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Abstract

We present BrainODE, a neural ordinary differential equation (ODE)-based
framework for modeling continuous longitudinal deformations of brain shapes.
BrainODE learns a deformation space over anatomically meaningful brain regions
to facilitate early prediction of neurodegenerative disease progression. Addressing
inherent challenges of longitudinal neuroimaging data—such as limited sample
sizes, irregular temporal sampling, and substantial inter-subject variability—we
propose a conditional neural ODE architecture that models shape dynamics with
subject-specific age and cognitive status. To enable autoregressive forecasting
of brain morphology from a single observation, we propose a pseudo-cognitive
status embedding that allows progressive shape prediction across intermediate
time points with predicted cognitive decline. Experiments show that BrainODE
outperforms time-aware baselines in predicting future brain shapes, demonstrating
strong generalization across longitudinal datasets with both regular and irregular
time intervals.

1 Introduction

Precise modeling of disease progression in neurodegenerative disorders, particularly Alzheimer’s
disease (AD), is imperative for enabling early diagnosis and effective intervention [1, 27, 28]. The
progressive and heterogeneous nature of these disorders poses significant challenges for longitudinal
modeling [3, 21]. Besides, many studies have shown that the hippocampus, a key brain region
implicated in AD, plays a critical role in accurate diagnosis and monitoring of disease trajectories.
These highlight the potential of longitudinal models to support emerging therapeutic advancements
toward targeted and personalized strategies [18]. Consequently, developing robust longitudinal
modeling approaches has become important in improving clinical outcomes in AD.

To model neurodegenerative progression, directly learning from 3D brain MRI data is an intuitive
approach. However, this strategy is often impractical due to the severe scarcity of longitudinal medical
imaging data [4] and the inherently high dimensionality of MRI scans. These limitations make it
difficult to capture the complex patterns of brain changes driven by both aging and disease processes.
Furthermore, the hippocampus—a key brain region for diagnosing cognitive status—has only 1.7%
of the full brain MRI volume. Although autoencoder architectures have been used to manage
high-dimensional images in latent spaces to alleviate unaffordable GPU memory consumption, auto-
encoded inputs are never exactly reconstructed after being decoded [13]. This poses a significant
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difficulty to deal with full brain MRI as cognitive status is often reflected in subtle structural changes
within specific brain regions [15] such as the hippocampus. Therefore, efficient yet expressive
representations with high precision such as surface meshes are required to address the challenge.

Beyond representations, modeling clinically plausible disease progression requires addressing several
components of longitudinal medical data: 1) irregular time intervals, 2) medical priors, and 3)
practical usage. First, longitudinal medical data consist of irregular time points, requiring methods
that handle variable time intervals (i.e., conventional inductive bias for uniform interval times is
not suitable). Moreover, these methods should support updating predictions based on sequential
longitudinal data. Second, driving clinically meaningful results can be achieved by incorporating
demographic information, cognitive status, and morphological priors for deformations at scale [3, 22].
Especially, since neurodegenerative progression is gradual, not reversible, and not discrete, the
method should be able to condition intermediate representations for the cognitive status ct ∈ [0, 1]
spanning normal to AD. Lastly, given the constrained acquisition environment, the method should
predict progression from a single time point, enhancing practical applicability. In addition, this
capability is critical for overcoming the limitation of requiring multiple data points for interpolation
at intermediate time points and extrapolation to future time points.

In this paper, we present a pioneering approach, BrainODE fθ(Vt, ct, t), which progressively models
brain dynamics using neural ordinary differential equations (neural ODEs), simultaneously addressing
the key components of longitudinal modeling, including irregular time points, medical priors, and
practical usage. BrainODE learns the deformation space (i.e., morphological prior) in brain shapes
on longitudinal data of irregular time intervals under supervision of an ODE solver, enabling efficient
modeling in shape spaces with the constant memory cost of neural ODEs [6]. For clinically plausible
modeling, demographic information t := age and cognitive status ct of subjects are integrated to
condition our model. Contrary to using discrete or future cognitive status in previous studies, Brain-
ODE is capable of embedding the continuous states in modeling hidden states h(t) = fθ(Vt, ct, t),
consistent with the gradual and continuous nature of neurodegenerative progression.

Beyond plausible conditioning, we further propose the pseudo-cognitive status embedding method,
which integrates pseudo-cognitive status shape sampling and a cognition estimator. Especially, by
leveraging the knowledge of the gradual conversion and condition-injectivity of BrainODE, the
sampling generates intermediate shapes Ṽt and the corresponding status c̃t through interpolation
between the forward and the backward trajectory of the converted subject whose diagnosis is changed
from normal cognition to AD. Afterward, we employ a cognition estimator τθ, trained on pseudo-data
and observation (Ṽt, c̃t, Vt, ct), to provide smooth conditions for enhancing the fidelity of cognitive
status for BrainODE. Moreover, through this estimator τθ, our novel method has a unique property
that enhances the practical feasibility of clinically progressive modeling. Since the estimator predicts
the severity of cognition from the geometry of the brain shape, BrainODE can seamlessly incorporate
these predictions to model longitudinal progression.

In summary, our main contributions are as follows.

1. We propose a neural ODE-based brain shape deformation model specifically designed to
address key challenges of longitudinal medical data, including irregular intervals, medical
priors, and practical applicability.

2. Through extensive experiments comparing various methods on datasets with both regular
and irregular time intervals, we validate and demonstrate the effectiveness of BrainODE in
modeling brain shape dynamics.

3. We show that the pseudo-cognitive status embedding strengthens the BrainODE’s applica-
bility in longitudinal medical domains, enabling a robust and stable modeling for BrainODE
in patients transitioning to neurodegenerative disorders, especially AD.

2 Related Work

To model longitudinal progression in neurodegenerative diseases, two primary approaches have been
widely adopted: generative models and deformation-based methods. BrainODE emerges as a novel
methodology that bridges the gap between deformation-based approaches, particularly ODE-based
methods and flow models, offering a unique framework for learning brain dynamics.
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Generative models. Building upon advancements in generative model, diffusion model-based
methods have been proposed, embedding the aging prior in longitudinal progress modeling. For
instance, BrLP [23] learns the Brain MRIs distribution and spatial-temporal consistency in the
latent space of a VAE, covering various cognitive statuses of AD. However, its conditioned statuses
are discretized and reflect future states, thus making it challenging to model continuous disease
progression with the current status. Additionally, LoCI-DiffCom [34], another longitudinal generation
method, models healthy infant aging on brain MRI scans. However, these image-based generative
approaches [14, 23, 32] have common limitations: substantial computational costs, inconsistencies
in subject identity due to Gaussian sampling (i.e., subject-specificity is lost due to stochasticity
in generation), and coarse resolution that fails to capture subtle yet clinically important changes.
Furthermore, none of these methods is capable of modeling the clinical continuum of the AD
trajectory as they rely on discrete condition values for the disease labeling. ConDOR [7], a recent
study on longitudinal neurodegenerative diseases, generates volume values of brain regions using a
conditional diffusion model. It employs ordinal regression for pseudo-intermediate sampling across
longitudinal observations. While ConDOR addresses irregular intervals and predicts future values
from a single point input, it produces less representative scalar values than volume grids or shapes
and also relies on discrete ordinal categories for disease statuses.

Neural ordinary differential equations. Neural ODEs define the dynamics of hidden states by
parameterizing their temporal derivatives with a neural network, enabling continuous-time modeling
of complex dynamics [6, 26]. To handle irregular time intervals, Latent ODEs [26] employ variational
autoencoders (VAEs) to model the likelihood of observations. However, autoencoding methods
yield imperfect preservation due to the information loss [13] and are hard to train in modeling prior
distribution when the data is scarce. For high-dimensional data, NODEO [30] is designed for 2D
image registration tasks by learning continuous deformation fields between moving and fixed images.

In the medical image domain, LaTiM [33] performs NeuralODE-based classification tasks for diabetic
retinopathy in 2D fundus images, predicting severity grades. For 3D brain MRIs, Lachinov et. al.
[16] leverage a NeuralODE to model longitudinal progression on optical coherence tomography
and brain MRI volumes for a single disease. Since directly modeling in voxel spaces requires huge
computation costs, they project 3D feature representations into 2D space to solve an ODE solver.
NODER [2] aims to predict missing timepoints in brain image sequences, requiring at least two
prior timepoints as input to regress deformation fields. However, registration-based methods such as
NODEO and NODER limits their practical applicability for predicting future shapes from a single
observation. Moreover, it requires separate training for each individual brain image sequence, making
it unsuitable for learning generalizable longitudinal dynamics. Furthermore, none of these approaches
model the progressive transition from healthy to diseased states across continuous trajectories, and
their reliance on image grids rather than volumetric shape spaces distinguishes them from our work.

