Quantifying and Mitigating Selection Bias in LLMs: A Transferable LoRA
Fine-Tuning and Efficient Majority Voting Approach

Anonymous ACL submission

Abstract

Multiple-choice question answering (MCQA)
is a widely-used method for evaluating the per-
formance of Large Language Models (LLMs).
However, LLLMs often exhibit selection bias
in MCQA tasks, where their choices are influ-
enced by factors like answer position or option
symbols rather than the content. This bias un-
dermines the reliability of MCQA as an evalu-
ation framework. Most existing selection bias
metrics require answer labels and measure di-
vergences between prediction and answer dis-
tributions, but do not fully capture the consis-
tency of a model’s predictions across different
orderings of answer choices. Existing selec-
tion bias mitigation strategies have notable lim-
itations: majority voting, though effective, is
computationally prohibitive; calibration-based
methods require validation sets and often fail
to generalize across datasets. To address these
gaps, we propose three key contributions: (1) a
new unsupervised label-free Permutation Bias
Metric (PBM) that directly quantifies incon-
sistencies in model predictions across answer
permutations, providing a more precise mea-
sure of selection bias, (2) an efficient majority
voting approach called Batch Question-Context
KV caching (BaQCKYV), to significantly reduce
computational costs while preserving bias mit-
igation effectiveness, and (3) an unsupervised
Low-Rank Adaptation (LoRA)-1 fine-tuning
strategy based on our proposed metric and the
BaQCKYV that mitigates selection bias, provid-
ing a computationally efficient alternative that
maintains model generalizability. Experiments
across multiple MCQA benchmarks demon-
strate that our approaches reduce bias, increas-
ing consistency in accuracy while minimizing
computational costs.

1 Introduction

Selection bias in Large Language Models (LLMs)
has been increasingly recognized as a significant
challenge, particularly in multiple-choice question

(MCQ) answering tasks (Wei et al., 2024a; Zheng
et al., 2024; Zong et al., 2023). This bias occurs
when models exhibit a preference for certain an-
swer choices based on factors like their position
or symbolic representation, rather than the content
itself (Wei et al., 2024a). For instance, LLMs may
disproportionately favor the last option or option
“A” across different questions. Such biases are es-
pecially problematic in evaluation settings, where
multiple-choice formats are widely used for exam-
ple, in standardized testing, professional certifica-
tion exams, and educational assessments. These bi-
ases undermine the fairness and reliability of model
evaluations, as they can lead to inconsistent an-
swers across equivalent permutations, eroding trust
in LLM-based decision systems.

The presence of selection bias in LLMS was
highlighted by (Zheng et al., 2024), demonstrating
how factors like answer position and symbolic rep-
resentation can lead to systematic errors in MCQ
answering. Effectively addressing selection bias re-
quires a well-defined metric for bias quantification.
Several metrics have been proposed to measure the
selection bias such as the Choice Kullback-Leibler
Divergence (CKLD) (Choi et al., 2024), Standard
Deviation of Recalls (RStd) (Zheng et al., 2024),
and Relative Standard Deviation (RSD) (Croce
et al., 2021; Reif and Schwartz, 2024), which pri-
marily evaluate bias in terms of divergence from
ground truth distributions (i.e., CKLD) or vari-
ability in class-wise performance (i.e., RStd and
RSD). However, they do not adequately capture the
bias exhibited by models to option permutations.
Also, the Fluctuation Rate proposed by (Wei et al.,
2024b) only considers two permutations of the op-
tions, which may not capture the full permutation
bias. We therefore introduce a new permutation
bias metric (PBM) that evaluates selection bias in
LLM without requiring ground truth distributions
while considering all possible option permutations.
The primary intuition behind our metric is that log-

ically, an answer’s correctness does not change
based on its position in a list of options and we
therefore want language models to possess this be-
haviour.

Addressing the problem of bias requires not just
quantifying but also mitigating bias. Prior miti-
gation strategies like majority voting (Zong et al.,
2023) that aggregates predictions across all per-
mutations of answer choices - has been shown to
reduce bias. However, its computational cost in-
creases factorially with the number of choices, mak-
ing it impractical for real-time inference. Thus, a
key challenge is to develop an efficient method for
bias quantification and bias mitigation that can be
integrated into real-world systems. We therefore
propose Batch Question-Context KV caching
(BaQCKYV), an efficient implementation of major-
ity voting that reduces computational cost consid-
ering all permutations. Additionally, we introduce
an unsupervised Low-Rank Adaptation finetuning
strategy that optimizes the model on our proposed
metric.

Our contributions can be summarized as follows:

* We propose a novel, unsupervised, and label-
free Permutation Bias metric (PBM) that
captures inconsistencies in model predictions
across all permutations of answer choices. Un-
like prior metrics, it requires no access to
ground-truth labels and directly measures per-
mutation sensitivity.

¢ We introduce BaQCKYV (Batch Question-
Context KV caching), a computationally ef-
ficient variant of majority voting that signifi-
cantly reduces the overhead associated with
evaluating all permutations of multiple-choice
questions.

* We develop a LoRA-based fine-tuning strat-
egy that leverages our proposed bias metric as
a differentiable objective, enabling parameter-
efficient debiasing without the need for la-
beled data or full model retraining.

Our efficient BaQCKYV method achieves token sav-
ings of up to 54.4% , while our unsupervised LoRA-
1 fine-tuning reduces the PBM bias by an average
of 58% and improves standard deviation of accu-
racy by 27 %, outperforming existing approaches.
BaQCKYV is particularly well-suited for evaluation
or deployment scenarios where deterministic and
fully permutation-invariant responses are required,

as it can achieve 0 bias but with additional compute
and latency. In contrast, LoORA-1 fine-tuning offers
a lightweight, one-pass inference alternative prac-
tical for large-scale LLM deployments or latency-
sensitive settings.Together, these contributions can
lead to a unified framework for quantifying and
mitigating selection bias in LLMs, particularly in
the context of multiple-choice question answering

2 Related Work

Large Language Models (LLMs) exhibit system-
atic selection biases in multiple-choice question
answering (MCQA), favoring options by position
(e.g., last choice) or by identifier (e.g., option “A”)
rather than semantic content. In this review, we fo-
cus on existing approaches for bias quantification
and mitigation.

2.1 Bias Evaluation in LLMs

Several metrics have been proposed to quantify se-
lection bias in LLMSs’ predictions. A common ap-
proach is to compute some divergence between the
predicted answer distribution and the ground truth
answer distribution. Choice Kullback-Leibler Di-
vergence (CKLD) (Choi et al., 2024) measures the
divergence between the model’s answer frequency
and the ground-truth answer frequency (e.g., how
often the correct answer is A, B, C, etc.). How-
ever, CKLD requires access to the labelled answers.
Other metrics focus on variability in per-option ac-
curacy or recall. The Relative Standard Deviation
(RSD) (Reif and Schwartz, 2024) computes the
standard deviation of the model’s accuracy for each
answer option ID, while the Standard Deviation of
Recall (RStd) (Zheng et al., 2024) uses recall in-
stead of accuracy. These capture whether the model
performs significantly better on one option (e.g.,
’A’) than on others, which could indicate the pres-
ence of bias. While useful, such label-dependent
metrics fail to capture inconsistency across permu-
tations: they only consider the original order of
options, but not all possible permutations. They
do not consider if a model would answer the same
question differently when choices are presented in
a different option permutation, since they only eval-
uate against the single correct label in the original
ordering.

Wei et al. (2024a) introduced the Fluctuation
Rate (FR) as a label-free measure of sensitivity.
FR computes the rate at which an LLM’s answer
changes when the order of options is reversed,

quantifying how option shuffling alone affects its
output. This metric revealed substantial instability
in model answers due to option order. However,
FR considers only two permutations (original vs.
reversed), which limits its expressiveness—real-
world biases may span more complex permutation
patterns. Moreover, FR captures only discrete pre-
diction flips (i.e., changes in the argmax choice)
and ignores subtle changes in model confidence.
This limitation also makes FR non-differentiable,
which prevents it from being directly used as an op-
timization objective in gradient-based fine-tuning.

