Gluon: Making Muon & Scion Great Again!
(Bridging Theory and Practice of LMO-based Optimizers for LL.Ms)

Anonymous Authors'

Abstract

Recent developments in deep learning optimiza-
tion have brought about radically new algorithms
based on the Linear Minimization Oracle (LMO)
framework, such as Muon [15] and Scion [27].
After over a decade of Adam’s dominance, these
LMO-based methods are emerging as viable re-
placements, offering several practical advantages
such as improved memory efficiency, better hyper-
parameter transferability, and most importantly,
superior empirical performance on large-scale
tasks, including LLM training. However, a signif-
icant gap remains between their practical use and
our current theoretical understanding: prior analy-
ses (1) overlook the layer-wise LMO application
of these optimizers in practice, and (2) rely on
an unrealistic smoothness assumption, leading to
impractically small stepsizes. To address both, we
propose a new LMO-based method called Gluon,
capturing prior theoretically analyzed methods as
special cases, and introduce a new refined gener-
alized smoothness model that captures the layer-
wise geometry of neural networks, matches the
layer-wise practical implementation of Muon and
Scion, and leads to convergence guarantees with
strong practical predictive power. Unlike prior
results, our theoretical stepsizes closely match
the fine-tuned values reported by Pethick et al.
[27]. Our experiments with NanoGPT and CNN
confirm that our assumption holds along the op-
timization trajectory, ultimately closing the gap
between theory and practice.

1. Introduction

The success of deep learning models across a wide range
of challenging domains is inseparable from the optimiza-

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

tion algorithms used to train them. As neural networks
have grown deeper and datasets larger, optimization has
quietly become one of the most consequential components
of modern machine learning (ML). Nowhere is this more ev-
ident than in the training of large language models (LLMs),
which routinely consume thousands of GPU-hours. Adam
[18] (and lately AdamW [24])—being effective, relatively
reliable, and widely adopted—has for over a decade served
as the default choice for this task. While this reliance has
powered much of deep learning’s progress, it has also ex-
posed the shortcomings of adaptive moment estimation as
a one-size-fits-all solution—namely, sensitivity to learning
rate schedules, heavy tuning requirements [32], and poor
generalization when not carefully calibrated [36]. However,
a shift may now be underway. Recent optimizers, such as
Muon [15] and Scion [27], represent a significant departure
from Adam-type methods: they forgo the adaptive moment
estimation in favor of a geometry-aware approach inspired
by Frank-Wolfe algorithms [7; 28]. These optimizers are
not only simpler to implement and easier to tune, but also
appear empirically stronger, outperforming AdamW in LLM
training [22; 27].

Yet, despite their potential, these new methods are still in
their infancy, and our understanding of their theoretical
foundations and practical utility in LLM training remains
incomplete. Prior convergence guarantees in realistic non-
convex regimes are still far from satisfactory. Indeed, as
we argue in Section 2, the (very few) existing theoretical
analyses fail to capture the true algorithms used in practice,
focusing instead on simplified variants that diverge from
actual implementations. We identify two key mismatches—
neglect of layer-wise structure (Section 2.1) and flawed
stepsize choices stemming from an inaccurate smoothness
model (Section 2.2)—and close this gap with a solution to
both. We elaborate on these advances in the remainder of
the paper.

Our goal is to solve the general optimization problem

i X) :=E¢o X))}, 1
min {f(X) := Ee~p [fe(X)]} M

where S is a finite-dimensional vector space and f
S — R are potentially non-convex and non-smooth but
continuously differentiable functions. Here, f¢(X) rep-

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

resents the loss of model parameterized by X associated
with training data point ¢ sampled from probability dis-
tribution D. To make the problem meaningful, we as-
sume that f™f = infxes f(X) > —oco. In this work
we are particularly interested in the scenario when the
parameter vector X € S is obtained by collecting the
matrices X; € §; := R™i*" of trainable parameters
across all layers ¢ = 1,...,p of a deep model. For
simplicity, we therefore write X = [Xi,...,X,]. This
means that, formally, S is the d-dimensional product space
S = ®f:1 S§;=8®---®S8,, where d := Zle mn;.
With each space S; we associate the trace inner product
(Xi,Yi)s) = tr(XiTYi) for X;,Y; € S;, and an arbitrary
norm || - ||¢;y, not necessarily induced by the inner product.

2. Theory vs. practice of Muon and Scion

In this work, we focus on an algorithm based on iteratively
calling linear minimization oracles (LMOs) across all layers,
formalized in Algorithm 1, for which we coin the name
Gluon. In particular, for each layer ¢, independently across
all layers, Gluon iteratively updates the parameters via

Xt = LMOgr (MF) := argmin (M}, X;) (),
‘ XIEB;C

where BF = {X; € & : ||X; — XF|ls) < tF} and
th > 0 is an adaptively chosen stepsize/radius/learning
rate.' Note that the momentum M* = [Mf,... M} € S
accumulates the contributions from the stochastic gradi-
ents Vfeo(X®) = [Vifer(XF),...,V,fer(XF)] € S
(see Step 1 of Algorithm 1).

The Gluon framework generalizes a range of methods, in-
cluding Muon and Scion, which are recovered as special
cases under specific norm choices (see Section 4.1 and Ap-
pendix D.1). Beyond their ability to outperform AdamW
on large-scale benchmarks, these optimizers offer a num-
ber of attractive properties: improved memory efficiency,
greater robustness to hyperparameter settings, and the abil-
ity to transfer those settings across model sizes [27; 30].
Moreover, in contrast to Adam, they were theoretically ana-
lyzed shortly after release and are guaranteed to converge
under standard assumptions of Lipschitz smoothness® and
bounded variance of stochastic gradients [19; 20; 27].