Flow models. Continuous normalizing flow models have been recently proposed [10, 20], employing
a differential ODE solver to generate bijective mappings through learned fluid dynamics. For instance,
PointFlow [31] maps point cloud geometries to a captured prior distribution with a VAE, often
resulting in loss of geometric details. Another representative work, ShapeFlow [13], directly learns
the deformation function between geometries, preserving shape details. In contrast to our BrainODE,
these flow-based methods assume uniform time intervals for one-to-one mappings between shapes
and are thus not readily suited for irregularly sampled time series. ImageFlowNet [17] models subject-
specific spatiotemporal dynamics in 2D medical images using neural ODEs/SDEs with multi-scale
representations based on a U-Net architecture. The use of multi-scale representations in a joint space
of neural ODEs/SDEs and pixel-level reconstruction results in substantial memory consumption,
making it infeasible in 3D voxel space (e.g., over 80 GB for volumes of size 1283). In contrast,
BrainODE employs mesh representations and PCA-based 3D shape parameterization, which signifi-
cantly reduces computational requirements (∼ 375 MB for training) while achieving high-precision
shape modeling. In medical images, TimeFlow [12] learns a deformation function for registration in
longitudinal brain MRIs with varying time intervals. However, generating transformations requires
two time points of MRI scans for interpolation and extrapolation, limiting its applicability compared
to BrainODE, which can predict disease progression from a single time point. Multi-Marginal Flow
Matching (MMFM) [24] shares several core similarities with our BrainODE. Both methods employ a
single shared model to learn across diverse conditions, support continuous dynamics modeling, handle
irregular and multi-time-point data, and incorporate techniques for imputing mission observation.
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However, MMFM is designed to model distributional translations, making it well-suited for capturing
general patterns and group-level dynamics in low-dimensional scalar spaces. Consequently, it does not
estimate explicit individual trajectories nor incorporate structural parameters that reflect anatomical
geometry. In contrast, BrainODE embeds brain morphology directly into a parameter space and
models continuous shape trajectories at both individual and disease group levels. This enables precise
tracking and predicting of morphological changes for individual subject.

3 Method

3.1 BrainODE

Definition of brain shapes. Our BrainODE learns a continuous deformation trajectory of brain
shapes from longitudinal datasets. We denote the longitudinal brain shape sequence for each subject
as V = {Vt0 , Vt1 , . . . , VtN },where N ≥ 2. Here, ti are irregular time points of the age at medical
imaging acquisition. Each shape is reconstructed as a triangular mesh Xi = {Vi,F}, where
Vi = {v1, v2, . . . , vn} denotes the ordered set of mesh vertices, and F = {f1, f2, . . . , fm} is the
shared face connectivity across all shapes. Details on mesh reconstruction from raw MRI scans are
provided in Appendix A.1.

To model brain shape deformation efficiently given scarce longitudinal datasets, we further reduce
the dimensionality of the vertex space using principal component analysis (PCA), a widely used
technique in shape modeling [5, 25]. Our approach is motivated by the following factors: (i) the
necessity of preserving key shape features of blocky and noisy mesh surfaces derived from 1 mm3

resolution MRIs, and (ii) the observation that local shape features do not change abruptly despite
overall volume reduction caused by brain cell loss. Each brain shape is projected onto the PCA basis
as Vi ≈

∑k
j=1 λ

i
jej where Λi = {λi

1, λ
i
2, ...} and E = {e1, e2, ...} are the set of PCA coefficients

and eigenvectors, respectively, and k is the number of retained components. To ensure accurate
reconstruction from the reduced space, we empirically determined the optimal dimension k = 150
based on the explained variance ratio and reconstruction loss analysis (see Appendix A.2). Finally, the
shape representations to train the longitudinal trajectory of brainODE is Λ = {Λt0 ,Λt1 , . . . ,ΛtN }.
Training deformation space of brain shapes. BrainODE fθ(Λt, ct, t) models shape deformation
as a function of the individual current shape Λt, cognitive status ct ∈ [0, 1], and normalized age
t ∈ [0, 1], defined as:

fθ(Λt, ct, t) =
dΛt(ct, t)

dt
. (1)

Under the NeuralODE framework, brainODE estimates the shapes Λt+∆t at the timepoint t+∆t
from the timepoint t by solving the following formulation:

Λt+∆t = Λt +

∫ t+∆t

t

fθ(Λt, ct, t)dt. (2)

By using an ODE solver, BrainODE can model longitudinal data of irregular time intervals. It also
incorporates the prior knowledge of brain atrophy and ventricle enlargement by leveraging cognitive
status ct and age t. For a pair of longitudinal deformation from time ti to tj , BrainODE is trained to
seek a mapping Φ

titj
θ : Rk 7→ Rk that minimizes the distance between predicted deformed shapes

Φ
titj
θ (Λi, ci) and the target shape (Λj). The model is supervised using an L2 loss:

L2 =
∥∥∥Φtitj

θ (Λi, ci)− Λj

∥∥∥2
2
. (3)

Combinatorial training samples. To fully utilize the longitudinal datasets with arbitrary N obser-
vations for alleviating the data deficiency, we design the training process for BrainODE to use the
entire combinations of time points. Furthermore, BrainODE learns not only a forward trajectory of
neurodegenerative disease progression but also the backward trajectory to lead the invertible shape
deformation (i.e., Φtjti

θ (Φ
titj
θ (Λi, ci), ci) = Λi). Algorithm 1 elaborates the training process for

BrainODE.
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Algorithm 1 BrainODE training process

1: Input:
2: A set of observed shapes Λ = [Λ0,Λ1, . . . ,ΛN−1],
3: corresponding cognitive status c = [c0, c1, . . . , cN−1], age t = [t0, t1, . . . , tN−1]
4: N ← length(Λ), loss← 0

▷ Forward trajectory
5: for i = 0 to N − 2 do
6: Λpred[i : N ]← ODEintegral(input = (Λ[i], c[i], t[i]), target_time = t[i : N ]) ▷ Eq. (2)
7: loss← loss + L2(Λpred[i : N ],Λ[i : N ])
8: end for

▷ Backward trajectory
9: for i = 1 to N − 1 do

10: Λpred[0 : i]← ODEintegral(input = (Λ[i], c[i], t[i]), target_time = t[0 : i]) ▷ Eq.(2)
11: loss← loss + L2(Λpred[0 : i],Λ[0 : i])
12: end for

3.2 Pseudo-cognitive status embedding

Forward trajectory of normal

AD brain dynamics
Pseudo-cognitive status 

shape sampling

�Λ𝑡𝑡+Δ𝑡𝑡, 𝑐̃𝑐𝑡𝑡+Δ𝑡𝑡 ∈ [0,1]

Λ𝑡𝑡=0,𝑁𝑁𝑁𝑁

�Λ𝑡𝑡+𝑡𝑡𝑖𝑖𝑖𝑖,𝐴𝐴𝐴𝐴

Shape space

�Λ𝑡𝑡+𝑡𝑡𝑖𝑖𝑖𝑖,𝑁𝑁𝑁𝑁

Λ𝑡𝑡+Δ𝑡𝑡,𝑁𝑁𝑁𝑁

Λ𝑡𝑡+Δ𝑡𝑡,𝐴𝐴𝐴𝐴

Backward trajectory of Alzhehimer’s Disease

𝑡𝑡

𝑡𝑡

𝜏𝜏𝜃𝜃 Cognition estimator

Λ𝑡𝑡

Shape knowledge guidance

𝑓𝑓𝜃𝜃(Λ𝑡𝑡, 𝑐̂𝑐𝑡𝑡, 𝑡𝑡)

ODE Solver

Λ𝑡𝑡
𝑐𝑐𝑡𝑡

�Λ𝑡𝑡
𝑐̃𝑐𝑡𝑡

Λ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑐̃𝑐𝑡𝑡+Δ𝑡𝑡

. . . . . .

BrainODE

Iteratively update the shape

(a) pseudo-cognitive status shape sampling (b) The pseudo-cognitive status embedding

Figure 1: Illustration of the proposed methods of BrainODE. (a) The framework of the pseudo-
cognitive status shape sampling for continuous progression modeling of neurodegenerative disorders.
(b) The pseudo-cognitive status embedding of BrainODE is guided by a cognition estimator τθ.

