al., 2023) showed that this can be extended to 270

open-ended generation problems. Enforcing this 271

kind of self-consistency has been shown to improve 272

answer reliability and reduce biases, in a manner 273

analogous to majority voting by averaging over di- 274

verse inference paths(Wang et al., 2024). These 275

voting-based methods share a drawback: they re- 276

quire multiple model evaluations, incurring high 277

computational cost and latency. Our approach tack- 278

les this by proposing Batch Question-Context Key- 279

Value caching (BaQCKV) – an optimized majority 280

voting by minimizing repeated computation across 281

permutations to cut cost. 282

Instead of repeatedly querying a biased model at 283

inference time, another strategy is to adjust the pa- 284

rameters that induce bias within the model itself. 285
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Teacher–student distillation (Liusie et al., 2024)286

transfers behavior from a debiased teacher to a com-287

pact student, achieving bias reduction with lower288

inference cost. Choi et al. (2024) proposed Bias289

Node Pruning (BNP), which identifies a bias vector290

in the final decoder layer and prunes parameters291

in the projection matrix based on their interactions292

with this vector. The resulting model can then293

be used in MCQ tasks without additional runtime294

overhead. While such methods reduce metrics like295

FR, they may negatively impact the model’s per-296

formance on other tasks due to irreversible weight297

pruning or overfitting to specific bias patterns.298

In summary, training-time debiasing techniques299

including knowledge distillation, fine-tuning, and300

structural pruning aim to internalize bias mitigation301

and reduce the need for repeated inference-time302

interventions. However, these often require labeled303

datasets and can compromise generalization.304

In contrast, our approach introduces a fully305

differentiable, label-free bias objective-PBM-306

that enables targeted fine-tuning to reduce per-307

mutation sensitivity. This allows for unsupervised308

debiasing that generalizes across datasets.309

3 Methodology310

Our approach to addressing selection bias involves311

bias quantification and mitigation. In this section,312

we define our bias quantification metric which ac-313

counts for all option permutations and also describe314

the mitigation strategies - BaQCKV and LoRa-1315

finetuning.316

3.1 Permutation Bias Metric (PBM)317

PBM is based on the intuition that, logically, a318

model’s confidence in an option should be invariant319

to the permutation of the options. Also, we argue320

that this quantification should be label-free because321

the confidence for each option content across all322

permutations should be constant regardless of op-323

tion correctness. Let Q represent a question, and324

O = {o1, o2, . . . , on} represent a set of n options325

for the question. A model processes the sequence326

Sπ = Q ⊕ Oπ for a permutation π of the options327

O, where ⊕ denotes the concatenation operator.328

Passing a permuation of the options Sπ through329

the model assigns probabilities P (oπ(i) | Q,Oπ)330

to each option content oi. Similarly,for a differ-331

ent permutation π
′

it assigns P (oπ′ (i) | Q,Oπ′ ).332

We define our selection bias metric mathematically333

for a model in Equation (1) as the variance of the334

probabilities for each option content across all per- 335

mutations. This will capture how much the model’s 336

confidence fluctuates due to reordering. 337

Definition 1 (Permutation Bias Metric – PBM). 338

Given a question Q and a set of answer options 339

O = {o1, o2, . . . , on}, the selection bias B(Q,O) 340

is defined as: 341

B(Q,O) =
1

n

n∑
i=1

Varπ
(
P (oπ(i) | Q,Oπ)

)
, (1) 342

We refer to this selection bias score as the Permu- 343

tation Bias Metric (PBM), where: 344

Varπ
(
P (oπ(i) | Q,Oπ)

)
=

1

n!

∑
π

(
P (oπ(i) | Q,Oπ)

−Eπ

[
P (oπ(i) | Q,Oπ)

])2

,

(2) 345

and the expectation over all permutations π is: 346

Eπ[P (oπ(i) | Q,Oπ)] =
1

n!

∑
π

P (oπ(i) | Q,Oπ). 347

By defining the PBM to be proportional to the 348

variance of a model’s prediction across all permu- 349

tations, the metric captures the inconsistency in 350

the predictions. A lower variance indicates more 351

stable and consistent predictions across permuta- 352

tions. Therefore, lower values of the PBM are 353

preferred. PBM is label-free compared to previ- 354

ously proposed metrics like RStd (equation (4)), FR 355

(equation (3)) and CKLD (equation (5)) which cap- 356

ture some form of divergence from the answer dis- 357

tribution, requiring the ground truth answers. The 358

RStd and CKLD do not capture any information 359

about the option permutations because they only 360

use the original permutations of the options.This as- 361

sumes the original permutation corresponds to the 362

fixed answer order provided in the dataset, which is 363

often arbitrary (i.e, randomly assigned during test 364

construction). Also, while PBM goes into the gran- 365

ular confidence level by considerng option probabil- 366

ities, the FR does not capture granular information 367

of the changes in confidence but only checks if the 368

chosen answer (argmax) is the same in the forward 369

and reverse permutations. By considering only 2 370

permutations, it does not capture information from 371

other permutations. The flunctuation rate (FR) is 372

expressed as; 373
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FR =
1

N

N∑(
argmax

i

(
P (O | Q,Oπ)

)
374

̸= argmax
i

(
P (O | Q,Oπr)