In summary, current metrics are either label-
dependent (CKLD, RSD/RStd) or permutation-
limited (FR), offering incomplete views of bias. To
address this, we propose a permutation-sensitive,
label-agnostic metric that captures prediction con-
sistency across all answer orderings. Our approach
enables broad applicability on unlabeled datasets
and introduces a differentiable objective for debi-
asing during fine-tuning (section 3.3.2).

2.2 Bias Mitigation Strategies

Several research works have explored various
strategies to mitigate selection bias in LLMs, rang-
ing from calibration, voting, to finetuning-based
approaches.

Calibration-based methods aim to adjust the
model’s output probabilities to compensate for the
skewed bias distributions. Most of these methods
target the recalibration to improve accuracy. Cal-
ibraEval (Li et al., 2024) reweights predictions to
reduce positional bias in model evaluation, while
label bias calibration (Reif and Schwartz, 2024) im-
proves few-shot accuracy using known label statis-
tics. (Zheng et al., 2024), proposed PriDe, which
estimates a prior probability for all options IDs (the
symbol that precedes an option content. For exam-
ple A,B,C, or D) and debiases model predictions
by dividing predictions by the priors and normaliz-
ing the resulting probabilities. The approach was
shown to reduce selection bias as measured by the
RStd metric. These approaches usually require an
in-domain validation set or known answer statistics
to compute the calibration parameters (prior proba-
bilities). Even though calibration can correct distri-
butional bias (making the overall frequency of each
option more balanced), it may not ensure consis-
tency across permutations because it uses the same
calibration parameters across all permutations. A
model could still change its answer when options
are permuted, even if its overall option frequencies

look unbiased. Prompt-level tactics like Auxiliary
Option Injection (AOI) (Choi et al., 2024) offer a
lightweight alternative by inserting a dummy op-
tion to nudge the model toward balanced outputs.
While simple and requiring no model changes, such
prompt-level fixes may only partially reduce bias
and might not generalize across different prompt
formats or tasks.

Majority voting across permutations is a simple
but effective method to mitigate permutation bias
by aggregating predictions over multiple answer
orderings, biases tied to option positions can be
reduced (Zong et al., 2023). In practice, this means
querying the LLM with every possible ordering of
the options and taking the majority or consensus an-
swer (Wei et al., 2024b). However, this approach is
computationally prohibitive: with &k options, there
are k! permutations, which grows factorially. Even
for a 4-option multiple choice, 24 passes through
the model are needed per question, which is in-
feasible for large-scale or real-time use. Recent
works attempt to retain the benefits of majority vot-
ing while cutting down its cost. Zhou et al. (2024)
introduced a batch prompting and calibration tech-
nique that allows the model to consider multiple
re-ordered options in a single forward pass, mak-
ing the process more efficient. Guda et al. (2024)
showed that a smaller subset of random permuta-
tions can be used to approximate the full majority
vote, achieving a more uniform selection without
evaluating all orderings. Another line of work is
self-consistency: rather than permuting inputs, the
model is run multiple times with variations in its
reasoning process (e.g., different sampled chains-
of-thought) and the most consistent answer is cho-
sen (Wang et al., 2024; Kim et al., 2024). (Chen
et al., 2023) showed that this can be extended to
open-ended generation problems. Enforcing this
kind of self-consistency has been shown to improve
answer reliability and reduce biases, in a manner
analogous to majority voting by averaging over di-
verse inference paths(Wang et al., 2024). These
voting-based methods share a drawback: they re-
quire multiple model evaluations, incurring high
computational cost and latency. Our approach tack-
les this by proposing Batch Question-Context Key-
Value caching (BaQCKYV) — an optimized majority
voting by minimizing repeated computation across
permutations to cut cost.

Instead of repeatedly querying a biased model at
inference time, another strategy is to adjust the pa-
rameters that induce bias within the model itself.

Teacher—student distillation (Liusie et al., 2024)
transfers behavior from a debiased teacher to a com-
pact student, achieving bias reduction with lower
inference cost. Choi et al. (2024) proposed Bias
Node Pruning (BNP), which identifies a bias vector
in the final decoder layer and prunes parameters
in the projection matrix based on their interactions
with this vector. The resulting model can then
be used in MCQ tasks without additional runtime
overhead. While such methods reduce metrics like
FR, they may negatively impact the model’s per-
formance on other tasks due to irreversible weight
pruning or overfitting to specific bias patterns.

In summary, training-time debiasing techniques
including knowledge distillation, fine-tuning, and
structural pruning aim to internalize bias mitigation
and reduce the need for repeated inference-time
interventions. However, these often require labeled
datasets and can compromise generalization.

In contrast, our approach introduces a fully
differentiable, label-free bias objective-PBM-
that enables targeted fine-tuning to reduce per-
mutation sensitivity. This allows for unsupervised
debiasing that generalizes across datasets.

3 Methodology

Our approach to addressing selection bias involves
bias quantification and mitigation. In this section,
we define our bias quantification metric which ac-
counts for all option permutations and also describe
the mitigation strategies - BaQCKYV and LoRa-1
finetuning.

3.1 Permutation Bias Metric (PBM)

PBM is based on the intuition that, logically, a
model’s confidence in an option should be invariant
to the permutation of the options. Also, we argue
that this quantification should be label-free because
the confidence for each option content across all
permutations should be constant regardless of op-
tion correctness. Let () represent a question, and
O = {01,09,...,0,} represent a set of n options
for the question. A model processes the sequence
Sz = Q & O, for a permutation 7 of the options
O, where @ denotes the concatenation operator.
Passing a permuation of the options .S through
the model assigns probabilities P(o,(;) | Q,Ox)
to each option content o;. Similarly,for a differ-
ent permutation 7 it assigns P(o_ @ | @0).
We define our selection bias metric mathematically
for a model in Equation (1) as the variance of the

probabilities for each option content across all per-
mutations. This will capture how much the model’s
confidence fluctuates due to reordering.

Definition 1 (Permutation Bias Metric — PBM).
Given a question () and a set of answer options
O = {o01,02,...,0,}, the selection bias B(Q, O)
is defined as:

B(Q,0) = %ZVarw (Plox(i) | @,0x)) » (D
=1

We refer to this selection bias score as the Permu-
tation Bias Metric (PBM), where:

Vary (P(or) | QOx)) =
1
ol ;(P(Ow(i) ‘ Q, OW))

2
—Er [P(Oﬂ'(z) ’ QvOﬂ)]>)

and the expectation over all permutations 7 is:
1
EW[P(Oﬂ(i) ‘ Q, Oﬂ')] = H ZP(Oﬂ(z) ‘ Q, O7r)
K

By defining the PBM to be proportional to the
variance of a model’s prediction across all permu-
tations, the metric captures the inconsistency in
the predictions. A lower variance indicates more
stable and consistent predictions across permuta-
tions. Therefore, lower values of the PBM are
preferred. PBM is label-free compared to previ-
ously proposed metrics like RStd (equation (4)), FR
(equation (3)) and CKLD (equation (5)) which cap-
ture some form of divergence from the answer dis-
tribution, requiring the ground truth answers. The
RStd and CKLD do not capture any information
about the option permutations because they only
use the original permutations of the options.This as-
sumes the original permutation corresponds to the
fixed answer order provided in the dataset, which is
often arbitrary (i.e, randomly assigned during test
construction). Also, while PBM goes into the gran-
ular confidence level by considerng option probabil-
ities, the FR does not capture granular information
of the changes in confidence but only checks if the
chosen answer (argmax) is the same in the forward
and reverse permutations. By considering only 2
permutations, it does not capture information from
other permutations. The flunctuation rate (FR) is
expressed as;

1 N
FR NZ(argmax((0]Q,0x))
+ arinnaX(P(O \ Q,Oﬂ))> 3)

where 7" is the reverse permutation of m and N is
the total number of questions.

1
Ry = | =D (ri—p)?)

i=1

where n represents the number of option classes,
r; is the recall for the i-th class, and p, denotes the
average recall across all option classes.

= Di
CKLD =) p;log= 5

where p; is the ratio of ground truth choice label
for option ID ¢ and g; is the ratio for predictions.