Gluon presents the method that is deployed in practice [14;
26] and has proven highly effective. That said, we argue
that existing analyses [19; 20; 27] do not accurately reflect

'In this context, the radii defining the norm balls in the LMOs
effectively act as stepsizes—see Appendix C.1. Accordingly, we
use the terms radius, stepsize, and learning rate interchangeably
throughout.

*A function f : S — Ris L-smoothif ||V f(z) — V f(y)]|, <
L ||z —yl| forall z,y € S, where S is a finite-dimensional vector
space equipped with a norm || - || and || - ||« is the dual norm
associated with || - ||.

this implementation, diverging from it in two key ways. As
such, they fail to explain why the algorithm performs so
well. Let us detail why.

2.1. Layer-wise structure

First, we briefly walk through the theoretical understanding
offered by previous studies. Muon is an optimizer specifi-
cally designed for hidden layers, leaving the first and last
layers to be handled by some other optimizer, e.g., AdamW.
Its original introduction by Jordan et al. [15] was purely
empirical, with no attempt at theoretical analysis. The first
convergence result came from Li & Hong [20], who ana-
lyzed the smooth nonconvex setting but focused solely on
problem (1) with p = 1, effectively limiting the scope to the
single-layer case. The Scion® optimizer (a special case of
Gluon) proposed by Pethick et al. [27] improves upon Muon
by applying the LMO-based rule to all layers, ultimately
achieving better empirical performance. Both this work
and that of Kovalev [19] analyze (a variant of) the general
update rule

MY = BFMF 4 (1= B5)V fer (XF),

2
XFFL = LMOgw (MF), @

where 8 € [0, 1) is momentum, V fex (X*) is the stochas-
tic gradient sampled at iteration k, and B* := {X € S :
| X — X*|| < t*} is a norm ball centered at X* with step-
size t* > 0. This setup closely resembles the structure of
Gluon, but is not exactly the same. Indeed, Gluon updates
the parameters layer-wise, not jointly over the full vector X.
This distinction is critical since for practical, extremely
high-dimensional models, calculating a single global LMO
for the entire parameter vector is prohibitively expensive,
while breaking the problem into “smaller”, per-layer LMOs
restores computational feasibility.

Motivated by this disconnect, we formulate our analysis in
the matrix product space S, explicitly honoring the layer-
wise structure. This enables us to study the actual per-
layer updates (10), with assumptions and hyperparameters
adapted to each layer.

2.2. A theory with predictive power

All prior works claiming to guarantee convergence of Algo-
rithm 1 come with several serious analytical shortcomings—
and these directly translate into practical deficiencies. Con-
cretely, all existing analyses of Muon/Scion are built on the
classical L-smoothness assumption, imposing a uniform
smoothness constant across all layers. This is problematic,

3Pethick et al. [27] introduce two variants of the Scion opti-
mizer: one for constrained optimization, called simply “Scion”,
and another for unconstrained problems, referred to as “uncon-
strained Scion”. In this work, “Scion” refers to either variant, and
“unScion” is used when referring to the unconstrained version.

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Name: module._orig_mod.transformer.wte.weight
Size: [50304, 768] | MSE_rel: 0.0005

Name: module._orig_mod.transformer.h.4.attn.c_g.weight
Size: [768, 768] | MSE_rel: 0.0039

Trajectory smoothness L

——

—

—— [2PP%10-0,00, L} =1.33

107!

L";spplox: L,O =0.00, L,l =68.42

102 4

) 1000 2000 3000

iteration k

4000 5000 0 1000 2000

Figure 1: Token embedding matrix.

iteration k

Figure 2: Self-attention query matrix.

—-+ Embed. layer —A- B.3attn.c_q
\ —&— B.0 mip.c_fc B.3 attn.c_attn
"\ —— B.0 attn.c_attn B.3 mlp.c_fc
-1 S,
073 e ~oo |
T T T T T T
3000 4000 5000 [1000 2000 3000 4000 5000

iteration k

Figure 3: Trajectory smoothness.

Figure 4: Training NanoGPT on FineWeb validates our layer-wise (L, L')-smoothness model.

as different layers have different geometries, and thus should
be treated differently.

But the issue runs much deeper. These algorithms are built
for deep learning, where the objective functions are already
well known not to be smooth [5; 35]. This mismatch has
consequences: prior convergence analyses prescribe tiny
constant stepsizes (see Table 1), uniform across all parame-
ter groups, which bear little resemblance to the tuned learn-
ing rates that yield state-of-the-art empirical performance
in practice. Consequently, they completely fail to explain
why these methods perform so well empirically. In other
words, the theory falls short at the one thing it should do
best: guiding practical choices, leaving practitioners reliant
on costly manual tuning.

Our result in Theorem 1 shows this mismatch is not in-
evitable. To better reflect the behavior of deep models, we
introduce a more expressive regularity condition: the layer-
wise (Lo, L1)-smoothness—an extension of the generalized
smoothness model of Zhang et al. [35], applied at the layer
level.

