
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Gluon: Making Muon & Scion Great Again!
(Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Anonymous Authors1

Abstract
Recent developments in deep learning optimiza-
tion have brought about radically new algorithms
based on the Linear Minimization Oracle (LMO)
framework, such as Muon [15] and Scion [27].
After over a decade of Adam’s dominance, these
LMO-based methods are emerging as viable re-
placements, offering several practical advantages
such as improved memory efficiency, better hyper-
parameter transferability, and most importantly,
superior empirical performance on large-scale
tasks, including LLM training. However, a signif-
icant gap remains between their practical use and
our current theoretical understanding: prior analy-
ses (1) overlook the layer-wise LMO application
of these optimizers in practice, and (2) rely on
an unrealistic smoothness assumption, leading to
impractically small stepsizes. To address both, we
propose a new LMO-based method called Gluon,
capturing prior theoretically analyzed methods as
special cases, and introduce a new refined gener-
alized smoothness model that captures the layer-
wise geometry of neural networks, matches the
layer-wise practical implementation of Muon and
Scion, and leads to convergence guarantees with
strong practical predictive power. Unlike prior
results, our theoretical stepsizes closely match
the fine-tuned values reported by Pethick et al.
[27]. Our experiments with NanoGPT and CNN
confirm that our assumption holds along the op-
timization trajectory, ultimately closing the gap
between theory and practice.

1. Introduction
The success of deep learning models across a wide range
of challenging domains is inseparable from the optimiza-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

tion algorithms used to train them. As neural networks
have grown deeper and datasets larger, optimization has
quietly become one of the most consequential components
of modern machine learning (ML). Nowhere is this more ev-
ident than in the training of large language models (LLMs),
which routinely consume thousands of GPU-hours. Adam
[18] (and lately AdamW [24])—being effective, relatively
reliable, and widely adopted—has for over a decade served
as the default choice for this task. While this reliance has
powered much of deep learning’s progress, it has also ex-
posed the shortcomings of adaptive moment estimation as
a one-size-fits-all solution–namely, sensitivity to learning
rate schedules, heavy tuning requirements [32], and poor
generalization when not carefully calibrated [36]. However,
a shift may now be underway. Recent optimizers, such as
Muon [15] and Scion [27], represent a significant departure
from Adam-type methods: they forgo the adaptive moment
estimation in favor of a geometry-aware approach inspired
by Frank-Wolfe algorithms [7; 28]. These optimizers are
not only simpler to implement and easier to tune, but also
appear empirically stronger, outperforming AdamW in LLM
training [22; 27].

Yet, despite their potential, these new methods are still in
their infancy, and our understanding of their theoretical
foundations and practical utility in LLM training remains
incomplete. Prior convergence guarantees in realistic non-
convex regimes are still far from satisfactory. Indeed, as
we argue in Section 2, the (very few) existing theoretical
analyses fail to capture the true algorithms used in practice,
focusing instead on simplified variants that diverge from
actual implementations. We identify two key mismatches—
neglect of layer-wise structure (Section 2.1) and flawed
stepsize choices stemming from an inaccurate smoothness
model (Section 2.2)—and close this gap with a solution to
both. We elaborate on these advances in the remainder of
the paper.

Our goal is to solve the general optimization problem

min
X∈S

{f(X) := Eξ∼D [fξ(X)]} , (1)

where S is a finite-dimensional vector space and fξ :
S 7→ R are potentially non-convex and non-smooth but
continuously differentiable functions. Here, fξ(X) rep-

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

resents the loss of model parameterized by X associated
with training data point ξ sampled from probability dis-
tribution D. To make the problem meaningful, we as-
sume that f inf := infX∈S f(X) > −∞. In this work
we are particularly interested in the scenario when the
parameter vector X ∈ S is obtained by collecting the
matrices Xi ∈ Si := Rmi×ni of trainable parameters
across all layers i = 1, . . . , p of a deep model. For
simplicity, we therefore write X = [X1, . . . , Xp]. This
means that, formally, S is the d-dimensional product space
S :=

⊗p
i=1 Si ≡ S1 ⊗ · · · ⊗ Sp, where d :=

∑p
i=1mini.

With each space Si we associate the trace inner product
⟨Xi, Yi⟩(i) := tr(X⊤

i Yi) for Xi, Yi ∈ Si, and an arbitrary
norm ∥ · ∥(i), not necessarily induced by the inner product.

2. Theory vs. practice of Muon and Scion
In this work, we focus on an algorithm based on iteratively
calling linear minimization oracles (LMOs) across all layers,
formalized in Algorithm 1, for which we coin the name
Gluon. In particular, for each layer i, independently across
all layers, Gluon iteratively updates the parameters via

Xk+1
i = LMOBk

i
(Mk

i) := argmin
Xi∈Bk

i

⟨Mk
i , Xi⟩(i),

where Bk
i := {Xi ∈ Si : ∥Xi − Xk

i ∥(i) ≤ tki } and
tki > 0 is an adaptively chosen stepsize/radius/learning
rate.1 Note that the momentum Mk = [Mk

1 , . . . ,M
k
p] ∈ S

accumulates the contributions from the stochastic gradi-
ents ∇fξk(Xk) = [∇1fξk(X

k), . . . ,∇pfξk(X
k)] ∈ S

(see Step 1 of Algorithm 1).

The Gluon framework generalizes a range of methods, in-
cluding Muon and Scion, which are recovered as special
cases under specific norm choices (see Section 4.1 and Ap-
pendix D.1). Beyond their ability to outperform AdamW
on large-scale benchmarks, these optimizers offer a num-
ber of attractive properties: improved memory efficiency,
greater robustness to hyperparameter settings, and the abil-
ity to transfer those settings across model sizes [27; 30].
Moreover, in contrast to Adam, they were theoretically ana-
lyzed shortly after release and are guaranteed to converge
under standard assumptions of Lipschitz smoothness2 and
bounded variance of stochastic gradients [19; 20; 27].

Gluon presents the method that is deployed in practice [14;
26] and has proven highly effective. That said, we argue
that existing analyses [19; 20; 27] do not accurately reflect

1In this context, the radii defining the norm balls in the LMOs
effectively act as stepsizes–see Appendix C.1. Accordingly, we
use the terms radius, stepsize, and learning rate interchangeably
throughout.

2A function f : S 7→ R is L-smooth if ∥∇f(x)−∇f(y)∥⋆ ≤
L ∥x− y∥ for all x, y ∈ S , where S is a finite-dimensional vector
space equipped with a norm ∥ · ∥ and ∥ · ∥⋆ is the dual norm
associated with ∥ · ∥.

this implementation, diverging from it in two key ways. As
such, they fail to explain why the algorithm performs so
well. Let us detail why.

2.1. Layer-wise structure

First, we briefly walk through the theoretical understanding
offered by previous studies. Muon is an optimizer specifi-
cally designed for hidden layers, leaving the first and last
layers to be handled by some other optimizer, e.g., AdamW.
Its original introduction by Jordan et al. [15] was purely
empirical, with no attempt at theoretical analysis. The first
convergence result came from Li & Hong [20], who ana-
lyzed the smooth nonconvex setting but focused solely on
problem (1) with p = 1, effectively limiting the scope to the
single-layer case. The Scion3 optimizer (a special case of
Gluon) proposed by Pethick et al. [27] improves upon Muon
by applying the LMO-based rule to all layers, ultimately
achieving better empirical performance. Both this work
and that of Kovalev [19] analyze (a variant of) the general
update rule

Mk = βkMk−1 + (1− βk)∇fξk(Xk),

Xk+1 = LMOBk(Mk),
(2)

where βk ∈ [0, 1) is momentum, ∇fξk(Xk) is the stochas-
tic gradient sampled at iteration k, and Bk := {X ∈ S :
∥X −Xk∥ ≤ tk} is a norm ball centered at Xk with step-
size tk > 0. This setup closely resembles the structure of
Gluon, but is not exactly the same. Indeed, Gluon updates
the parameters layer-wise, not jointly over the full vector X .
This distinction is critical since for practical, extremely
high-dimensional models, calculating a single global LMO
for the entire parameter vector is prohibitively expensive,
while breaking the problem into “smaller”, per-layer LMOs
restores computational feasibility.

Motivated by this disconnect, we formulate our analysis in
the matrix product space S, explicitly honoring the layer-
wise structure. This enables us to study the actual per-
layer updates (10), with assumptions and hyperparameters
adapted to each layer.

2.2. A theory with predictive power

All prior works claiming to guarantee convergence of Algo-
rithm 1 come with several serious analytical shortcomings–
and these directly translate into practical deficiencies. Con-
cretely, all existing analyses of Muon/Scion are built on the
classical L-smoothness assumption, imposing a uniform
smoothness constant across all layers. This is problematic,

3Pethick et al. [27] introduce two variants of the Scion opti-
mizer: one for constrained optimization, called simply “Scion”,
and another for unconstrained problems, referred to as “uncon-
strained Scion”. In this work, “Scion” refers to either variant, and
“unScion” is used when referring to the unconstrained version.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

0 1000 2000 3000 4000 5000
iteration k

10 1

6 × 10 2

2 × 10 1

3 × 10 1

Name: module._orig_mod.transformer.wte.weight
Size: [50304, 768] | MSE_rel: 0.0005

Li

Lapprox
i : L0

i = 0.00, L1
i = 1.33

Figure 1: Token embedding matrix.

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

6

Name: module._orig_mod.transformer.h.4.attn.c_q.weight
Size: [768, 768] | MSE_rel: 0.0039

Li

Lapprox
i : L0

i = 0.00, L1
i = 68.42

Figure 2: Self-attention query matrix.

0 1000 2000 3000 4000 5000
iteration k

10 1

100

101

102

Trajectory smoothness L

Embed. layer
B.0 mlp.c_fc
B.0 attn.c_attn

B.3 attn.c_q
B.3 attn.c_attn
B.3 mlp.c_fc

Figure 3: Trajectory smoothness.
Figure 4: Training NanoGPT on FineWeb validates our layer-wise (L0, L1)-smoothness model.

as different layers have different geometries, and thus should
be treated differently.

But the issue runs much deeper. These algorithms are built
for deep learning, where the objective functions are already
well known not to be smooth [5; 35]. This mismatch has
consequences: prior convergence analyses prescribe tiny
constant stepsizes (see Table 1), uniform across all parame-
ter groups, which bear little resemblance to the tuned learn-
ing rates that yield state-of-the-art empirical performance
in practice. Consequently, they completely fail to explain
why these methods perform so well empirically. In other
words, the theory falls short at the one thing it should do
best: guiding practical choices, leaving practitioners reliant
on costly manual tuning.

Our result in Theorem 1 shows this mismatch is not in-
evitable. To better reflect the behavior of deep models, we
introduce a more expressive regularity condition: the layer-
wise (L0, L1)-smoothness–an extension of the generalized
smoothness model of Zhang et al. [35], applied at the layer
level.

Assumption 1 (Layer-wise (L0, L1)-smoothness). The
function f : S 7→ R is layer-wise (L0, L

1)-smooth
with constants L0 := (L0

1, . . . , L
0
p) ∈ Rp

+ and L1 :=
(L1

1, . . . , L
1
p) ∈ Rp

+. That is, the inequality

∥∇if(X)−∇if(Y)∥(i)⋆
∥Xi − Yi∥(i)

≤ L0
i + L1

i ∥∇if(X)∥(i)⋆ (3)

holds for all i = 1, . . . , p and all X = [X1, . . . , Xp] ∈
S, Y = [Y1, . . . , Yp] ∈ S, where ∥ · ∥(i)⋆ is the
dual norm associated with ∥ · ∥(i) (i.e., ∥Xi∥(i)⋆ :=
sup∥Zi∥(i)≤1 ⟨Xi, Zi⟩(i) for any Xi ∈ Si).

Assumption 1 can be viewed as a generalization of the
anisotropic “vector” (L0, L1)–smoothness introduced by
Liu et al. [23] (now framed in terms of arbitrary norms),
which itself is a generalization of the (L0, L1)–smoothness
model of Zhang et al. [35]. As such, our analysis of Gluon
goes beyond all existing results, which have only considered

the classical L-smooth setting. Crucially, however, this is
not generalization for its own sake–we argue that this is in
fact the right model for the problem setting at hand. Why?
There are (at least) two reasons.

First, unlike classical L-smoothness, our formulation aligns
very closely with empirical observations. In Figures 1 and
2, we validate Assumption 1 in the context of training
NanoGPT on the FineWeb dataset. We plot estimated
trajectory smoothness L̂i[k] (defined in (8)) alongside the
approximation L̂approx

i [k] := L0
i+L

1
i ∥∇ifξk+1(Xk+1)∥(i)⋆,

where L0
i , L

1
i are layer-specific parameters estimated from

the training run. The figures show these quantities for pa-
rameters from the embedding layer and one of the trans-
former blocks. The close correspondence between L̂i[k]
and L̂approx

i [k] provides strong evidence that Assumption 1
holds approximately along the training trajectory. In Sec-
tion 5, we further corroborate this finding, showing that our
assumption is satisfied across the entire model architecture
for both the NanoGPT language modeling task and a CNN
trained on CIFAR-10. In all cases, we find that L0

i ≈ 0 for
all i, again highlighting the limitations of classical smooth-
ness. Moreover, as shown in Figure 3, trajectory smoothness
varies substantially across blocks and layers, underscoring
the need for per-layer treatment. Together, these results
suggest that layer-wise (L0, L1)-smoothness offers a signifi-
cantly more realistic model of the loss landscape in modern
deep learning.

Secondly, Assumption 1 not only better captures the geom-
etry of the models, but also directly informs the design of
adaptive and practically effective stepsizes. In Theorem 1,
we derive learning rates that reflect the local geometry of
each parameter group, guided by our layer-wise smoothness
model. As demonstrated in Section 5.1, our theoretically
grounded stepsizes turn out to be almost the same as the
ones obtained by Pethick et al. [27] via hyperparameter
tuning–a striking validation of our approach, which further
highlights the need for layer-wise reasoning. This proves
that theoretical stepsizes can have predictive power and
replace trial-and-error tuning in practice.

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

3. Contributions
We present a comprehensive theoretical and empirical study
of a broad class of layer-wise LMO-based optimization
algorithms. Our key contributions can be summarized as
follows:

⋄ A new generalized smoothness framework for deep
networks. We introduce layer-wise (L0, L1)-smoothness
(Assumption 1), a novel non-Euclidean generalized smooth-
ness condition that reflects the anisotropic, layer-wise struc-
ture of modern deep networks. This framework extends
standard (L0, L1)-smoothness assumption [35] to arbitrary
norms while capturing per-layer variation, offering a realis-
tic foundation for analyzing deep learning optimizers.

⋄ First principled analysis of layer-wise methods. Build-
ing on our new assumption, we develop the first faithful
convergence analysis for a class of LMO-based algorithms
we term Gluon (Algorithms 1 and 2). We recover known
algorithms, including state-of-the-art Muon-type optimiz-
ers, as special cases (Section 4.1 and Appendix D.1), and
pinpoint why earlier theoretical works fail to explain the
empirical success of these methods (Section 2). In contrast
to prior analyses that oversimplify the update rules used
in practice, our framework directly aligns with real-world
implementations, bridging a critical gap between theory and
application.