3.2 Investigation into the cause of Selection
Bias in LLMs

In the decoder-only transformer architecture, which
is prevalent in most large language models (LLMs),
each token is generated based on causal attention.
This causal attention mechanism ensures that pre-
dictions are conditioned only on previously gener-
ated tokens. To preserve the sequential structure of
the input, positional encodings are applied during
attention computation. When a question and its
permuted-option variant are provided as input, the
set of unique tokens remains unchanged. However,
the reordering alters the positional encodings as-
signed to each token. Since positional encodings
influence attention scores, this modification can
lead to differences in the model’s output, even if
the semantic token content remains the same (see
Appendix A.1 and Appendix A.2).

3.3 Bias Mitigation Methodology

In the following sections, we explain our efficient
BaQCKYV approach and the unsupervised LoRa-1
debiasing. BaQCKYV, an efficient majority voting
variant that enforces permutation invariance (zero
bias) with reduced compute via batched inference,
ideal for critical evaluations requiring strict con-
sistency; and LoRA-1, a lightweight adaptation
method trained using our unsupervised bias metric
to debias models for single-pass inference, suitable
for large-scale deployments. BaQCKYV trades com-
putational overhead for robustness, while LoRA-1

prioritises scalability with minimal latency This
can enable users to balance bias mitigation against
operational constraints.

3.3.1 Efficient Majority Voting with BaQCKYV

The majority voting is an effective mitigation strat-
egy for selection bias (Zong et al., 2023). It passes
all option permutations of a question through the
model and chooses the option with the highest av-
erage score across the permutations. This scheme
enforces permutation invariance (0 bias on our met-
ric) by ensuring that an option has the same confi-
dence across all permutations, making it an ideal
selection bias mitigation strategy. Mathematically,
majority voting calculates

* = argmax E [P(oﬂ(l-) | Q,O,r)} , (6)
€0

where O = {01, ...,0,} is the set of answer op-

tions, 7 denotes a permutation of the options, and

E represents the average over all n! permutations

(as defined in Section 3.1).

In spite of its effectiveness in mitigating bias,the
majority voting has not been widely adopted, as the
computational complexity of making predictions
on all possible permutations is n! for an MCQ with
n options. This can be easily reduced by defining
a fixed number £ and considering only & permu-
tations instead of n!, reducing the computational
cost (Guda et al., 2024). Thus, p; = + 35 pji.
However, this scheme can be made even more ef-
ficient, without a corresponding loss in bias, by
employing a KV cache. To do so, we leverage the
insight that while an MCQ consists of a question
@ (with or without a context), and a set of options,
O, the question, (), remains the same across all
possible option permutations.

For k permutations of the options, the original for-
mulation of the majority voting (Guda et al., 2024)
requires k passes through the LLM, resulting in
an additional overhead of (k — 1) x |Questions ®
Context® Options| tokens per question. We how-
ever, note that the set of Questions & Context to-
kens remains constant across all k& passes for each
question in a batch. To eliminate the redundant
computation of these tokens across the batch, we
are motivated by the KV cache in (Pope et al., 2023)
to introduce the BaQCKYV, which caches and reuses
the KV states of the Questions @ Context tokens
for a set of k£ permutations. This cached KV state
is pre-pended to the KV states of the k£ permuted
options. The attention mask of the permuted op-
tions is then expanded based on the length of the

Questions @ Context tokens to ensure that the
LLM’s attention is correctly computed. We show in

Algorithm 1 Efficient Majority Inference with
BaQCKV

. procedure BAQCKVINFERENCE(Q ¢, Of, M)
Input: Q¢ - Question @ Context tokens, Oy - k permutations of
options, M - Language Model, Output:)}, - Model outputs

1

2

3

4: Step 1: Cache Question-Context KV States
5: KVQo M.encode(Qc)

6: Step 2: Compute KV States for Permuted Options
7 fori = 1to k do

8 KVo, ,mask; «— M .encode(O;)

9: end for

10: Step 3: Merge and Adjust KV States

11: fori = 1to k do

12: KVi = KVqo @ KVo,, mask; + 1g| & mask;
13: endfor

14: Step 4: Compute Batch Outputs

15: Vi {M.decode(KV;,mask;) | i =1,2,..., k}

16: return),
17: end procedure

Appendix A.3 that the percentage of tokens by us-
ing the BaQCKYV is defined by Equation (7), where
C is the optional set of context tokens for the Ques-
tion Q.
(k-1 xQ&C| |
Ex|QeC O]

(7N
In Equation (7), the savings are maximized when
|C| is large, as in Retrieval-Augmented Genera-
tion (RAG), where redundant computation is mini-
mized. Even when |C| = 0, savings persist due to
the shared |Q| tokens. Larger permutation sizes k
further amplify savings by increasing redundancy
in |@Q @ C| across permutations. Thus, BaQCKV
is most effective in tasks with substantial shared
context, multiple options, and large permutation
sizes.

Token savings (%) =

3.3.2 Unsupervised Lora-1 Bias Mitigation

We introduce an unsupervised fine-tuning of PBM,
our permutation-based bias metric to mitigate the
selection bias. This is because PBM is fully differ-
entiable unlike the Fluctuation Rate (FR) and the
Standard Deviation of Recalls (RStd). In addition,
it is also label-free, unlike all the other metrics in-
cluding the CKLD. We make two adjustments to
the metric when using it as a loss for fine-tuning
(equation (8)). Firstly, to ensure that there is an
adequate flow of information from the gradients
we take the variance of the log of the probabil-
ities (Equation (9)). When obtaining the option
probabilities from the model, we only consider the
logits that correspond to the option IDs instead of
logits for the entire vocabulary. Secondly, we ob-
serve that a model can learn to minimize the bias

by simply predicting a uniform probability for all
options IDs across all permutations. In that case,
the mean probability for all option IDs would be
the same as the uniform probabilities assigned to
all option IDs for all permutations. To prevent this,
we regularize the bias with the entropy across the
option IDs (Equation (10)). This helps in making
the model maintain its confidence in the chosen
answer while also minimizing the bias across dif-
ferent permutations. A is a hyper-parameter that
balances the model’s confidence in an answer and
minimizing the bias. Computing the loss defined in
Equation (8) can be expensive because each exam-
ple needs to be expanded to the full permutations.
To reduce this cost, first, we apply the BaQKCV
to compute the loss and only sample a maximum
of 24 permutations for questions with more than 4
options.

Loss =

B(Qvo)log +)\H(Q»O) (8)

where

B(Q,0)og =Y _ <log (P(on(i) | Q,0x))

T

2
1o (£ [Ploniy 1 0.0))
)

ZZ (P (o))
(10)

As LLMs are desired to be used for a wide variety
of tasks and not just answering MCQs, we adopt
the LoRa fine-tuning to preserve the original per-
formance of the LLM on non-MCQ tasks while
avoiding expensive training. The LoRa debiasing
weight adapters can be connected when the model
is used for MCQ.

Ox(4) log

4 Results

Datasets and Models : For our experiments, we
employed three small language models of compa-
rable size: Qwen2.5-3B-Instruct (Bai et al., 2023),
Phi-2 (Javaheripi et al., 2023), and Llama3.2-3B
(Grattafiori et al., 2024). We experiment with these
models on four diverse datasets across different
domains: TeleQnA (Maatouk et al., 2023), MedM-
CQA(Pal et al., 2022), QASC(Khot et al., 2020)
and ARC Challenge(Clark et al., 2018). ARC Chal-
lenge and MedMCQA have 4 options and TeleQnA
has 2-5 options, while QASC has 8.

Experiments: We conduct experiments to eval-
uate both the accuracy and bias of various mod-
els across all datasets, and to assess the effective-
ness of different selection bias mitigation strate-
gies. First, we demonstrate that majority voting not
only reduces or eliminates selection bias (quanti-
fied by PBM) but also improves model accuracy.
Furthermore, by introducing BaQCKYV, we show
that majority voting can be made significantly more
efficient, yielding substantial savings in both com-
putation time and token usage. In addition, we
assess the impact of our proposed LoRA-1 fine-
tuning method, which consistently reduces all ex-
isting bias metrics and exhibits strong transferabil-
ity across datasets.

We compare our approach against three alterna-
tive bias mitigation methods: (1) GRAY, a gray-
box technique that leverages both forward and back-
ward predictions to reduce bias; (2) BNP (Bias
Node Pruning), which prunes parameters in the fi-
nal projection layer that contribute to bias; and (3)
PRIDE, which normalizes model predictions using
prior probabilities estimated from the dataset.