Pseudo-cognitive status shape sampling. Beyond a longitudinal prediction for the unchanged
cognitive status, to achieve a clinically useful brain shape progression for early diagnosis, it is
essential to reflect the gradual decline in cognitive status in modeling. However, discrete diagnostic
labels such as normal and disease as well as the severe scarcity of converted cases make it difficult to
model the conversion toward disease. To address this, we introduce a pseudo-cognitive status shape
sampling, bridging the absence of explicitly intermediate cognition data. Using condition-injectivity
and both trajectories of BrainODE in subsection 3.1, we sample intermediate brain shapes along their
shape trajectory Λt 7→ Λt+∆t by assuming a smooth morphological transition over time as the prior
knowledge of progressive brain atrophy by aging and disease. The intermediate shape at time t+ tin
(where 0 ≤ tin ≤ ∆t) is interpolated between predicted shapes from the forward trajectory of Λt

with ct = 0 and the backward trajectory of Λt+∆t with ct+∆t = 1, using the learned deformation Φθ

of BrainODE. The pseudo-cognitive status c̃ ∈ [0, 1] is defined as the relative position between the
two time points. The final formulation for the pseudo-cognitive status and its shape is:

Λ̃t+tin =
1

2

(
Φt, t+tin

θ (Λt, ct = 0) + Φt+∆t, t+tin
θ (Λt+∆t, ct+∆t = 1)

)
, c̃t+tin =

tin

∆t
(4)

5



These pseudo-labels and their corresponding interpolated shapes are used to train BrainODE to learn
deformation dynamics that span the cognitive continuum.

Progressive longitudinal shape prediction with cognition estimator. To predict future brain
shapes and their associated cognitive status, we introduce a progressive estimation framework for
longitudinal shape progression and the corresponding cognitive status. Prior work demonstrated that
hippocampal binary masks can serve as effective biomarkers for distinguishing between NC and AD,
achieving over 90% accuracy [18]. Inspired by this insight, we developed a cognition estimator τθ
trained on an augmented dataset composed of (Λt, ct, Λ̃t, c̃t). Through this training, the cognition
estimator learns longitudinal shape changes corresponding to continuous cognitive status.

During inference, using the pseudo-cognitive status shape sampling and cognition estimator, we
update the future prediction progressively using the estimated intermediate shapes and cognitive
status (i.e., risk probability of AD). We term this progressive modeling as the pseudo-cognitive status
embedding, depicted in Algorithm 2.

Algorithm 2 The pseudo-cognitive status embedding

Require: Λ(t): Current brain shape at time t, N : Number of intermediate steps
1: ∆t: Target time interval, τθ: Moel of cognition estimator
2:
3: Initialize Λmid_pred ← Λ(t)
4: for i = 0 to N − 1 do
5: ĉ← τθ

(
Λmid_pred

)
6: Λmid_pred ← ODEIntegral

(
input = (Λmid_pred, ĉ, t+ i · ∆t

N ), target_time = t+(i+1) · ∆t
N

)
7: end for ▷ Eq. (2)
8: Λpred ← Λmid_pred
9: return Λpred

4 Experiments

In this section, we demonstrate the comparison of BrainODE with baseline methods for time series
and then discuss the effect of our proposed components. We conduct experiments using four different
longitudinal brain MRI datasets of normal cognition and Alzheimer’s disease (AD), comprising
both regular and irregular time intervals: for regular intervals, the Lothian Birth Cohorts 1936
(LBC1936) [8] and the Australian Imaging, Biomarker and Lifestyle (AIBL) datasets [9], each
collected at fixed 3 and 1.5 year intervals, respectively; for irregular intervals, the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) [11] and the Open Access Series of Imaging Studies
(OASIS) datasets [19], with varying acquisition intervals reflecting real-world clinical settings.
We provide detailed implementations and training settings of BrainODE in Appendix A. Also,
the demographics and cognitive statuses of these datasets and preprocessing methods for shape
representations are detailed in Appendix B.

Baselines. To provide a comprehensive evaluation, we employ baseline models that can jointly model
shapes and temporal sequences, including traditional time-aware architectures, a flow-based model, a
neural ODE-based model, and a generative model. As conventional time-aware baselines, we include
recurrent neural networks (RNNs), an RNN variant for irregular intervals (RNN-Decay), and long
short-term memory networks (LSTMs). For flow-based modeling, we adopt ShapeFlow [13], which
learns a continuous deformation field between pairs of geometric shapes. In addition, we employ
Latent ODE [26], a neural ODE-based model that can handle irregular time intervals by integrating
an ODE solver parameterized by a neural network. We also employed a simple yet plausible baseline,
linear extrapolation for subjects with two or more available observations. For image generative
models, we adopt BrLP [23], which generates longitudinally predicted MRIs conditioned by discrete
cognitive statuses and volume of brain regions. Regarding image registration-based approaches, we
also report the evaluation results of NODER [2] in Appendix C.6, as it cannot perform prediction
from a single time point and is therefore not included in the main comparison.

Evaluation. Given the varying number of longitudinal observations N ranging from 2 to 5 across
the datasets, we formulate the brain disease progression modeling into two tasks: (1) predicting the
latest shapes for each subject using four observed time points (4-shot prediction), and (2) predicting
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Method
LBC [8] AIBL [9]

4-shot 1-shot 4-shot 1-shot
hippo LV hippo LV hippo LV hippo LV

Linear extrap. 0.737 2.075 - - 0.666 2.013 - -
RNN 1.060 5.528 12.801 50.829 0.964 5.561 10.914 52.418

LSTM 1.044 5.723 9.978 37.948 0.957 6.745 7.848 39.572
RNN-Decay 1.075 5.549 0.787 5.703 0.967 5.587 0.780 5.601

ShapeFlow [13] 0.652 7.112 0.576 4.939 0.776 3.149 0.567 2.796
LatentODE [26] 0.880 5.759 0.895 6.663 1.126 8.095 1.079 6.800

BrLP [23] 1.078 2.230 1.054 2.067 1.019 1.893 1.031 2.042
Ours 0.488 1.630 0.365 1.743 0.461 1.635 0.406 1.708

Table 1: Quantitative evaluation of shape prediction performance in Euclidean distance on the
LBC1936 and AIBL test sets with regularly sampled time points.

Method 4-shot 1-shot
hippo LV hippo LV

Linear extrap. 0.898 2.240 - -
RNN-Decay 0.984 6.444 0.832 6.306

LatentODE [26] 1.215 5.300 1.119 4.463
BrLP [23] 1.017 1.962 1.031 2.085

Ours 0.543 1.959 0.492 1.673
Table 2: Quantitative evaluation of shape predic-
tion performance in Euclidean distance on ADNI,
OASIS, AIBL test sets with irregular time points.

Shape acc
τθ acc

NC & AD CONV

Baseline 0.636 0.282 0.883
+ τθ only 0.611 0.310 0.883
+ pseduo only 0.619 0.178 0.875

BrainODE 0.606 0.216 0.891
Table 3: Ablation results of BrainODE. We report
shape prediction performance (mm) and diagnosis
accuracy by the cognition estimator. CONV de-
notes the converted cases.

the latest shapes from a single observation point (1-shot prediction). These tasks are intended to
reflect the practical characteristics of medical longitudinal datasets as well as to evaluate whether the
baseline methods and BrainODE can address the crucial components for clinically plausible disease
progression modeling discussed in section 1. The lateral ventricles (LV) and hippocampus (hippo),
key brain regions for AD diagnosis, are selected as representative target shapes. To assess the shape
modeling quality, we measure the average Euclidean distance between the predicted and ground truth
shapes. For image-based prediction with BrLP [23], Chamfer distances on the boundary points of the
segmented brain regions are measured. For pair comparisons, all methods are trained with a single
type of time interval between the regular and irregular datasets.

For pair comparisons, all models are trained and evaluated separately for the two settings, and the
regular and irregular datasets (i.e., the subjects for each task are different patients).

4.1 Experimental Results

Regular time interval predictions. We first discuss prediction results on datasets with regular
sampling intervals, LBC1936 and AIBL. As their intervals differ, we report the results separately.

Across all settings, BrainODE consistently outperforms baseline methods, as shown in Table 1.
Especially, in the 1-shot tasks, our model demonstrates a clear advantage in capturing both subtle
and large-scale morphological changes of the brain progression. Although RNNs and LSTMs
benefit from inductive biases under regular intervals, they exhibit limited capability in modeling
neurodegenerative trajectories, especially in the 1-shot setting, due to their inability to capture
continuous temporal dynamics effectively. Among deep learning-based methods, RNN-Decay
and BrLP achieve competitive results with BrainODE. However, on the LBC1936 dataset, their
performance even falls below that of simple linear extrapolation, underscoring the inherent difficulty
of modeling shape trajectories in progressive neurodegeneration. ShapeFlow shows notably inferior
performance in LV modeling on LBC1936, which has longer temporal intervals than AIBL, indicating
its limitations in capturing the brain dynamics driven by aging. This highlights the importance of
methods that incorporate both effective representation and domain-specific knowledge.
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Figure 2: Qualitative results in modeling the LV and hippocampus shapes.