))
(3)375

where πr is the reverse permutation of π and N is376

the total number of questions.377

Rσ =

√√√√ 1

n

n∑
i=1

(ri − µr)2 (4)378

where n represents the number of option classes,379

ri is the recall for the i-th class, and µr denotes the380

average recall across all option classes.381

CKLD =
n∑
i

pi log
pi
qi

(5)382

where pi is the ratio of ground truth choice label383

for option ID i and qi is the ratio for predictions.384

3.2 Investigation into the cause of Selection385

Bias in LLMs386

In the decoder-only transformer architecture, which387

is prevalent in most large language models (LLMs),388

each token is generated based on causal attention.389

This causal attention mechanism ensures that pre-390

dictions are conditioned only on previously gener-391

ated tokens. To preserve the sequential structure of392

the input, positional encodings are applied during393

attention computation. When a question and its394

permuted-option variant are provided as input, the395

set of unique tokens remains unchanged. However,396

the reordering alters the positional encodings as-397

signed to each token. Since positional encodings398

influence attention scores, this modification can399

lead to differences in the model’s output, even if400

the semantic token content remains the same (see401

Appendix A.1 and Appendix A.2).402

3.3 Bias Mitigation Methodology403

In the following sections, we explain our efficient404

BaQCKV approach and the unsupervised LoRa-1405

debiasing. BaQCKV, an efficient majority voting406

variant that enforces permutation invariance (zero407

bias) with reduced compute via batched inference,408

ideal for critical evaluations requiring strict con-409

sistency; and LoRA-1, a lightweight adaptation410

method trained using our unsupervised bias metric411

to debias models for single-pass inference, suitable412

for large-scale deployments. BaQCKV trades com-413

putational overhead for robustness, while LoRA-1414

prioritises scalability with minimal latency This 415

can enable users to balance bias mitigation against 416

operational constraints. 417

3.3.1 Efficient Majority Voting with BaQCKV 418

The majority voting is an effective mitigation strat- 419

egy for selection bias (Zong et al., 2023). It passes 420

all option permutations of a question through the 421

model and chooses the option with the highest av- 422

erage score across the permutations. This scheme 423

enforces permutation invariance (0 bias on our met- 424

ric) by ensuring that an option has the same confi- 425

dence across all permutations, making it an ideal 426

selection bias mitigation strategy. Mathematically, 427

majority voting calculates 428

i∗ = argmax
i∈O

Eπ

[
P (oπ(i) | Q,Oπ)

]
, (6) 429

where O = {o1, . . . , on} is the set of answer op- 430

tions, π denotes a permutation of the options, and 431

Eπ represents the average over all n! permutations 432

(as defined in Section 3.1). 433

In spite of its effectiveness in mitigating bias,the 434

majority voting has not been widely adopted, as the 435

computational complexity of making predictions 436

on all possible permutations is n! for an MCQ with 437

n options. This can be easily reduced by defining 438

a fixed number k and considering only k permu- 439

tations instead of n!, reducing the computational 440

cost (Guda et al., 2024). Thus, pi = 1
k

∑k
j=1 pji. 441

However, this scheme can be made even more ef- 442

ficient, without a corresponding loss in bias, by 443

employing a KV cache. To do so, we leverage the 444

insight that while an MCQ consists of a question 445

Q (with or without a context), and a set of options, 446

O, the question, Q, remains the same across all 447

possible option permutations. 448

For k permutations of the options, the original for- 449

mulation of the majority voting (Guda et al., 2024) 450

requires k passes through the LLM, resulting in 451

an additional overhead of (k− 1)× |Questions⊕ 452

Context⊕Options| tokens per question. We how- 453

ever, note that the set of Questions⊕Context to- 454

kens remains constant across all k passes for each 455

question in a batch. To eliminate the redundant 456

computation of these tokens across the batch, we 457

are motivated by the KV cache in (Pope et al., 2023) 458

to introduce the BaQCKV, which caches and reuses 459

the KV states of the Questions⊕Context tokens 460

for a set of k permutations. This cached KV state 461

is pre-pended to the KV states of the k permuted 462

options. The attention mask of the permuted op- 463

tions is then expanded based on the length of the 464
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Questions ⊕ Context tokens to ensure that the465

LLM’s attention is correctly computed. We show in

Algorithm 1 Efficient Majority Inference with
BaQCKV
1: procedure BAQCKVINFERENCE(QC , Ok,M)
2: Input: QC - Question ⊕ Context tokens, Ok - k permutations of

options,M - Language Model, Output: Yk - Model outputs
3:
4: Step 1: Cache Question-Context KV States
5: KVQC

←M.encode(QC)

6: Step 2: Compute KV States for Permuted Options
7: for i = 1 to k do
8: KVOi

, maski ←M.encode(Oi)

9: end for
10: Step 3: Merge and Adjust KV States
11: for i = 1 to k do
12: KVi ← KVQC

⊕ KVOi
, maski ← 1|QC | ⊕ maski

13: end for
14: Step 4: Compute Batch Outputs
15: Yk ← {M.decode(KVi, maski) | i = 1, 2, . . . , k}
16: return Yk

17: end procedure

466
Appendix A.3 that the percentage of tokens by us-467

ing the BaQCKV is defined by Equation (7), where468

C is the optional set of context tokens for the Ques-469

tion Q.470

Token savings (%) =
(k − 1)× |Q⊕ C|
k × |Q⊕ C ⊕O|

× 100

(7)471

In Equation (7), the savings are maximized when472

|C| is large, as in Retrieval-Augmented Genera-473

tion (RAG), where redundant computation is mini-474

mized. Even when |C| = 0, savings persist due to475

the shared |Q| tokens. Larger permutation sizes k476

further amplify savings by increasing redundancy477

in |Q ⊕ C| across permutations. Thus, BaQCKV478

is most effective in tasks with substantial shared479

context, multiple options, and large permutation480

sizes.481

3.3.2 Unsupervised Lora-1 Bias Mitigation482

We introduce an unsupervised fine-tuning of PBM,483

our permutation-based bias metric to mitigate the484

selection bias. This is because PBM is fully differ-485

entiable unlike the Fluctuation Rate (FR) and the486

Standard Deviation of Recalls (RStd). In addition,487

it is also label-free, unlike all the other metrics in-488

cluding the CKLD. We make two adjustments to489

the metric when using it as a loss for fine-tuning490

(equation (8)). Firstly, to ensure that there is an491

adequate flow of information from the gradients492

we take the variance of the log of the probabil-493

ities (Equation (9)). When obtaining the option494

probabilities from the model, we only consider the495

logits that correspond to the option IDs instead of496

logits for the entire vocabulary. Secondly, we ob-497

serve that a model can learn to minimize the bias498

by simply predicting a uniform probability for all 499

options IDs across all permutations. In that case, 500

the mean probability for all option IDs would be 501

the same as the uniform probabilities assigned to 502

all option IDs for all permutations. To prevent this, 503

we regularize the bias with the entropy across the 504

option IDs (Equation (10)). This helps in making 505

the model maintain its confidence in the chosen 506

answer while also minimizing the bias across dif- 507

ferent permutations. λ is a hyper-parameter that 508

balances the model’s confidence in an answer and 509

minimizing the bias. Computing the loss defined in 510

Equation (8) can be expensive because each exam- 511

ple needs to be expanded to the full permutations. 512

To reduce this cost, first, we apply the BaQKCV 513

to compute the loss and only sample a maximum 514

of 24 permutations for questions with more than 4 515

options. 516

Loss = B(Q,O)log + λH(Q,O) (8) 517

518

where 519

B(Q,O)log =
∑
π

(
log

(
P (oπ(i) | Q,Oπ)