However, these prior methods do not achieve
the consistency of majority voting, a technique
well-established for mitigating selection bias
(Zong et al., 2023; Wang et al., 2024). The prompt
templates and hyperparameter configurations used
in our experiments are documented in Appendix C.

Our unsupervised bias metric (PBM) corre-
lates with the difficulty of the MCQ: The results
in Table 1 show that all models exhibit varying de-
grees of bias, correlating with the difficulty of the
problem. Across all models, the bias is seen to be
highest with the MedMCQA benchmark due to its
difficulty (having the lowest accuracy). This con-
firms that selection bias is present and measurable
using our proposed metric (PBM). This also means
that PBM may be used to compare the difficulty
of different MCQ datasets without having access
to the labels. Notably, after applying majority vot-
ing (MV) with help of BaQCKY, the PBM value
consistently drops to 0.00. Additionally, applying
majority voting shows substantial improvements
in accuracy, particularly in QASC, where scores
increase significantly (e.g., from 0.630 to 0.9329
for Phi-2 and 0.4892 to 0.837 for Llama), validat-
ing the effectiveness of our metric in capturing and
mitigating bias.

Efficiency of the BaQCKY: Beyond bias reduc-
tion, the BaQCKYV enhances real-world applicabil-
ity by significantly reducing computational costs of

applying majority voting. As shown in Table 1, our
efficient BaAQCKYV approach for the majority voting
results in significant time savings of up to 88.6%
(Llama3.2-3B) and over 90% across token savings
across all models.This efficiency gain is crucial for
deploying bias-mitigation strategies at scale during
inference, making our approach feasible for real-
world applications where computational cost is a
limiting factor.

The unsupervised Lora-1 Bias Mitigation
demonstrates the best performance in maintain-
ing consistency:

The scatter plot in Figure la illustrates that,
overall, the lora-1 fine-tuning approach exhibits
greater consistency in accuracy, characterized by
a smaller standard deviation and lower selection
bias (PBM) compared to other mitigation strate-
gies. Ideally, an effective model should have its
corresponding points converge near the origin of
the plot, indicating minimal variability and bias.
Moreover, as shown in Table 2, when evaluating
the percentage change relative to the undebiased
models, lora-1 fine-tuning achieves the greatest
average reduction in both standard deviation of ac-
curacy (—27%) and selection bias (—58%) across
all evaluated models and datasets. These results
highlight the effectiveness of lora-1 in mitigating
variability and bias simultaneously. It also on aver-
age improves the accuracy of the models by 20%
even though this is not up to the 41.92% demon-
strated by PriDe. However, the PriDe demonstrates
the highest bias (1.8) and hardly offers any improve-
ments in standard deviation of accuracy. We show
a training graph of the unsupervised finetuning for
TeleQnA dataset process in Figure 1b.

The transferability of the unsupervised Lora-
1 Bias Mitigation: We investigate the transfer-
ability of the unsupervised LoRA-1 fine-tuning ap-
proach by training a model on a single dataset and
evaluating the resulting checkpoint on all other
datasets. The average performance across each
model/dataset pair is reported in Table 3, with com-
plete results provided in Appendix B.2. As shown
in Table 3, the unsupervised fine-tuning generally
transfers well: it consistently reduces our permu-
tation bias metric (PBM), fluctuation rate, and the
standard deviation of accuracy across option per-
mutations. In many cases, it also yields modest
improvements in accuracy. However, similar to
the non-transfer setting, this approach does not
improve the CKLD metric. Notably, for the Qwen-
MEDCQ model, CKLD actually increases signifi-

Model Name

TeleQnA

MedMCQA

QASC ARC

Acc

PBM TS

ds) TokS (%)

Acc PBM TS

ds) TokS (%)

Acc PBM TS (seconds) TokS(%) Acc PBM TS ds) TokS (%)

Qwen2.5-3B
Qwen2.5-3B + MV

0.5464
0.5710

0.021
0.000

1.009
0.0491

0.4583

0.479
0.487

0.058

0.000 0.068

0.737
0.947

0.011 0.996
0.000 0.1562

0.804
0.839

0.029
0.00

0.9610

0.5328 0.5377 0.0680 0.3600

Phi-2
Phi-2 + MV

0.2568
0.328

0.0303
0.000

0912
0.0985

0.3596

0.359
0.369

0.082
0.000

0.888
0.0576

0.630
0.9329

0.024 0.9443
0.000 0.063

0.552
0.4547

0.0269
0.000

0.8463

0.551 0.0543 0.0579 0.366

Llama3.2-3B
Llama3.2-3B + MV

0.4536
0.516

0.0053
0.000

0.9856
0.065

0.4618

0.370
0.384

0.017
0.000

0.9549
0.0619

0.4892
0.837

0.005
0.000

1.065
0.0551

0.5179
0.537

0.0091
0.00

0.9371

0.533 0.545 0.0804 0.3639

Table 1: Accuracy and bias values for different models across multiple datasets, along with computational efficiency
improvements using Majority Voting (MV) with BaQCKYV.

Method PBM | RStd] CKLD] FRJ] Acc?T AccStd]
LoRA -0.586 -0.076 0.928 -0.525 0.200 -0.276
Gray -0.364 -0.045 0.677 - 0.077 0.940
BNP -0.119 0.000 0.653 -0.250 0.064 -0.131
Pride 1.880 -0.240 0.432 -0.137 0.419 -0.040

Table 2: Comparison of mitigation methods across bias,
stability, and accuracy. We did not compute FR for Gray
box, since it is always 0 by design. LoRA is our method.
Gray (Choi et al., 2024), BNP (Choi et al., 2024), and
Pride (Zheng et al., 2024) are prior approaches.

Model-Dataset;q;n PBM | RStd| CKLD| FRJ Acct AccStd
QWEN-MEDCQ 0497 -0411 207.74 -0.150 0.028 -0.279
QWEN-TeleQNA 10509 0.710 401 -0.160 0.029 -0.206
QWEN-ARC 0413 1.017 463 -0.126 0026 -0.234
QWEN-QASC 0319 1.168 506 -0.006 -0.000 -0.153
Phi2-ARC 0640 0712 090 -0.764 0423 -0.371
Llama3.2-TeleQNA -0.687 -0425 -0.60 -0.760 0282 -0.479
Llama3.2-ARC 20799 -0.314 0.18 -0.651 0220 -0.300
Llama3.2-QASC 0.863 0213 0.54 -0.627 -0.085 -0.073

Table 3: The average percentage change in bias metrics
and accuracy for transferability experiments. For each
row, the model-dataset is evaluated on all other datasets
excluding the one used for finetuning

cantly, accompanied by a more than 200% rise in
RStd. This may be due to the model shifting toward
greater consistency across permutations, which can
lead to more uniform confidence distributions that
diverge from dataset-specific label frequencies. Im-
portantly, this behavior aligns with our objective of
reducing positional sensitivity.

5 Conclusion

In this work, we address a critical yet underex-
plored challenge in Multiple-Choice Question An-
swering (MCQA)—selection bias in Large Lan-
guage Models (LLMs). We introduced a novel
unsupervised, label-free bias metric (PBM) that
directly quantifies inconsistencies in predictions
across permuted answer choices, offering a more
faithful measure of selection bias than existing
methods. To mitigate this bias without incur-
ring prohibitive computational costs, we proposed
BaQCKYV, an efficient majority voting strategy,
and LoRA-1, a lightweight fine-tuning method

0.12
° Method
- ® lora
0.10 ® gray
® bnp
pride
0.08 *
Model
o
% 0.06 ® qwen
o] H llama3
° & phi2
0.04
0.02 " *
.]
4 o ® o
1531‘. ¢ °®
0.00
0.00 0.02 0.04 0.06 0.08 010 0.12 0.14 0.16
our bias

(a) Standard deviation of accuracy across permutations vs
bias across all models and datasets for different mitigation
strategies.

Bias Loss

2 4 6 8
Epoch

10 2 4 6 8 10
Epoch

(b) Loral finetuning training graph showing bias and accuracy
for the TeleQnA dataset.