Interestingly, BrLP exhibits a larger discrepancy from BrainODE in the hippocampus than in the LV.
A plausible interpretation is that the hippocampus—occupying a much smaller proportion of the brain
compared to the LV—poses challenges for voxel-based autoencoders in capturing its fine-grained
morphology. LatentODE also demonstrates inferior performance since it relies on an autoencoder to
obtain latent features of mesh representations. In contrast, BrainODE preserves structural fidelity in
such subregions by leveraging its deformation space modeling method.

Irregular time interval predictions. We further evaluate BrainODE on a unified dataset combining
ADNI, OASIS, and AIBL, which contain irregular sampling intervals. As described in Table 2,
BrainODE again achieves superior performance compared to other methods capable of handling
irregular time intervals. However, unlike the previous experiment with regular intervals, BrainODE’s
4-shot prediction results exhibit degraded performance relative to Table 1. This decline can be
attributed to the increased complexity of irregular datasets; for instance, ADNI and OASIS include
subjects with a wide age range (e.g., 55–93 years), introducing greater inter-subject variability in
disease progression. In contrast, LBC1936 consists of subjects with identical ages across each
3-year acquisition, and AIBL features shorter intervals of approximately 1.5 years, resulting in more
temporally consistent trajectories.

In comparison, BrLP shows performance improvement in the irregular 4-shot setting. However,
compared to deformation methods, we found that this image-generative approach cannot preserve
the subject consistency due to autoencoding and prior sampling. While iterative sampling of BrLP
mitigates this limitation statistically, it cannot guarantee that the generated subject identity matches
the input, as further discussed in subsection C.5.

4.2 Qualitative results and condition fidelity

Qualitative results. For a qualitative comparison, we visualize the Euclidean distance error maps
on the predicted meshes in Figure 2, illustrating the performance of 4-shot predictions using linear
extrapolation, LatentODE, BrLP, ShapeFlow, and our BrainODE. Consistent with the quantitative
results in Table 1, BrainODE exhibits the smallest Euclidean distance errors for both the LV and
hippocampus shapes from the ground truth (GT), with error maps primarily in the blue range. Linear
extrapolation yields plausible shapes but requires more than two time points and generates noisier
surfaces, as indicated by the yellow and green regions (up to 2 mm errors). Furthermore, when the
intral becomes greater, this method produces abnormal shapes and therefore is not appropriate for
shape prediction (see Figure 14). BrLP predicts longitudinal individual hippocampal and LV shapes
with spatial-temporal consistency of each subject, but its voxel-based generation introduces significant
deviations from the GT, with errors reaching up to 4 mm (yellow areas). LatentODE struggles to
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Figure 3: Demonstration of shape prediction by BrainODE with the age and cognitive status condi-
tions. The hippocampal shapes in the first row are from the age of 65 to 77 with 3-year intervals. The
second column is shapes from the age of 80 to 92.

capture unique shape features from individuals, often producing nearly identical LV shapes for
different subjects, as evidenced by uniform error distributions. ShapeFlow inherits individual shape
characteristics via its flow-based ODE, but its assumption of uniform time intervals during training
leads to higher errors (2–4 mm) compared to BrainODE, which effectively adapts to varying intervals.
Overall, BrainODE demonstrates superior performance with smoother error distributions that closely
align with the GT shapes across both regions.

Condition-injective shape modeling. To evaluate the qualitative effects of condition injection in
BrainODE, we visualize predicted hippocampal meshes under varying injected conditions in Figure 3.
Specifically, we compare predictions starting from the same initial hippocampal shape while varying
age (65 and 80 years) and cognitive status (c = 0 for normal cognition, c = 1 for declined cognition).
As shown, BrainODE models longitudinal hippocampal shape changes while reflecting medical priors
that older age and declined cognition accelerate hippocampal volume degradation [3]. For a starting
age of 65, a cognitively normal subject (c = 0) exhibits a hippocampal volume reduction from 3168
to 2753 mm3, whereas a subject with declined cognitive status (c = 1) shows a larger reduction
from 3168 to 2654 mm3. Furthermore, for the same cognitive status of AD, older subjects starting at
age 80 undergo a more significant volume reduction (e.g., from 3168 to 2460 mm3) compared to
their younger counterparts. These results highlight the condition-injectivity of BrainODE to predict
deformation based on given conditions. Further quantitative analysis of condition-injectivity is
provided in subsection C.4.

4.3 Evaluation on the Pseudo-cognitive Status Embedding

We perform an ablation study on BrainODE and its pseudo-cognitive status embedding, which
includes the pseudo-cognitive status shape sampling and the cognition estimator τθ. Beyond shape
modeling, we conduct a diagnosis task for neurodegenerative disorders using τθ and report the
classification accuracy. Table 3 summarizes the results, where the vanilla Baseline (described in
subsection 3.1) excludes both the pseudo-cognitive status shape sampling and the cognition estimator.
The pretrained τθ shows an accuracy of 88.3% in diagnosing normal cognition (NC) and AD based
on shape representations. Compared to the Baseline, incorporating only the cognitive estimator τθ in
the BrainODE pipeline improves shape modeling accuracy for NC and AD (from 0.636 to 0.611),
but reduces performance for converted cases (CONV, from 0.282 to 0.310). In contrast, applying
pseudo-cognitive status shape sampling to augment the dataset enhances shape modeling precision
in terms of Euclidean distance, particularly for the CONV cases (from 0.282 to 0.178). However,
it slightly decreases the diagnosis accuracy (from 0.883 to 0.875) compared to training with only
observed data.

When both approaches are combined, BrainODE achieves the lowest shape modeling errors for
NC and AD (0.606) and a competitive performance for CONV (0.216), outperforming the Baseline
across all categories. This suggests that the estimated cognitive status c̃t provides geometric cues
that enhance BrainODE’s understanding of neurodegenerative disorders, enabling the reflection of
this knowledge in the shape modeling process within the shape space. Notably, during inference,
applying the pseudo-cognitive status embedding method boosts the prediction accuracy to 89.1% the
highest among all configurations, highlighting its effectiveness in real-world scenarios.
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5 Discussion

BrainODE is the first neural ODE-based framework for modeling longitudinal 3D brain shape
trajectories. We focus on precise modeling of shape deformation in clinically important subregions,
beyond the prior works that mainly targeted whole-brain image prediction.

Our contributions are threefold. First, BrainODE bridges neural ODE-based 3D shape modeling with
longitudinal neurodegenerative disease. We propose a pipeline consisting of mesh reconstruction
for longitudinal shape representation, PCA-based parameterization, and a unified deformation-based
ODE framework across disease groups. While neural ODEs have shown promise in continuous-time
modeling, they have not been applied to predict longitudinal brain subregion shapes. To fill this
gap, we convert brain images to fine-grained meshes and represent them in a compact PCA space.
Then, we introduce BrainODE with continuous conditioning, pseudo-status embedding, and iterative
shape sampling, for the model stability and disease-continuum plausibility. Our model achieves
precise subject-level trajectory prediction with low computational cost (~375MB for training), while
maintaining fidelity at both the individual and group levels.

Second, BrainODE is the first large-scale application of longitudinal brain shape modeling. To the
best of our knowledge, BrainODE is trained on multi-site datasets with 30 years age span. Through
large-scale experiments, we demonstrate that BrainODE effectively captures brain morphological
patterns and aging dynamics across both normal and AD trajectories. Furthermore, we identify
fundamental limitations in existing generative image-based models, which fail to precisely capture
subregion-level deformation, and we offer straightforward adaptations of ODE methods to address
this limitation.

Third, we define and simultaneously address key challenges unique to longitudinal brain shape
modeling. These include data scarcity, irregular sampling intervals, the integration of medical priors,
and the ability to predict only from a single observation. By defining these considerations upfront,
BrainODE provides a foundational blueprint for this brain morphology prediction area.

Limitations and Future Work. Despite these advances, BrainODE has several limitations. In
this work, we utilize two cognitive status groups: normal cognition (NC) and Alzheimer’s disease
(AD). Although some datasets include mild cognitive impairment (MCI) as a separate category and
intermediate cognition between NC and AD, we excluded MCI from BrainODE modeling due to its
ambiguous clinical definition and variability in progression (e.g., assigning c := 0.5 for MCI seems
straightforward yet cannot reflect severity in the values). In future work, we aim to extend BrainODE
to incorporate NC, MCI, and AD by establishing more robust and discriminative criteria for cognitive
status. For subjects with multiple longitudinal observations (n ≥ 1), BrainODE can generate n
predicted shapes corresponding to each time point. To evaluate n-shot prediction performance, we
simply average these predicted shapes. Developing more advanced aggregation strategies—such
as attention-based or time-aware mechanisms—remains an important direction for future research
to better capture longitudinal progression. As a pioneering model for brain shape prediction under
varying cognitive conditions, BrainODE introduces a pseudo-cognitive status embedding that enables
intermediate shape prediction and the corresponding cognition estimation. In this work, we primarily
estimate cognitive status using hippocampal shapes, guided by prior research [18, 29]. In future work,
we plan to explore BrainODE and congnition estimator to incorporate additional brain regions.