)
− log

(
Eπ

[
P (oπ(i) | Q,Oπ)

]))2

(9)

520

H(Q,O) = −
∑
π

∑
i

(P (oπ(i) log(P (oπ(i)))

(10) 521

As LLMs are desired to be used for a wide variety 522

of tasks and not just answering MCQs, we adopt 523

the LoRa fine-tuning to preserve the original per- 524

formance of the LLM on non-MCQ tasks while 525

avoiding expensive training. The LoRa debiasing 526

weight adapters can be connected when the model 527

is used for MCQ. 528

4 Results 529

Datasets and Models : For our experiments, we 530

employed three small language models of compa- 531

rable size: Qwen2.5-3B-Instruct (Bai et al., 2023), 532

Phi-2 (Javaheripi et al., 2023), and Llama3.2-3B 533

(Grattafiori et al., 2024). We experiment with these 534

models on four diverse datasets across different 535

domains: TeleQnA (Maatouk et al., 2023), MedM- 536

CQA(Pal et al., 2022), QASC(Khot et al., 2020) 537

and ARC Challenge(Clark et al., 2018). ARC Chal- 538

lenge and MedMCQA have 4 options and TeleQnA 539

has 2-5 options, while QASC has 8. 540
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Experiments: We conduct experiments to eval-541

uate both the accuracy and bias of various mod-542

els across all datasets, and to assess the effective-543

ness of different selection bias mitigation strate-544

gies. First, we demonstrate that majority voting not545

only reduces or eliminates selection bias (quanti-546

fied by PBM) but also improves model accuracy.547

Furthermore, by introducing BaQCKV, we show548

that majority voting can be made significantly more549

efficient, yielding substantial savings in both com-550

putation time and token usage. In addition, we551

assess the impact of our proposed LoRA-1 fine-552

tuning method, which consistently reduces all ex-553

isting bias metrics and exhibits strong transferabil-554

ity across datasets.555

We compare our approach against three alterna-556

tive bias mitigation methods: (1) GRAY, a gray-557

box technique that leverages both forward and back-558

ward predictions to reduce bias; (2) BNP (Bias559

Node Pruning), which prunes parameters in the fi-560

nal projection layer that contribute to bias; and (3)561

PRIDE, which normalizes model predictions using562

prior probabilities estimated from the dataset.563

However, these prior methods do not achieve564

the consistency of majority voting, a technique565

well-established for mitigating selection bias566

(Zong et al., 2023; Wang et al., 2024). The prompt567

templates and hyperparameter configurations used568

in our experiments are documented in Appendix C.569

Our unsupervised bias metric (PBM) corre-570

lates with the difficulty of the MCQ: The results571

in Table 1 show that all models exhibit varying de-572

grees of bias, correlating with the difficulty of the573

problem. Across all models, the bias is seen to be574

highest with the MedMCQA benchmark due to its575

difficulty (having the lowest accuracy). This con-576

firms that selection bias is present and measurable577

using our proposed metric (PBM). This also means578

that PBM may be used to compare the difficulty579

of different MCQ datasets without having access580

to the labels. Notably, after applying majority vot-581

ing (MV) with help of BaQCKV, the PBM value582

consistently drops to 0.00. Additionally, applying583

majority voting shows substantial improvements584

in accuracy, particularly in QASC, where scores585

increase significantly (e.g., from 0.630 to 0.9329586

for Phi-2 and 0.4892 to 0.837 for Llama), validat-587

ing the effectiveness of our metric in capturing and588

mitigating bias.589

Efficiency of the BaQCKV: Beyond bias reduc-590

tion, the BaQCKV enhances real-world applicabil-591

ity by significantly reducing computational costs of592

applying majority voting. As shown in Table 1, our 593

efficient BaQCKV approach for the majority voting 594

results in significant time savings of up to 88.6% 595

(Llama3.2-3B) and over 90% across token savings 596

across all models.This efficiency gain is crucial for 597

deploying bias-mitigation strategies at scale during 598

inference, making our approach feasible for real- 599

world applications where computational cost is a 600

limiting factor. 601

The unsupervised Lora-1 Bias Mitigation 602

demonstrates the best performance in maintain- 603

ing consistency: 604

The scatter plot in Figure 1a illustrates that, 605

overall, the lora-1 fine-tuning approach exhibits 606

greater consistency in accuracy, characterized by 607

a smaller standard deviation and lower selection 608

bias (PBM) compared to other mitigation strate- 609

gies. Ideally, an effective model should have its 610

corresponding points converge near the origin of 611

the plot, indicating minimal variability and bias. 612

Moreover, as shown in Table 2, when evaluating 613

the percentage change relative to the undebiased 614

models, lora-1 fine-tuning achieves the greatest 615

average reduction in both standard deviation of ac- 616

curacy (−27%) and selection bias (−58%) across 617

all evaluated models and datasets. These results 618

highlight the effectiveness of lora-1 in mitigating 619

variability and bias simultaneously. It also on aver- 620

age improves the accuracy of the models by 20% 621

even though this is not up to the 41.92% demon- 622

strated by PriDe. However, the PriDe demonstrates 623

the highest bias (1.8) and hardly offers any improve- 624

ments in standard deviation of accuracy. We show 625

a training graph of the unsupervised finetuning for 626

TeleQnA dataset process in Figure 1b. 627

The transferability of the unsupervised Lora- 628

1 Bias Mitigation: We investigate the transfer- 629

ability of the unsupervised LoRA-1 fine-tuning ap- 630

proach by training a model on a single dataset and 631

evaluating the resulting checkpoint on all other 632

datasets. The average performance across each 633

model/dataset pair is reported in Table 3, with com- 634

plete results provided in Appendix B.2. As shown 635

in Table 3, the unsupervised fine-tuning generally 636

transfers well: it consistently reduces our permu- 637

tation bias metric (PBM), fluctuation rate, and the 638

standard deviation of accuracy across option per- 639

mutations. In many cases, it also yields modest 640

improvements in accuracy. However, similar to 641

the non-transfer setting, this approach does not 642

improve the CKLD metric. Notably, for the Qwen- 643

MEDCQ model, CKLD actually increases signifi- 644
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Model Name TeleQnA MedMCQA QASC ARC