Assumption 1 (Layer-wise (L°, L')-smoothness). The
function f : S ~ R is layer-wise (Lo, L')-smooth
with constants L := (LY,...,LY) € R, and L' :=
(Li,...,L}) € RE. That is, the inequality

IVif(X) = Vif(Y)
1Xi — Yillg

lox < 10 4 L9, (X) e @)

holds forall i = 1,...,pand all X = [X1,...,X,] €
S, Y = 1,....Y,] € S, where || -). is the
dual norm associated with || - ||y (i.e, || Xill) =
SUP| 7, |, <1 (Xi, Zi>(i) forany X; € S;).

Assumption | can be viewed as a generalization of the
anisotropic “vector” (L°, L!)—smoothness introduced by
Liu et al. [23] (now framed in terms of arbitrary norms),
which itself is a generalization of the (L°, L')-smoothness
model of Zhang et al. [35]. As such, our analysis of Gluon
goes beyond all existing results, which have only considered

the classical L-smooth setting. Crucially, however, this is
not generalization for its own sake—we argue that this is in
fact the right model for the problem setting at hand. Why?
There are (at least) two reasons.

First, unlike classical L-smoothness, our formulation aligns
very closely with empirical observations. In Figures 1 and
2, we validate Assumption 1 in the context of training
NanoGPT on the FineWeb dataset. We plot estimated
trajectory smoothness L; [k] (defined in (8)) alongside the
approximation L [k] := L0+ L} ||V, ferer (X541 [i),
where LY, L} are layer-specific parameters estimated from
the training run. The figures show these quantities for pa-
rameters from the embedding layer and one of the trans-
former blocks. The close correspondence between L; [k]
and L*P*[k] provides strong evidence that Assumption 1
holds approximately along the training trajectory. In Sec-
tion 5, we further corroborate this finding, showing that our
assumption is satisfied across the entire model architecture
for both the NanoGPT language modeling task and a CNN
trained on CIFAR-10. In all cases, we find that L? ~ (0 for
all 4, again highlighting the limitations of classical smooth-
ness. Moreover, as shown in Figure 3, trajectory smoothness
varies substantially across blocks and layers, underscoring
the need for per-layer treatment. Together, these results
suggest that layer-wise (LY, L')-smoothness offers a signifi-
cantly more realistic model of the loss landscape in modern
deep learning.

Secondly, Assumption I not only better captures the geom-
etry of the models, but also directly informs the design of
adaptive and practically effective stepsizes. In Theorem 1,
we derive learning rates that reflect the local geometry of
each parameter group, guided by our layer-wise smoothness
model. As demonstrated in Section 5.1, our theoretically
grounded stepsizes turn out to be almost the same as the
ones obtained by Pethick et al. [27] via hyperparameter
tuning—a striking validation of our approach, which further
highlights the need for layer-wise reasoning. This proves
that theoretical stepsizes can have predictive power and
replace trial-and-error tuning in practice.

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

3. Contributions

We present a comprehensive theoretical and empirical study
of a broad class of layer-wise LMO-based optimization
algorithms. Our key contributions can be summarized as
follows:

o A new generalized smoothness framework for deep
networks. We introduce layer-wise (L°, L')-smoothness
(Assumption 1), a novel non-Euclidean generalized smooth-
ness condition that reflects the anisotropic, layer-wise struc-
ture of modern deep networks. This framework extends
standard (LY, L')-smoothness assumption [35] to arbitrary
norms while capturing per-layer variation, offering a realis-
tic foundation for analyzing deep learning optimizers.

o First principled analysis of layer-wise methods. Build-
ing on our new assumption, we develop the first faithful
convergence analysis for a class of LMO-based algorithms
we term Gluon (Algorithms 1 and 2). We recover known
algorithms, including state-of-the-art Muon-type optimiz-
ers, as special cases (Section 4.1 and Appendix D.1), and
pinpoint why earlier theoretical works fail to explain the
empirical success of these methods (Section 2). In contrast
to prior analyses that oversimplify the update rules used
in practice, our framework directly aligns with real-world
implementations, bridging a critical gap between theory and
application.

< Sharper and more general convergence theory. We
develop a convergence theory that extends prior work in
both scope and sharpness. In the deterministic case (Algo-
rithm 2), we establish convergence for general non-convex
objectives under our Assumption | (Theorem 1), and under
the block-wise PL condition (Theorem 4). Unlike earlier
analyses, our theory yields adaptive, layer-wise stepsizes
that align remarkably well with those selected via tuning in
large-scale experiments [27] (Section 5.1). We next analyze
the practical stochastic variant with time-varying stepsizes
and momentum (Algorithm 1), proving convergence under
non-Euclidean bounded variance assumption (Theorem 1).
In both deterministic and stochastic regimes, our guarantees
are stronger and more general than all prior work (Table 1).
While previous theories fail to explain the empirical suc-
cess of Muon-type methods, we are the first to demonstrate
their provable advantage over SGD, offering tighter conver-
gence rates under more general assumptions (Appendix E).
Moreover, we provide the first theoretical explanation of the
benefits of layer-wise learning rates, clearly establishing the
advantages of structured, anisotropic optimization in deep
learning.

o Empirical evidence. We validate our theoretical insights
through extensive experiments (Section 5 and Appendix F)
in both language modeling (NanoGPT on FineWeb) and
image classification (CNN on CIFAR-10). The results con-

firm that our Assumption 1 holds approximately throughout
training and demonstrate the practical utility of our theoreti-
cally prescribed stepsizes from Theorem 1.

4. Main theory and results

To gain a better intuition into the structure of the updates, we
begin with a deterministic formulation of Gluon, formalized
in Algorithm 2. At each iteration, the method independently
minimizes a linear approximation of f around each param-
eter group X ¥ within a ball of radius t¥ > 0, ultimately
allowing for layer-specific algorithmic design choices.