6 Conclusion

We introduce BrainODE, a pioneering approach for predicting longitudinal brain shape deformations,
taking into account individual demographics and cognitive status. To address the challenges of longi-
tudinal prediction, including irregular time intervals, embedding medical priors, and practical usage,
we propose BrainODE within a neural ODE-based architecture that smoothly deforms input shapes
to target shapes at future time points. In addition, we introduce a pseudo-cognitive status embedding
to progressively predict future shapes over intermediate time points with predicted cognitive decline
using the proposed cognition estimator. Through both quantitative and qualitative experiments, we
demonstrate that BrainODE effectively models brain dynamics over time, outperforming baseline
methods. Given the importance of accurately predicting brain shape changes in key regions for
disease diagnosis, our work focuses primarily on precise longitudinal brain shape modeling. Future
work will extend this approach to other brain regions and to clinical applications of early diagnosis.
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Hrvoje Bogunović. Learning spatio-temporal model of disease progression with neuralodes
from longitudinal volumetric data. IEEE Transactions on Medical Imaging, 43(3):1165–1179,
2023.

[17] Chen Liu, Ke Xu, Liangbo L Shen, Guillaume Huguet, Zilong Wang, Alexander Tong, Danilo
Bzdok, Jay Stewart, Jay C Wang, Lucian V Del Priore, et al. Imageflownet: Forecasting
multiscale image-level trajectories of disease progression with irregularly-sampled longitudinal
medical images. In ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1–5. IEEE, 2025.

[18] Manhua Liu, Fan Li, Hao Yan, Kundong Wang, Yixin Ma, Li Shen, Mingqing Xu, Alzheimer’s
Disease Neuroimaging Initiative, et al. A multi-model deep convolutional neural network for
automatic hippocampus segmentation and classification in alzheimer’s disease. Neuroimage,
208:116459, 2020.

[19] Daniel S Marcus, Anthony F Fotenos, John G Csernansky, John C Morris, and Randy L Buckner.
Open access series of imaging studies: longitudinal mri data in nondemented and demented
older adults, 2010.

[20] Emile Mathieu and Maximilian Nickel. Riemannian continuous normalizing flows. Advances
in Neural Information Processing Systems, 33:2503–2515, 2020.

[21] C DeCarli MD, James V Haxby, JA Gillette, D Teichberg, SI Rapoport, and MB Schapiro.
Longitudinal changes in lateral ventricular volume in datients with dementia of the alzheimer
type. Neurology, 42(10):2029–2029, 1992.

[22] Sean M Nestor, Raul Rupsingh, Michael Borrie, Matthew Smith, Vittorio Accomazzi, Jennie L
Wells, Jennifer Fogarty, Robert Bartha, and Alzheimer’s Disease Neuroimaging Initiative.
Ventricular enlargement as a possible measure of alzheimer’s disease progression validated
using the alzheimer’s disease neuroimaging initiative database. Brain, 131(9):2443–2454, 2008.

[23] Lemuel Puglisi, Daniel C Alexander, and Daniele Ravì. Enhancing spatiotemporal disease
progression models via latent diffusion and prior knowledge. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages 173–183. Springer, 2024.

[24] Martin Rohbeck, Edward De Brouwer, Charlotte Bunne, Jan-Christian Huetter, Anne Biton,
Kelvin Y Chen, Aviv Regev, and Romain Lopez. Modeling complex system dynamics with flow
matching across time and conditions. In The Thirteenth International Conference on Learning
Representations, 2025.

[25] Javier Romero, Dimitrios Tzionas, and Michael J. Black. Embodied hands: Modeling and
capturing hands and bodies together. ACM Transactions on Graphics, (Proc. SIGGRAPH Asia),
36(6), November 2017.

12



[26] Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. Advances in neural information processing systems, 32,
2019.

[27] Xiaoying Tang, Dominic Holland, Anders M Dale, Laurent Younes, Michael I Miller, and
Alzheimer’s Disease Neuroimaging Initiative. Shape abnormalities of subcortical and ventricular
structures in mild cognitive impairment and alzheimer’s disease: detecting, quantifying, and
predicting. Human brain mapping, 35(8):3701–3725, 2014.

[28] Fabio Trimarchi, Placido Bramanti, Silvia Marino, Demetrio Milardi, Debora Di Mauro,
Giuseppe Ielitro, Barbara Valenti, Gianluigi Vaccarino, Carmelo Milazzo, and Giuseppina
Cutroneo. Mri 3d lateral cerebral ventricles in living humans: morphological and morpho-
metrical age-, gender-related preliminary study. Anatomical science international, 88:61–69,
2013.

[29] Ingrid S van Maurik, Stephanie J Vos, Isabelle Bos, Femke H Bouwman, Charlotte E Teunissen,
Philip Scheltens, Frederik Barkhof, Lutz Frolich, Johannes Kornhuber, Jens Wiltfang, et al.
Biomarker-based prognosis for people with mild cognitive impairment (abide): a modelling
study. The Lancet Neurology, 18(11):1034–1044, 2019.

[30] Yifan Wu, Tom Z Jiahao, Jiancong Wang, Paul A Yushkevich, M Ani Hsieh, and James C Gee.
Nodeo: A neural ordinary differential equation based optimization framework for deformable
image registration. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 20804–20813, 2022.

[31] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan.
Pointflow: 3d point cloud generation with continuous normalizing flows. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 4541–4550, 2019.

[32] Jee Seok Yoon, Chenghao Zhang, Heung-Il Suk, Jia Guo, and Xiaoxiao Li. Sadm: Sequence-
aware diffusion model for longitudinal medical image generation. In International Conference
on Information Processing in Medical Imaging, pages 388–400. Springer, 2023.

[33] Rachid Zeghlache, Pierre-Henri Conze, Mostafa El Habib Daho, Yihao Li, Hugo Le Boité,
Ramin Tadayoni, Pascale Massin, Béatrice Cochener, Alireza Rezaei, Ikram Brahim, et al.
Latim: Longitudinal representation learning in continuous-time models to predict disease
progression. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 404–414. Springer, 2024.

[34] Zihao Zhu, Tianli Tao, Yitian Tao, Haowen Deng, Xinyi Cai, Gaofeng Wu, Kaidong Wang,
Haifeng Tang, Lixuan Zhu, Zhuoyang Gu, et al. Loci-diffcom: Longitudinal consistency-
informed diffusion model for 3d infant brain image completion. In International Conference
on Medical Image Computing and Computer-Assisted Intervention, pages 249–258. Springer,
2024.

13



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction are consistent with the
contributions and scope presented in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We acknowledge the limitation in the discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all information to reproduce the main experimental results and
algorithms.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide data information, code, and sufficient instructions in the main and
supplemental materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Throughout the main and supplementary materials, we offer training and test
details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The paper does not report error bars or statistical significance tests for the
main experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We offer memory information using the proposed method.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes. We preserve anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed potential societal impacts, and limitations.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes. See dataset details.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: We properly use open dataset with access.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementation details

This section provides an overview of the design choices and implementation details for BrainODE.
We begin by detailing the longitudinal brain shape reconstruction process from 3D brain MRI
scans, which involves segmentation and reconstruction of the hippocampal and lateral ventricle
(LV) shapes. Subsequently, we evaluate the effectiveness of principal component analysis for
representing variable brain shapes, reducing dimensionality while preserving key shape features.
Afterward, we present details of the neural architecture of BrainODE and its training strategies. Our
source code, including data preprocessing scripts and model configurations, is publicly available at
https://github.com/PWonjung/BrainODE

A.1 Longitudinal brain shape reconstruction
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Figure 4: Illustration of brain shape reconstructions for a single subject by iteratively deforming a
template mesh to match longitudinal MRI scans.

We reconstruct the longitudinal brain shapes V = {V1, V2, ..., Vn} by modifying the brain shapes
modeling method proposed by Park et al. [11]. Their approach reconstructs cross-sectional individual
brain shapes by iteratively deforming a template mesh to align with target shapes, which are repre-
sented as point clouds extracted from the boundaries of segmented 3D brain MRI masks. To adapt
this cross-sectional method for longitudinal analysis, we sequentially update a template mesh M0

over time, using the deformed mesh from the previous time point, Mi−1, as the initial mesh for the
next step, Mi. The process begins with the first observed MRI scan and proceeds iteratively through
subsequent time points, optimizing vertex positions to minimize both distance and regularization loss,
as illustrated in Figure 4.