Figure 1: Visualization of bias-related behaviors across
models and strategies.

grounded in our bias metric. Our experiments
across diverse MCQA datasets and models demon-
strate that these techniques not only reduce bias
and improve accuracy but also significantly cut
down inference time and token usage, making them
scalable and practical for real-world deployment.
Ultimately, our work provides both a theoretical
and practical framework for more reliable and effi-
cient MCQA with LLMs, laying the foundation for
future advancements in fair and robust Al systems.

6 Limitations

This work only focuses on decoder only trans-
former language models and did not investigate
bias in other language models such as encoder-

decoder models. Also, we only investigate MCQs
where the model has to choose one option and do
not consider other types of MCQs.

References

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chenggiang Lu,
Keming Lu, and 29 others. 2023. Qwen technical
report. Preprint, arXiv:2309.16609.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan
Xiao, Pengcheng Yin, Sushant Prakash, Charles Sut-
ton, Xuezhi Wang, and Denny Zhou. 2023. Universal
self-consistency for large language model generation.
arXiv preprint arXiv:2311.17311.

Hyeong Kyu Choi, Weijie Xu, Chi Xue, Stephanie Eck-
man, and Chandan K. Reddy. 2024. Mitigating se-
lection bias with node pruning and auxiliary options.
Preprint, arXiv:2409.18857.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. ArXiv,
abs/1803.05457.

Francesco Croce, Maksym Andriushchenko, Vikash Se-
hwag, Edoardo Debenedetti, Nicolas Flammarion,
Mung Chiang, Prateek Mittal, and Matthias Hein.
2021. Robustbench: A standardized adversarial ro-
bustness benchmark. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2).

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Blessed Guda, Gabrial Zencha Ashungafac, Lawrence
Francis, and Carlee Joe-Wong. 2024. Qmos: En-
hancing llms for telecommunication with ques-
tion masked loss and option shuffling. Preprint,
arXiv:2409.14175.

Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jy-
oti Aneja, Sebastien Bubeck, Caio César Teodoro
Mendes, Weizhu Chen, Allie Del Giorno, Ronen
Eldan, Sivakanth Gopi, and 1 others. 2023. Phi-2:
The surprising power of small language models. Mi-
crosoft Research Blog.

Tushar Khot, Peter Clark, Michal Guerquin, Peter
Jansen, and Ashish Sabharwal. 2020. Qasc: A
dataset for question answering via sentence composi-
tion. Preprint, arXiv:1910.11473.

Minjoon Kim and 1 others. 2024. Universal self-
consistency for large language model generation.
arXiv preprint arXiv:2404.56789.

Haitao Li, Junjie Chen, Qingyao Ai, Zhen Chu, Yu-
jie Zhou, Qian Dong, and Yong Liu. 2024. Cali-
braeval: Calibrating prediction distribution to miti-

gate selection bias in 1lms-as-judges. arXiv preprint
arXiv:2410.15393.

Adian Liusie, Yassir Fathullah, and Mark J. F. Gales.
2024. Teacher-student training for debiasing: Gen-
eral permutation debiasing for large language models.
Preprint, arXiv:2403.13590.

Ali Maatouk, Fadhel Ayed, Nicola Piovesan, Anto-
nio De Domenico, Merouane Debbah, and Zhi-Quan
Luo. 2023. Teleqna: A benchmark dataset to assess
large language models telecommunications knowl-
edge. Preprint, arXiv:2310.15051.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan
Sankarasubbu. 2022. Medmcqa : A large-scale multi-
subject multi-choice dataset for medical domain ques-
tion answering. Preprint, arXiv:2203.14371.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi-
ciently scaling transformer inference. Proceedings
of Machine Learning and Systems, 5:606-624.

Yuval Reif and Roy Schwartz. 2024. Beyond perfor-
mance: Quantifying and mitigating label bias in 1lms.
In Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 6784—6798.

Xinyi Wang and 1 others. 2024. Self-consistency im-
proves chain of thought reasoning in language mod-
els. arXiv preprint arXiv:2403.45678.

Sheng-Lun Wei, Cheng-Kuang Wu, Hen-Hsen Huang,
and Hsin-Hsi Chen. 2024a. Unveiling selection bi-
ases: Exploring order and token sensitivity in large
language models. arXiv preprint arXiv:2406.03009.

Sheng-Lun Wei, Cheng-Kuang Wu, Hen-Hsen Huang,
and Hsin-Hsi Chen. 2024b. Unveiling selection bi-
ases: Exploring order and token sensitivity in large
language models. In Findings of the Association for
Computational Linguistics: ACL 2024, pages 5598—
5621, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and
Minlie Huang. 2024. Large language models are not
robust multiple choice selectors. In The Twelfth Inter-
national Conference on Learning Representations.

Han Zhou, Xingchen Wan, Lev Proleev, Diana Mincu,
Jilin Chen, Katherine Heller, and Subhrajit Roy.
2024. Batch calibration: Rethinking calibration for
in-context learning and prompt engineering. arXiv
preprint arXiv:2309.17249.

https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2409.18857
https://arxiv.org/abs/2409.18857
https://arxiv.org/abs/2409.18857
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2409.14175
https://arxiv.org/abs/2409.14175
https://arxiv.org/abs/2409.14175
https://arxiv.org/abs/2409.14175
https://arxiv.org/abs/2409.14175
https://arxiv.org/abs/1910.11473
https://arxiv.org/abs/1910.11473
https://arxiv.org/abs/1910.11473
https://arxiv.org/abs/1910.11473
https://arxiv.org/abs/1910.11473
https://arxiv.org/abs/2403.13590
https://arxiv.org/abs/2403.13590
https://arxiv.org/abs/2403.13590
https://arxiv.org/abs/2310.15051
https://arxiv.org/abs/2310.15051
https://arxiv.org/abs/2310.15051
https://arxiv.org/abs/2310.15051
https://arxiv.org/abs/2310.15051
https://arxiv.org/abs/2203.14371
https://arxiv.org/abs/2203.14371
https://arxiv.org/abs/2203.14371
https://arxiv.org/abs/2203.14371
https://arxiv.org/abs/2203.14371
https://doi.org/10.18653/v1/2024.findings-acl.333
https://doi.org/10.18653/v1/2024.findings-acl.333
https://doi.org/10.18653/v1/2024.findings-acl.333
https://doi.org/10.18653/v1/2024.findings-acl.333
https://doi.org/10.18653/v1/2024.findings-acl.333
https://openreview.net/forum?id=shr9PXz7T0
https://openreview.net/forum?id=shr9PXz7T0
https://openreview.net/forum?id=shr9PXz7T0

Yongshuo Zong, Tingyang Yu, Ruchika Chavhan,
Bingchen Zhao, and Timothy Hospedales. 2023.
Fool your (vision and) language model with em-
barrassingly simple permutations. arXiv preprint
arXiv:2310.01651.

10

A Appendix

A.1 Positional Encoding and Sensitivity of Transformers to Option Permutations

In decoder-only transformers, token generation is conditioned on causal self-attention, where each token
attends to prior tokens using both content-based embeddings and positional encodings. When a question
@ and its associated options O = {01, 02,. .., 0y} are presented, the model processes the sequence:

S=Q®0.
For a permutation 7 of the options, the modified sequence becomes:
Sr=Q ® Ox.
While the token set remains unchanged, the reordering affects positional encodings, altering attention

computations. The self-attention mechanism computes attention scores between tokens at positions ¢ and
j as:

Q(oi +pi) - (K(oj +pj))"
¥ .

Attention; ; =

For the permuted sequence S, the updated scores are:

i + w(i)) * K(o; + (i T
Attention] ; = Q(0i + pr(iy) - (K(0j + Pr(j))) .
7 Vd

Since p; # px(s). the attention patterns for S and S differ, resulting in distinct contextual representations
for the same token set.

As attention weights directly influence token representations, these changes propagate through the
network, modifying the sequence representation and ultimately affecting the model’s output distribution.
Let P(y | S) and P(y | Sr) denote the probability distributions over possible answers. Then,

P(y|S)# P(y | Sx)-

A.2 Impact of option permutations on attention scores

The impact of the permutations owing to the positional encoding on the attention scores is illustrated in
Figure 2. The figure shows that there are more fluctuations in the attention scores on the option tokens
(later parts of the x-axis) compared to the question tokens (earlier tokens on the x-axis).