Acc PBM TS (seconds) TokS (%) Acc PBM TS (seconds) TokS (%) Acc PBM TS (seconds) TokS (%) Acc PBM TS (seconds) TokS (%)
Qwen2.5-3B 0.5464 0.021 1.009 - 0.479 0.058 - - 0.737 0.011 0.996 - 0.804 0.029 0.9610 -
Qwen2.5-3B + MV 0.5710 0.000 0.0491 0.4583 0.487 0.000 0.068 0.5328 0.947 0.000 0.1562 0.5377 0.839 0.00 0.0680 0.3600

Phi-2 0.2568 0.0303 0.912 - 0.359 0.082 0.888 - 0.630 0.024 0.9443 - 0.552 0.0269 0.8463 -
Phi-2 + MV 0.328 0.000 0.0985 0.3596 0.369 0.000 0.0576 0.551 0.9329 0.000 0.063 0.0543 0.4547 0.000 0.0579 0.366

Llama3.2-3B 0.4536 0.0053 0.9856 - 0.370 0.017 0.9549 - 0.4892 0.005 1.065 - 0.5179 0.0091 0.9371 -
Llama3.2-3B + MV 0.516 0.000 0.065 0.4618 0.384 0.000 0.0619 0.533 0.837 0.000 0.0551 0.545 0.537 0.00 0.0804 0.3639

Table 1: Accuracy and bias values for different models across multiple datasets, along with computational efficiency
improvements using Majority Voting (MV) with BaQCKV.

.

Method PBM ↓ RStd ↓ CKLD ↓ FR ↓ Acc ↑ AccStd ↓

LoRA -0.586 -0.076 0.928 -0.525 0.200 -0.276
Gray -0.364 -0.045 0.677 – 0.077 0.940
BNP -0.119 0.000 0.653 -0.250 0.064 -0.131
Pride 1.880 -0.240 0.432 -0.137 0.419 -0.040

Table 2: Comparison of mitigation methods across bias,
stability, and accuracy. We did not compute FR for Gray
box, since it is always 0 by design. LoRA is our method.
Gray (Choi et al., 2024), BNP (Choi et al., 2024), and
Pride (Zheng et al., 2024) are prior approaches.

Model-Datasettrain PBM ↓ RStd ↓ CKLD ↓ FR ↓ Acc ↑ AccStd ↓

QWEN-MEDCQ -0.497 -0.411 207.74 -0.150 0.028 -0.279
QWEN-TeleQNA -0.509 0.710 4.01 -0.160 0.029 -0.206
QWEN-ARC -0.413 1.017 4.63 -0.126 0.026 -0.234
QWEN-QASC -0.319 1.168 5.06 -0.006 -0.000 -0.153
Phi2-ARC -0.640 -0.712 -0.90 -0.764 0.423 -0.371
Llama3.2-TeleQNA -0.687 -0.425 -0.60 -0.760 0.282 -0.479
Llama3.2-ARC -0.799 -0.314 0.18 -0.651 0.220 -0.300
Llama3.2-QASC -0.863 0.213 0.54 -0.627 -0.085 -0.073

Table 3: The average percentage change in bias metrics
and accuracy for transferability experiments. For each
row, the model-dataset is evaluated on all other datasets
excluding the one used for finetuning

cantly, accompanied by a more than 200% rise in645

RStd. This may be due to the model shifting toward646

greater consistency across permutations, which can647

lead to more uniform confidence distributions that648

diverge from dataset-specific label frequencies. Im-649

portantly, this behavior aligns with our objective of650

reducing positional sensitivity.651

5 Conclusion652

In this work, we address a critical yet underex-653

plored challenge in Multiple-Choice Question An-654

swering (MCQA)—selection bias in Large Lan-655

guage Models (LLMs). We introduced a novel656

unsupervised, label-free bias metric (PBM) that657

directly quantifies inconsistencies in predictions658

across permuted answer choices, offering a more659

faithful measure of selection bias than existing660

methods. To mitigate this bias without incur-661

ring prohibitive computational costs, we proposed662

BaQCKV, an efficient majority voting strategy,663

and LoRA-1, a lightweight fine-tuning method664
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(b) Lora1 finetuning training graph showing bias and accuracy
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Figure 1: Visualization of bias-related behaviors across
models and strategies.

grounded in our bias metric. Our experiments 665

across diverse MCQA datasets and models demon- 666

strate that these techniques not only reduce bias 667

and improve accuracy but also significantly cut 668

down inference time and token usage, making them 669

scalable and practical for real-world deployment. 670

Ultimately, our work provides both a theoretical 671

and practical framework for more reliable and effi- 672

cient MCQA with LLMs, laying the foundation for 673

future advancements in fair and robust AI systems. 674

6 Limitations 675

This work only focuses on decoder only trans- 676

former language models and did not investigate 677

bias in other language models such as encoder- 678

8



decoder models. Also, we only investigate MCQs679

where the model has to choose one option and do680

not consider other types of MCQs.681
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A Appendix 793

A.1 Positional Encoding and Sensitivity of Transformers to Option Permutations 794

In decoder-only transformers, token generation is conditioned on causal self-attention, where each token 795

attends to prior tokens using both content-based embeddings and positional encodings. When a question 796

Q and its associated options O = {o1, o2, . . . , on} are presented, the model processes the sequence: 797

S = Q⊕O. 798

For a permutation π of the options, the modified sequence becomes: 799

Sπ = Q⊕Oπ. 800

While the token set remains unchanged, the reordering affects positional encodings, altering attention 801

computations. The self-attention mechanism computes attention scores between tokens at positions i and 802

j as: 803

Attentioni,j =
Q(oi + pi) · (K(oj + pj))

T

√
d

. 804

For the permuted sequence Sπ, the updated scores are: 805

Attentionπi,j =
Q(oi + pπ(i)) · (K(oj + pπ(j)))