⋄ Sharper and more general convergence theory. We
develop a convergence theory that extends prior work in
both scope and sharpness. In the deterministic case (Algo-
rithm 2), we establish convergence for general non-convex
objectives under our Assumption 1 (Theorem 1), and under
the block-wise PŁ condition (Theorem 4). Unlike earlier
analyses, our theory yields adaptive, layer-wise stepsizes
that align remarkably well with those selected via tuning in
large-scale experiments [27] (Section 5.1). We next analyze
the practical stochastic variant with time-varying stepsizes
and momentum (Algorithm 1), proving convergence under
non-Euclidean bounded variance assumption (Theorem 1).
In both deterministic and stochastic regimes, our guarantees
are stronger and more general than all prior work (Table 1).
While previous theories fail to explain the empirical suc-
cess of Muon-type methods, we are the first to demonstrate
their provable advantage over SGD, offering tighter conver-
gence rates under more general assumptions (Appendix E).
Moreover, we provide the first theoretical explanation of the
benefits of layer-wise learning rates, clearly establishing the
advantages of structured, anisotropic optimization in deep
learning.

⋄ Empirical evidence. We validate our theoretical insights
through extensive experiments (Section 5 and Appendix F)
in both language modeling (NanoGPT on FineWeb) and
image classification (CNN on CIFAR-10). The results con-

firm that our Assumption 1 holds approximately throughout
training and demonstrate the practical utility of our theoreti-
cally prescribed stepsizes from Theorem 1.

4. Main theory and results
To gain a better intuition into the structure of the updates, we
begin with a deterministic formulation of Gluon, formalized
in Algorithm 2. At each iteration, the method independently
minimizes a linear approximation of f around each param-
eter group Xk

i within a ball of radius tki > 0, ultimately
allowing for layer-specific algorithmic design choices.

4.1. Examples of optimizers satisfying our framework

Deterministic Gluon describes a general class of methods,
parameterized by the choice of norms ∥ · ∥(i) in the LMO.
To illustrate the flexibility of this framework, we highlight
several notable special cases (see Appendix D.1 for more
details). First, observe that the update rule (12) can be
written as

Xk+1
i = Xk

i + tki LMO{∥Xi∥(i)≤1}
(
∇if(X

k)
)
. (4)

For any Xi ∈ Si = Rmi×ni , define ∥Xi∥α→β :=
sup∥z∥α=1 ∥Xiz∥β , where ∥ · ∥α and ∥ · ∥β are some (pos-
sibly non-Euclidean) norms on Rni and Rmi , respectively.
Note that (4) naturally recovers several known updates for
specific choices of the layer norms, e.g., layer-wise normal-
ized GD [34] for Euclidean norms ∥ · ∥(i) = ∥ · ∥2, and
layer-wise signGD [1] for max-norms ∥ · ∥(i) = ∥ · ∥∞.

Two special cases are particularly relevant to our analysis:

⋄ Muon [15] when ∥ · ∥(i) = ∥ · ∥2→2 for all hidden layers.

⋄ unScion for LLM training [27] when ∥·∥(i) =
√

ni/mi∥·
∥2→2 for i = 1, . . . , p− 1, corresponding to weight matri-
ces of transformer blocks, and ∥ · ∥(p) = np∥ · ∥1→∞ for
the last group Xp, representing the embedding and output
layers (the two coincide under the weight sharing regime4

considered here). In this case, update (4) becomes

Xk+1
i = Xk

i − tki

√
mi

ni
Uk
i

(
V k
i

)⊤
, i = 1, . . . , p− 1,

Xk+1
p = Xk

p − tkp
np

sign
(
∇pf(X

k)
)
,

(5)
where the matrices Uk

i , V
k
i are obtained from the (reduced)

SVD of ∇if(X
k) = Uk

i Σ
k
i

(
V k
i

)⊤
.

4.2. Convergence results

Having demonstrated the framework’s flexibility through
concrete examples, we now state a general convergence

4Weight sharing refers to the practice of using the same param-
eters (weights) for different parts of a model, rather than allowing
each part to have its own unique parameters.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

result for deterministic Gluon.
Theorem 1. Let Assumption 1 hold and fix ε > 0. Let
X0, . . . , XK−1 be the iterates of deterministic Gluon (Algo-

rithm 2) run with stepsizes tki =
∥∇if(X

k)∥(i)⋆

L0
i+L1

i ∥∇if(Xk)∥(i)⋆
. Then,

to guarantee that

min
k=0,...,K−1

p∑
i=1

[
1/L1

i
1
p

∑p
j=1

1/L1
j

∥∥∇if(X
k)
∥∥
(i)⋆

]
≤ ε, (6)

it suffices to run the algorithm for

K =

⌈
2∆0(

∑p
i=1

L0
i/(L1

i)2)
ε2(1

p

∑p
j=1

1/L1
j)

2 + 2∆0

ε(1
p

∑p
j=1

1/L1
j)

⌉
(7)

iterations, where ∆0 := f(X0)− f inf .

Several important observations follow.

Convergence rate. In Appendix D.2, we prove an addi-
tional result (Theorem 2) that modifies the first term in (7)
to 2∆0∑p

i=1 L0
i/ϵ2, potentially leading to improvements in

certain settings (depending on the relationship between the
sequences {L0

i } and {L1
i }–see Remark 3). However, this

introduces a dependence on L1
max := maxi=1,...,p L

1
i in the

second term. Empirically, we find that L0
i ≈ 0 across all

layers (see Section 5), making the first term vanish in both
bounds. In this case, the rate (7) is clearly superior, replac-
ing the worst-case constant L1

max with the more favorable
harmonic mean.

When p = 1, our rates match the best-known complexity
for finding a stationary point of (L0, L1)-smooth functions,
O
(
L0∆0

/ϵ2 + L1∆0
/ϵ
)
, as established by Vankov et al. [31]

for the Gradient Method. While no prior work has analyzed
deterministic Gluon under general (L0, L1)-smoothness,
there exist analyses under classical L-smoothness, treating
the parameters as a single vector. The analysis by Kovalev
[19] guarantees convergence in K =

⌈
6L∆0

/ϵ2
⌉

iterations.
The same bound appears in Li & Hong [20] and Pethick et al.
[27] (by setting σ2 = 0). Since for p = 1, L-smoothness
implies Assumption 1 with L1 = 0 (Lemma 2), our rates
match these prior results up to a constant factor. Thus, even
in the smooth setting, our bounds are as tight as those de-
rived specifically for it.

However, the real strength of our guarantees lies in their
broader applicability. Our analysis is much more general
than prior studies, as it extends beyond standard smoothness–
allowing L1

i > 0 introduces additional terms that drive the
accelerated convergence enabled by (L0, L1)-smoothness.
This richer model is essential for explaining the empirical
speedup of methods like Muon, and much more accurately
reflects the geometry of neural network loss surfaces. In-
deed, as we demonstrate in Section 5, the assumption typi-
cally holds with L0

i ≈ 0 and L1
i > 0.

Practical radii tki . Unlike previous analyses [19; 20; 27],
which prescribe impractically small constant radii propor-

tional to ϵ, our framework allows tki to be adaptive to the
loss landscape. Therefore, tki can be larger early in training
when ∥∇if(X

k)∥(i)⋆ is large and gradually shrink as the
gradient norm decreases. In the special case when L0

i ≈ 0
(as observed empirically), tki ≈ 1/L1

i , which is substantially
larger than the radii dictated by earlier analyses. Crucially,
as shown in Section 5.1, our adaptive stepsizes closely match
those that yield state-of-the-art empirical performance iden-
tified by Pethick et al. [27] through hyperparameter tuning.
This alignment demonstrates that principled, theory-driven
stepsize selection could effectively replace costly manual
tuning.

5. Experiments
Below, we highlight selected experimental results for the un-
Scion optimizer, a special case of Gluon (see Appendix D.1).
Additional details and further experiments are provided in
Appendix F.5

5.1. Training NanoGPT on FineWeb

In the first set of experiments, we aim to verify layer-
wise (L0, L1)-smoothness (Assumption 1). To this end,
we train the NanoGPT model with 124M parameters on
the FineWeb dataset, leveraging two open-source GitHub
repositories [14; 26]. We use the unScion optimizer, i.e.,
Gluon with the norm choices as in (5). We adopt the hy-
perparameters from Pethick et al. [27, Table 7], mapping
their values γ = 0.00036, ρ2 = 50, and ρ3 = 3000
into our notation as follows: tki ≡ γρ2 = 0.018 for
i = 1, . . . , p − 1 (corresponding to the transformer block
layers), and tkp ≡ γρ3 = 1.08 (token embeddings and out-
put projections, due to weight sharing). We set the number
of warmdown iterations to 0 to keep the learning rates con-
stant throughout training. The model is trained for 5,000
iterations in accordance with the Chinchilla scaling laws to
ensure compute-optimal training.

In Figures 5, 7, 8, we plot the estimated trajectory smooth-
ness as a function of the iteration index k

L̂i[k] :=
∥∇ifξk+1 (X

k+1)−∇ifξk (X
k)∥(i)⋆

∥Xk+1
i −Xk

i ∥(i)
(8)

for parameter groups from the embedding layer and 4th and
8th transformer blocks (with similar trends observed across
all blocks). We compare this to the approximation

L̂approx
i [k] := L0

i + L1
i ∥∇ifξk+1(Xk+1)∥(i)⋆,

where L0
i , L

1
i ≥ 0 are fitted to minimize the Euclidean error

between L̂i[k] and L̂approx
i [k], with hinge-like penalty on

underestimation (see Appendix F.2). The close alignment
between these curves implies that Assumption 1 is approx-
imately satisfied along the training trajectories. Based on

5Code for all experiments is available here.

5

https://anonymous.4open.science/r/Experiments-estimating-smoothness-for-NanoGPT-and-CNN-FB64/README.md

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

the estimated values of L0
i and L1

i , assuming that Assump-
tion 1 holds and ignoring gradient stochasticity, Theorem 1
suggests the stepsizes

tki =
∥∇ifξk (X

k)∥(i)⋆

L0
i+L1

i ∥∇ifξk (X
k)∥(i)⋆

≈ 1
L1

i
≈ 1

70 ≈ 0.014, i < p,

tkp =
∥∇pfξk (X

k)∥(p)⋆

L0
p+L1

p∥∇pfξk (X
k)∥(p)⋆

≈ 1
L1

p
≈ 1

1.3 ≈ 0.77.

(9)

Remarkably, these values align closely with the manually
tuned values reported earlier, again underscoring the predic-
tive power of our theoretical prescriptions (see Section 4).

0 1000 2000 3000 4000 5000
iteration k

8

10

12

14

16

Name: module._orig_mod.transformer.h.8.mlp.c_proj.weight
Size: [768, 3072] | MSE_rel: 0.0021

Li

Lapprox
i : L0

i = 0.00, L1
i = 70.11

Figure 5: Validation of Assumption 1 for parameters from
the 8th transformer block in NanoGPT-124M during un-
Scion training.

Effect of scaling factors. We next evaluate the impact
of the learning rate scaling factors ρ2 and ρ3 on the per-
formance of the unScion optimizer. For consistency, all
other hyperparameters are fixed as described earlier. As a
baseline, we include results obtained with the AdamW opti-
mizer, using the hyperparameter settings from Section F.3.3.
Figure 6 presents (a) validation curves for both optimiz-
ers, with varying ρ3 in unScion.The best performance is
achieved with ρ2 = 50 and ρ3 = 3000, i.e., tki = 0.018
for i = 1, . . . , p − 1 and tkp = 1.08, consistent with our
theoretical prediction (9). This supports the use of non-
uniform scaling across layers, with larger stepsizes for the
embedding layer.

Additional ablation studies. In Appendix F.3.2, we
present an ablation study demonstrating that specialized
norms provide a better approximation of trajectory smooth-
ness compared to the standard Euclidean norm. Ap-
pendix F.3.3 demonstrates that the layer-wise (L0, L1)-
smoothness model also closely approximates trajectory
smoothness during AdamW training. Notably, we observe
a similar gap between transformer and embedding layers
as with Scion, suggesting that smoothness statistics from

0 1000 2000 3000 4000 5000
Iteration k

3.4

3.5

3.6

3.7

3.8

3.9

4.0

Va
lid

at
io

n
Lo

ss

AdamW
unScion: 2 = 50, 3 = 10000
unScion: 2 = 50, 3 = 5000
unScion: 2 = 50, 3 = 3000 (tuned)
unScion: 2 = 50, 3 = 500
unScion: 2 = 50, 3 = 50

Figure 6: Validation curves for AdamW and unScion with
varying ρ3 values

AdamW training can guide per-layer learning rate tuning in
Scion.

CNN on CIFAR-10. Training a CNN on CIFAR-10
with unScion further validated our layer-wise (L0, L1)-
smoothness assumption (Assumption 1), finding L0

i ≈ 0
in both full-batch (deterministic) and stochastic gradient
settings. Observed variations in estimated L1

i across lay-
ers corresponded well with empirically tuned non-uniform
stepsizes [27]. Full details are in Appendix F.4.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
[1] Balles, L., Pedregosa, F., and Roux, N. L. The geome-

try of Sign Gradient Descent, 2020. URL https://
arxiv.org/abs/2002.08056. (Cited on page 4
and 13)

[2] Bernstein, J. and Newhouse, L. Old optimizer, new
norm: An anthology. In OPT 2024: Optimization for
Machine Learning, 2024. URL https://arxiv.
org/abs/2409.20325. (Cited on page 9 and 13)

[3] Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and
Anandkumar, A. signSGD: Compressed optimisa-
tion for non-convex problems. In International Con-
ference on Machine Learning, pp. 560–569. PMLR,
2018. URL https://arxiv.org/abs/1802.
04434. (Cited on page 9)

[4] Beznosikov, A., Horváth, S., Richtárik, P., and Sa-
faryan, M. On biased compression for distributed
learning. Journal of Machine Learning Research, 24
(276):1–50, 2023. (Cited on page 19)

[5] Crawshaw, M., Liu, M., Orabona, F., Zhang, W.,

6

https://arxiv.org/abs/2002.08056
https://arxiv.org/abs/2002.08056
https://arxiv.org/abs/2409.20325
https://arxiv.org/abs/2409.20325
https://arxiv.org/abs/1802.04434
https://arxiv.org/abs/1802.04434

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

and Zhuang, Z. Robustness to unbounded smooth-
ness of generalized signSGD. Advances in neu-
ral information processing systems, 35:9955–9968,
2022. URL https://arxiv.org/abs/2208.
11195. (Cited on page 3 and 9)

[6] Demidovich, Y., Malinovsky, G., Sokolov, I., and
Richtárik, P. A guide through the zoo of biased sgd.
Advances in Neural Information Processing Systems,
36:23158–23171, 2023. (Cited on page 19)

[7] Frank, M. and Wolfe, P. An algorithm for
quadratic programming. Naval Research Lo-
gistics Quarterly, 3(1-2):95–110, 1956. URL
https://onlinelibrary.wiley.com/
doi/abs/10.1002/nav.3800030109. (Cited
on page 1 and 9)

[8] Gorbunov, E., Tupitsa, N., Choudhury, S., Aliev, A.,
Richtárik, P., Horváth, S., and Takáč, M. Methods
for convex (L0, L1)-smooth optimization: Clipping,
acceleration, and adaptivity. In The Thirteenth In-
ternational Conference on Learning Representations,
2025. URL https://arxiv.org/abs/2409.
14989. (Cited on page 9)

[9] Gruntkowska, K., Li, H., Rane, A., and Richtárik, P.
The Ball-Proximal (=”Broximal”) Point Method: a
new algorithm, convergence theory, and applications.
arXiv preprint arXiv:2502.02002, 2025. URL https:
//arxiv.org/abs/2502.02002. (Cited on
page 11)

[10] Hübler, F., Yang, J., Li, X., and He, N. Parameter-
agnostic optimization under relaxed smoothness. In
International Conference on Artificial Intelligence and
Statistics, pp. 4861–4869. PMLR, 2024. URL https:
//arxiv.org/abs/2311.03252. (Cited on
page 9, 11, 19, and 25)

[11] Jaggi, M. Revisiting frank-wolfe: Projection-free
sparse convex optimization. In International confer-
ence on machine learning, pp. 427–435. PMLR, 2013.
(Cited on page 9)

[12] Jiang, R., Maladkar, D., and Mokhtari, A. Conver-
gence analysis of adaptive gradient methods under
refined smoothness and noise assumptions. arXiv
preprint arXiv:2406.04592, 2024. URL https://
arxiv.org/abs/2406.04592. (Cited on page 9)

[13] Jordan, K. Cifar-10 airbench. https://github.
com/KellerJordan/cifar10-airbench,
2024. GitHub repository. (Cited on page 28 and 32)

[14] Jordan, K., Bernstein, J., Rappazzo, B., Vlado,
B., Jiacheng, Y., Cesista, F., and Koszarsky, B.