As part of this pipeline, we use SynthSeg [1] to segment brain regions from MRI scans. From the
boundaries of the segmented masks, point clouds Pi representing the target shapes are constructed.
The initial shape V1 is obtained by deforming the template mesh vertices V0 to fit the target point
cloud P1. Then, each subsequent shape Vi is reconstructed by deforming the previous mesh Vi−1 to
align with the corresponding target Pi, using a vertex optimization model.

The vertex optimization model (Figure 4(b)) follows the optimization strategy of Point2Mesh [4],
which iteratively updates the vertices to align with the target point cloud. The objective function L
consists of two components: 1) a distance loss Ldist, which measures the discrepancy between the
deformed mesh Vi and the target point cloud Pi, and 2) a regularization loss Lreg, which encourages
smooth and plausible deformations.

Specifically, the distance loss Ldist combines the Chamfer distance Lcf between Vi and Pi, and the
point-to-face distance Lpm between Pi and the mesh surface Mi (i.e., Ldist = λcfLcf + λpmLpm). The
regularization loss Lreg includes vertex displacement ||∆vert||2, normal displacement ||∆norm||2,
edge length variance Ledge to prevent mesh distortion, normal consistency Lcons(norm), and Laplacian
loss Llap for surface smoothness. The final form of the loss function used in the vertex optimization
model is defined as follows:
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L = Ldist + Lreg (5)

where Lreg = λvert||∆vert||2 + λnorm||∆norm||2 + λedgeLedge + λconsLcons(norm) + λlapLlap.

We empirically set hyperparameters for each loss as {λcf, λpm, λvert, λnorm, λedge, λcons, λlap} =
{0.5, 3, 1, 1, 1500, 1, 5}.

A.2 Effect of PCA on shape reconstruction

(b) Compactness of PCA(a) Longitudinal data visualization

Original shapes

PCA processed shapes

Original shapes

PCA processed shapes

(c) Longitudinal shapes after PCA processing

Figure 5: Impacts of shape dimensionality reduction using PCA. (a) Visualization of vertex positions
and the first PCA eigenvalue across longitudinal observations from the LBC1936 dataset. (b) Com-
pactness measures of hippocampus and LV across varying numbers of PCA modes. (c) Qualitative
comparison between original shapes and their PCA-reconstructed shapes with 150 modes.

Motivation of PCA. We adopt principal component analysis (PCA) to parameterize brain region
shapes for longitudinal modeling, as described in subsection 3.1. Rather than using raw vertex-
level inputs or latent codes from autoencoders, we choose PCA-based representations to facilitate
reproducible and scalable research. This choice is inspired by prior work such as MANO [13],
which models shape variation of hands using a low-dimensional parametric space. Building on
this foundation, subsequent research has demonstrated the effectiveness of directly predicting such
parameters for shape estimation tasks [5, 14, 16]. In a similar spirit, we leverage parametric modeling
of brain shapes to construct compact and anatomically meaningful shape spaces to support the
learning of the longitudinal shape dynamics.

Another key motivation for using PCA is its efficiency in shape representation. We visualize the
vertex positions of brain shapes and the first eigenvalues across longitudinal time points in Figure 5(a).
The raw vertex positions of hippocampal and LV shapes exhibit irregular deformations over time,
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making it difficult to identify clear trends. This irregularity arises from the complex geometry of the
original shape representation, which includes high-frequency artifacts (e.g., bumpy surfaces due to
image-level noise) and substantial inter-subject variability, as illustrated in Figure 5(c). In contrast,
PCA-derived eigenvalues show more consistent trends across longitudinal time points, enabling stable
progressive modeling of brain shape dynamics. Moreover, shapes reconstructed using PCA exhibit
smoother surfaces by filtering out high-frequency noise while preserving essential geometric features
(Figure 5(c)). This dimensionality reduction and smoothing effect of PCA not only simplifies the
shape representation but also supports plausible modeling by providing stable inputs for capturing
temporal progression in neurodegenerative disease.

Shapes PCA Modes Dist. (mm)
V - 0.2642

Λ

50 0.3028
100 0.3005
150 0.2640
200 0.2829
300 0.2701

Table 4: Prediction loss in Euclidean dis-
tances (mm) when using brain shapes V
as-is and using PCA coefficients Λ on
hippocampal shapes of LBC1936.

Quantitative results of PCA. To quantitatively eval-
uate the effectiveness of PCA-based shape representa-
tion, we measured the compactness of the statistical
shape models for both the hippocampus and LV, where
Compactness(k) =

∑k
i=1 λi∑N
i=1 λi

for the first k modes. As
depicted in Figure 5(b), the compactness reaches 0.980
for the hippocampus and 0.989 for the LV with k = 150
modes, indicating that over 98% of the total shape vari-
ability is preserved in both cases.

In addition, to validate the use of PCA coefficients as shape
representations, we compare BrainODE performance us-
ing original vertex-based shapes V and PCA-projected
shapes Λ in modeling the hippocampus. As shown in
Table 4, the use of PCA coefficients not only results in smoother reconstructed surfaces but also
improves the prediction accuracy. The ablation study shows that using 150 components provides a
favorable trade-off between reconstruction fidelity and dimensionality reduction.

A.3 Neural architecture of BrainODE

Λ𝑡

c𝑡

𝑡 

ℎ(𝑡) 

𝑘

𝑘

Figure 6: BrainODE architecture

BrainODE. We design the BrainODE function fθ
as a neural network with a self-attention mechanism
to model condition-injective shape dynamics. The
input to fθ consists of a shape embedding V ∈ R150,
a scalar time t ∈ R1, and a scalar cognitive status
c ∈ R1. These are concatenated into a single vector
and passed through three linear projections to form
the query, key, and value. The attention output is then
processed by fully connected layers with GeLU ac-
tivation. The output h(·) is a 150-dimensional vector
representing the velocity in the shape space at time t.

Cognition estimator. We adopt the cognition estima-
tor τθ as a simple 3D CNN architecture, followed by a
prior study to diagnose Alzheimer’s disease with the
hippocampus masks [9]. The input to τθ is a shape in
voxel representation, and the output is the estimated
cognitive status ct ∈ [0, 1].

A.4 Training details of BrainODE

The input to BrainODE fθ(Λ, t, c) consists of PCA-reduced shape coefficients Λ, normalized age t,
and cognitive status c. Each brain shape Vi = {v1, v2, ..., vn} is represented as vertices of a triangular
mesh, where the coordinates are in real-world brain sizes with units in mm. The typical spatial extents
of the hippocampus and LV are approximately (50 mm, 65 mm, 35 mm) and (60 mm, 100 mm,
80 mm), respectively. These vertex coordinates are projected onto a PCA basis, and the resulting
coefficients Λ = {Λ1,Λ2, ...,Λn} are used as shape inputs for training. To improve generalization
with limited longitudinal data, we apply data augmentation via random scaling of training shapes by
a factor uniformly sampled from the range [0.98, 1.02].
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The temporal input t is derived by normalizing the age of subjects. Specifically, we select subjects
aged between 65 and 95 years and linearly normalize their age (i.e., t = (age − 65)/30 such
that t ∈ [0, 1]). The cognitive status c is a continuous value in the range [0, 1], as described in
subsection 3.2.

BrainODE is trained for 100 epochs using the AdamW optimizer with a learning rate of 0.0005. For
solving the neural ordinary differential equations, we employ the fourth-order Runge-Kutta (RK4)
integration method. The training process minimizes the L2 loss function, as derived in Equation 3.

B Dataset details

Dataset Subjects # NC AD CONV 1st observed age # of observ. Intervals (yrs)
LBC1936 516 516 0 0 73.12 ± 0.79 3.59 ± 1.19 3.15 ± 0.78

AIBL 211 134 56 21 73.87 ± 5.25 3.04 ± 1.15 1.66 ± 0.57
ADNI 829 558 271 0 75.35 ± 5.81 5.05 ± 3.12 1.07 ± 0.89

OASIS2 80 65 11 4 77.42 ± 7.11 2.64 ± 0.78 2.02 ± 0.70
OASIS3 282 253 14 15 71.62 ± 4.87 2.91 ± 1.27 2.74 ± 1.50

Table 5: Composition of longitudinal datasets. NC, AD, CONV denote whose cognitive statuses are
normal cognition, Alzheimer’s disease, and converted from NC to AD, respectively.

Validation data hippo LV
Time interval Dataset 4shot 1shot 4shot 1shot

Regular LBC 20 20 37 40
AIBL 18 19 27 34

Irregular AIBL + ADNI + OASIS2 + OASIS3 65 79 63 170
Table 6: Composition of validation dataset used in subsection 4.1 (Table 1 and Table 2).