T

√
d

. 806

Since pi ̸= pπ(i), the attention patterns for S and Sπ differ, resulting in distinct contextual representations 807

for the same token set. 808

As attention weights directly influence token representations, these changes propagate through the 809

network, modifying the sequence representation and ultimately affecting the model’s output distribution. 810

Let P (y | S) and P (y | Sπ) denote the probability distributions over possible answers. Then, 811

P (y | S) ̸= P (y | Sπ). 812

A.2 Impact of option permutations on attention scores 813

The impact of the permutations owing to the positional encoding on the attention scores is illustrated in 814

Figure 2. The figure shows that there are more fluctuations in the attention scores on the option tokens 815

(later parts of the x-axis) compared to the question tokens (earlier tokens on the x-axis). 816

Figure 2: Attention scores for the last token in the last layer of the Llama model across different prompt permutations,
shown for two transformer heads.
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A.3 Proof of Token Savings in BaQCK817

In the original Majority Voting (MV) framework, each question undergoes k passes through the LLM,818

processing the full sequence of Q⊕ C ⊕O each time. The total token cost per question is:819

CostMV = k × |Q⊕ C ⊕O| (11)820

In BaQCK, the shared Q⊕C tokens are processed only once, while the O tokens are processed k times.821

Thus, the total token cost per question is:822

CostMV = |Q⊕ C|+ k × |O| (12)823

The token savings is computed as:824

Savings = CostMV − CostBaQCK (13)825

= k × |Q⊕ C ⊕O| − (|Q⊕ C|+ k × |O|) (14)826

= k × |Q⊕ C|+ k × |O| − |Q⊕ C| − k × |O| (15)827

= (k − 1)× |Q⊕ C| (16)828

Expressing this as a percentage of the original cost:829

Token savings (%) =
(k − 1)× |Q⊕ C|
k × |Q⊕ C ⊕O|

× 100 (17)830

This result shows that BaQCK significantly reduces token computations, particularly when |C| is large831

(e.g., in Retrieval-Augmented Generation). Even for small or zero-context cases (|C| = 0), savings persist832

due to shared |Q| tokens. Increasing k further amplifies efficiency by reducing redundant recomputation833

across shuffled options.834

B Experimental Results835

B.1 Bias Mitigation Results on all models and datasets836

Table 5: Phi-2 Performance across Datasets (Raw Scores)

Metric Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std

ARC Dataset

Baseline 0.0269 0.2207 0.2853 0.6334 0.5520 0.0110
LoRa FineTuning 0.0214 0.2102 0.2501 0.6225 0.5589 0.0082
Gray-Box Weighting 0.0187 0.1965 0.2394 – 0.5661 0.0071
BNP 0.0276 0.2251 0.2923 0.6881 0.5498 0.0104
Pride 0.1507 0.2769 0.2933 0.6987 0.5512 0.0107

TeleQNA Dataset

Baseline 0.0303 0.3559 1.5208 0.8114 0.2568 0.0216
LoRa FineTuning 0.0255 0.3471 1.4801 0.8041 0.2642 0.0173
Gray-Box Weighting 0.0196 0.3432 1.4273 – 0.2697 0.0152
BNP 0.0388 0.3674 1.5404 0.7463 0.2553 0.0201
Pride 0.1301 0.3865 1.4311 0.7522 0.2374 0.0214

MedMCQ Dataset

Baseline 0.0512 0.3981 1.4585 0.9369 0.3409 0.0194
LoRa FineTuning 0.0418 0.3907 1.4132 0.9286 0.3467 0.0168
Gray-Box Weighting 0.0356 0.3849 1.4017 0.0000 0.3523 0.0150
BNP 0.0542 0.4072 1.4682 0.8624 0.3397 0.0175
Pride 0.1489 0.4138 1.4425 0.8796 0.3402 0.0189

QASC Dataset

Baseline 0.0314 0.3232 2.9914 0.9676 0.1577 0.0122
LoRa FineTuning 0.0249 0.3014 2.7412 0.9548 0.1643 0.0103
Gray-Box Weighting 0.0221 0.2876 2.6785 – 0.1671 0.0094
BNP 0.0327 0.3357 3.0141 0.9251 0.1552 0.0109
Pride 0.1273 0.3428 2.8345 0.9387 0.1499 0.0118
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Table 4: QWEN Performance across Datasets (Raw Scores)

Metric Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std

ARC Dataset

Baseline 0.0268 0.0158 0.0003 0.1997 0.8038 0.0088
LoRa FineTuning 0.0151 0.0101 0.0004 0.1869 0.808 0.0073
Gray-Box Weighting 0.0129 0.0083 0.0002 – 0.8283 0.0048
BNP 0.0270 0.0169 0.0004 0.2550 0.7994 0.0074
Pride 0.1629 0.0261 0.0007 0.2374 0.8039 0.0083

TeleQNA Dataset

Baseline 0.0214 0.0564 0.0070 0.5874 0.5464 0.0189
LoRa FineTuning 0.0182 0.0879 0.0223 0.6093 0.5437 0.0141
Gray-Box Weighting 0.0149 0.0179 0.0070 – 0.5492 0.1144
BNP 0.0384 0.0881 0.0145 0.2158 0.5546 0.0143
Pride 0.1271 0.0778 0.0040 0.3389 0.4186 0.0188

MedMCQ Dataset

Baseline 0.0577 0.0179 0.0006 0.8964 0.4805 0.0057
LoRa FineTuning 0.0363 0.0771 0.0082 0.9031 0.4798 0.0055
Gray-Box Weighting 0.0313 0.0087 0.0062 0.0000 0.4867 0.0038
BNP 0.0578 0.0096 0.0056 0.2421 0.4797 0.0000
Pride 0.1517 0.0238 0.0078 0.2476 0.4801 0.0057

QASC Dataset

Baseline 0.0110 0.0547 0.0117 0.2062 0.8952 0.0068
LoRa FineTuning 0.0031 0.0101 0.0003 0.1188 0.9698 0.0040
Gray-Box Weighting 0.0123 0.0324 0.0146 – 0.8801 0.0076
BNP 0.0119 0.0573 0.0129 0.1619 0.8866 0.0087
Pride 0.0942 0.0594 0.0060 0.1690 0.8729 0.0072