Modded-nanoGPT: Speedrunning the nanoGPT base-
line. https://github.com/KellerJordan/
modded-nanogpt, 2024. GitHub repository.
Additional contributors: @fern-bear.bsky.social,
@Grad62304977. (Cited on page 2, 5, and 28)

[15] Jordan, K., Jin, Y., Boza, V., You, J., Cesista,
F., Newhouse, L., and Bernstein, J. Muon: An
optimizer for hidden layers in neural networks,
2024. URL https://kellerjordan.github.
io/posts/muon/. (Cited on page 1, 2, 4, 9, 13,
and 28)

[16] Karimi, H., Nutini, J., and Schmidt, M. Lin-
ear convergence of gradient and proximal-gradient
methods under the Polyak-Łojasiewicz condition,
2020. URL https://arxiv.org/abs/1608.
04636. (Cited on page 17)

[17] Khaled, A. and Richtárik, P. Better theory for
SGD in the nonconvex world. arXiv preprint
arXiv:2002.03329, 2020. URL https://arxiv.
org/abs/2002.03329. (Cited on page 19 and 34)

[18] Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. In International Conference on Learn-
ing Representations, 2015. URL https://arxiv.
org/abs/1412.6980. (Cited on page 1)

[19] Kovalev, D. Understanding gradient orthogonaliza-
tion for deep learning via non-Euclidean trust-region
optimization, 2025. URL https://arxiv.org/
abs/2503.12645. (Cited on page 2, 5, 9, 11, and 12)

[20] Li, J. and Hong, M. A note on the convergence of
Muon and further, 2025. URL https://arxiv.
org/abs/2502.02900. (Cited on page 2, 5, 9,
and 11)

[21] Liu, C., Zhu, L., and Belkin, M. Loss landscapes and
optimization in over-parameterized non-linear systems
and neural networks. Applied and Computational Har-
monic Analysis, 59, 01 2022. doi: 10.1016/j.acha.2021.
12.009. URL https://arxiv.org/abs/2003.
00307. (Cited on page 17)

[22] Liu, J., Su, J., Yao, X., Jiang, Z., Lai, G., Du, Y., Qin,
Y., Xu, W., Lu, E., Yan, J., et al. Muon is scalable
for LLM training. arXiv preprint arXiv:2502.16982,
2025. URL https://arxiv.org/abs/2502.
16982. (Cited on page 1)

[23] Liu, Y., Pan, R., and Zhang, T. AdaGrad under
anisotropic smoothness, 2024. URL https://
arxiv.org/abs/2406.15244. (Cited on page 3
and 9)

7

https://arxiv.org/abs/2208.11195
https://arxiv.org/abs/2208.11195
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800030109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800030109
https://arxiv.org/abs/2409.14989
https://arxiv.org/abs/2409.14989
https://arxiv.org/abs/2502.02002
https://arxiv.org/abs/2502.02002
https://arxiv.org/abs/2311.03252
https://arxiv.org/abs/2311.03252
https://arxiv.org/abs/2406.04592
https://arxiv.org/abs/2406.04592
https://github.com/KellerJordan/cifar10-airbench
https://github.com/KellerJordan/cifar10-airbench
https://github.com/KellerJordan/modded-nanogpt
https://github.com/KellerJordan/modded-nanogpt
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://arxiv.org/abs/1608.04636
https://arxiv.org/abs/1608.04636
https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2503.12645
https://arxiv.org/abs/2503.12645
https://arxiv.org/abs/2502.02900
https://arxiv.org/abs/2502.02900
https://arxiv.org/abs/2003.00307
https://arxiv.org/abs/2003.00307
https://arxiv.org/abs/2502.16982
https://arxiv.org/abs/2502.16982
https://arxiv.org/abs/2406.15244
https://arxiv.org/abs/2406.15244

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

[24] Loshchilov, I. and Hutter, F. Decoupled weight decay
regularization. In International Conference on Learn-
ing Representations, 2019. URL https://arxiv.
org/abs/1711.05101. (Cited on page 1)

[25] Nesterov, Y. Efficiency of coordinate descent
methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362,
2012. URL https://epubs.siam.org/doi/
10.1137/100802001. (Cited on page 9)

[26] Pethick, T., Xie, W., Antonakopoulos, K., Zhu, Z.,
Silveti-Falls, A., and Cevher, V. Scion. https://
github.com/LIONS-EPFL/scion.git, 2025.
GitHub repository. (Cited on page 2, 5, 28, and 32)

[27] Pethick, T., Xie, W., Antonakopoulos, K., Zhu, Z.,
Silveti-Falls, A., and Cevher, V. Training deep learning
models with norm-constrained LMOs. arXiv preprint
arXiv:2502.07529, 2025. URL https://arxiv.
org/abs/2502.07529. (Cited on page 1, 2, 3, 4, 5,
6, 9, 11, 12, 13, 32, and 33)

[28] Pokutta, S. The Frank-Wolfe algorithm: a short intro-
duction. Jahresbericht der Deutschen Mathematiker-
Vereinigung, 126(1):3–35, 2024. URL https://
arxiv.org/abs/2311.05313. (Cited on page 1)

[29] Richtárik, P. and Takáč, M. Iteration complexity of
randomized block-coordinate descent methods for min-
imizing a composite function. Mathematical Program-
ming, 144(1):1–38, 2014. URL https://arxiv.
org/abs/1107.2848. (Cited on page 9)

[30] Shah, I., Polloreno, A. M., Stratos, K., Monk, P.,
Chaluvaraju, A., Hojel, A., Ma, A., Thomas, A., Tan-
wer, A., Shah, D. J., et al. Practical efficiency of Muon
for pretraining. arXiv preprint arXiv:2505.02222,
2025. URL https://arxiv.org/abs/2505.
02222. (Cited on page 2)

[31] Vankov, D., Rodomanov, A., Nedich, A., Sankar, L.,
and Stich, S. U. Optimizing (L0, L1)-smooth func-
tions by gradient methods. In The Thirteenth In-
ternational Conference on Learning Representations,
2025. URL https://arxiv.org/abs/2410.
10800. (Cited on page 5, 9, and 13)

[32] Wilson, A. C., Roelofs, R., Stern, M., Srebro,
N., and Recht, B. The marginal value of adap-
tive gradient methods in machine learning. Ad-
vances in neural information processing systems, 30,
2017. URL https://arxiv.org/abs/1705.
08292. (Cited on page 1)

[33] Xie, S., Mohamadi, M. A., and Li, Z. Adam ex-
ploits ℓ∞-geometry of loss landscape via coordinate-
wise adaptivity. arXiv preprint arXiv:2410.08198,

2024. URL https://arxiv.org/abs/2410.
08198. (Cited on page 9)

[34] Yu, A. W., Huang, L., Lin, Q., Salakhutdinov, R.,
and Carbonell, J. Block-normalized gradient method:
An empirical study for training deep neural net-
work, 2018. URL https://openreview.net/
forum?id=ry831QWAb. (Cited on page 4 and 12)

[35] Zhang, J., He, T., Sra, S., and Jadbabaie, A. Why
gradient clipping accelerates training: A theoretical
justification for adaptivity. In International Conference
on Learning Representations, 2020. URL https://
arxiv.org/abs/1905.11881. (Cited on page 3,
4, and 9)

[36] Zou, D., Cao, Y., Li, Y., and Gu, Q. Understand-
ing the generalization of Adam in learning neural
networks with proper regularization. arXiv preprint
arXiv:2108.11371, 2021. URL https://arxiv.
org/abs/2108.11371. (Cited on page 1)

8

https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://epubs.siam.org/doi/10.1137/100802001
https://epubs.siam.org/doi/10.1137/100802001
https://github.com/LIONS-EPFL/scion.git
https://github.com/LIONS-EPFL/scion.git
https://arxiv.org/abs/2502.07529
https://arxiv.org/abs/2502.07529
https://arxiv.org/abs/2311.05313
https://arxiv.org/abs/2311.05313
https://arxiv.org/abs/1107.2848
https://arxiv.org/abs/1107.2848
https://arxiv.org/abs/2505.02222
https://arxiv.org/abs/2505.02222
https://arxiv.org/abs/2410.10800
https://arxiv.org/abs/2410.10800
https://arxiv.org/abs/1705.08292
https://arxiv.org/abs/1705.08292
https://arxiv.org/abs/2410.08198
https://arxiv.org/abs/2410.08198
https://openreview.net/forum?id=ry831QWAb
https://openreview.net/forum?id=ry831QWAb
https://arxiv.org/abs/1905.11881
https://arxiv.org/abs/1905.11881
https://arxiv.org/abs/2108.11371
https://arxiv.org/abs/2108.11371

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Algorithm 1 Gluon: Stochastic Adaptive Layer-Wise LMO-based Optimizer with Momentum

1: Input: Initial model parameters X0 = [X0
1 , . . . , X

0
p] ∈ S, momentum M0 = [M0

1 , . . . ,M
0
p] ∈ S, momentum decay

factors βk ∈ [0, 1) for all iterations k ≥ 0
2: for k = 0, 1, 2, . . . ,K − 1 do
3: Sample ξk ∼ D
4: for i = 1, 2, . . . , p do
5: Compute stochastic gradient ∇ifξk(X

k) for layer i
6: Update momentum Mk

i = βkMk−1
i + (1− βk)∇ifξk(X

k) for layer i
7: Choose adaptive stepsize/radius tki > 0 for layer i
8: Update parameters for layer i via LMO over Bk

i := {Xi ∈ Si : ∥Xi −Xk
i ∥(i) ≤ tki }:

Xk+1
i = LMOBk

i

(
Mk

i

)
:= argmin

Xi∈Bk
i

⟨Mk
i , Xi⟩(i) (10)

9: end for
10: end for
11: Update full parameter vector Xk+1 = [Xk+1

1 , . . . , Xk+1
p] =0

A. Related works
Generalized Smoothness. The classical L-smoothness assumption, where the gradient is Lipschitz continuous with a
global constant L, often fails to accurately capture the complex geometry of loss landscapes in deep learning [5; 35].
To address this, Zhang et al. [35] introduced the (L0, L1)-smoothness condition, empirically observing from language
model experiments that a bound of the form ∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥ better described the Hessian norm behavior.
This model, where smoothness can depend on the gradient norm, allows for larger steps when gradients are small and
more conservative steps when gradients are large, reflecting typical training dynamics. Subsequent works have analyzed
standard optimization algorithms under this generalized smoothness framework. For instance, Gorbunov et al. [8] and
Vankov et al. [31] provided convergence analyses for the Gradient Method. Hübler et al. [10] analyzed Normalized SGD
with momentum in a parameter-agnostic setting under (L0, L1)-smoothness. Our work extends this line by incorporating
(L0, L1)-smoothness into a layer-wise context using arbitrary norms, an approach that is particularly well-suited for the
LMO-based optimizers we study.

Anisotropic Smoothness. Recognizing the heterogeneous nature of parameters in large models, researchers have explored
anisotropic smoothness conditions, where smoothness constants can vary across different dimensions or parameter blocks.
Early work in this direction includes coordinate-wise Lipschitz continuity for coordinate descent methods [25; 29]. More
recently, Bernstein et al. [3] analyzed SignSGD under a weaker notion of coordinate-wise smoothness. Crawshaw et al. [5]
further developed this by analyzing Generalized SignSGD under a generalized coordinate-wise smoothness assumption,
highlighting that different parameter groups can exhibit vastly different geometries. Jiang et al. [12] focused on Adagrad’s
analysis under coordinate-wise smoothness and established lower bounds for SGD, underscoring the benefits of adaptivity.
Liu et al. [23] proposed “Anisotropic (L0, L1)-smoothness” (a vector version of (L0, L1)-smoothness applied coordinate-
wise) and demonstrated Adagrad’s provable advantages over SGD in this setting. Xie et al. [33] also leveraged anisotropic
smoothness concepts in their convergence analysis of Adam. Our work contributes by defining and analyzing layer-wise
(L0, L1)-smoothness, which combines the benefits of the generalized smoothness model with a structured, anisotropic
perspective tailored to the layer-block architecture of neural networks and compatible with arbitrary layer-specific norms.
This framework is essential for understanding LMO-based methods like Muon and Scion.

LMO-based Optimizers. The optimizers Muon [15] and Scion [27] represent a recent class of methods that have shown
strong empirical performance in deep learning. Muon was initially introduced as an effective empirical method, with its
update rule for hidden layers inspired by ideas from Bernstein & Newhouse [2]. Subsequently, Pethick et al. [27] (authors
of Scion) explicitly connected these types of updates to the Frank-Wolfe (FW) framework [7; 11], proposing the use of
layer-specific norms within an LMO-based update rule. These methods perform updates by solving, for each layer, a
linear minimization problem over a norm ball centered at the current iterate. Prior theoretical analyses of these optimizers
[19; 20; 27] have typically relied on standard L-smoothness and analyzed a simplified global update. Our work provides the
first convergence guarantees for these methods under the more realistic layer-wise (L0, L1)-smoothness, directly addressing

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

their practical layer-wise nature and leveraging the geometric insights offered by LMOs over general norms.

B. Auxiliary lemmas
Lemma 1. Let f : S 7→ R satisfy Assumption 1. Then, for any X,Y ∈ S we have

|f(Y)− f(X)− ⟨∇f(X), Y −X⟩| ≤
p∑

i=1

L0
i + L1

i ∥∇if(X)∥(i)⋆
2

∥Yi −Xi∥2(i).

Proof. For all X,Y ∈ S we have

f(Y) = f(X) +

∫ 1

0

⟨∇f(X + τ(Y −X)), Y −X⟩ dτ

= f(X) + ⟨∇f(X), Y −X⟩+
∫ 1

0

⟨∇f(X + τ(Y −X))−∇f(X), Y −X⟩ dτ.