4.1. Examples of optimizers satisfying our framework

Deterministic Gluon describes a general class of methods,
parameterized by the choice of norms || - ||;y in the LMO.
To illustrate the flexibility of this framework, we highlight
several notable special cases (see Appendix D.1 for more
details). First, observe that the update rule (12) can be
written as

X[= XE 4+ tFLMOy x, <1y (Vif (X9) . @)

For any X; € & = R™*™ define | X;|lqanp =
supj|,.=1 [Xiz|| s, where || - [and || - || 5 are some (pos-
sibly non-Euclidean) norms on R™ and R™*, respectively.
Note that (4) naturally recovers several known updates for
specific choices of the layer norms, e.g., layer-wise normal-
ized GD [34] for Euclidean norms || - |5 = || - [|2, and
layer-wise signGD [1] for max-norms || - [|;;) = || - ||oo-

Two special cases are particularly relevant to our analysis:

© Muon [15] when [- ||;) = || - [|2—s2 for all hidden layers.

o unScion for LLM training [27] when ||-[|;) = v/"i/m.]|-
|22 fori =1,...,p — 1, corresponding to weight matri-
ces of transformer blocks, and || - [|(;) = npl| - [[1 500 for
the last group X, representing the embedding and output
layers (the two coincide under the weight sharing regime*
considered here). In this case, update (4) becomes

X = XE b Uk ()T, i=1, -1,

.t
X;f“ = X{; — Lsign (Vo f(X9),
&)
where the matrices UF, V;* are obtained from the (reduced)
SVD of V, f(X*) = UFS (V) .

4.2. Convergence results

Having demonstrated the framework’s flexibility through
concrete examples, we now state a general convergence

*Weight sharing refers to the practice of using the same param-
eters (weights) for different parts of a model, rather than allowing
each part to have its own unique parameters.

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

result for deterministic Gluon.

Theorem 1. Let Assumption 1 hold and fix ¢ > 0. Let
X0, ..., XE=1 be the iterates of deterministic Gluon (Algo-

IV f (X P (iyu
: . Then,
LYFLIVifF(X®)(ays

rithm 2) run with stepsizes t¥ =

to guarantee that

m S [.
k:Or,I}.lf}(*l 1;1 |:% 25:1 I/L} HVZf(Xk)H(l)’J S & (6)

it suffices to run the algorithm for

K= |2ELe) a0 | (g
j=11/LJ'>

2(§ S v/ed)’ (3
iterations, where A° := f(X0) — finf,
Several important observations follow.

Convergence rate. In Appendix D.2, we prove an addi-
tional result (Theorem 2) that modifies the first term in (7)
to 24° 327, LY/, potentially leading to improvements in
certain settings (depending on the relationship between the
sequences {L?} and {L}}-see Remark 3). However, this
introduces a dependence on L. . :=max;—1__, L} in the
second term. Empirically, we find that L? ~ 0 across all
layers (see Section 5), making the first term vanish in both
bounds. In this case, the rate (7) is clearly superior, replac-
ing the worst-case constant L. with the more favorable
harmonic mean.

When p = 1, our rates match the best-known complexity
for finding a stationary point of (L%, L!)-smooth functions,
O (L"A%/e2 + L'A%/c), as established by Vankov et al. [31]
for the Gradient Method. While no prior work has analyzed
deterministic Gluon under general (LY, L')-smoothness,
there exist analyses under classical L-smoothness, treating
the parameters as a single vector. The analysis by Kovalev
[19] guarantees convergence in K = (GLAU/eﬂ iterations.
The same bound appears in Li & Hong [20] and Pethick et al.
[27] (by setting 02 = 0). Since for p = 1, L-smoothness
implies Assumption 1 with L' = 0 (Lemma 2), our rates
match these prior results up to a constant factor. Thus, even
in the smooth setting, our bounds are as tight as those de-
rived specifically for it.

However, the real strength of our guarantees lies in their
broader applicability. Our analysis is much more general
than prior studies, as it extends beyond standard smoothness—
allowing L} > 0 introduces additional terms that drive the
accelerated convergence enabled by (L°, L')-smoothness.
This richer model is essential for explaining the empirical
speedup of methods like Muon, and much more accurately
reflects the geometry of neural network loss surfaces. In-
deed, as we demonstrate in Section 5, the assumption typi-
cally holds with LY ~ 0 and L} > 0.

Practical radii tf. Unlike previous analyses [19; 20; 27],
which prescribe impractically small constant radii propor-

tional to €, our framework allows t¥ to be adaptive to the
loss landscape. Therefore, t¥ can be larger early in training
when ||V f(X*)]|(;) is large and gradually shrink as the
gradient norm decreases. In the special case when LY ~ 0
(as observed empirically), t¥ ~ 1/L!, which is substantially
larger than the radii dictated by earlier analyses. Crucially,
as shown in Section 5.1, our adaptive stepsizes closely match
those that yield state-of-the-art empirical performance iden-
tified by Pethick et al. [27] through hyperparameter tuning.
This alignment demonstrates that principled, theory-driven
stepsize selection could effectively replace costly manual
tuning.

5. Experiments

Below, we highlight selected experimental results for the un-
Scion optimizer, a special case of Gluon (see Appendix D.1).
Additional details and further experiments are provided in
Appendix F.?