Table 6: LLama 3.2 Performance across Datasets (Raw Scores)

Metric Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std

ARC Dataset

Baseline 0.0091 0.1082 0.1050 0.5171 0.5179 0.0097
LoRa FineTuning 0.0034 0.1780 0.1144 0.1373 0.5339 0.0092
Gray-Box Weighting 0.0065 0.0239 0.0999 0.0000 0.5957 0.0083
BNP 0.0083 0.0500 0.0230 0.3279 0.5392 0.0108
Pride 0.0318 0.0911 0.0125 0.4789 0.5615 0.0102

TeleQNA Dataset

Baseline 0.0053 0.1010 0.0907 0.5574 0.4536 0.0165
LoRa FineTuning 0.0002 0.1998 0.3120 0.3306 0.3830 0.0245
Gray-Box Weighting 0.0036 0.0330 0.0828 – 0.4004 0.1034
BNP 0.0056 0.1786 0.0614 0.1746 0.4754 0.0199
Pride 0.0161 0.1638 0.0483 0.5575 0.4317 0.0274

MedMCQ Dataset

Baseline 0.0167 0.3182 0.5597 0.8128 0.3696 0.0161
LoRa FineTuning 0.0000 0.0052 0.0531 0.2116 0.3213 0.0056
Gray-Box Weighting 0.0059 0.0221 0.8249 – 0.4014 0.0044
BNP 0.0109 0.3098 0.5049 0.7547 0.3851 0.0154
Pride 0.0095 0.0165 0.0112 0.8217 0.3973 0.0077

QASC Dataset

Baseline 0.0046 0.2021 0.4818 0.6544 0.4892 0.0138
LoRa FineTuning 0.0026 0.0130 0.0014 0.1263 0.9514 0.0037
Gray-Box Weighting 0.0061 0.2500 0.3122 – 0.6210 0.0138
BNP 0.0037 0.1357 0.1357 0.3359 0.7441 0.0107
Pride 0.0050 0.0545 0.0017 0.4841 0.8715 0.0096
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B.2 Transferability Results over all datasets and models837

Table 7: Transferability of Model-Checkpoints Across Datasets (Complete Results)

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std

QWEN/MEDCQ→ ARC Dataset

Baseline 0.0268 0.0158 0.0003 0.1997 0.8038 0.0088
LoRa FineTune 0.0101 0.0004 0.1869 0.1869 0.8080 0.0073
% Change -43.6% -36.1% +333.3% -6.4% +0.5% -17.0%
LoRa Transfer 0.0215 0.0116 0.0001 0.2438 0.8034 0.0075

QWEN/MEDCQ→ TeleQNA Dataset

Baseline 0.0214 0.0564 0.0070 0.5874 0.5464 0.0189
LoRa FineTune 0.0182 0.0879 0.0223 0.6093 0.5437 0.0141
% Change -15.0% +55.9% +218.6% +3.7% -0.5% -25.4%
LoRa Transfer 0.0254 0.0671 0.0096 0.2076 0.5574 0.0116

QWEN/MEDCQ→ QASC Dataset

Baseline 0.0110 0.0547 0.0117 0.2062 0.8952 0.0068
LoRa FineTune 0.0031 0.0101 0.0003 0.1188 0.9698 0.0040
% Change -72.2% -81.5% -97.4% -42.4% +8.3% -41.2%
LoRa Transfer 0.0097 0.0720 0.0291 0.1847 0.8585 0.0071

Table 8: Transferability of Model-Checkpoints (Continued)

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std

QWEN/TeleQNA→ ARC Dataset

Baseline 0.0268 0.0158 0.0003 0.1997 0.8038 0.0088
LoRa FineTune 0.0151 0.0101 0.0004 0.1869 0.8080 0.0073
LoRa Transfer 0.0247 0.0163 0.0006 0.2635 0.8068 0.0069

QWEN/TeleQNA→MedMCQ Dataset

Baseline 0.0577 0.0179 0.0006 0.8964 0.4805 0.0057
LoRa FineTune 0.0363 0.0771 0.0082 0.9031 0.4798 0.0055
LoRa Transfer 0.0484 0.0279 0.0024 0.2639 0.4803 0.0049

QWEN/TeleQNA→ QASC Dataset

Baseline 0.0110 0.0547 0.0117 0.2062 0.8952 0.0068
LoRa FineTune 0.0031 0.0101 0.0003 0.1188 0.9698 0.0040
LoRa Transfer 0.0167 0.0913 0.0516 0.2408 0.8337 0.0097

Table 9: Transferability of Model-Checkpoints (Continued)

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std

QWEN/ARC→ TeleQNA Dataset

Baseline 0.0214 0.0564 0.0070 0.5874 0.5464 0.0189
LoRa FineTune 0.0182 0.0879 0.0223 0.6093 0.5437 0.0141
LoRa Transfer 0.0025 0.1363 0.0805 0.1694 0.5464 0.0139

QWEN/ARC→MedMCQ Dataset

Baseline 0.0577 0.0179 0.0006 0.8964 0.4805 0.0057
LoRa FineTune 0.0363 0.0771 0.0082 0.9031 0.4798 0.0055
LoRa Transfer 0.0041 0.1532 0.1005 0.4023 0.4604 0.0079

QWEN/ARC→ QASC Dataset

Baseline 0.0110 0.0547 0.0117 0.2062 0.8952 0.0068
LoRa FineTune 0.0031 0.0101 0.0003 0.1188 0.9698 0.0040
LoRa Transfer 0.0214 0.2950 1.3080 0.8293 0.3013 0.0134

14



Table 10: Transferability of Model-Checkpoints (Continued)

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std

QWEN/QASC→ ARC Dataset

Baseline 0.0268 0.0158 0.0003 0.1997 0.8038 0.0088
LoRa FineTune 0.0151 0.0101 0.0004 0.1869 0.8080 0.0073
LoRa Transfer 0.0279 0.0183 0.0011 0.2481 0.7923 0.0074

QWEN/QASC→ TeleQNA Dataset

Baseline 0.0214 0.0564 0.0070 0.5874 0.5464 0.0189
LoRa FineTune 0.0182 0.0879 0.0223 0.6093 0.5437 0.0141
LoRa Transfer 0.0408 0.0620 0.0223 0.2158 0.5601 0.0140