Therefore, using the Cauchy-Schwarz inequality and Assumption 1, we obtain

|f(Y)− f(X)− ⟨∇f(X), Y −X⟩|

≤

∣∣∣∣∣
∫ 1

0

p∑
i=1

⟨∇if(X + τ(Y −X))−∇if(X), Yi −Xi⟩(i) dτ

∣∣∣∣∣
≤

∫ 1

0

p∑
i=1

∣∣∣⟨∇if(X + τ(Y −X))−∇if(X), Yi −Xi⟩(i)
∣∣∣ dτ

≤
∫ 1

0

p∑
i=1

∥∇if(X + τ(Y −X))−∇if(X)∥(i)⋆ ∥Yi −Xi∥(i)dτ

≤
∫ 1

0

p∑
i=1

τ
(
L0
i + L1

i ∥∇if(X)∥(i)⋆
)
∥Yi −Xi∥2(i)dτ

=

p∑
i=1

L0
i + L1

i ∥∇if(X)∥(i)⋆
2

∥Yi −Xi∥2(i).

Lemma 2. Suppose that f is L-smooth with respect to the norm defined in (11), i.e.,

∥∇f(X)−∇f(Y)∥max ⋆ ≤ L ∥X − Y ∥max ,

where X = [X1, . . . , Xp] and Y = [Y1, . . . , Yp] with Xi, Yi ∈ Si. Then Assumption 1 holds with L0
i ≤ L and L1

i = 0 for
all i = 1, . . . , p.

Proof. L-smoothness and the definition of the norm give

p∑
i=1

∥∇if(X)−∇if(Y)∥(i)⋆ ≤ Lmax
{
∥X1 − Y1∥(1) , . . . , ∥Xp − Yp∥(p)

}
for all X,Y ∈ S. In particular, choosing X = [X1, . . . , Xp] and Y = [X1, . . . , Xj−1, Yj , Xj+1, . . . Xp], we have

∥∇jf(X)−∇jf(Y)∥(j)⋆ ≤
p∑

i=1

∥∇if(X)−∇if(Y)∥(i)⋆ ≤ L ∥Xj − Yj∥(j)

for any j ∈ {1, . . . , p}, proving the claim.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Table 1: Comparison of convergence guarantees for Gluon (Algorithms 1 and 2) to achieve mink=0,...,K−1

∑p
i=1 E[∥∇if(X

k)∥(i)⋆] ≤
ε, where the O(·) notation hides logarithmic factors. Notation: K = total number of iterations, (L0, L1) = the result holds under layer-wise
(L0, L1)-smoothness, tki = radius/stepsize, 1− βk = momentum.

Result Stochastic? (L0, L1) Rate Stepsizes tki 1 − βk

[19, Theorem 1] ✗ ✗ O
(

1

K1/2

)
const ∝ 1

K1/2
(b) —

[19, Theorem 2] ✓ ✗ O
(

1

K1/4

)
const ∝ 1

K3/4
(b) const ∝ 1

K1/2

[20, Theorem 2.1](a) ✓ ✗ O
(

1

K1/4

)
const ∝ 1

K3/4
(b) const ∝ 1

K1/2

[27, Lemma 5.4] ✓ ✗ O
(

1

K1/4

)
const ∝ 1

K3/4
(b) ∝ 1

k1/2

NEW: Theorem 1 ✗ ✓ O
(

1

K1/2

)
Adaptive —

NEW: Theorem 5 ✓ ✓ O
(

1

K1/4

)
∝ 1

k3/4
∝ 1

k1/2

(a) Applies only to the Muon/Scion update in (13) with p = 1.
(b) These stepsizes are impractically tiny since they have an inverse dependence on the total number of iterations K.

Lemma 3. Suppose that x1, . . . , xp, y1, . . . , yp ∈ R, maxi∈[p] |xi| > 0 and z1, . . . , zp > 0. Then

p∑
i=1

y2i
zi

≥
(
∑p

i=1 xiyi)
2∑p

i=1 zix
2
i

.

Proof. Cauchy-Schwarz inequality gives(
p∑

i=1

xiyi

)2

=

(
p∑

i=1

yi√
zi

√
zixi

)2

≤

(
p∑

i=1

y2i
zi

)(
p∑

i=1

zix
2
i

)
.

Rearranging, we obtain the result.

Lemma 4 (Technical Lemma 10 by Hübler et al. [10]). Let q ∈ (0, 1), p ≥ 0, and p ≥ q. Further, let a, b ∈ N≥2 with
a ≤ b. Then

b−1∑
k=a−1

(1 + k)−p
k∏

τ=a−1

(
1− (τ + 1)−q

)
≤ (a− 1)q−p exp

(
a1−q − (a− 1)1−q

1− q

)
.

Lemma 5 (Technical Lemma 11 by Hübler et al. [10]). Let t > 0 and for k ∈ N≥0, set βk = 1 − (k + 1)−1/2,
tk = t(k + 1)−3/4, t > 0. Then, for all K ∈ N≥1 the following inequalities hold:

(i)
∑K−1

k=0 tk
√∑k

τ=0(1− βτ)2
∏k

κ=τ+1(β
κ)2 ≤ t

(
7
2 +

√
2e2 log(K)

)
,

(ii)
∑K−1

k=0 tk
∑k

τ=1 t
τ
∏k

κ=τ β
κ ≤ 7t2 (3 + log(K)).

Proof. This is a direct consequence of Lemma 11 by Hübler et al. [10]. To obtain (ii), it suffices to take the limit as L1 → 0
in statement (ii) of part (b).

C. Remarks on the theoretical results
C.1. Note on radii and stepsizes

It is known (see, e.g., Gruntkowska et al. [9, Theorem D.1], who establish this for S = Rd under Euclidean norms; the
extension to general normed vector spaces is entirely analogous) that if g is a convex function, then the solution to the

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Algorithm 2 Deterministic Adaptive Layer-Wise LMO-based Optimizer

1: Input: Initial model parameters X0 = [X0
1 , . . . , X

0
p] ∈ S

2: for k = 0, 1, . . . ,K − 1 do
3: for i = 1, 2, . . . , p do
4: Choose adaptive stepsize/radius tki > 0 for layer i
5: Update parameters for layer i via LMO over Bk

i := {Xi ∈ Si : ∥Xi −Xk
i ∥(i) ≤ tki }:

Xk+1
i = LMOBk

i

(
∇if(X

k)
)
:= argmin

Xi∈Bk
i

⟨∇if(X
k), Xi⟩(i) (12)

6: end for
7: Update full parameter vector: Xk+1 = [Xk+1

1 , . . . , Xk+1
p]

8: end for=0

problem

argmin
X∈Bk

g(X)

is unique and lies on the boundary of the ball Bk := {X ∈ S : ∥X − Xk∥ ≤ tk} (unless ∇g(Xk) = 0, i.e., Xk is a
stationary point of g).

This applies directly to the LMO subproblem solved at each iteration of Gluon in (10), since the objective ⟨Mk
i , Xi⟩(i) is a

linear function of Xi, and hence convex. In other words, each LMO step moves the iterate from the center of the ball Xk
i to

a new point Xk+1
i located on the boundary of Bk

i , effectively traversing a distance of tki at each step. For this reason, we use
the terms radius, stepsize, and learning rate interchangeably.

C.2. Note on prior analyses

As presented, prior convergence results do not directly apply to the algorithms used in practice. However, there is a
workaround. Specifically, some of the existing convergence guarantees [19; 27] expressed in terms of the flat vector x are
transferable to the structured parameters X = [X1, . . . , Xl] ∈ S by employing the max-norm, defined as

∥X∥max := max
{
∥X1∥(1) , . . . , ∥Xp∥(p)

}
, (11)

with corresponding dual norm ∥Y ∥max ⋆ = sup∥X∥max≤1⟨X,Y ⟩ =
∑p

i=1 ∥Yi∥(i)⋆. Nevertheless, these works do not make
this connection explicit, and an additional layer of analysis is required to ensure the guarantees meaningfully extend to
the structured practical setting. Even if such a translation was attempted, the global treatment introduces serious practical
limitations. For example, real-world training pipelines tune parameters on a per-layer basis, reflecting the heterogeneous
structure of deep networks. Max-norm-based guarantees overlook this variability and offer no mechanism for per-layer
control in hyperparameter selection.

D. Deterministic case
We begin by considering the deterministic counterpart of Gluon, as formalized in Algorithm 2. We first review several existing
algorithms that fall within this framework (Appendix D.1), followed by a proof of Theorem 1 (Appendix D.2). Finally, we
present an additional convergence guarantee under the layer-wise Polyak–Łojasiewicz (PŁ) condition (Appendix D.3).

D.1. Special cases of the LMO framework

As outlined in Section 4.1, deterministic Gluon encompasses a general class of algorithms, parameterized by the choice of
norms ∥ · ∥(i) in the LMO. We now provide a more detailed discussion of the most notable special cases.

Layer-wise normalized GD [34]. Let ∥ · ∥(i) = ∥ · ∥2→2 for each parameter group and assume that ni = 1 for all
i = 1, . . . , p. In this case, the spectral norm reduces to the standard Euclidean norm ∥ · ∥2, yielding the update rule

Xk+1
i = Xk

i − tki
∇if(X

k)
∥∇if(Xk)∥2

, i = 1, . . . , p,

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

which corresponds to layer-wise normalized GD. With a suitable choice of tki (see Theorem 1), the method can also recover
the Gradient Method for (L0, L1)-smooth functions [31].

Layer-wise signGD [1]. Suppose that ∥ · ∥(i) = ∥ · ∥1→∞ for each parameter group, with ni = 1 for all i = 1, . . . , p.
Then, ∥ · ∥1→∞ reduces to ∥ · ∥∞, and the update becomes

Xk+1
i = Xk

i − tki sign
(
∇if(X

k)
)
, i = 1, . . . , p,

where the sign function is applied element-wise. This is equivalent to layer-wise signGD.

Muon [15]. Here, the spectral norm ∥ · ∥2→2 is used for all parameter groups, without restrictions on ni. In this case, it
can be shown that (12) is equivalent to

Xk+1
i = Xk

i − tki U
k
i

(
V k
i

)⊤
, i = 1, . . . , p, (13)

where ∇if(X
k) = Uk

i Σ
k
i

(
V k
i

)⊤
is the singular value decomposition [2]. This is exactly the per-layer deterministic version

of the Muon optimizer. In practical LLM training, a more general variant of (13) incorporating stochasticity and momentum
is applied to the intermediate layers, while the input and output layers are optimized using other methods.

Unconstrained Scion [27]. We can also recover two variants of unScion introduced by Pethick et al. [27]: one for training
LLMs on next-token prediction, and another for training CNNs for image classification.

• Training LLMs. Define the norms ∥ · ∥(i) as follows: for i = 1, . . . , p − 1, corresponding to weight matrices of
transformer blocks, set ∥ · ∥(i) =

√
ni/mi∥ · ∥2→2, and for the last group Xp, representing the embedding and output

layers (which coincide under the weight sharing regime considered here), let ∥ · ∥(p) = np∥ · ∥1→∞. In this case, (12)
becomes

Xk+1
i = Xk

i − tki

√
mi

ni
Uk
i

(
V k
i

)⊤
, i = 1, . . . , p− 1,

Xk+1
p = Xk

p − tkp
np

sign
(
∇pf(X

k)
)
,

(14)

where ∇if(X
k) = Uk

i Σ
k
i

(
V k
i

)⊤
is the singular value decomposition. This is equivalent to deterministic layer-wise

unScion optimizer without momentum. A more general variant, incorporating stochasticity and momentum and applied
to all layers, was shown by Pethick et al. [27] to outperform Muon on LLM training tasks.

• Training CNNs. The main difference in the CNN setting is the presence of not only 2D weight matrices, but also 1D
bias vectors and 4D convolutional kernels parameters. Biases are 1D tensors of shape RCout

i , for which we use scaled
Euclidean norms. Convolutional parameters (conv) are 4D tensors with shapes RCout

i ×Cin
i ×k×k, where Cout

i and Cin
i

denote the number of output and input channels, and k is the kernel size. To compute norms, we reshape each 4D
tensor to a 2D matrix of shape RCout

i ×Cin
i k2

, and then apply a scaled ∥ · ∥2→2 norm. This yields the norm choices
∥ · ∥(i) =

√
1/Cout

i ∥ · ∥2 for biases, ∥ · ∥(i) = k2
√

Cin
i /Cout

i ∥ · ∥2→2 for conv, and ∥ · ∥(p) = np∥ · ∥1→∞ for the last
group Xp, associated with classification head weights. Then, it can be shown that (12) is equivalent to

Xk+1
i = Xk

i − tki
√
Cout

i
∇if(X

k)
∥∇if(Xk)∥2

, (for biases),

Xk+1
i = Xk

i − tki
1
k2

√
Cout

i

Cin
i
Uk
i

(
V k
i

)⊤
, (for conv),

Xk+1
p = Xk

p − tkp
np

sign
(
∇pf(X

k)
)
, (for head)

(15)

where ∇if(X
k) = Uk

i Σ
k
i

(
V k
i

)⊤
is the singular value decomposition. This corresponds to the deterministic layer-wise

unScion optimizer without momentum.

D.2. Proof of Theorem 1

We now state and prove a generalization of Theorem 1.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Theorem 2. Let Assumption 1 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of deterministic Gluon (Algorithm 2)

run with stepsizes tki =
∥∇if(X

k)∥(i)⋆

L0
i+L1

i ∥∇if(Xk)∥(i)⋆
. Then,

1. In order to reach the precision

mink=0,...,K−1

∑p
i=1

∥∥∇if(X
k)
∥∥
(i)⋆

≤ ϵ,

it suffices to run the algorithm for

K =
⌈
2∆0∑p

i=1 L0
i

ϵ2 +
2∆0L1

max

ϵ

⌉
(16)

iterations;

2. In order to reach the precision

min
k=0,...,K−1

p∑
i=1

[
1

L1
i

1
p

∑p
j=1

1

L1
j

∥∥∇if(X
k)
∥∥
(i)⋆

]
≤ ε, (17)

it suffices to run the algorithm for

K =

2∆0

(∑p
i=1

L0
i

(L1
i
)2

)
ε2
(

1
p

∑p
j=1

1

L1
j

)2 + 2∆0

ε

(
1
p

∑p
j=1

1

L1
j

)
 (18)

iterations,

where ∆0 := f(X0)− infX∈S f(X) and L1
max := maxi=1,...,p L

1
i .

Remark 3. Let us compare bounds (16) and (18). Due to the reweighting of the gradient component norms in (17), the
rates are not exactly equivalent. Nevertheless, both use weights that sum to p, ensuring a fair comparison. Obviously,
(1/p

∑p
j=1

1/L1
j)

−1 ≤ L1
max, so the second term in (18) is always no worse than its counterpart in (16). The comparison of

the first terms, however, depends on how the sequences {L0
i } and {L1

i } relate: if larger values of L0
i s tend to be attached

to smaller values of L1
i , then the first term in (18) improves over that in (16), while for a positive correlation the opposite

is true. Indeed, in the extreme case when L0
1 ≥ . . . ≥ L0

p and L1
1 ≤ . . . ≤ L1

p (or the reverse ordering), Chebyshev’s sum
inequality implies that

p∑
i=1

L0
i

(L1
i
)2(

1
p

p∑
j=1

1

L1
j

)2 ≤

(
1
p

p∑
i=1

L0
i

L1
i

)(
1
p

p∑
i=1

1

L1
i

)
1
p

(
1
p

p∑
j=1

1

L1
j

)2 ≤

(
1
p

p∑
i=1

L0
i

)(
1
p

p∑
i=1

1

L1
i

)
1
p

(
1
p

p∑
j=1

1

L1
j

) =
p∑

i=1

L0
i .