0.5
0.6

Question tokens Option tokens

Question tokens Option tokens

05 0.4

Permuted Prompts

€222 12026181191 GL¥IELELLLOLE B2 9 G ¥ €2 L O

Permuted Prompts

€ZZZ LZOZGLBL/LOLSLPLELEI L 016 B L 9 G ¥ €2 |+ O

Tokens

Tokens

Figure 2: Attention scores for the last token in the last layer of the Llama model across different prompt permutations,
shown for two transformer heads.

11

A.3 Proof of Token Savings in BaQCK

In the original Majority Voting (MV) framework, each question undergoes k passes through the LLM,
processing the full sequence of) @ C' @ O each time. The total token cost per question is:

Costpyy = k X ’Q@C@O| (11D

In BaQCK, the shared @ & C' tokens are processed only once, while the O tokens are processed & times.
Thus, the total token cost per question is:

Costmy = |Q @ C| + k x |0 (12)
The token savings is computed as:

Savings = Costmy — Costgagck (13)
=kx|QeCaO0|—-(QaC|+kx|0]) (14)
=kx|Q®Cl+kx|0|-|QaC|—kx|O] (15)
=(k-1)x|QaC]| (16)

Expressing this as a percentage of the original cost:
(k—1)x|Qa&C|

Token savings (%) = x 100 17)

Ex|QaeCaO0|

This result shows that BaQCK significantly reduces token computations, particularly when |C/| is large
(e.g., in Retrieval-Augmented Generation). Even for small or zero-context cases (|C| = 0), savings persist
due to shared || tokens. Increasing k further amplifies efficiency by reducing redundant recomputation
across shuffled options.

B Experimental Results

B.1 Bias Mitigation Results on all models and datasets

Table 5: Phi-2 Performance across Datasets (Raw Scores)

Metric Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std
ARC Dataset
Baseline 0.0269 0.2207 0.2853 0.6334 0.5520 0.0110
LoRa FineTuning 0.0214 0.2102 0.2501 0.6225 0.5589 0.0082
Gray-Box Weighting 0.0187 0.1965 0.2394 - 0.5661 0.0071
BNP 0.0276 0.2251 0.2923 0.6881 0.5498 0.0104
Pride 0.1507 0.2769 0.2933 0.6987 0.5512 0.0107
TeleQNA Dataset
Baseline 0.0303 0.3559 1.5208 0.8114 0.2568 0.0216
LoRa FineTuning 0.0255 0.3471 1.4801 0.8041 0.2642 0.0173
Gray-Box Weighting 0.0196 0.3432 1.4273 - 0.2697 0.0152
BNP 0.0388 0.3674 1.5404 0.7463 0.2553 0.0201
Pride 0.1301 0.3865 1.4311 0.7522 0.2374 0.0214
MedMCQ Dataset
Baseline 0.0512 0.3981 1.4585 0.9369 0.3409 0.0194
LoRa FineTuning 0.0418 0.3907 1.4132 0.9286 0.3467 0.0168
Gray-Box Weighting 0.0356 0.3849 1.4017 0.0000 0.3523 0.0150
BNP 0.0542 0.4072 1.4682 0.8624 0.3397 0.0175
Pride 0.1489 0.4138 1.4425 0.8796 0.3402 0.0189
QASC Dataset
Baseline 0.0314 0.3232 29914 0.9676 0.1577 0.0122
LoRa FineTuning 0.0249 0.3014 2.7412 0.9548 0.1643 0.0103
Gray-Box Weighting 0.0221 0.2876 2.6785 - 0.1671 0.0094
BNP 0.0327 0.3357 3.0141 0.9251 0.1552 0.0109
Pride 0.1273 0.3428 2.8345 0.9387 0.1499 0.0118

12

Table 4: QWEN Performance across Datasets (Raw Scores)

Metric Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std
ARC Dataset
Baseline 0.0268 0.0158 0.0003 0.1997 0.8038 0.0088
LoRa FineTuning 0.0151 0.0101 0.0004 0.1869 0.808 0.0073
Gray-Box Weighting 0.0129 0.0083 0.0002 - 0.8283 0.0048
BNP 0.0270 0.0169 0.0004 0.2550 0.7994 0.0074
Pride 0.1629 0.0261 0.0007 0.2374 0.8039 0.0083
TeleQNA Dataset
Baseline 0.0214 0.0564 0.0070 0.5874 0.5464 0.0189
LoRa FineTuning 0.0182 0.0879 0.0223 0.6093 0.5437 0.0141
Gray-Box Weighting 0.0149 0.0179 0.0070 - 0.5492 0.1144
BNP 0.0384 0.0881 0.0145 0.2158 0.5546 0.0143
Pride 0.1271 0.0778 0.0040 0.3389 0.4186 0.0188
MedMCQ Dataset
Baseline 0.0577 0.0179 0.0006 0.8964 0.4805 0.0057
LoRa FineTuning 0.0363 0.0771 0.0082 0.9031 0.4798 0.0055
Gray-Box Weighting 0.0313 0.0087 0.0062 0.0000 0.4867 0.0038
BNP 0.0578 0.0096 0.0056 0.2421 0.4797 0.0000
Pride 0.1517 0.0238 0.0078 0.2476 0.4801 0.0057
QASC Dataset
Baseline 0.0110 0.0547 0.0117 0.2062 0.8952 0.0068
LoRa FineTuning 0.0031 0.0101 0.0003 0.1188 0.9698 0.0040
Gray-Box Weighting 0.0123 0.0324 0.0146 - 0.8801 0.0076
BNP 0.0119 0.0573 0.0129 0.1619 0.8866 0.0087
Pride 0.0942 0.0594 0.0060 0.1690 0.8729 0.0072

Table 6: LLama 3.2 Performance across Datasets (Raw Scores)

Metric Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std
ARC Dataset
Baseline 0.0091 0.1082 0.1050 0.5171 0.5179 0.0097
LoRa FineTuning 0.0034 0.1780 0.1144 0.1373 0.5339 0.0092
Gray-Box Weighting 0.0065 0.0239 0.0999 0.0000 0.5957 0.0083
BNP 0.0083 0.0500 0.0230 0.3279 0.5392 0.0108
Pride 0.0318 0.0911 0.0125 0.4789 0.5615 0.0102
TeleQNA Dataset
Baseline 0.0053 0.1010 0.0907 0.5574 0.4536 0.0165
LoRa FineTuning 0.0002 0.1998 0.3120 0.3306 0.3830 0.0245
Gray-Box Weighting 0.0036 0.0330 0.0828 - 0.4004 0.1034
BNP 0.0056 0.1786 0.0614 0.1746 0.4754 0.0199
Pride 0.0161 0.1638 0.0483 0.5575 0.4317 0.0274
MedMCQ Dataset
Baseline 0.0167 0.3182 0.5597 0.8128 0.3696 0.0161
LoRa FineTuning 0.0000 0.0052 0.0531 0.2116 0.3213 0.0056
Gray-Box Weighting 0.0059 0.0221 0.8249 - 0.4014 0.0044
BNP 0.0109 0.3098 0.5049 0.7547 0.3851 0.0154
Pride 0.0095 0.0165 0.0112 0.8217 0.3973 0.0077
QASC Dataset
Baseline 0.0046 0.2021 0.4818 0.6544 0.4892 0.0138
LoRa FineTuning 0.0026 0.0130 0.0014 0.1263 0.9514 0.0037
Gray-Box Weighting 0.0061 0.2500 0.3122 - 0.6210 0.0138
BNP 0.0037 0.1357 0.1357 0.3359 0.7441 0.0107
Pride 0.0050 0.0545 0.0017 0.4841 0.8715 0.0096

13

B.2 Transferability Results over all datasets and models

Table 7: Transferability of Model-Checkpoints Across Datasets (Complete Results)