B.1 Dataset Composition

To learn longitudinal brain shape dynamics, we use the LBC1936 [2] and AIBL [3] datasets as regular
time interval datasets, whereas AIBL [3], ADNI [6], OASIS2 [10], and OASIS3 [8] are used as
irregular time interval datasets. As shown in Table 5, each dataset varies in the number of subjects,
age at the first brain image acquisition, number of observations, and intervals between scans.

The LBC1936 data are provided by the Lothian Birth Cohort 1936 Study database2. Most participants
underwent brain magnetic resonance imaging between 2008 and 2010 at an average age of 72.6 years,
with follow-up scans conducted every three years over five waves. The AIBL dataset collects scans
every 18 months across five waves. Since AIBL includes subjects with varied ages and provides exact
MRI acquisition dates, it is utilized for both regular and irregular time interval analyses. Furthermore,
because AIBL, OASIS2, and OASIS3 contain longitudinal data where cognitive status transitions
from normal to Alzheimer’s disease, their shape data are used for pseudo-cognitive status shape
sampling in subsection 3.2.

Validation data. The validation dataset composition is Table 6, used for the quantitative results in
Table 1 and Table 2. Specifically, we selected subjects whose longitudinal observations are more than
four times for the 4-shot prediction.

B.2 Medical priors in brain shapes.

In this section, we elaborate on the medical priors for longitudinal progression modeling of the brain,
as discussed in section 1. Specifically, we analyze the volumes of the hippocampus and LV using all
longitudinal datasets (ADNI, OASIS, AIBL, and LBC1936). Additionally, we visualize the rate of
volume changes over time intervals to highlight the progression dynamics.

2https://lothian-birth-cohorts.ed.ac.uk/data-access-collaboration
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Figure 7: Illustration of brain atrophy progression. (a) Regional volumes across longitudinal obser-
vations. (b) Rate of volume changes over time intervals. The first and second rows represent the
volumes of the hippocampus and LV, respectively, across all datasets (ADNI, OASIS, AIBL, and
LBC1936).

Brain volume changes. The human brain undergoes brain atrophy (i.e., the loss of brain cells) due
to normal aging and neurodegenerative disorders. In particular, Alzheimer’s Disease (AD) causes
more rapid brain atrophy. As brain atrophy progresses, brain volumes shrink, while the LVs enlarge
as the empty space surrounded by brain subcortical structures. Figure 7(a) illustrates brain atrophy
and associated volume changes across longitudinal observations for each subject in the brain MRI
datasets. Hippocampal volumes show a gradual decline from observation 0 to 4, with the trend less
clear at the 5th visit due to limited data availability. Conversely, LV volumes consistently increase
over time, reflecting ventricular enlargement caused by the brain atrophy.

To further explore the dynamics of brain atrophy, we calculate the rate of volume changes by dividing
the volume difference by the corresponding time intervals (e.g., 1.5 years for AIBL, 3 years for
LBC1936, and respective years for irregular time intervals). This rate, expressed in mm3/year,
quantifies the speed of atrophy or enlargement. Figure 7(b) visualizes these rates across age groups,
defined based on the dataset distributions. The hippocampus shows a higher rate of volume reduction
in older age groups compared to the 47–57 group, whereas LV enlargement accelerates with age.
Notably, since older brains are smaller in volume, a similar absolute rate of volume loss implies
relatively more severe atrophy in later life stages (e.g., 76–86 vs. 86–96 age groups). These trends
align with the medical priors, confirming that older age exacerbates the progression of atrophy.

To assess the impact of cognitive status, Figure 8 compares the rate of volume changes between
normal cognition (NC) and AD in the same age groups. We visualize the change rate of the left
and right brain regions separately. AD (red) exhibits a significantly faster and more irregular rate of
volume change than NC (blue). For example, in the 67–76 age group, the LV volume reduction rate is
approximately -700 mm3/year for NC, compared to -1600 mm3/year with greater variability in AD.
This heterogeneous pathological progression of AD presents challenges for modeling as it requires
capturing complex and non-linear patterns that diverge from the more stable trends observed in NC.

C Additional analysis and visualization

In this section, we comprehensively evaluate longitudinal brain shape prediction on multiple perspec-
tives. We first present additional experimental results from subsection 4.1, including the qualitative
results of the 1-shot prediction in subsection C.1, qualitative performance across benchmarks in
subsection C.2,the effectiveness of the pseudo-cognitive status embedding in subsection C.3, and
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Figure 8: Rate of volume changes over time intervals for normal cognition (NC) and Alzheimer’s
Disease (AD). The age groups are split based on the data distribution from ADNI, OASIS, AIBL,
and LBC1936. NC and AD groups are visualized in blue and red, respectively

BrainODE’s condition fidelity in modeling Alzheimer’s Disease (AD) in subsection C.4. Furthermore,
we examine the subject inconsistency inherent in image generative approaches for brain region pro-
gression modeling compared to deformation-based methods in subsection C.5, compare the prediction
performance with registration-based method in subsection C.6. Finally, we evaluate the long-range
shape prediction capabilities of baseline methods and BrainODE in subsection C.7.

C.1 Additional analysis of experiments

We present qualitative results for brain shape modeling using 1-shot prediction in Figure 9. Unlike the
4-shot setting in Figure 2, which leverages multiple time points to guide the deformation trajectory,
the 1-shot setting lacks temporal deformation information. As a result, conventional extrapolation
methods are excluded.

Qualitative evaluation of 1-shot prediction. To implement prediction on arbitrary time points using
ShapeFlow [7], which does not support irregular time intervals, we train the model on the AIBL [3]
dataset using fixed 1.5-year intervals. The starting time point is set to t = 0, and 1.5 years is mapped
to t = 1. Consequently, future time targets are normalized relative to this interval (e.g., a 2-year
prediction corresponds to t = 2/1.5).

Other baseline methods that can handle irregular time intervals are also included for comparison.
This setup allows us to evaluate the ability of each method to predict future shapes under varying
temporal gaps. Notably, addressing irregular time intervals is critical in longitudinal medical imaging,
as patient visit schedules often vary. Robust modeling across inconsistent time gaps is essential for
accurately capturing disease progression.

Figure 9 visualizes qualitative results of 1-shot prediction for hippocampus and LV across varying
ages and cognitive statuses, including normal cognition (NC) and Alzheimer’s disease (AD). Overall,
BrainODE outperforms baseline methods in modeling both brain regions. Specifically, for the
hippocampus, both BrainODE and ShapeFlow achieve small Euclidean distances from the ground
truth. However, BrainODE uniquely excels in LV prediction, demonstrating the lowest errors.

Regarding the baseline results, ShapeFlow accurately predicts hippocampus shapes but struggles to
model the LVs, showing significant errors (> 4 mm) in several regions. LatentODE [15] produces
incorrect LV shapes by altering their topology and fails to capture subject-specific features, generating
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Figure 9: Qualitative results of 1-shot prediction for hippocampus and LV shapes. The color map
indicates Euclidean distance errors (up to 2 mm for hippocampus, 4 mm for LV) between ground
truth (GT) and predicted shapes.

nearly identical shapes regardless of input conditions. This suggests that LatentODE struggles to
model the prior distribution of brain progression dynamics using autoencoders, leading to statistically
plausible yet trivial solutions (e.g., converging to average shapes) that disregard the given inputs.
Similarly, BrLP distorts the anatomical features of the input shapes. For instance, over-enlargements
are observed on the occipital horn, frontal horn, and body of the LV in NC subjects, and topological
changes appear in occipital horn of the AD subject. In contrast, despite the challenges of model-
ing brain progression with irregular time intervals, BrainODE consistently demonstrates superior
performance, validating its robustness and accuracy.

C.2 Qualitative evaluation across benchmarks

Dataset 4-shot 1-shot

AIBL 0.52 ± 0.07 0.46 ± 0.05
ADNI 0.59 ± 0.14 0.54 ± 0.15
OASIS 0.52 ± 0.07 0.48 ± 0.08

Table 7: Quatitative evaluation of hippocampal shape prediction performance in Euclidean distance
(mm) on datasets with irregular time intervals.

The detailed qualitative results in Table 2 by datasets are illustrated in Table 7. From these results,
although the discrepancies are not substantial, it underscores the need for further validation across
benchmarks. To this end, we conducted the following cross-benchmark experiments.

For Exp1, BrainODE is trained on AIBL (with regular time intervals) and validated on ADNI and
OASIS (with irregular time intervals). For Exp2, BrainODE is trained on AIBL, ADNI and OASIS
(with irregular time intervals) and validated on LBC1936 (with regular time intervals).