Conversely, if both sequences {L0
i } and {L1

i } are sorted in the same order (either increasing or decreasing), the inequality
reverses, and the first term of (16) may be tighter. That said, empirical evidence we provide in Section 5 indicates that in
practice L0

i ≈ 0 across all layers, in which case the first terms in (16) and (18) effectively vanish. Then, (18) is clearly
superior, replacing the worst-case constant L1

max by the harmonic mean.

Proof. We start with the result obtained in Lemma 1 with X = Xk and Y = Xk+1

f(Xk+1) ≤ f(Xk) +
〈
∇f(Xk), Xk+1 −Xk

〉
+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

= f(Xk) +

p∑
i=1

[〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

]
.

The update rule (12) and the definition of the dual norm ∥ · ∥(i)⋆ give

∥Xk
i −Xk+1

i ∥2(i) ≤
(
tki
)2

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

and 〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

=
〈
∇if(X

k),LMOBk
i

(
∇if(X

k)
)
−Xk

i

〉
(i)

= −tki max
∥Xi∥(i)≤1

〈
∇if(X

k), Xi

〉
(i)

= −tki ∥∇if(X
k)∥(i)⋆.

Consequently,

f(Xk+1) ≤ f(Xk) +

p∑
i=1

[
−tki ∥∇if(X

k)∥(i)⋆ +
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki
)2]

.

Now, choosing

tki =
∥∇if(X

k)∥(i)⋆
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
,

which minimizes the right-hand side of the last inequality, yields the descent inequality

f(Xk+1) ≤ f(Xk)−
p∑

i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
) . (19)

Summing the terms, we obtain

K−1∑
k=0

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
) ≤

K−1∑
k=0

(
f(Xk)− f(Xk+1)

)
= f(X0)− f(XK)

≤ f(X0)− inf
X∈S

f(X) =: ∆0.

(20)

Now, the analysis can proceed in two ways:

1. Upper-bounding L1
i by L1

max := maxi=1,...,p L
1
i in (20), we obtain

K−1∑
k=0

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

max∥∇if(Xk)∥(i)⋆
) ≤ ∆0. (21)

Now, applying Lemma 3 with xi = 1, yi = ∥∇if(X
k)∥(i)⋆ and zi = 2

(
L0
i + L1

max

∥∥∇if(X
k)
∥∥
(i)⋆

)
gives

ϕ

(
p∑

i=1

∥∇if(X
k)∥(i)⋆

)
=

(∑p
i=1 ∥∇if(X

k)∥(i)⋆
)2

2
(∑p

i=1 L
0
i + L1

max

∑p
i=1 ∥∇if(Xk)∥(i)⋆

)
≤

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

max∥∇if(Xk)∥(i)⋆
) ,

where ϕ(t) := t2

2(
∑p

i=1 L0
i+L1

maxt)
. Combining the last inequality with (21) and using the fact that ϕ is increasing, we

obtain

Kϕ

(
min

k=0,...,K−1

p∑
i=1

∥∇if(X
k)∥(i)⋆

)
≤

K−1∑
k=0

ϕ

(
p∑

i=1

∥∇if(X
k)∥(i)⋆

)
≤ ∆0, (22)

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

and hence

min
k=0,...,K−1

p∑
i=1

∥∇if(X
k)∥(i)⋆ ≤ ϕ−1

(
∆0

K

)
,

where ϕ−1 is the inverse function (which exists since ϕ is increasing). Therefore, to reach the precision
mink=0,...,K−1

∑p
i=1

∥∥∇if(X
k)
∥∥
(i)⋆

≤ ϵ, it is sufficient to choose the number of iterations to be

K =

⌈
∆0

ϕ(ϵ)

⌉
=

⌈
2
∑p

i=1 L
0
i∆

0

ϵ2
+

2L1
max∆

0

ϵ

⌉
.

2. Alternatively, we can start from the inequality (20) and apply Lemma 3 with xi = 1/L1
i , yi =

∥∥∇if(X
k)
∥∥
(i)⋆

and

zi = 2(L0
i + L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

) to obtain

∆0 ≥
K−1∑
k=0

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
)

≥
K−1∑
k=0

(∑p
i=1

1
L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

)2
2
(∑p

i=1
1

(L1
i)

2

(
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
))

=

K−1∑
k=0

(∑p
i=1

1
L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

)2
2
(∑p

i=1
L0

i

(L1
i)

2 +
∑p

i=1
1
L1

i
∥∇if(Xk)∥(i)⋆

)
=

K−1∑
t=0

ψ

(
p∑

i=1

1

L1
i

∥∥∇if(X
k)
∥∥
(i)⋆

)
,

where ψ(t) := t2

2

(∑p
i=1

L0
i

(L1
i
)2

+t

) . Since the function ψ is increasing for t > 0, ψ−1 exists. It follows that

∆0 ≥
K−1∑
k=0

ψ

(
p∑

i=1

1

L1
i

∥∥∇if(X
k)
∥∥
(i)⋆

)

≥ Kψ

(
min

k=0,...,K−1

p∑
i=1

1

L1
i

∥∥∇if(X
k)
∥∥
(i)⋆

)
,

and hence

min
k=0,...,K−1

p∑
i=1

1

L1
i

∥∥∇if(X
k)
∥∥
(i)⋆

≤ ψ−1

(
∆0

K

)
.

This in turn means that to reach the precision

min
k=0,...,K−1

p∑
i=1

 1
L1

i

1
p

∑p
j=1

1
L1

j

∥∥∇if(X
k)
∥∥
(i)⋆

 ≤ ε,

it suffices to run the algorithm for

K =

 ∆0

ψ
(
ε
(

1
p

∑p
j=1

1
L1

j

))
 =

2∆0

(∑p
i=1

L0
i

(L1
i)

2

)
ε2
(

1
p

∑p
j=1

1
L1

j

)2 +
2∆0

ε
(

1
p

∑p
j=1

1
L1

j

)

iterations.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

D.3. Convergence under the PŁ condition

We now establish convergence rates under the layer-wise Polyak–Łojasiewicz (PŁ) condition, introduced in Assumption 2.
This property is especially relevant for heavily over-parameterized neural networks, as it has been shown to capture the
properties of their loss landscapes [21].

Assumption 2 (Layer-wise Polyak-Łojasiewicz condition). The function f : S 7→ R satisfies the layer-wise Polyak-
Łojasiewicz (PŁ) condition with a constant µ > 0, i.e., for any X ∈ S

p∑
i=1

∥∇if(X)∥2(i)⋆ ≥ 2µ (f(X)− f⋆) ,

where f⋆ := infX∈S f(X) > −∞.

Assumption 2 reduces to the standard PŁ condition [16] by vectorizing the parameters and adopting the Euclidean norm
∥ · ∥2.

Theorem 4. Let Assumptions 1 and 2 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of deterministic Gluon

(Algorithm 2) run with tki =
∥∇if(X

k)∥(i)⋆

L0
i+L1

i ∥∇if(Xk)∥(i)⋆
.

1. If L1
i ≥ 0, then to reach the precision mink=0,...,K−1 f(X

k)− f⋆ ≤ ϵ, it suffices to run the algorithm for

K =

⌈∑p
i=1 L

0
i∆

0

µϵ
+

√
2L1

max∆
0

√
µϵ

⌉
iterations,

2. If L1
i = 0 for all i = 1, . . . , p, then to reach the precision f(XK)− f⋆ ≤ ϵ, it suffices to run the algorithm for

K =

⌈
L0
max

µ
log

∆0

ϵ

⌉
,

where L0
max := maxi=1,...,p L

0
i , L1

max := maxi=1,...,p L
1
i , ∆0 := f(X0)− f⋆ and f⋆ := infX∈S f(X).

Proof. We consider two scenarios: (1) the general case with arbitrary L1
i ≥ 0 and (2) L1

i = 0 for all i = 1, . . . , p.

Case 1: L1
i ≥ 0. We start by following the same steps as in the proof of Theorem 1. From (22), we have

K−1∑
k=0

ϕ

(
p∑

i=1

∥∇if(X
k)∥(i)⋆

)
≤ ∆0,

where ϕ(t) := t2

2(
∑p

i=1 L0
i+L1

maxt)
. Now, using Assumption 2, we get(

p∑
i=1

∥∇if(X
k)∥(i)⋆

)2

≥
p∑

i=1

∥∇if(X
k)∥2(i)⋆ ≥ 2µ

(
f(Xk)− f⋆

)
.

Consequently, since ϕ is an increasing function,

Kϕ

(√
2µ
√
f(Xk⋆)− f⋆

)
≤

K−1∑
k=0

ϕ

(√
2µ
√
f(Xk)− f⋆

)

≤
K−1∑
k=0

ϕ

(
p∑

i=1

∥∇if(X
k)∥(i)⋆

)
≤ ∆0,

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

where k⋆ := argmink=0,...,K−1 f(X
k) − f⋆. Denoting the corresponding inverse function (which exists since ϕ is

increasing) by ϕ−1, it follows that √
2µ
√
f(Xk⋆)− f⋆ ≤ ϕ−1

(
∆0

K

)
≤
√
2µϵ.

Therefore, to reach the precision f(Xk⋆

)− f⋆ ≤ ϵ, it is sufficient to choose the number of iterations

K =

⌈
∆0

ϕ
(√

2µϵ
)⌉ =

⌈∑p
i=1 L

0
i∆

0

µϵ
+

√
2L1

max∆
0

√
µϵ

⌉
.

Case 2: L1
i = 0. Inequality (19) from the proof of Theorem 1 with L1

i = 0 gives

f(Xk+1) ≤ f(Xk)−
p∑

i=1

∥∇if(X
k)∥2(i)⋆

2L0
i

.

Using the fact that

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2L0
i

≥ min
j=1,...,p

1

2L0
j

p∑
i=1

∥∇if(X
k)∥2(i)⋆ =

1

2maxj=1,...,p L0
j

p∑
i=1

∥∇f(Xk)∥2(i)⋆

along with Assumption 2, we obtain

f(Xk+1) ≤ f(Xk)− µ

L0
max

(
f(Xk)− f⋆

)
.

The remaining part of the proof follows from the simple observation

log

(
∆0

ϵ

)
≤ k

µ

L0
max

≤ k log

(
1

1− µ
L0

max

)
.

E. Stochastic case
In practice, computing full gradients is often infeasible due to the scale of modern ML problems. We therefore turn to the
practical Gluon (Algorithm 1), a stochastic variant of Algorithm 2 that operates with noisy gradient estimates available
through a stochastic gradient oracle ∇fξ, ξ ∼ D.

Assumption 3. The stochastic gradient estimator ∇fξ : S 7→ S is unbiased and has bounded variance. That is,
Eξ∼D[∇fξ(X)] = ∇f(X) for all X ∈ S and there exists σ ≥ 0 such that

Eξ∼D
[
∥∇ifξ(X)−∇if(X)∥2(i)⋆

]
≤ σ2, ∀X ∈ S, i = 1, . . . , p.

Note that the choice of norm in Assumption 3 is not restrictive: in finite-dimensional spaces, all norms are equivalent, so
variance bounds remain valid up to a constant factor when compared to those based on the standard Euclidean norm. The
following result establishes the convergence properties.

Theorem 5. Let Assumptions 1 and 3 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of Gluon (Algorithm 1) run
with βk = 1− (k + 1)−1/2, tki = ti(k + 1)−3/4 for some ti > 0, and M0

i = ∇ifξ0(X
0). Then

min
k=0,...,K−1

p∑
i=1

1

12L1
i

E
[
∥∇if(X

k)∥(i)⋆
]
≲

∆0

K1/4
+

1

K1/4

p∑
i=1

[
σ

L1
i

+
L0
i

(L1
i)

2

]
, (23)

where ∆0 := f(X0)− f inf and the notation ≲ hides numerical constants and logarithmic factors.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

For p = 1, our rate in (23) recovers the complexity for finding a stationary point of (L0, L1)-smooth functions established
by Hübler et al. [10] for normalized SGD with momentum. When p ≥ 1, compared to existing guarantees for Gluon, our
Theorem 5 operates under the significantly more general Assumption 1 and uniquely supports training with significantly
larger, non-constant stepsizes tki ∝ k−3/4. In contrast, prior analyses prescribe constant, vanishingly small stepsizes
tki ≡ ti ∝ K−3/4, tied to the total number of iterations K (see Table 1).

E.1. Adaptive stepsizes

Before proving the main result from Appendix E, we first present an attempt to formulate an adaptive stepsize strategy for
the stochastic setting. This requires the following assumption:

Assumption 4. The stochastic gradient estimator ∇fξ : S 7→ S is unbiased and has bounded relative variance. That is,
E[∇fξ(X)] = ∇f(X) for all X ∈ S and there exists 0 ≤ ζ < 1 such that

∥∇ifξ(X)−∇if(X)∥(i)⋆ ≤ ζ∥∇ifξ(X)∥(i)⋆, i = 1, . . . , p

holds almost surely for all X ∈ S.

This assumption is somewhat unconventional due to the presence of the stochastic gradients on the right-hand side of the
inequality. It does not follow from standard conditions and does not fall within known frameworks for modeling stochasticity,
such as the ABC inequality of Khaled & Richtárik [17]. Instead, it introduces a novel structure with parallels to the literature
on contractive compression [4; 6].

To elaborate, recall the definition of a contractive compressor:

Definition 6 (Contractive compressor). A stochastic mapping C : S → S is called a contractive compressor if there exists
α ∈ [0, 1) such that

E
[
∥C(X)−X∥2

]
≤ (1− α)∥X∥2 (24)

for any X ∈ S.

There is a conceptual similarity between Assumption 4 and the contractive property in (24). Assumption 4 can be interpreted
as asserting that the true gradient ∇f(X) is effectively a contraction of the stochastic gradient ∇fξ(X), with contraction
factor 1− ζ . Unlike contractive compressors, there is no explicit mapping from ∇fξ(X) to ∇f(X), and the uniform bound
implies the same contraction-like behavior across all stochastic gradients.

Although Assumption 4 is admittedly strong, it allows us to establish a convergence theorem using an adaptive stepsize
strategy similar to the one employed in the deterministic case in Theorem 2.

Theorem 7. Let Assumptions 1 and 4 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of Gluon (Algorithm 1) run

with βk = 0 and tki =
(1−ζ)∥∇ifξk (X

k)∥(i)⋆

L0
i+(1+ζ)L1

i ∥∇ifξk (X
k)∥(i)⋆

. Then,

1. In order to reach the precision

min
k=0,...,K−1

p∑
i=1

E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
≤ ϵ,

it suffices to run the algorithm for

K =

⌈
2
∑p

i=1 L
0
i∆

0

(1− ζ)
2
ϵ2

+
2(1 + ζ)L1

max∆
0

(1− ζ)
2
ϵ

⌉
iterations.

2. In order to reach the precision

min
k=0,...,K−1

p∑
i=1

 1
L1

i

1
p

∑p
j=1

1
L1

j

∥∥∇if(X
k)
∥∥
(i)⋆

 ≤ ε,

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

it suffices to run the algorithm for

K =

2∆0

∑p
i=1

L0
i

(L1
i)

2

ε2(1− ζ)2
(

1
p

∑p
j=1

1
L1

j

)2 +
2∆0(1 + ζ)

ε(1− ζ)2
(

1
p

∑p
j=1

1
L1

j

)

iterations,

where ∆0 := f(X0)− infX∈S f(X) and L1
max := maxi=1,...,p L

1
i .