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std
QWEN/MEDCQ — ARC Dataset
Baseline 0.0268 0.0158 0.0003 0.1997 0.8038 0.0088
LoRa FineTune 0.0101 0.0004 0.1869 0.1869 0.8080 0.0073
% Change -43.6% -36.1% +333.3% -6.4% +0.5% -17.0%
LoRa Transfer 0.0215 0.0116 0.0001 0.2438 0.8034 0.0075
QWEN/MEDCQ — TeleQNA Dataset
Baseline 0.0214 0.0564 0.0070 0.5874 0.5464 0.0189
LoRa FineTune 0.0182 0.0879 0.0223 0.6093 0.5437 0.0141
% Change -15.0% +559% +218.6% +3.7% -0.5% -25.4%
LoRa Transfer 0.0254 0.0671 0.0096 0.2076 0.5574 0.0116
QWEN/MEDCQ — QASC Dataset
Baseline 0.0110 0.0547 0.0117 0.2062 0.8952 0.0068
LoRa FineTune 0.0031 0.0101 0.0003 0.1188 0.9698 0.0040
% Change -72.2% -81.5% -97.4% -42.4% +8.3% -41.2%
LoRa Transfer 0.0097 0.0720 0.0291 0.1847 0.8585 0.0071

Table 8: Transferability of Model-Checkpoints (Continued)

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std
QWEN/TeleQNA — ARC Dataset
Baseline 0.0268 0.0158 0.0003 0.1997 0.8038 0.0088
LoRa FineTune 0.0151 0.0101 0.0004 0.1869 0.8080 0.0073
LoRa Transfer 0.0247 0.0163 0.0006 0.2635 0.8068 0.0069
QWEN/TeleQNA — MedMCQ Dataset
Baseline 0.0577 0.0179 0.0006 0.8964 0.4805 0.0057
LoRa FineTune 0.0363 0.0771 0.0082 0.9031 0.4798 0.0055
LoRa Transfer 0.0484 0.0279 0.0024 0.2639 0.4803 0.0049
QWEN/TeleQNA — QASC Dataset
Baseline 0.0110 0.0547 0.0117 0.2062 0.8952 0.0068
LoRa FineTune 0.0031 0.0101 0.0003 0.1188 0.9698 0.0040
LoRa Transfer 0.0167 0.0913 0.0516 0.2408 0.8337 0.0097
Table 9: Transferability of Model-Checkpoints (Continued)
Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std
QWEN/ARC — TeleQNA Dataset
Baseline 0.0214 0.0564 0.0070 0.5874 0.5464 0.0189
LoRa FineTune 0.0182 0.0879 0.0223 0.6093 0.5437 0.0141
LoRa Transfer 0.0025 0.1363 0.0805 0.1694 0.5464 0.0139
QWEN/ARC — MedMCQ Dataset
Baseline 0.0577 0.0179 0.0006 0.8964 0.4805 0.0057
LoRa FineTune 0.0363 0.0771 0.0082 0.9031 0.4798 0.0055
LoRa Transfer 0.0041 0.1532 0.1005 0.4023 0.4604 0.0079
QWEN/ARC — QASC Dataset
Baseline 0.0110 0.0547 0.0117 0.2062 0.8952 0.0068
LoRa FineTune 0.0031 0.0101 0.0003 0.1188 0.9698 0.0040
LoRa Transfer 0.0214 0.2950 1.3080 0.8293 0.3013 0.0134

14

Table 10: Transferability of Model-Checkpoints (Continued)

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std
QWEN/QASC — ARC Dataset

Baseline 0.0268 0.0158 0.0003 0.1997 0.8038 0.0088

LoRa FineTune 0.0151 0.0101 0.0004 0.1869 0.8080 0.0073

LoRa Transfer 0.0279 0.0183 0.0011 0.2481 0.7923 0.0074
QWEN/QASC — TeleQNA Dataset

Baseline 0.0214 0.0564 0.0070 0.5874 0.5464 0.0189

LoRaFineTune 0.0182 0.0879 0.0223 0.6093 0.5437 0.0141

LoRa Transfer 0.0408 0.0620 0.0223 0.2158 0.5601 0.0140
QWEN/QASC — MedMCQ Dataset

Baseline 0.0577 0.0179 0.0006 0.8964 0.4805 0.0057

LoRa FineTune 0.0363 0.0771 0.0082 0.9031 0.4798 0.0055

LoRa Transfer 0.0573 0.1089 0.0067 0.2175 0.4735 0.0044

Table 11: Transferability of Phi-2 Model-Checkpoints

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std
Phi-2/TeleQnA — ARC Dataset

Baseline 0.0269 02207 0.2853 0.6334 0.5520 0.0110

LoRaFineTune 0.0148 0.0257 0.0021 0.2858 0.7553 0.0076

LoRa Transfer 0.0217 0.0545 0.0067 0.2576 0.6500 0.0080

Phi-2/TeleQnA — MedMCQ Dataset

Baseline 0.0512 0.3981 1.4585 0.9369 0.3409 0.0194

LoRaFineTune 0.0013 0.0893 0.0527 0.3358 0.3569 0.0087

LoRa Transfer 0.0256 0.0709 0.0478 0.3799 0.3344 0.0051
Phi-2/TeleQnA — QASC Dataset

Baseline 0.0314 03232 29914 0.9676 0.1577 0.0122

LoRa FineTune 0.0002 0.2373 1.0080 0.1003 0.3002 0.0112

LoRa Transfer 0.0073 0.0605 0.0067 0.0950 0.8542 0.0008

Table 12: Transferability of Phi-2 Model-QASC
Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std
Phi-2/Qasc — ARC Dataset

Baseline 0.0269 0.2207 0.2853 0.6334 0.5520 0.0110

LoRaFineTune 0.0148 0.0257 0.0021 0.2858 0.7553 0.0076

LoRa Transfer 0.0129 02855 0.5250 0.7511 0.4489 0.0091
Phi-2/Qasc — TeleQNA Dataset

Baseline 0.0303 0.3559 1.5208 0.8114 0.2568 0.0216

LoRa FineTune 0.0260 0.0271 0.0087 0.0267 0.3530 0.0099

LoRa Transfer 0.0494 0.4000 2.9890 1.0000 0.2100 0.0233
Phi-2/Qasc — MedMCQ Dataset

Baseline 0.0512 0.3981 1.4585 0.9369 0.3409 0.0194

LoRaFineTune 0.0013 0.0893 0.0527 0.3358 0.3569 0.0087

LoRa Transfer 0.0300 0.4259 2.4919 0.9931 0.3201 0.0199

15

Table 13: Transferability of Phi-2 Model-MedMCQA)

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std
Phi-2/MedMCQ — ARC Dataset

Baseline 0.0269 0.2207 0.2853 0.6334 0.5520 0.0110

LoRaFineTune 0.0148 0.0257 0.0021 0.2858 0.7553 0.0076

LoRa Transfer 0.0149 0.0257 0.0021 0.2858 0.7553 0.0076

Phi-2/MedMCQ — TeleQNA Dataset

Baseline 0.0303 0.3559 1.5208 0.8114 0.2568 0.0216

LoRaFineTune 0.0260 0.0271 0.0087 0.0267 0.3530 0.0099

LoRa Transfer 0.0260 0.0960 0.0115 0.1939 0.4125 0.0170
Phi-2/MedMCQ — QASC Dataset

Baseline 0.0314 0.3232 29914 0.9676 0.1577 0.0122

LoRa FineTune ~ 0.0002 0.2373 1.0080 0.1003 0.3002 0.0112

LoRa Transfer 0.0004 0.0291 0.0017 0.1134 0.9265 0.0051

Table 14: Transferability of Phi-2/ARC Model-ARC

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std
Phi-2/ARC — ARC Dataset
Baseline 0.0269 0.2207 0.2853 0.6334 0.5520 0.0110
LoRaFineTune 0.0148 0.0257 0.0021 0.2858 0.7553 0.0076
LoRa Transfer 0.0217 0.0545 0.0067 0.2575 0.6498 0.0076
Phi-2/ARC — TeleQNA Dataset
Baseline 0.0303 0.3559 1.5208 0.8114 0.2568 0.0216
LoRaFineTune 0.0260 0.0271 0.0087 0.0267 0.3530 0.0099
LoRa Transfer 0.0261 0.0964 0.0115 0.1939 0.4126 0.0099
Phi-2/ARC — MedMCQ Dataset
Baseline 0.0512 0.3981 1.4585 0.9369 0.3409 0.0194
LoRa FineTune 0.0013 0.0893 0.0527 0.3358 0.3569 0.0087
LoRa Transfer 0.0269 0.0893 0.0214 0.2737 0.3749 0.0045
Phi-2/ARC — QASC Dataset
Baseline 0.0314 03232 29914 0.9676 0.1577 0.0122
LoRa FineTune 0.0002 0.2373 1.0080 0.1003 0.3002 0.0112
LoRa Transfer 0.0042 0.0291 0.0017 0.1133 0.9265 0.0059