5.1. Training NanoGPT on FineWeb

In the first set of experiments, we aim to verify layer-
wise (L%, L')-smoothness (Assumption 1). To this end,
we train the NanoGPT model with 124M parameters on
the FineWeb dataset, leveraging two open-source GitHub
repositories [14; 26]. We use the unScion optimizer, i.e.,
Gluon with the norm choices as in (5). We adopt the hy-
perparameters from Pethick et al. [27, Table 7], mapping
their values v = 0.00036, po = 50, and p3 = 3000
into our notation as follows: t¥ = ~ypy = 0.018 for
i =1,...,p — 1 (corresponding to the transformer block
layers), and t’; = yp3 = 1.08 (token embeddings and out-
put projections, due to weight sharing). We set the number
of warmdown iterations to O to keep the learning rates con-
stant throughout training. The model is trained for 5,000
iterations in accordance with the Chinchilla scaling laws to
ensure compute-optimal training.

In Figures 5, 7, 8, we plot the estimated trajectory smooth-
ness as a function of the iteration index k

. (Vi Ferrr (XEFD) =V, foi (XP) [l (i)
Li[k] = EHIHXHI_XZC”:: = ®)

for parameter groups from the embedding layer and 4th and
8th transformer blocks (with similar trends observed across
all blocks). We compare this to the approximation

LK) = LY + L Vi fersr (X)) iy
where LY, L} > 0 are fitted to minimize the Euclidean error
between L;[k] and L{*[k], with hinge-like penalty on
underestimation (see Appendix F.2). The close alignment

between these curves implies that Assumption 1 is approx-
imately satisfied along the training trajectories. Based on

3Code for all experiments is available here.

https://anonymous.4open.science/r/Experiments-estimating-smoothness-for-NanoGPT-and-CNN-FB64/README.md

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

the estimated values of L? and L}, assuming that Assump-
tion 1 holds and ignoring gradient stochasticity, Theorem 1
suggests the stepsizes

E Vi fer (X« ~ 11 ;

t; = LIYLIVifee XF)[ye — LT — 70 7 0.014, 4 <p,

i
ik — IV fere (X)) « o~ 1 . 1
P LOHLLIVe fer (XF) (p) LT 1.3

~ 0.77.

©))

Remarkably, these values align closely with the manually
tuned values reported earlier, again underscoring the predic-
tive power of our theoretical prescriptions (see Section 4).

Name: module._orig_mod.transformer.h.8.mlp.c_proj.weight
Size: [768, 3072] | MSE_rel: 0.0021

—— 0

—e— [3PPrX,10-0,00, L} =70.11

161

144

124

104

0 1000 2000 3000 4000 5000
iteration k

Figure 5: Validation of Assumption | for parameters from
the 8th transformer block in NanoGPT-124M during un-
Scion training.

Effect of scaling factors. We next evaluate the impact
of the learning rate scaling factors ps and ps on the per-
formance of the unScion optimizer. For consistency, all
other hyperparameters are fixed as described earlier. As a
baseline, we include results obtained with the AdamW opti-
mizer, using the hyperparameter settings from Section F.3.3.
Figure 6 presents (a) validation curves for both optimiz-
ers, with varying ps in unScion.The best performance is
achieved with p, = 50 and p3 = 3000, i.e., t¥ = 0.018
fori =1,...,p— 1 and t’; = 1.08, consistent with our
theoretical prediction (9). This supports the use of non-
uniform scaling across layers, with larger stepsizes for the
embedding layer.

Additional ablation studies. In Appendix F.3.2, we
present an ablation study demonstrating that specialized
norms provide a better approximation of trajectory smooth-
ness compared to the standard Euclidean norm. Ap-
pendix F.3.3 demonstrates that the layer-wise (L°,L!)-
smoothness model also closely approximates trajectory
smoothness during AdamW training. Notably, we observe
a similar gap between transformer and embedding layers
as with Scion, suggesting that smoothness statistics from

—=— Adamw
—e— unScion: p; =50, p3 =10000

—&— unsScion: p; =50, p3 = 5000

—e— unsScion: p; =50, p3 = 3000 (tuned)
—a— unScion: p; =50, p3 =500
unScion: p; =50, p3 =50

Validation Loss
w
Y

3.4

0 1000 2000 3000 4000 5000
Iteration k

Figure 6: Validation curves for AdamW and unScion with
varying ps values

AdamW training can guide per-layer learning rate tuning in
Scion.

CNN on CIFAR-10. Training a CNN on CIFAR-10
with unScion further validated our layer-wise (L°,L!)-
smoothness assumption (Assumption 1), finding LY ~ 0
in both full-batch (deterministic) and stochastic gradient
settings. Observed variations in estimated L} across lay-
ers corresponded well with empirically tuned non-uniform
stepsizes [27]. Full details are in Appendix F.4.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

[1] Balles, L., Pedregosa, F., and Roux, N. L. The geome-
try of Sign Gradient Descent, 2020. URL https://
arxiv.org/abs/2002.08056. (Cited on page 4
and 13)

[2] Bernstein, J. and Newhouse, L. Old optimizer, new
norm: An anthology. In OPT 2024: Optimization for
Machine Learning, 2024. URL https://arxiv.
org/abs/2409.20325. (Cited on page 9 and 13)

[3] Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and
Anandkumar, A. signSGD: Compressed optimisa-
tion for non-convex problems. In International Con-
ference on Machine Learning, pp. 560-569. PMLR,
2018. URL https://arxiv.org/abs/1802.
04434. (Cited on page 9)