Proof. Lemma 1 with X = Xk and Y = Xk+1 gives

f(Xk+1)

≤ f(Xk) +
〈
∇f(Xk), Xk+1 −Xk

〉
+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

= f(Xk) +

p∑
i=1

[〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

]

= f(Xk) +

p∑
i=1

[〈
∇ifξk(X

k), Xk+1
i −Xk

i

〉
(i)

+
〈
∇if(X

k)−∇ifξk(X
k), Xk+1

i −Xk
i

〉
(i)

]
+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i),

and applying the Cauchy-Schwarz inequality, we get

f(Xk+1) ≤ f(Xk) +

p∑
i=1

[〈
∇ifξk(X

k), Xk+1
i −Xk

i

〉
(i)

+ ∥∇if(X
k)−∇ifξk(X

k)∥(i)⋆∥Xk+1
i −Xk

i ∥(i)

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

]
.

The update rule (10) and the definition of the dual norm ∥ · ∥(i)⋆ give

∥Xk
i −Xk+1

i ∥2(i) ≤
(
tki
)2

and

〈
∇ifξk(X

k), Xk+1
i −Xk

i

〉
(i)

=
〈
∇ifξk(X

k),LMOBk
i

(
∇ifξk(X

k)
)
−Xk

i

〉
(i)

= −tki max
∥Xi∥(i)≤1

〈
∇ifξk(X

k), Xi

〉
(i)

= −tki ∥∇ifξk(X
k)∥(i)⋆.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Consequently, using Assumption 4, we obtain

f(Xk+1) ≤ f(Xk) +

p∑
i=1

[
− tki ∥∇ifξk(X

k)∥(i)⋆ + tki ∥∇if(X
k)−∇ifξk(X

k)∥(i)⋆

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki
)2]

≤ f(Xk) +

p∑
i=1

[
− (1− ζ)tki ∥∇ifξk(X

k)∥(i)⋆

+
L0
i + (1 + ζ)L1

i ∥∇ifξk(X
k)∥(i)⋆

2

(
tki
)2]

.

Minimizing the right-hand side of the last inequality with respect to tki yields

tki =
(1− ζ)∥∇ifξk(X

k)∥(i)⋆
L0
i + (1 + ζ)L1

i ∥∇ifξk(Xk)∥(i)⋆
.

This greedy approach for choosing tki gives the descent inequality

f(Xk+1) ≤ f(Xk)−
p∑

i=1

(1− ζ)2∥∇ifξk(X
k)∥2(i)⋆

2
(
L0
i + (1 + ζ)L1

i ∥∇ifξk(Xk)∥(i)⋆
) .

Taking expectations, we have

E[f(Xk+1)] ≤ E[f(Xk)]−
p∑

i=1

E

[
(1− ζ)2∥∇ifξk(X

k)∥2(i)⋆
2
(
L0
i + (1 + ζ)L1

i ∥∇ifξk(Xk)∥(i)⋆
)] . (25)

Now, let us define the function ϕi(t) :=
(1−ζ)2t2

2(L0
i+(1+ζ)L1

i t)
. Since ϕi(t) is convex, Jensen’s inequality gives

E[f(Xk)]− E[f(Xk+1)] ≥
p∑

i=1

E

[
(1− ζ)2∥∇ifξk(X

k)∥2(i)⋆
2
(
L0
i + (1 + ζ)L1

i ∥∇ifξk(Xk)∥(i)⋆
)]

≥
p∑

i=1

(1− ζ)2
(
E
[
∥∇ifξk(X

k)∥(i)⋆
])2

2
(
L0
i + (1 + ζ)L1

iE
[
∥∇ifξk(Xk)∥(i)⋆

]) .
By Jensen’s inequality and Assumption 4

E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
= E

[∥∥E [∇ifξk(X
k)
∣∣Xk

]∥∥
(i)⋆

]
≤ E

[
E
[∥∥∇ifξk(X

k)
∥∥
(i)⋆

∣∣∣Xk
]]

= E
[∥∥∇ifξk(X

k)
∥∥
(i)⋆

]
,

and hence, using the fact that ϕi is increasing, we get

E[f(Xk)]− E[f(Xk+1)] ≥
p∑

i=1

(1− ζ)2
(
E
[∥∥∇if(X

k)
∥∥
(i)⋆

])2
2
(
L0
i + (1 + ζ)L1

iE
[
∥∇if(Xk)∥(i)⋆

]) .
21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Summing the terms gives

K−1∑
k=0

p∑
i=1

(1− ζ)2
(
E
[∥∥∇if(X

k)
∥∥
(i)⋆

])2
2
(
L0
i + (1 + ζ)L1

iE
[
∥∇if(Xk)∥(i)⋆

]) ≤
K−1∑
k=0

(
E[f(Xk)]− E[f(Xk+1)]

)
= E[f(X0)]− E[f(XK)]

≤ f(X0)− inf
X∈S

f(X) =: ∆0,

(26)

The remaining part of the proof closely follows the proof of Theorem 2. We can proceed in two ways:

1. Upper-bounding L1
i by L1

max := maxi=1,...,p L
1
i in (26), we obtain

K−1∑
k=0

p∑
i=1

(1− ζ)2
(
E
[∥∥∇if(X

k)
∥∥
(i)⋆

])2
2
(
L0
i + (1 + ζ)L1

maxE
[
∥∇if(Xk)∥(i)⋆

]) ≤ ∆0. (27)

Now, Lemma 3 with xi = 1, yi = (1− ζ)E
[
∥∇if(X

k)∥(i)⋆
]

and zi = 2
(
L0
i + (1 + ζ)L1

maxE
[∥∥∇if(X

k)
∥∥
(i)⋆

])
gives

ϕ

(
p∑

i=1

E
[
∥∇if(X

k)∥(i)⋆
])

=

(
(1− ζ)

∑p
i=1 E

[
∥∇if(X

k)∥(i)⋆
])2

2
∑p

i=1

(
L0
i + (1 + ζ)L1

maxE
[
∥∇if(Xk)∥(i)⋆

])
≤

p∑
i=1

(1− ζ)2E
[
∥∇if(X

k)∥(i)⋆
]2

2
(
L0
i + (1 + ζ)L1

maxE
[
∥∇if(Xk)∥(i)⋆

])
where ϕ(t) := (1−ζ)2t2

2(
∑p

i=1 L0
i+(1+ζ)L1

maxt)
. Combining the last inequality with (27) and using the fact that ϕ is increasing,

we get

Kϕ

(
min

k=0,...,K−1

p∑
i=1

E
[
∥∇if(X

k)∥(i)⋆
])

≤
K−1∑
k=0

ϕ

(
p∑

i=1

E
[
∥∇if(X

k)∥(i)⋆
])

≤ ∆0.

and hence

min
k=0,...,K−1

p∑
i=1

E
[
∥∇if(X

k)∥(i)⋆
]
≤ ϕ−1

(
∆0

K

)
,

where ϕ−1 denotes the inverse function (which exists since ϕ is increasing). Therefore, to reach the precision
mink=0,...,K−1

∑p
i=1 E

[
∥∇if(X

k)∥(i)⋆
]
≤ ϵ, it suffices to run the algorithm for

K =

⌈
∆0

ϕ(ϵ)

⌉
=

⌈
2∆0

∑p
i=1 L

0
i

(1− ζ)2ϵ2
+

2∆0(1 + ζ)L1
max

(1− ζ)2ϵ

⌉
iterations.

2. Alternatively, we can start from inequality (26) and apply Lemma 3 with xi = 1/L1
i , yi = (1− ζ)E

[∥∥∇if(X
k)
∥∥
(i)⋆

]
and zi = 2

(
L0
i + (1 + ζ)L1

iE
[∥∥∇if(X

k)
∥∥
(i)⋆

])
to obtain

∆0 ≥
K−1∑
k=0

p∑
i=1

(1− ζ)2E
[∥∥∇if(X

k)
∥∥
(i)⋆

]2
2
(
L0
i + (1 + ζ)L1

iE
[
∥∇if(Xk)∥(i)⋆

])
≥

K−1∑
k=0

(∑p
i=1

1
L1

i
(1− ζ)E

[∥∥∇if(X
k)
∥∥
(i)⋆

])2
2
∑p

i=1

(
L0

i

(L1
i)

2 + (1 + ζ) 1
L1

i
E
[
∥∇if(Xk)∥(i)⋆

])
=

K−1∑
t=0

ψ

(
p∑

i=1

1

L1
i

E
[∥∥∇if(X

k)
∥∥
(i)⋆

])
,

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

where ψ(t) := (1−ζ)2t2

2

(∑p
i=1

L0
i

(L1
i
)2

+(1+ζ)t

) . Since the function ψ is increasing for t > 0, ψ−1 exists. It follows that

∆0 ≥
K−1∑
k=0

ψ

(
p∑

i=1

1

L1
i

E
[∥∥∇if(X

k)
∥∥
(i)⋆

])

≥ Kψ

(
min

k=0,...,K−1

p∑
i=1

1

L1
i

E
[∥∥∇if(X

k)
∥∥
(i)⋆

])
,

and hence

min
k=0,...,K−1

p∑
i=1

1

L1
i

E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
≤ ψ−1

(
∆0

K

)
.

This in turn means that to reach the precision

min
k=0,...,K−1

p∑
i=1

 1
L1

i

1
p

∑p
j=1

1
L1

j

∥∥∇if(X
k)
∥∥
(i)⋆

 ≤ ε,

it suffices to run the algorithm for

K =

 ∆0

ψ
(
ε
(

1
p

∑p
j=1

1
L1

j

))

=

2∆0

∑p
i=1

L0
i

(L1
i)

2

(1− ζ)2ε2
(

1
p

∑p
j=1

1
L1

j

)2 +
2∆0(1 + ζ)

(1− ζ)2ε
(

1
p

∑p
j=1

1
L1

j

)

iterations.

E.2. Proof of Theorem 5

We now establish the main result of Appendix E. The guarantees in Theorem 5 follow from the more general result below.

Theorem 8. Let Assumptions 1 and 3 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of Gluon (Algorithm 1) run
with βk = 1− (k + 1)−1/2, tki = ti(k + 1)−3/4 for some ti > 0, and M0

i = ∇ifξ0(X
0).

1. If L1
i = 0, then

min
k=0,...,K−1

p∑
i=1

tiE
[
∥∇if(X

k)∥(i)⋆
]

≤ ∆0

K1/4
+

1

K1/4

p∑
i=1

[
σti

(
7 + 2

√
2e2 log(K)

)
+ L0

i t
2
i

(
87

2
+ 14 log(K)

)]
,

2. If L1
i ̸= 0, then for ti = 1

12L1
i

, we have

min
k=0,...,K−1

p∑
i=1

1

12L1
i

E
[
∥∇if(X

k)∥(i)⋆
]

≤ 2∆0

K1/4
+

1

K1/4

p∑
i=1

[
σ

6L1
i

(
7 + 2

√
2e2 log(K)

)
+

L0
i

144(L1
i)

2
(87 + 28 log(K))

]
,

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

where ∆0 := f(X0)− infX∈S f(X).

Proof. We again start with the result in Lemma 1 with X = Xk and Y = Xk+1, obtaining

f(Xk+1) ≤ f(Xk) +
〈
∇f(Xk), Xk+1 −Xk

〉
+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

= f(Xk) +

p∑
i=1

[〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

]

= f(Xk) +

p∑
i=1

[〈
Mk

i , X
k+1
i −Xk

i

〉
(i)

+
〈
∇if(X

k)−Mk
i , X

k+1
i −Xk

i

〉
(i)

]

+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i).

Applying the Cauchy-Schwarz inequality, we have

f(Xk+1) ≤ f(Xk) +

p∑
i=1

[〈
Mk

i , X
k+1
i −Xk

i

〉
(i)

+ ∥∇if(X
k)−Mk

i ∥(i)⋆∥Xk+1
i −Xk

i ∥(i)

]

+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i).

Now, the update rule (10) and the definition of the dual norm ∥ · ∥(i)⋆ give

∥Xk
i −Xk+1

i ∥2(i) ≤
(
tki
)2

and 〈
Mk

i , X
k+1
i −Xk

i

〉
=
〈
Mk

i ,LMOBk
i

(
Mk

i

)
−Xk

i

〉
= −tki max

∥Xi∥(i)≤1

〈
Mk

i , Xi

〉
= −tki ∥Mk

i ∥(i)⋆.

Consequently,

f(Xk+1)

≤ f(Xk) +

p∑
i=1

[
−tki ∥Mk

i ∥(i)⋆ + tki ∥∇if(X
k)−Mk

i ∥(i)⋆ +
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki
)2]

= f(Xk) +

p∑
i=1

[
− tki ∥Mk

i −∇if(X
k) +∇if(X

k)∥(i)⋆ + tki ∥Mk
i −∇if(X

k)∥(i)⋆

]

+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki
)2

≤ f(Xk) +

p∑
i=1

[
−tki ∥∇if(X

k)∥(i)⋆ + 2tki ∥Mk
i −∇if(X

k)∥(i)⋆
]

+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki
)2
.

Taking expectations, we obtain

E[f(Xk+1)] ≤ E[f(Xk)] +

p∑
i=1

[
− tki E[∥∇if(X

k)∥(i)⋆] + 2tki E
[∥∥Mk

i −∇if(X
k)
∥∥
(i)⋆

]
+
L0
i + L1

iE[∥∇if(X
k)∥(i)⋆]

2

(
tki
)2]

.

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Telescoping the last inequality gives

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
2

K−1∑
k=0

tki E
[∥∥Mk

i −∇if(X
k)
∥∥
(i)⋆

]
(28)

+

K−1∑
k=0

L0
i

2

(
tki
)2

+

K−1∑
k=0

L1
i

2
E[∥∇if(X

k)∥(i)⋆]
(
tki
)2]

,

where ∆0 := f(X0)− infX∈S f(X).

Now, inspired by the analysis in Hübler et al. [10], we introduce the following notation: µk
i := Mk

i −∇if(X
k), γki :=

∇ifξk(X
k)−∇if(X

k), αk = 1− βk, βa:b :=
∏b

k=a β
k and Sk

i := ∇if(X
k−1)−∇if(X

k). Then, we can rewrite the
algorithm’s momentum update rule as

Mk
i = βkMk−1

i + (1− βk)∇ifξk(X
k)

= βk
(
µk−1
i +∇if(X

k−1)
)
+ (1− βk)

(
γki +∇if(X

k)
)

= ∇if
(
Xk
)
+ αkγki + βkSk

i + βkµk−1
i .