These experiments allow us to evaluate the robustness of BrainODE under both temporal and
benchmark distribution shifts. As shown in Table 8, while performance under these shifts is slightly
degraded compared to intra-dataset benchmarks, BrainODE consistently outperforms other baseline
models, demonstrating robustness to unseen individual shape morphologies and progression patterns.
In terms of generalizability, each cohort (dataset) follows different temporal sampling intervals,
ranging from 0.5 years (e.g., ADNI) to over 3 years (e.g., LBC1936). Due to this temporal discrepancy,
BrainODE exhibits performance decreases in both shift scenarios. These findings underscore the
importance of training on large-scale longitudinal datasets with varied time intervals to enhance
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generalization across cohorts. Leveraging broader and more diverse training data is essential for
improving robustness and capturing realistic progression dynamics.

Table 8: Cross benchmark validation results for hippocampus.
Train Validation Euclidean dist. (mm)

Exp1 AIBL ADNI + OASIS 0.518
Exp2 AIBL + ADNI + OASIS LBC1936 0.522

C.3 Sampling longitudinal shapes with intermediate timepoints

(a) hippocampus (b) Lateral Ventricles

Figure 10: Qualitative results of sampling longitudinal shapes with intermediate time points for (a)
hippocampus and (b) LVs.

In this section, we explore the effects of incorporating pseudo-cognitive status embeddings and gener-
ating shapes on intermediate time points to enable progressive longitudinal modeling. Specifically,
we investigate how this approach impacts the accuracy and stability of shape predictions. To this end,
we compare the qualitative results of shapes generated every 3 years over a 12-year period with those
produced in a single step (i.e., 1-hop prediction).

Figure 10 illustrates the results, showing the deformation of hippocampus and LV shapes from age
73 to 85, along with the Euclidean distance maps from the initial shape at age 73. Predicting brain
shapes over long intervals in a single step is challenging for BrainODE, as such large temporal gaps
are not seen during training, where the average interval between the first and last acquisitions is
4.08 ± 2.84 years. To address this, BrainODE adopts an iterative prediction strategy, forecasting
future shapes through intermediate time steps, as shown in the first row of the figure.

Direct prediction over a 12-year interval results in unrealistic deformations and surface artifacts;
especially, the LV surface is almost entirely destroyed. In contrast, when intermediate predictions
are made every 3 years, the final 12-year prediction maintains anatomical consistency and surface
smoothness. This experiment highlights the effectiveness of progressive pseudo-shape sampling in
modeling longitudinal brain progression.

C.4 Tendency of shape changes by age and cognitive state

Figure 12: Brain Atrophy ten-
dency by cognitive status c mod-
eled by BrainODE.

To further demonstrate the condition-injectivity of BrainODE,
we visualize shape predictions under varying cognitive statuses
c = {0, 0.5, 1.0} in Figure 11. BrainODE predicts larger deforma-
tions in both the hippocampus and LVs as cognitive status declines,
consistent with clinical progression patterns observed in longi-
tudinal data (subsection B.2). For instance, the shape predicted
with intermediate status c = 0.5 shows deformations that lie be-
tween those of normal cognition and Alzheimer’s disease, as also
reflected in their estimated volumes.

Beyond qualitative visualization, we analyze volumetric trends
across varying cognitive statuses for 100 baseline hippocampal
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Figure 11: Longitudinal shape predictions with varying cognitive status c = {0, 0.5, 1} every 3 years
for hippocampus and LV. The number below each shape denotes the volume of the predicted shape.

shapes in Figure 12 at the age of 65. Even though explicit medical priors is not injected during
training, BrainODE captures clinically plausible volume trajectories by leveraging the spatiotemporal
supervision from longitudinal datasets. This supports the ability of BrainODE to encode implicit
medical priors through learning dynamics across both age t and cognitive status c.

C.5 Subject inconsistency of generative approaches
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Figure 13: Subject inconsistency of the BrLP [12] generative model. (a) Image comparison shows the
input brain MRI scan (axial, coronal, sagittal planes) and the residual difference after BrLP generation
with ∆t = 0. (b) Shape comparison highlights Euclidean distance errors (up to ±2 mm) between the
input and generated hippocampus and LV shapes.

In this study, we examine two primary approaches for modeling longitudinal progression in neu-
rodegenerative diseases: generative models and deformation-based methods, which exhibit distinct
characteristics. Generative approaches, such as BrLP [12], model medical priors using the distribution
of given data and its associated conditions (e.g., age and cognitive status). During inference, these
models generate statistically plausible samples from the learned distribution. However, as discussed in
subsection 4.1, we hypothesize that this approach is unsuitable for longitudinal progression modeling
of medical data, as it is challenging to ensure spatial consistency of each subject (i.e., maintaining
the sampled data’s identity).To test this, we conducted a preservation experiment using the BrLP
generative model by inputting a brain MRI scan with no time difference (∆t = 0) and measuring the
differences between the input and generated outputs in both image and shape spaces, as depicted in
Figure 13.
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In the image-level comparison (Figure 13(a)), although the output is expected to be identical to
the input, noticeable differences are observed in high-frequency details and anatomical structures
such as the LV, as highlighted by their residuals in the color map. We further visualize shapes of
the hippocampus and LVs, which are of two key brain regions to determine the cognitive status,
in the shape-level comparison (Figure Figure 13(b)). The Euclidean distance is calculated with
the input subject’s shapes, indicating significant deviations in the hippocampus and LV shapes. In
addition, the LV has a seamless structure in the brain, however, BrLP generates a disconnected LV
due to limited voxel grid resolution. These inconsistencies could compromise longitudinal diagnosis,
potentially perturbing the AD decision boundary of deterministic classification models sensitive to
subtle changes, as reported in [9]. This highlights a fundamental limitation of generative models in
maintaining subject-specific fidelity. In contrast, deformation-based approaches such as BrainODE
offer improved consistency by preserving anatomical identity when ∆t = 0, making them more
suitable for reliable longitudinal modeling.

C.6 Comparison with registration-based method

We additionally experimented with NODER [2], which aims to predict missing timepoints in brain
image sequences. NODER requires at least two prior timepoints as input for sequence regression,
which limits its practical applicability for predicting future shapes from a single observation. More-
over, it requires separate training for each individual brain image sequence, making it unsuitable for
learning generalizable longitudinal dynamics.

We conducted this experiment using the LBC1936 dataset under a 4-shot validation setting. Although
NODER utilizes deformation information from earlier timepoints, its voxel-based regression approach
and lack of explicit conditioning on age and disease lead to inferior predictive accuracy. This
highlights the effectiveness of BrainODE’s design, which captures shape dynamics among populations
in mesh representation and explicitly conditions on age and cognitive status, enabling more accurate
modeling of longitudinal shape changes.

Table 9: Comparison the hippocampal shape prediction performance in Euclidean distance (mm)
between registration-based NODER [2] and ours on the LBC1936 dataset.

Method hippo LV

NODER [2] 0.898 4.152
Ours 0.488 1.630

C.7 Longitudinal shape prediction capacity

From a practical perspective, an important question arises in longitudinal modeling: how far into the
future can models reliably predict brain shape progression while maintaining anatomical consistency?
To investigate this, we evaluated the longitudinal prediction capabilities of five models—ShapeFlow,
Extrapolation, BrLP, LatentODE, and BrainODE—using the LBC1936 dataset, as shown in Figure 14.
The figure presents the predicted hippocampus shapes of a single subject spanning ages 65 to 95
(within the training distribution) and extending to 107 years (beyond the training distribution),
demonstrating each model’s ability to predict long-term brain shape progression.

Specifically, ShapeFlow fails to predict beyond 89 years, as the brain shapes "explode", making
visualization infeasible. Extrapolation, while able to generate shape predictions, shows progressive
collapse when forecasting further beyond the two input time points (e.g., 65 and 71 years), with no-
ticeable distortions at 95 years. BrLP appears plausible at a glance, but as discussed in subsection C.5,
exhibits subject inconsistency; the predicted shape at 71 years already shows changes in overall
geometry and new appearances, not in the shape at 65 years. LatentODE, consistent with the main
experimental results, struggles with prior modeling within its VAE framework, repeatedly predicting
similar shapes (e.g., minimal variation in LV shape across all ages) due to training difficulties. In
contrast, BrainODE demonstrates robust performance within the in-distribution age, progressively
transforming shapes while preserving anatomical geometry features, such as the curvature of the
hippocampus and the expansion patterns of the LV, even up to 95 years. This highlights superior
capacity of BrainODE for long-term longitudinal prediction compared to other models.
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Figure 14: Comparison of longitudinal shape prediction over time for the hippocampus and LV.
Each column represents a different model, showing shapes predicted from ages 65 to 107 at uniform
intervals. Colors indicate the Euclidean distance from the first shape at age 65.
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