QWEN/QASC→MedMCQ Dataset

Baseline 0.0577 0.0179 0.0006 0.8964 0.4805 0.0057
LoRa FineTune 0.0363 0.0771 0.0082 0.9031 0.4798 0.0055
LoRa Transfer 0.0573 0.1089 0.0067 0.2175 0.4735 0.0044

Table 11: Transferability of Phi-2 Model-Checkpoints

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std

Phi-2/TeleQnA→ ARC Dataset

Baseline 0.0269 0.2207 0.2853 0.6334 0.5520 0.0110
LoRa FineTune 0.0148 0.0257 0.0021 0.2858 0.7553 0.0076
LoRa Transfer 0.0217 0.0545 0.0067 0.2576 0.6500 0.0080

Phi-2/TeleQnA→MedMCQ Dataset

Baseline 0.0512 0.3981 1.4585 0.9369 0.3409 0.0194
LoRa FineTune 0.0013 0.0893 0.0527 0.3358 0.3569 0.0087
LoRa Transfer 0.0256 0.0709 0.0478 0.3799 0.3344 0.0051

Phi-2/TeleQnA→ QASC Dataset

Baseline 0.0314 0.3232 2.9914 0.9676 0.1577 0.0122
LoRa FineTune 0.0002 0.2373 1.0080 0.1003 0.3002 0.0112
LoRa Transfer 0.0073 0.0605 0.0067 0.0950 0.8542 0.0008

Table 12: Transferability of Phi-2 Model-QASC

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std

Phi-2/Qasc→ ARC Dataset

Baseline 0.0269 0.2207 0.2853 0.6334 0.5520 0.0110
LoRa FineTune 0.0148 0.0257 0.0021 0.2858 0.7553 0.0076
LoRa Transfer 0.0129 0.2855 0.5250 0.7511 0.4489 0.0091

Phi-2/Qasc→ TeleQNA Dataset

Baseline 0.0303 0.3559 1.5208 0.8114 0.2568 0.0216
LoRa FineTune 0.0260 0.0271 0.0087 0.0267 0.3530 0.0099
LoRa Transfer 0.0494 0.4000 2.9890 1.0000 0.2100 0.0233

Phi-2/Qasc→MedMCQ Dataset

Baseline 0.0512 0.3981 1.4585 0.9369 0.3409 0.0194
LoRa FineTune 0.0013 0.0893 0.0527 0.3358 0.3569 0.0087
LoRa Transfer 0.0300 0.4259 2.4919 0.9931 0.3201 0.0199
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Table 13: Transferability of Phi-2 Model-MedMCQA)

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std

Phi-2/MedMCQ→ ARC Dataset

Baseline 0.0269 0.2207 0.2853 0.6334 0.5520 0.0110
LoRa FineTune 0.0148 0.0257 0.0021 0.2858 0.7553 0.0076
LoRa Transfer 0.0149 0.0257 0.0021 0.2858 0.7553 0.0076

Phi-2/MedMCQ→ TeleQNA Dataset

Baseline 0.0303 0.3559 1.5208 0.8114 0.2568 0.0216
LoRa FineTune 0.0260 0.0271 0.0087 0.0267 0.3530 0.0099
LoRa Transfer 0.0260 0.0960 0.0115 0.1939 0.4125 0.0170

Phi-2/MedMCQ→ QASC Dataset

Baseline 0.0314 0.3232 2.9914 0.9676 0.1577 0.0122
LoRa FineTune 0.0002 0.2373 1.0080 0.1003 0.3002 0.0112
LoRa Transfer 0.0004 0.0291 0.0017 0.1134 0.9265 0.0051

Table 14: Transferability of Phi-2/ARC Model-ARC

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std

Phi-2/ARC→ ARC Dataset

Baseline 0.0269 0.2207 0.2853 0.6334 0.5520 0.0110
LoRa FineTune 0.0148 0.0257 0.0021 0.2858 0.7553 0.0076
LoRa Transfer 0.0217 0.0545 0.0067 0.2575 0.6498 0.0076

Phi-2/ARC→ TeleQNA Dataset

Baseline 0.0303 0.3559 1.5208 0.8114 0.2568 0.0216
LoRa FineTune 0.0260 0.0271 0.0087 0.0267 0.3530 0.0099
LoRa Transfer 0.0261 0.0964 0.0115 0.1939 0.4126 0.0099

Phi-2/ARC→MedMCQ Dataset

Baseline 0.0512 0.3981 1.4585 0.9369 0.3409 0.0194
LoRa FineTune 0.0013 0.0893 0.0527 0.3358 0.3569 0.0087
LoRa Transfer 0.0269 0.0893 0.0214 0.2737 0.3749 0.0045

Phi-2/ARC→ QASC Dataset

Baseline 0.0314 0.3232 2.9914 0.9676 0.1577 0.0122
LoRa FineTune 0.0002 0.2373 1.0080 0.1003 0.3002 0.0112
LoRa Transfer 0.0042 0.0291 0.0017 0.1133 0.9265 0.0059

Table 15: Transferability of Llama 3.2 Model-ARC

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std

Llama 3.2/ARC→ TeleQNA Dataset

Baseline 0.0053 0.1010 0.0907 0.5574 0.4536 0.0165
LoRa FineTune 0.0002 0.1998 0.3120 0.3306 0.3830 0.0245
LoRa Transfer 0.0007 0.2344 0.5903 0.6393 0.4235 0.0209

Llama 3.2/ARC→MedMCQ Dataset

Baseline 0.0167 0.3182 0.5597 0.8128 0.3696 0.0161
LoRa FineTune 0.0000 0.0052 0.0531 0.2116 0.3213 0.0056
LoRa Transfer 0.0012 0.3943 1.2546 0.9132 0.3541 0.0189

Llama 3.2/ARC→ QASC Dataset

Baseline 0.0046 0.2021 0.4818 0.6544 0.4892 0.0138
LoRa FineTune 0.0026 0.0130 0.0014 0.1263 0.9514 0.0037
LoRa Transfer 0.0020 0.2963 1.7180 0.8920 0.2397 0.0119
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Table 16: Transferability of Llama 3.2 Model-TeleQnA