This yields

µk
i =Mk

i −∇if
(
Xk
)

= αkγki + βkSk
i + βkµk−1

i

=

k∑
τ=1

β(τ+1):kατγτi +

k∑
τ=1

βτ :kSτ
i + β1:kµ0

i

=

k∑
τ=0

β(τ+1):kατγτi +

k∑
τ=1

βτ :kSτ
i ,

where the last line follows from the fact that M0
i = ∇ifξ0(X

0) and β0 = 0. Thus,

E
[∥∥Mk

i −∇if(X
k)
∥∥
(i)⋆

]
= E

[∥∥µk
i

∥∥
(i)⋆

]
≤ E

∥∥∥∥∥
k∑

τ=0

β(τ+1):kατγτi

∥∥∥∥∥
(i)⋆

+

k∑
τ=1

βτ :kE
[
∥Sτ

i ∥(i)⋆
]

=

√√√√ k∑
τ=0

(
β(τ+1):kατ

)2 E [∥γτi ∥2(i)⋆]+ k∑
τ=1

βτ :kE
[
∥Sτ

i ∥(i)⋆
]
,

where in the last equality we used the fact that for all q < l

E
[
(γli)

⊤γqi
]
= E

[
E
[
(γli)

⊤γqi | X l
i

]]
= E

[
E
[
γli | X l

i

]⊤
γqi

]
= E

[(
E
[
∇ifξl(X

l)−∇if(X
l) | X l

i

])⊤
γqi

]
= 0,

Using Assumptions 1 and 3, we get

E
[
∥γτi ∥

2
(i)⋆

]
= E

[
E
[
∥γτi ∥

2
(i)⋆ | Xτ

i

]
︸ ︷︷ ︸

≤σ2

]
≤ σ2

and

∥Sτ
i ∥(i)⋆ ≤

(
L0
i + L1

i ∥∇if(X
τ)∥(i)⋆

)
∥Xτ+1

i −Xτ
i ∥(i) ≤

(
L0
i + L1

i ∥∇if(X
τ)∥(i)⋆

)
tτi .

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Therefore,

E
[∥∥Mk

i −∇if(X
k)
∥∥
(i)⋆

]
≤ σ

√√√√ k∑
τ=0

(
β(τ+1):kατ

)2
+ L0

i

k∑
τ=1

βτ :ktτi

+L1
i

k∑
τ=1

βτ :ktτi E
[
∥∇if(X

τ)∥(i)⋆
]
.

Combining the last inequality with (28) gives

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
2σ

K−1∑
k=0

tki

√√√√ k∑
τ=0

(
β(τ+1):kατ

)2
︸ ︷︷ ︸

=:I1

+2L0
i

K−1∑
k=0

tki

k∑
τ=1

βτ :ktτi︸ ︷︷ ︸
=:I2

+ 2L1
i

K−1∑
k=0

tki

k∑
τ=1

βτ :ktτi E
[
∥∇if(X

τ)∥(i)⋆
]

︸ ︷︷ ︸
=:I3

+
L0
i

2

K−1∑
k=0

(
tki
)2

︸ ︷︷ ︸
=:I4

+
L1
i

2

K−1∑
k=0

(
tki
)2 E [∥∇if(X

k)∥(i)⋆
]]
. (29)

Let us now upper-bound each term Ii, i = 1, 2, 3, 4.

I1: using Lemma 5, we obtain

I1 ≤ σti

(
7 + 2

√
2e2 log(K)

)
.

I2: using Lemma 5, we obtain

I2 ≤ 14L0
i t

2
i (3 + log(K)) .

I3: rearranging the sums and using Lemma 4 with a = τ + 1, b = K, p = 3/4 and q = 1/2, we have

I3 = 2L1
i

K−1∑
k=0

tki

k∑
τ=1

βτ :ktτi E
[
∥∇if(X

τ)∥(i)⋆
]

= 2L1
i

K−1∑
τ=1

tτi

(
K−1∑
k=τ

tki β
τ :k

)
E
[
∥∇if(X

τ)∥(i)⋆
]

= 2L1
i

K−1∑
τ=1

tτi ti

(
K−1∑
k=τ

(k + 1)−3/4βτ :k

)
E
[
∥∇if(X

τ)∥(i)⋆
]

≤ 2L1
i

K−1∑
τ=1

tτi tiτ
−1/4 e2((τ+1)1/2−τ1/2)︸ ︷︷ ︸

≤e2(
√

2−1) for τ≥1

E
[
∥∇if(X

τ)∥(i)⋆
]

≤ 2e2(
√
2−1)L1

i

K−1∑
τ=1

tτi tiτ
−1/4E

[
∥∇if(X

τ)∥(i)⋆
]

≤ 2e2(
√
2−1)L1

i

K−1∑
k=0

tki tiE
[
∥∇if(X

k)∥(i)⋆
]
.

26

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

I4:

I4 =
L0
i

2

K−1∑
k=0

(
tki
)2 ≤ L0

i

2

∞∑
k=0

(
tki
)2

=
L0
i

2
t2i

∞∑
k=0

(1 + k)−3/2

≤ L0
i

2
t2i

(
1 +

∫ ∞

1

1

z3/2
dz

)
=

3L0
i

2
t2i .

Combining the upper-bounds for Ii, i = 1, 2, 3, 4 with (29) gives

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
σti

(
7 + 2

√
2e2 log(K)

)
+ 14L0

i t
2
i (3 + log(K))

+ 2e2(
√
2−1)L1

i

K−1∑
k=0

tki tiE
[
∥∇if(X

k)∥(i)⋆
]

+
3L0

i

2
t2i +

L1
i

2

K−1∑
k=0

(
tki
)2 E[∥∇if(X

k)∥(i)⋆]

]
.

Using the fact that tki = ti(1 + k)−3/4 ≤ ti, and denoting C := 2e2(
√
2−1) + 1

2 ≤ 5.1, we get

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
σti

(
7 + 2

√
2e2 log(K)

)
+ 14L0

i t
2
i

(
87

28
+ log(K)

)

+ CL1
i ti

K−1∑
k=0

tki E
[
∥∇if(X

k)∥(i)⋆
]]
.

Now, let us consider two options: (1) L1
i = 0 for all i ∈ {1, . . . , p} and (2) L1

i ̸= 0, for all i ∈ {1, . . . , p}.

Case 1: L1
i = 0, i = 1, . . . , p. In this case,

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
σti

(
7 + 2

√
2e2 log(K)

)
+ 14L0

i t
2
i

(
87

28
+ log(K)

)]
,

and therefore,

min
k=0,...,K−1

p∑
i=1

tiE[∥∇if(X
k)∥(i)⋆]

≤ 1

K

K−1∑
k=0

p∑
i=1

tiE[∥∇if(X
k)∥(i)⋆]

≤ 1

K1/4

K−1∑
k=0

p∑
i=1

ti(1 + k)−3/4E[∥∇if(X
k)∥(i)⋆]

=
1

K1/4

K−1∑
k=0

p∑
i=1

tki E[∥∇if(X
k)∥(i)⋆]

≤ ∆0

K1/4
+

1

K1/4

p∑
i=1

[
σti

(
7 + 2

√
2e2 log(K)

)
+ L0

i t
2
i

(
87

2
+ 14 log(K)

)]
.

27

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Case 2: L1
i ̸= 0, i = 1, . . . , p. Let us choose ti = 1

12L1
i

. Then

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ 2∆0 +

p∑
i=1

[
2σti

(
7 + 2

√
2e2 log(K)

)
+ L0

i t
2
i (87 + 28 log(K))

]
,

and hence

min
k=0,...,K−1

p∑
i=1

1

12L1
i

E[∥∇if(X
k)∥(i)⋆]

≤ 1

K

K−1∑
k=0

p∑
i=1

tiE[∥∇if(X
k)∥(i)⋆]

≤ 1

K1/4

K−1∑
k=0

p∑
i=1

ti(1 + k)−3/4E[∥∇if(X
k)∥(i)⋆]

=
1

K1/4

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆]

≤ 2∆0

K1/4
+

1

K1/4

p∑
i=1

[
σ

6L1
i

(
7 + 2

√
2e2 log(K)

)
+

L0
i

144(L1
i)

2
(87 + 28 log(K))

]
.

F. Additional experimental results and details
F.1. Experimental details

All experiments for the NanoGPT model are conducted using PyTorch6 with Distributed Data Parallel (DDP)7 across 4
NVIDIA A100 GPUs (40GB each). For the CNN experiments, training is performed on a single NVIDIA A100 GPU (40GB).
The training and evaluation pipelines are implemented using open-source codebases [13; 14; 26], with all modifications
clearly documented and properly referenced where applicable.

For LMO-based methods, we compute inexact LMOs using the Newton–Schulz iteration when an analytical solution is
unavailable (e.g., for SVD-type updates), following the approach proposed by Jordan et al. [15]. This method provides a
computationally efficient approximation of the required orthogonalization while preserving the convergence behavior of the
overall algorithm.

F.2. Fitting L0
i and L1

i

To minimize the Euclidean error between the true value L̂i[k] and its approximation L̂approx
i [k], while penalizing underesti-

mation, we incorporate a hinge-like penalty term. Specifically, we fit L0
i and L1

i by minimizing the loss function

Li

(
L0
i , L

1
i

)
:=

K−1∑
k=0

(
L̂i[k]− L̂approx

i [k]
)2

+ λ

K−1∑
k=0

max
(
0, L̂i[k]− L̂approx

i [k]
)2
. (30)

The first term of Li captures the standard Euclidean (squared) error, while the second term introduces an additional penalty
proportional to the amount of underestimation (i.e., when L̂i[k] > L̂approx

i [k]). The hyperparameter λ ≥ 0 controls the
strength of this penalty.

F.3. Training NanoGPT on FineWeb.

In this section, we present additional results and experimental details for the experiment described in the main text, which
involves training a NanoGPT model on the FineWeb dataset using the unScion optimizer.

6PyTorch Documentation. Available at: https://pytorch.org/docs/stable/index.html
7Distributed Data Parallel (DDP) in PyTorch. Available at: https://pytorch.org/docs/stable/notes/ddp.html

28

https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/notes/ddp.html

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

F.3.1. EMPIRICAL VALIDATION OF ASSUMPTION 1

We begin by presenting additional results for the experiment described in Section 5.1, aimed at empirically validating

Assumption 1. We plot the estimated trajectory smoothness L̂i[k] :=
∥∇ifξk+1 (X

k+1)−∇ifξk (X
k)∥(i)⋆

∥Xk+1
i −Xk

i ∥(i)
and its approximation

L̂approx
i [k] := L0

i + L1
i ∥∇ifξk+1(Xk+1)∥(i)⋆ as functions of the iteration index k, where L0

i , L
1
i ≥ 0 are fitted using the

procedure described in Appendix F.2.

Figures 7, 8, and 9 show results for parameter groups from the embedding layer and from the 4th and 8th transformer
blocks. Similar patterns are observed across all layers. In each case, we see a strong agreement between L̂i[k] and L̂approx

i [k],
suggesting that Assumption 1 holds approximately along the optimization trajectory.

0 1000 2000 3000 4000 5000
iteration k

10 1

6 × 10 2

2 × 10 1

3 × 10 1

Name: module._orig_mod.transformer.wte.weight
Size: [50304, 768] | MSE_rel: 0.0005

Li

Lapprox
i : L0

i = 0.00, L1
i = 1.33

0 1000 2000 3000 4000 5000
iteration k

0.05

0.06

0.07

0.08

0.09

0.10

Name: module._orig_mod.transformer.wte.weight
Size: [50304, 768] | MSE_rel: 0.0005

Li

Lapprox
i : L0

i = 0.00, L1
i = 1.33

Figure 7: Validation of layer-wise (L0, L1)-smoothness for the group of parameters from the embedding layer of
NanoGPT-124M along unScion training trajectories. The group norm is ∥ · ∥(p) = np∥ · ∥1→∞, with fitted values
L0
p ≈ 0, L1

p ≈ 1.3. The same plot is shown twice with different y-axis limits.

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

6

Name: module._orig_mod.transformer.h.4.attn.c_q.weight
Size: [768, 768] | MSE_rel: 0.0039

Li

Lapprox
i : L0

i = 0.00, L1
i = 68.42

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

6

7

Name: module._orig_mod.transformer.h.4.attn.c_k.weight
Size: [768, 768] | MSE_rel: 0.0090

Li

Lapprox
i : L0

i = 0.00, L1
i = 70.51

0 1000 2000 3000 4000 5000
iteration k

3

4

5

6

7

8

Name: module._orig_mod.transformer.h.4.attn.c_v.weight
Size: [768, 768] | MSE_rel: 0.0128

Li

Lapprox
i : L0

i = 0.00, L1
i = 71.16

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

6

7

Name: module._orig_mod.transformer.h.4.attn.c_proj.weight
Size: [768, 768] | MSE_rel: 0.0050

Li

Lapprox
i : L0

i = 0.00, L1
i = 68.17

0 1000 2000 3000 4000 5000
iteration k

12

14

16

18

20

22

Name: module._orig_mod.transformer.h.4.mlp.c_fc.weight
Size: [3072, 768] | MSE_rel: 0.0019

Li

Lapprox
i : L0

i = 0.00, L1
i = 69.92

0 1000 2000 3000 4000 5000
iteration k

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Name: module._orig_mod.transformer.h.4.mlp.c_proj.weight
Size: [768, 3072] | MSE_rel: 0.0029

Li

Lapprox
i : L0

i = 0.00, L1
i = 70.87

Figure 8: Validation of layer-wise (L0, L1)-smoothness for the group of parameters from the 4th transformer block of
NanoGPT-124M along unScion training trajectories. The group norms are ∥ · ∥(i) =

√
ni/mi∥ · ∥2→2, with fitted values

L0
i ≈ 0, L1

i ≈ 70.

29

1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

0 1000 2000 3000 4000 5000
iteration k

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Name: module._orig_mod.transformer.h.8.attn.c_q.weight
Size: [768, 768] | MSE_rel: 0.0022

Li

Lapprox
i : L0

i = 0.00, L1
i = 67.07

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

Name: module._orig_mod.transformer.h.8.attn.c_k.weight
Size: [768, 768] | MSE_rel: 0.0068

Li

Lapprox
i : L0

i = 0.00, L1
i = 69.60

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

6

Name: module._orig_mod.transformer.h.8.attn.c_v.weight
Size: [768, 768] | MSE_rel: 0.0133

Li

Lapprox
i : L0

i = 0.00, L1
i = 71.46

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

Name: module._orig_mod.transformer.h.8.attn.c_proj.weight
Size: [768, 768] | MSE_rel: 0.0056

Li

Lapprox
i : L0

i = 0.00, L1
i = 68.96

0 1000 2000 3000 4000 5000
iteration k

11

12

13

14

15

16

17

18

19

Name: module._orig_mod.transformer.h.8.mlp.c_fc.weight
Size: [3072, 768] | MSE_rel: 0.0012

Li

Lapprox
i : L0

i = 0.02, L1
i = 69.43

0 1000 2000 3000 4000 5000
iteration k

8

10

12

14

16

Name: module._orig_mod.transformer.h.8.mlp.c_proj.weight
Size: [768, 3072] | MSE_rel: 0.0021

Li

Lapprox
i : L0

i = 0.00, L1
i = 70.11

Figure 9: Validation of layer-wise (L0, L1)-smoothness for the group of parameters from the 8th transformer block of
NanoGPT-124M along unScion training trajectories. The group norms are ∥ · ∥(i) =

√
ni/mi∥ · ∥2→2, with fitted values

L0
i ≈ 0, L1

i ≈ 70.

F.3.2. GENERALIZED SMOOTHNESS UNDER EUCLIDEAN VS. SPECIALIZED NORMS

In this experiment, we compare how well the layer-wise (L0, L1)-smoothness assumption is satisfied under the standard
Euclidean norms ∥ · ∥2 for each parameter block, as opposed to the specialized norms described in (14). We adopt the same
training setup as in Section 5.1, plotting the estimated trajectory smoothness L̂i and its approximation L̂approx

i along the
training trajectories across several parameter groups. Unlike previous sections, here we do not penalize instances where
L̂i > L̂approx

i in order to find the best approximation (i.e., λ = 0 in (30)). Additionally, when using the standard Euclidean
norm ∥ · ∥2 for approximation, we exclude the first point, as it could distort the result.