[4] Beznosikov, A., Horvath, S., Richtarik, P., and Sa-
faryan, M. On biased compression for distributed
learning. Journal of Machine Learning Research, 24
(276):1-50, 2023. (Cited on page 19)

[5] Crawshaw, M., Liu, M., Orabona, F., Zhang, W.,

https://arxiv.org/abs/2002.08056
https://arxiv.org/abs/2002.08056
https://arxiv.org/abs/2409.20325
https://arxiv.org/abs/2409.20325
https://arxiv.org/abs/1802.04434
https://arxiv.org/abs/1802.04434

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

(6]

(7]

[8

—_—

(9]

[10]

[11]

[12]

[13]

[14]

and Zhuang, Z. Robustness to unbounded smooth-
ness of generalized signSGD. Advances in neu-
ral information processing systems, 35:9955-9968,

2022. URL https://arxiv.org/abs/2208.

11195. (Cited on page 3 and 9)

Demidovich, Y., Malinovsky, G., Sokolov, I., and
Richtéarik, P. A guide through the zoo of biased sgd.
Advances in Neural Information Processing Systems,
36:23158-23171, 2023. (Cited on page 19)

Frank, M. and Wolfe, P.
quadratic programming.

An algorithm for
Naval Research Lo-

gistics Quarterly, 3(1-2):95-110, 1956. URL
https://onlinelibrary.wiley.com/
doi/abs/10.1002/nav.3800030109. (Cited

on page 1 and 9)

Gorbunov, E., Tupitsa, N., Choudhury, S., Aliev, A.,
Richtarik, P., Horvath, S., and Takac¢, M. Methods
for convex (Lg, L1)-smooth optimization: Clipping,
acceleration, and adaptivity. In The Thirteenth In-
ternational Conference on Learning Representations,

2025. URL https://arxiv.org/abs/2409.

14989. (Cited on page 9)

Gruntkowska, K., Li, H., Rane, A., and Richtarik, P.
The Ball-Proximal (=”"Broximal’’) Point Method: a
new algorithm, convergence theory, and applications.
arXiv preprint arXiv:2502.02002, 2025. URL https:
//arxiv.org/abs/2502.02002. (Cited on
page 11)

Hiibler, F., Yang, J., Li, X., and He, N. Parameter-
agnostic optimization under relaxed smoothness. In
International Conference on Artificial Intelligence and
Statistics, pp. 4861-4869. PMLR, 2024. URL https:
//arxiv.org/abs/2311.03252. (Cited on
page 9, 11, 19, and 25)

Jaggi, M. Revisiting frank-wolfe: Projection-free
sparse convex optimization. In International confer-
ence on machine learning, pp. 427-435. PMLR, 2013.

(Cited on page 9)

Jiang, R., Maladkar, D., and Mokhtari, A. Conver-
gence analysis of adaptive gradient methods under
refined smoothness and noise assumptions. arXiv
preprint arXiv:2406.04592, 2024. URL https://
arxiv.org/abs/2406.04592. (Cited on page 9)

Jordan, K. Cifar-10 airbench. https://github.

com/KellerJordan/cifarlO—-airbench,
2024. GitHub repository. (Cited on page 28 and 32)

Jordan, K., Bernstein, J., Rappazzo, B., Vlado,
B., Jiacheng, Y., Cesista, F., and Koszarsky, B.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Modded-nanoGPT: Speedrunning the nanoGPT base-
line. https://github.com/KellerJordan/
modded-nanogpt, 2024. GitHub repository.
Additional contributors: @fern-bear.bsky.social,
@Grad62304977. (Cited on page 2, 5, and 28)

Jordan, K., Jin, Y., Boza, V., You, J., Cesista,
F., Newhouse, L., and Bernstein, J. Muon: An
optimizer for hidden layers in neural networks,
2024. URL https://kellerjordan.github.
io/posts/muon/. (Cited on page 1, 2, 4, 9, 13,
and 28)

Karimi, H., Nutini, J., and Schmidt, M. Lin-
ear convergence of gradient and proximal-gradient
methods under the Polyak-t.ojasiewicz condition,
2020. URL https://arxiv.org/abs/1608.
04636. (Cited on page 17)

Khaled, A. and Richtarik, P. Better theory for
SGD in the nonconvex world. arXiv preprint
arXiv:2002.03329, 2020. URL https://arxiv.
org/abs/2002.03329. (Cited on page 19 and 34)

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. In International Conference on Learn-
ing Representations, 2015. URL https://arxiv.
org/abs/1412.6980. (Cited on page 1)

Kovalev, D. Understanding gradient orthogonaliza-
tion for deep learning via non-Euclidean trust-region
optimization, 2025. URL https://arxiv.org/
abs/2503.12645. (Cited on page 2, 5,9, 11, and 12)

Li, J. and Hong, M. A note on the convergence of
Muon and further, 2025. URL https://arxiv.
org/abs/2502.02900. (Cited on page 2, 5, 9,
and 11)

Liu, C., Zhu, L., and Belkin, M. Loss landscapes and
optimization in over-parameterized non-linear systems
and neural networks. Applied and Computational Har-
monic Analysis, 59, 01 2022. doi: 10.1016/j.acha.2021.
12.009. URL https://arxiv.org/abs/2003.
00307. (Cited on page 17)

Liu, J., Su, J., Yao, X., Jiang, Z., Lai, G., Du, Y., Qin,
Y., Xu, W., Lu, E., Yan, J., et al. Muon is scalable
for LLM training. arXiv preprint arXiv:2502.16982,
2025. URL https://arxiv.org/abs/2502.
16982. (Cited on page 1)