Table 15: Transferability of Llama 3.2 Model-ARC

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std
Llama 3.2/ARC — TeleQNA Dataset

Baseline 0.0053 0.1010 0.0907 0.5574 0.4536 0.0165

LoRaFineTune 0.0002 0.1998 0.3120 0.3306 0.3830 0.0245

LoRa Transfer 0.0007 0.2344 0.5903 0.6393 0.4235 0.0209
Llama 3.2/ARC — MedMCQ Dataset

Baseline 0.0167 0.3182 0.5597 0.8128 0.3696 0.0161

LoRa FineTune ~ 0.0000 0.0052 0.0531 0.2116 0.3213 0.0056

LoRa Transfer 0.0012 0.3943 1.2546 0.9132 0.3541 0.0189

Llama 3.2/ARC — QASC Dataset

Baseline 0.0046 0.2021 0.4818 0.6544 0.4892 0.0138

LoRa FineTune 0.0026 0.0130 0.0014 0.1263 0.9514 0.0037

LoRa Transfer 0.0020 0.2963 1.7180 0.8920 0.2397 0.0119

16

Table 16: Transferability of Llama 3.2 Model-TeleQnA

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std
Llama 3.2/TeleQNA — ARC Dataset

Baseline 0.0091 0.1082 0.1050 0.5171 0.5179 0.0097

LoRa FineTune 0.0034 0.1780 0.1144 0.1373 0.5339 0.0092

LoRa Transfer 0.0010 0.1828 0.2423 0.5416 0.4343 0.0136

Llama 3.2/TeleQNA — MedMCQ Dataset

Baseline 0.0167 03182 0.5597 0.8128 0.3696 0.0161

LoRa FineTune ~ 0.0000 0.0052 0.0531 0.2116 0.3213 0.0056

LoRa Transfer 0.0004 0.3840 1.6399 0.9013 0.3376 0.0056
Llama 3.2/TeleQNA — QASC Dataset

Baseline 0.0046 0.2021 0.4818 0.6544 0.4892 0.0138

LoRa FineTune 0.0026 0.0130 0.0014 0.1263 0.9514 0.0037

LoRa Transfer 0.0012 03290 3.5746 0.9946 0.1369 0.0124

Table 17: Transferability of Llama 3.2 Model-QASC

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std
Llama 3.2/QASC — ARC Dataset

Baseline 0.0091 0.1082 0.1050 0.5171 0.5179 0.0097

LoRa FineTune 0.0034 0.1780 0.1144 0.1373 0.5339 0.0092

LoRa Transfer 0.0003 0.1195 0.1184 0.4515 0.4944 0.0094
Llama 3.2/QASC — TeleQNA Dataset

Baseline 0.0053 0.1010 0.0907 0.5574 0.4536 0.0165

LoRaFineTune 0.0002 0.1998 0.3120 0.3306 0.3830 0.0245

LoRa Transfer 0.0007 0.2344 0.5903 0.6393 0.4235 0.0175
Llama 3.2/QASC — MedMCQ Dataset

Baseline 0.0167 0.3182 0.5597 0.8128 0.3696 0.0161

LoRa FineTune ~ 0.0000 0.0052 0.0531 0.2116 0.3213 0.0056

LoRa Transfer 0.0012 0.3943 1.2545 0.9132 0.3541 0.0018

Table 18: Transferability of Llama 3.2 Model-MedMCQ

Source/Target Bias RStd CKLD Fluct. Rate Accuracy Perm Acc Std
Llama 3.2/MedMCQ — ARC Dataset

Baseline 0.0091 0.1082 0.1050 0.5171 0.5179 0.0097

LoRa FineTune 0.0034 0.1780 0.1144 0.1373 0.5339 0.0092

LoRa Transfer 0.0011 0.0914 0.0645 0.4129 0.4893 0.0133

Llama 3.2/MedMCQ — TeleQNA Dataset

Baseline 0.0053 0.1010 0.0907 0.5574 0.4536 0.0165

LoRaFineTune 0.0002 0.1998 0.3120 0.3306 0.3830 0.0245

LoRa Transfer 0.0003 0.1730 0.2920 0.4508 0.4153 0.0202
Llama 3.2/MedMCQ — QASC Dataset

Baseline 0.0046 0.2021 0.4818 0.6544 0.4892 0.0138

LoRa FineTune 0.0026 0.0130 0.0014 0.1263 0.9514 0.0037

LoRa Transfer 0.0009 0.2999 1.8713 0.9039 0.2441 0.0154

C Prompt Templates and Hyperparameter Configurations

C.1 Prompt Templates Used in All Experiments

This appendix provides the exact prompt templates used during evaluation of transferability experiments

across datasets and models.

MedMCQA Dataset (All Models)

Instruct = Youre a Medical Question Answering Expert, answer the following question.

Please generate only answer choice (1, 2, 3 or 4)

{question}

17

{options}
Output: option

TeleQnA Dataset (Qwen & Llama)

Instruct: Answer the following question using the context provided.

Your answer must start with the correct option letter (1, 2, 3, 4, or 5):
{question}

{options}

Output: option

TeleQnA or ARC Dataset (Phi-2)

Instruct: Answer the following question.

Your answer must start with the correct option letter (1, 2, 3, 4, or 5) followed by the
text of the answer:

{question}

{options}

Output: option

ARC Dataset (All Models Except Phi)

Instruct: {question}
{options}
Output: option

QASC Dataset (Qwen, Phi-2)

Instruct: Answer the following question using the context provided, reason over it.
Please generate only answer choice (1, 2, 3, 4, 5, 6, 7 or 8) without any explanations

{question}
context: {context}

{options}
{question}
Output: option

QASC Dataset (Llama)

Instruct: Answer the following question using the context provided, reason over it.
Please generate only answer choice (1, 2, 3, 4, 5, 6, 7 or 8) without any explanations

{question}
context: {context}

{options}
Output:

C.2 Hyper-Parameter Configurations

Unsupervised Lora Finetuning: During each iteration we randomly sample 64 samples every epoch
from the train split of the dataset and use it for training. For the Lora adapters, we target the attention
QKYV and Output projection weights, with a dropout of 0.05 and Lora alpha of 16. We used an AdamW
optimizer with learning rate of 1e~* and weight decay of 0.001 for all experiments. In computing the
loss, we use an « of 0.1 to weight the entropy.

18

C.3 Model Size And Budget

We evaluated our methods on a set of compact yet capable LLMs, including Qwen2.5-3B, Phi-2, and
LLaMA3.2-3B, each with approximately 3 billion parameters. All experiments were conducted on
NVIDIA L40 GPUs (48 GB VRAM). Using AWS g5.12xlarge instances (approximate L40 equivalent)
priced at $3.06/hour on-demand, the cost per fine-tuning run is $6-$9, and BaQCKY inference costs
are $1-$2 per dataset. This keeps the total cost for running all experiments within a practical research
budget, demonstrating that our methods are efficient and deployable even on mid-sized mod Bias Metric
Computation: To compute the Our Bias metric, we do not use the raw probabilities over the vocab size.
We rather use the logits for only the option IDs to compute the probabilities. Also, we limit the number
of permutations to a maximum of 24 (4!). This is due to our GPU memory memory budget and our
considerations that most MCQs would have around 4 options.

19

	Introduction
	Related Work
	Bias Evaluation in LLMs
	Bias Mitigation Strategies

	Methodology
	Permutation Bias Metric (PBM)
	Investigation into the cause of Selection Bias in LLMs
	Bias Mitigation Methodology
	Efficient Majority Voting with BaQCKV
	Unsupervised Lora-1 Bias Mitigation

	Results
	Conclusion
	Limitations
	Appendix
	Positional Encoding and Sensitivity of Transformers to Option Permutations
	Impact of option permutations on attention scores
	Proof of Token Savings in BaQCK

	Experimental Results
	Bias Mitigation Results on all models and datasets
	Transferability Results over all datasets and models

	Prompt Templates and Hyperparameter Configurations
	Prompt Templates Used in All Experiments
	Hyper-Parameter Configurations
	Model Size And Budget