We evaluate the quality of each approximation using the relative mean squared error (MSErel
i , denoted MSE rel in the

figures), defined as

MSErel
i :=

1

K

K∑
i=1

(
L̂i[k]− L̂approx

i [k]

L̂i[k]

)2

,

where a lower value indicates a better fit.

As shown in Figures 10 and 11, both visually and in terms of MSErel
i , using specialized norms for each group of parameters

provides a better approximation than the standard Euclidean norm ∥ · ∥2. Notably, the relative mean squared error MSErel
i is

consistently an order of magnitude lower under specialized norms.

30

1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

Name: module._orig_mod.transformer.h.4.attn.c_q.weight
Size: [768, 768] | MSE_rel: 0.0023

Li

Lapprox
i : L0

i = 0.00, L1
i = 66.20

MSErel
i = 0.0023

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

6

Name: module._orig_mod.transformer.h.4.attn.c_k.weight
Size: [768, 768] | MSE_rel: 0.0048

Li

Lapprox
i : L0

i = 0.00, L1
i = 67.59

MSErel
i = 0.0048

0 1000 2000 3000 4000 5000
iteration k

3

4

5

6

7

8

Name: module._orig_mod.transformer.h.4.attn.c_v.weight
Size: [768, 768] | MSE_rel: 0.0065

Li

Lapprox
i : L0

i = 0.00, L1
i = 67.51

MSErel
i = 0.0065

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

6

7

Name: module._orig_mod.transformer.h.4.attn.c_proj.weight
Size: [768, 768] | MSE_rel: 0.0025

Li

Lapprox
i : L0

i = 0.00, L1
i = 65.59

MSErel
i = 0.0025

0 1000 2000 3000 4000 5000
iteration k

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Name: module._orig_mod.transformer.h.4.mlp.c_proj.weight
Size: [768, 3072] | MSE_rel: 0.0010

Li

Lapprox
i : L0

i = 0.00, L1
i = 68.29

MSErel
i = 0.001

0 1000 2000 3000 4000 5000
iteration k

0.05

0.06

0.07

0.08

0.09

0.10

Name: module._orig_mod.transformer.wte.weight
Size: [50304, 768] | MSE_rel: 0.0003

Li

Lapprox
i : L0

i = 0.00, L1
i = 1.31

MSErel
i = 0.0003

Figure 10: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters in NanoGPT-124M along
training trajectories of unScion using the specialized norm choices defined in (14).

0 1000 2000 3000 4000 5000
iteration k

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Name: module._orig_mod.transformer.h.4.attn.c_q.weight
Size: [768, 768] | MSE_rel: 0.0368

Li

Lapprox
i : L0

i = 0.00, L1
i = 3.43

MSErel
i = 0.0368

0 1000 2000 3000 4000 5000
iteration k

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Name: module._orig_mod.transformer.h.4.attn.c_k.weight
Size: [768, 768] | MSE_rel: 0.0393

Li

Lapprox
i : L0

i = 0.00, L1
i = 3.51

MSErel
i = 0.0393

0 1000 2000 3000 4000 5000
iteration k

0.05

0.10

0.15

0.20

0.25

0.30

Name: module._orig_mod.transformer.h.4.attn.c_v.weight
Size: [768, 768] | MSE_rel: 0.0346

Li

Lapprox
i : L0

i = 0.00, L1
i = 3.75

MSErel
i = 0.0346

0 1000 2000 3000 4000 5000
iteration k

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Name: module._orig_mod.transformer.h.4.attn.c_proj.weight
Size: [768, 768] | MSE_rel: 0.0307

Li

Lapprox
i : L0

i = 0.00, L1
i = 3.59

MSErel
i = 0.0307

0 1000 2000 3000 4000 5000
iteration k

0.1

0.2

0.3

0.4

0.5

0.6

Name: module._orig_mod.transformer.h.4.mlp.c_proj.weight
Size: [768, 3072] | MSE_rel: 0.0133

Li

Lapprox
i : L0

i = 0.00, L1
i = 6.64

MSErel
i = 0.0133

0 1000 2000 3000 4000 5000
iteration k

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Name: module._orig_mod.transformer.wte.weight
Size: [50304, 768] | MSE_rel: 0.0510

Li

Lapprox
i : L0

i = 0.01, L1
i = 0.12

MSErel
i = 0.051

Figure 11: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters in NanoGPT-124M along
training trajectories of unScion using the standard Euclidean norm ∥ · ∥2.

31

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

F.3.3. LEARNING RATE TRANSFER FROM ADAMW

We now aim to verify layer-wise (L0, L1)-smoothness following the approach used in Section 5.1, but employing the
AdamW optimizer. We use hyperparameters specified in Pethick et al. [27, Table 7]. In Figure 12, we present the results for
the estimated trajectory smoothness L̂i and its approximation L̂approx

i across several parameter groups along the training
trajectories. Notably, for the group of parameters from the embedding layer Xp (the last plot in Figure 12), the fitted value of
L1
p is approximately 20–30 times smaller than in other groups. Since in all plots we observe that L0

i ≪ L1
i ∥∇ifξk(X

k)∥(i)⋆,
Theorem 1 implies that tki ≈ 1/Lk

i . Thus, tkp should be 20–30 times larger than tki for i = 1, . . . , p− 1, which is consistent
with the tuned parameters from Pethick et al. [27, Table 7].

This insight provides an efficient and principled method for initializing learning rates in Scion. Smoothness statistics
collected during standard AdamW training (which is commonly used for training LLMs) can serve as a strong prior, allowing
practitioners to directly incorporate structure-aware choices, such as larger stepsizes for embedding layers, into their tuning
process. Importantly, computing these statistics is computationally inexpensive, introducing minimal additional cost.

0 1000 2000 3000 4000 5000
iteration k

0

1

2

3

4

5

6

7

Name: module._orig_mod.transformer.h.4.attn.c_q.weight
Size: [768, 768] | MSE_rel: 0.1177

Li

Lapprox
i : L0

i = 0.26, L1
i = 81.42

0 1000 2000 3000 4000 5000
iteration k

2

4

6

8

10

Name: module._orig_mod.transformer.h.4.attn.c_k.weight
Size: [768, 768] | MSE_rel: 0.1268

Li

Lapprox
i : L0

i = 2.05, L1
i = 86.99

0 1000 2000 3000 4000 5000
iteration k

5

10

15

20

Name: module._orig_mod.transformer.h.4.attn.c_v.weight
Size: [768, 768] | MSE_rel: 0.1265

Li

Lapprox
i : L0

i = 5.52, L1
i = 60.30

0 1000 2000 3000 4000 5000
iteration k

0

10

20

30

40

50

60

70

80

Name: module._orig_mod.transformer.h.4.mlp.c_fc.weight
Size: [3072, 768] | MSE_rel: 0.0140

Li

Lapprox
i : L0

i = 0.00, L1
i = 96.98

0 1000 2000 3000 4000 5000
iteration k

0

2

4

6

8

10

12

14

Name: module._orig_mod.transformer.h.4.mlp.c_proj.weight
Size: [768, 3072] | MSE_rel: 0.0196

Li

Lapprox
i : L0

i = 0.00, L1
i = 37.13

0 1000 2000 3000 4000 5000
iteration k

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Name: module._orig_mod.transformer.wte.weight
Size: [50304, 768] | MSE_rel: 0.0026

Li

Lapprox
i : L0

i = 0.21, L1
i = 4.69

Figure 12: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters in NanoGPT-124M along
AdamW training trajectories.

F.4. Training CNN on CIFAR-10

This section provides detailed results for the CNN experiments on CIFAR-10. The aim is to further validate the layer-wise
(L0, L1)-smoothness (Assumption 1). The CNN model was trained using the unScion optimizer (with norm choices from
(15) in Appendix D.1), following implementations from Jordan [13] and Pethick et al. [26]. Hyperparameters were adopted
from Pethick et al. [27, Table 10], with the exception of training for more epochs.

We present results for two settings:

• Full-batch (deterministic) gradients: Uses ∇if , no momentum, and no learning rate decay.

• Stochastic gradients: Uses ∇ifξk , momentum as in Pethick et al. [27, Table 10], but no linear decay schedule.

For both settings, similar to the NanoGPT experiments (Section 5.1), we plot the estimated trajectory smoothness L̂i[k]

32

1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

against its approximation L̂approx
i [k]. We consider a simplified variant of Assumption 1 by setting L0

i = 0 and estimate
L1
i ≥ 0 using the procedure from Appendix Appendix F.2. The trajectory smoothness is defined as:

L̂i[k] :=
∥∇ifϕk+1(Xk+1)−∇ifϕk(Xk)∥(i)⋆

∥Xk+1
i −Xk

i ∥(i)
,

where fϕk represents f for full-batch or fξk for stochastic gradients. The approximation is:

L̂approx
i [k] := L1

i ∥∇ifϕk+1(Xk+1)∥(i)⋆.

Full-batch (deterministic) gradients. Figure 13 shows the results for various parameter groups using full-batch gradients.
The plots confirm that Assumption 1 (with L0

i = 0) holds approximately along the training trajectory. As discussed in the
main text (Section 5), when this condition holds, Theorem 1 implies that theoretically derived stepsizes tki ≡ ti = 1/L1

i are
appropriate. The estimated L1

i values are L1
i ≈ 3 for most parameter groups, except for the classification head weights Xp,

where L1
p ≈ 0.03. This significant difference (∼100x) aligns with and justifies the much larger radius tkp used for the head

weights in the empirically tuned configurations by Pethick et al. [27].

0 10 20 30 40 50 60 70 80
epoch

10

20

30

40

50

60

70
Name: layers.1.conv2.weight

Size: [64, 64, 3, 3] | MSE_rel: 0.0167

Li

Lapprox
i : L0

i = 0.00, L1
i = 3.20

0 10 20 30 40 50 60 70 80
epoch

60

70

80

90

100

110

120

Name: layers.2.conv1.weight
Size: [256, 64, 3, 3] | MSE_rel: 0.0058

Li

Lapprox
i : L0

i = 0.00, L1
i = 2.81

0 10 20 30 40 50 60 70 80
epoch

20

25

30

35

40

45

Name: layers.3.conv2.weight
Size: [256, 256, 3, 3] | MSE_rel: 0.0060

Li

Lapprox
i : L0

i = 0.00, L1
i = 2.84

0 10 20 30 40 50 60 70 80
epoch

10

20

30

40

50

Name: layers.1.norm2.bias
Size: [64] | MSE_rel: 0.0360

Li

Lapprox
i : L0

i = 0.00, L1
i = 4.06

0 10 20 30 40 50 60 70 80
epoch

5

10

15

20

25

30

35

Name: layers.2.norm1.bias
Size: [256] | MSE_rel: 0.0206

Li

Lapprox
i : L0

i = 0.00, L1
i = 3.89

0 10 20 30 40 50 60 70 80
epoch

0.004

0.006

0.008

0.010

0.012

Name: head.weight
Size: [10, 256] | MSE_rel: 0.0195

Li

Lapprox
i : L0

i = 0.00, L1
i = 0.04

Figure 13: Validation of layer-wise (L0, L1)-smoothness (Assumption 1 with L0
i = 0) for various parameter groups in a

CNN trained on CIFAR-10 with unScion using full-batch gradients. Each plot shows L̂i[k] (blue) and its approximation
L̂approx
i [k] (green). The norms ∥ · ∥(i) are defined as in Appendix D.1 for CNNs.

Stochastic gradients. Figure 14 presents analogous results for the stochastic gradient setting. Despite the added noise
from stochastic gradients, the trajectory smoothness L̂i[k] still approximately adheres to the model L̂approx

i [k] predicted by
Assumption 1 (with L0

i = 0). This suggests that our smoothness framework remains relevant even in the more practical
stochastic training regime. The observed L1

i values show similar trends to the deterministic case regarding the differences
between convolutional layers and the classification head.

G. Conclusion and future work
In this work, we propose Gluon, an LMO-based optimization method that recovers state-of-the-art optimizers such as
Muon and Scion as special cases. We develop a principled analytical framework for layer-wise optimization based on a

33

1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

0 1 2 3 4 5 6 7 8
epoch

200

300

400

500

600

Name: layers.1.conv2.weight
Size: [64, 64, 3, 3] | MSE_rel: 0.0148

Li

Lapprox
i : L0

i = 0.00, L1
i = 2.96

0 1 2 3 4 5 6 7 8
epoch

400

600

800

1000

1200

Name: layers.2.conv1.weight
Size: [256, 64, 3, 3] | MSE_rel: 0.0061

Li

Lapprox
i : L0

i = 0.00, L1
i = 2.70

0 1 2 3 4 5 6 7 8
epoch

300

400

500

600

700

Name: layers.3.conv2.weight
Size: [256, 256, 3, 3] | MSE_rel: 0.0108

Li

Lapprox
i : L0

i = 0.00, L1
i = 2.86

0 1 2 3 4 5 6 7 8
epoch

100

200

300

400

500

600

Name: layers.1.norm2.bias
Size: [64] | MSE_rel: 0.0557

Lestimated = || f k + 1(xk + 1) f k(xk)|| *

||xk + 1 xk||

Lapprox
i : L0

i = 0.00, L1
i = 3.91

0 1 2 3 4 5 6 7 8
epoch

100

200

300

400

500

Name: layers.2.norm1.bias
Size: [256] | MSE_rel: 0.0304

Li

Lapprox
i : L0

i = 0.00, L1
i = 3.59

0 1 2 3 4 5 6 7 8
epoch

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Name: head.weight
Size: [10, 256] | MSE_rel: 0.0496

Li

Lapprox
i : L0

i = 0.00, L1
i = 0.04

Figure 14: Validation of layer-wise (L0, L1)-smoothness (Assumption 1 with L0
i = 0) for various parameter groups in a

CNN trained on CIFAR-10 with unScion using stochastic gradients. Each plot shows L̂i[k] (blue) and its approximation
L̂approx
i [k] (green). Norms are as defined for CNNs in Appendix D.1.

novel layer-wise (L0, L1)-smoothness assumption, which captures the anisotropic structure of modern deep networks. This
assumption enables sharper and more general convergence guarantees and, unlike prior analyses, yields theoretical stepsizes
that closely match those found via finetuning. Our framework thus provides the first rigorous and practically predictive
analysis of modern layer-wise optimizers. Experiments confirm that the assumption holds approximately throughout training,
reinforcing its practical relevance. Together, these results offer a refined foundation for structured optimization in deep
learning.

While this work resolves two key theoretical gaps (Sections 2.1 and 2.2), it also highlights important directions for
future research. Our analysis assumes exact LMO computations, whereas practical implementations use approximations
(Appendix F.1). Additionally, our stochastic guarantees (Theorem 5) rely on the widely adopted bounded variance
assumption, which may not hold in certain scenarios, e.g., under subsampling [17]. Finally, our support for adaptive
stepsizes is currently restricted to the deterministic setting. While they also perform well empirically in the stochastic regime
(Section 5.1), a complete theoretical justification remains an open challenge.

In summary, although we make substantial progress by closing the two most critical gaps–establishing a realistic generalized
smoothness model and aligning analysis with actual implementations–no single work can exhaust the subject. The field
remains open, with many fruitful directions left to pursue.

34