Liu, Y., Pan, R., and Zhang, T. AdaGrad under
anisotropic smoothness, 2024. URL https://
arxiv.org/abs/2406.15244. (Cited on page 3
and 9)

https://arxiv.org/abs/2208.11195
https://arxiv.org/abs/2208.11195
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800030109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800030109
https://arxiv.org/abs/2409.14989
https://arxiv.org/abs/2409.14989
https://arxiv.org/abs/2502.02002
https://arxiv.org/abs/2502.02002
https://arxiv.org/abs/2311.03252
https://arxiv.org/abs/2311.03252
https://arxiv.org/abs/2406.04592
https://arxiv.org/abs/2406.04592
https://github.com/KellerJordan/cifar10-airbench
https://github.com/KellerJordan/cifar10-airbench
https://github.com/KellerJordan/modded-nanogpt
https://github.com/KellerJordan/modded-nanogpt
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://arxiv.org/abs/1608.04636
https://arxiv.org/abs/1608.04636
https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/2002.03329
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2503.12645
https://arxiv.org/abs/2503.12645
https://arxiv.org/abs/2502.02900
https://arxiv.org/abs/2502.02900
https://arxiv.org/abs/2003.00307
https://arxiv.org/abs/2003.00307
https://arxiv.org/abs/2502.16982
https://arxiv.org/abs/2502.16982
https://arxiv.org/abs/2406.15244
https://arxiv.org/abs/2406.15244

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

Loshchilov, I. and Hutter, F. Decoupled weight decay
regularization. In International Conference on Learn-

ing Representations, 2019. URL https://arxiv.

org/abs/1711.05101. (Cited on page 1)

Nesterov, Y. Efficiency of coordinate descent
methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341-362,
2012. URL https://epubs.siam.org/doi/
10.1137/100802001. (Cited on page 9)

Pethick, T., Xie, W., Antonakopoulos, K., Zhu, Z.,
Silveti-Falls, A., and Cevher, V. Scion. https://
github.com/LIONS-EPFL/scion.git, 2025.
GitHub repository. (Cited on page 2, 5, 28, and 32)

Pethick, T., Xie, W., Antonakopoulos, K., Zhu, Z.,
Silveti-Falls, A., and Cevher, V. Training deep learning
models with norm-constrained LMOs. arXiv preprint

arXiv:2502.07529, 2025. URL https://arxiv.

org/abs/2502.07529. (Cited on page 1, 2, 3, 4, 5,
6,9, 11,12, 13,32, and 33)

Pokutta, S. The Frank-Wolfe algorithm: a short intro-
duction. Jahresbericht der Deutschen Mathematiker-
Vereinigung, 126(1):3-35, 2024. URL https://
arxiv.org/abs/2311.05313. (Cited on page 1)

Richtérik, P. and Takac, M. Iteration complexity of
randomized block-coordinate descent methods for min-
imizing a composite function. Mathematical Program-

ming, 144(1):1-38, 2014. URL https://arxiv.

org/abs/1107.2848. (Cited on page 9)

Shah, I., Polloreno, A. M., Stratos, K., Monk, P.,
Chaluvaraju, A., Hojel, A., Ma, A, Thomas, A., Tan-
wer, A., Shah, D. J., et al. Practical efficiency of Muon
for pretraining. arXiv preprint arXiv:2505.02222,

2025. URL https://arxiv.org/abs/2505.

02222. (Cited on page 2)

Vankov, D., Rodomanov, A., Nedich, A., Sankar, L.,
and Stich, S. U. Optimizing (Lg, L)-smooth func-
tions by gradient methods. In The Thirteenth In-
ternational Conference on Learning Representations,

2025. URL https://arxiv.org/abs/2410.

10800. (Cited on page 5, 9, and 13)

Wilson, A. C., Roelofs, R., Stern, M., Srebro,
N., and Recht, B. The marginal value of adap-
tive gradient methods in machine learning. Ad-
vances in neural information processing systems, 30,

2017. URL https://arxiv.org/abs/1705.

08292. (Cited on page 1)

Xie, S., Mohamadi, M. A., and Li, Z. Adam ex-
ploits /,.-geometry of loss landscape via coordinate-
wise adaptivity. arXiv preprint arXiv:2410.08198,

[34]

[35]

[36]

2024. URL https://arxiv.org/abs/2410.
08198. (Cited on page 9)

Yu, A. W, Huang, L., Lin, Q., Salakhutdinov, R.,
and Carbonell, J. Block-normalized gradient method:
An empirical study for training deep neural net-
work, 2018. URL https://openreview.net/
forum?id=ry831QWAb. (Cited on page 4 and 12)

Zhang, J., He, T., Sra, S., and Jadbabaie, A. Why
gradient clipping accelerates training: A theoretical
justification for adaptivity. In International Conference
on Learning Representations, 2020. URL https://
arxiv.org/abs/1905.11881. (Cited on page 3,
4, and 9)