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std

Llama 3.2/TeleQNA→ ARC Dataset

Baseline 0.0091 0.1082 0.1050 0.5171 0.5179 0.0097
LoRa FineTune 0.0034 0.1780 0.1144 0.1373 0.5339 0.0092
LoRa Transfer 0.0010 0.1828 0.2423 0.5416 0.4343 0.0136

Llama 3.2/TeleQNA→MedMCQ Dataset

Baseline 0.0167 0.3182 0.5597 0.8128 0.3696 0.0161
LoRa FineTune 0.0000 0.0052 0.0531 0.2116 0.3213 0.0056
LoRa Transfer 0.0004 0.3840 1.6399 0.9013 0.3376 0.0056

Llama 3.2/TeleQNA→ QASC Dataset

Baseline 0.0046 0.2021 0.4818 0.6544 0.4892 0.0138
LoRa FineTune 0.0026 0.0130 0.0014 0.1263 0.9514 0.0037
LoRa Transfer 0.0012 0.3290 3.5746 0.9946 0.1369 0.0124

Table 17: Transferability of Llama 3.2 Model-QASC

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std

Llama 3.2/QASC→ ARC Dataset

Baseline 0.0091 0.1082 0.1050 0.5171 0.5179 0.0097
LoRa FineTune 0.0034 0.1780 0.1144 0.1373 0.5339 0.0092
LoRa Transfer 0.0003 0.1195 0.1184 0.4515 0.4944 0.0094

Llama 3.2/QASC→ TeleQNA Dataset

Baseline 0.0053 0.1010 0.0907 0.5574 0.4536 0.0165
LoRa FineTune 0.0002 0.1998 0.3120 0.3306 0.3830 0.0245
LoRa Transfer 0.0007 0.2344 0.5903 0.6393 0.4235 0.0175

Llama 3.2/QASC→MedMCQ Dataset

Baseline 0.0167 0.3182 0.5597 0.8128 0.3696 0.0161
LoRa FineTune 0.0000 0.0052 0.0531 0.2116 0.3213 0.0056
LoRa Transfer 0.0012 0.3943 1.2545 0.9132 0.3541 0.0018

Table 18: Transferability of Llama 3.2 Model-MedMCQ

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std

Llama 3.2/MedMCQ→ ARC Dataset

Baseline 0.0091 0.1082 0.1050 0.5171 0.5179 0.0097
LoRa FineTune 0.0034 0.1780 0.1144 0.1373 0.5339 0.0092
LoRa Transfer 0.0011 0.0914 0.0645 0.4129 0.4893 0.0133

Llama 3.2/MedMCQ→ TeleQNA Dataset

Baseline 0.0053 0.1010 0.0907 0.5574 0.4536 0.0165
LoRa FineTune 0.0002 0.1998 0.3120 0.3306 0.3830 0.0245
LoRa Transfer 0.0003 0.1730 0.2920 0.4508 0.4153 0.0202

Llama 3.2/MedMCQ→ QASC Dataset

Baseline 0.0046 0.2021 0.4818 0.6544 0.4892 0.0138
LoRa FineTune 0.0026 0.0130 0.0014 0.1263 0.9514 0.0037
LoRa Transfer 0.0009 0.2999 1.8713 0.9039 0.2441 0.0154

C Prompt Templates and Hyperparameter Configurations 838

C.1 Prompt Templates Used in All Experiments 839

This appendix provides the exact prompt templates used during evaluation of transferability experiments 840

across datasets and models. 841

MedMCQA Dataset (All Models) 842

Instruct = Youre a Medical Question Answering Expert, answer the following question. 843

Please generate only answer choice (1, 2, 3 or 4) 844

{question} 845
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{options}846

Output: option847

TeleQnA Dataset (Qwen & Llama)848

Instruct: Answer the following question using the context provided.849

Your answer must start with the correct option letter (1, 2, 3, 4, or 5):850

{question}851

{options}852

Output: option853

TeleQnA or ARC Dataset (Phi-2)854

Instruct: Answer the following question.855

Your answer must start with the correct option letter (1, 2, 3, 4, or 5) followed by the856

text of the answer:857

{question}858

{options}859

Output: option860

ARC Dataset (All Models Except Phi)861

Instruct: {question}862

{options}863

Output: option864

QASC Dataset (Qwen, Phi-2)865

Instruct: Answer the following question using the context provided, reason over it.866

Please generate only answer choice (1, 2, 3, 4, 5, 6, 7 or 8) without any explanations867

868

{question}869

context: {context}870

871

{options}872

{question}873

Output: option874

QASC Dataset (Llama)875

Instruct: Answer the following question using the context provided, reason over it.876

Please generate only answer choice (1, 2, 3, 4, 5, 6, 7 or 8) without any explanations877

878

{question}879

context: {context}880

881

{options}882

Output:883

C.2 Hyper-Parameter Configurations884

Unsupervised Lora Finetuning: During each iteration we randomly sample 64 samples every epoch885

from the train split of the dataset and use it for training. For the Lora adapters, we target the attention886

QKV and Output projection weights, with a dropout of 0.05 and Lora alpha of 16. We used an AdamW887

optimizer with learning rate of 1e−4 and weight decay of 0.001 for all experiments. In computing the888

loss, we use an α of 0.1 to weight the entropy.889
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C.3 Model Size And Budget 890

We evaluated our methods on a set of compact yet capable LLMs, including Qwen2.5–3B, Phi-2, and 891

LLaMA3.2–3B, each with approximately 3 billion parameters. All experiments were conducted on 892

NVIDIA L40 GPUs (48 GB VRAM). Using AWS g5.12xlarge instances (approximate L40 equivalent) 893

priced at $3.06/hour on-demand, the cost per fine-tuning run is $6–$9, and BaQCKV inference costs 894

are $1–$2 per dataset. This keeps the total cost for running all experiments within a practical research 895

budget, demonstrating that our methods are efficient and deployable even on mid-sized mod Bias Metric 896

Computation: To compute the Our Bias metric, we do not use the raw probabilities over the vocab size. 897

We rather use the logits for only the option IDs to compute the probabilities. Also, we limit the number 898

of permutations to a maximum of 24 (4!). This is due to our GPU memory memory budget and our 899

considerations that most MCQs would have around 4 options. 900
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