Zou, D., Cao, Y., Li, Y., and Gu, Q. Understand-
ing the generalization of Adam in learning neural
networks with proper regularization. arXiv preprint
arXiv:2108.11371, 2021. URL https://arxiv.
org/abs/2108.11371. (Cited on page 1)

https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://epubs.siam.org/doi/10.1137/100802001
https://epubs.siam.org/doi/10.1137/100802001
https://github.com/LIONS-EPFL/scion.git
https://github.com/LIONS-EPFL/scion.git
https://arxiv.org/abs/2502.07529
https://arxiv.org/abs/2502.07529
https://arxiv.org/abs/2311.05313
https://arxiv.org/abs/2311.05313
https://arxiv.org/abs/1107.2848
https://arxiv.org/abs/1107.2848
https://arxiv.org/abs/2505.02222
https://arxiv.org/abs/2505.02222
https://arxiv.org/abs/2410.10800
https://arxiv.org/abs/2410.10800
https://arxiv.org/abs/1705.08292
https://arxiv.org/abs/1705.08292
https://arxiv.org/abs/2410.08198
https://arxiv.org/abs/2410.08198
https://openreview.net/forum?id=ry831QWAb
https://openreview.net/forum?id=ry831QWAb
https://arxiv.org/abs/1905.11881
https://arxiv.org/abs/1905.11881
https://arxiv.org/abs/2108.11371
https://arxiv.org/abs/2108.11371

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Algorithm 1 Gluon: Stochastic Adaptive Layer-Wise LMO-based Optimizer with Momentum

1: Input: Initial model parameters X° = [X?, ..., X?] € S, momentum M° = [M?, ..., MJ] € S, momentum decay
factors 8% € [0, 1) for all iterations k > 0

2: fork=0,1,2,..., K —1do

3 Sample £¥ ~ D

4 fori=1,2,...,pdo

5: Compute stochastic gradient V; fex (X*) for layer i

6 Update momentum M} = BFMF™ 4 (1 — BEYV; fer (XF) for layer i

7 Choose adaptive stepsize/radius t¥ > 0 for layer i

8 Update parameters for layer i via LMO over B := {X; € S; : || X; — XF| ;) < th}:

Xt = LMOg (MF) == argmin (M}, X;) ;) (10)
‘ Xi,EBé"
9: end for
10: end for
11: Update full parameter vector X1 = [XJ+! ... Xi+1]=0
A. Related works

Generalized Smoothness. The classical L-smoothness assumption, where the gradient is Lipschitz continuous with a
global constant L, often fails to accurately capture the complex geometry of loss landscapes in deep learning [5; 35].
To address this, Zhang et al. [35] introduced the (Lg, L)-smoothness condition, empirically observing from language
model experiments that a bound of the form || V2 f(z)| < Lo + L1 ||V f(z)|| better described the Hessian norm behavior.
This model, where smoothness can depend on the gradient norm, allows for larger steps when gradients are small and
more conservative steps when gradients are large, reflecting typical training dynamics. Subsequent works have analyzed
standard optimization algorithms under this generalized smoothness framework. For instance, Gorbunov et al. [8] and
Vankov et al. [31] provided convergence analyses for the Gradient Method. Hiibler et al. [10] analyzed Normalized SGD
with momentum in a parameter-agnostic setting under (Lo, L1)-smoothness. Our work extends this line by incorporating
(Lo, L1)-smoothness into a layer-wise context using arbitrary norms, an approach that is particularly well-suited for the
LMO-based optimizers we study.

Anisotropic Smoothness. Recognizing the heterogeneous nature of parameters in large models, researchers have explored
anisotropic smoothness conditions, where smoothness constants can vary across different dimensions or parameter blocks.
Early work in this direction includes coordinate-wise Lipschitz continuity for coordinate descent methods [25; 29]. More
recently, Bernstein et al. [3] analyzed SignSGD under a weaker notion of coordinate-wise smoothness. Crawshaw et al. [5]
further developed this by analyzing Generalized SignSGD under a generalized coordinate-wise smoothness assumption,
highlighting that different parameter groups can exhibit vastly different geometries. Jiang et al. [12] focused on Adagrad’s
analysis under coordinate-wise smoothness and established lower bounds for SGD, underscoring the benefits of adaptivity.
Liu et al. [23] proposed “Anisotropic (Lg, L1)-smoothness” (a vector version of (L, L1)-smoothness applied coordinate-
wise) and demonstrated Adagrad’s provable advantages over SGD in this setting. Xie et al. [33] also leveraged anisotropic
smoothness concepts in their convergence analysis of Adam. Our work contributes by defining and analyzing layer-wise
(Lo, Ly1)-smoothness, which combines the benefits of the generalized smoothness model with a structured, anisotropic
perspective tailored to the layer-block architecture of neural networks and compatible with arbitrary layer-specific norms.
This framework is essential for understanding LMO-based methods like Muon and Scion.

LMO-based Optimizers. The optimizers Muon [15] and Scion [27] represent a recent class of methods that have shown
strong empirical performance in deep learning. Muon was initially introduced as an effective empirical method, with its
update rule for hidden layers inspired by ideas from Bernstein & Newhouse [2]. Subsequently, Pethick et al. [27] (authors
of Scion) explicitly connected these types of updates to the Frank-Wolfe (FW) framework [7; 11], proposing the use of
layer-specific norms within an LMO-based update rule. These methods perform updates by solving, for each layer, a
linear minimization problem over a norm ball centered at the current iterate. Prior theoretical analyses of these optimizers
[19; 20; 27] have typically relied on standard L-smoothness and analyzed a simplified global update. Our work provides the
first convergence guarantees for these methods under the more realistic layer-wise (Lg, L1)-smoothness, directly addressing

9

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

their practical layer-wise nature and leveraging the geometric insights offered by LMOs over general norms.

B. Auxiliary lemmas

Lemma 1. Let f : S — R satisfy Assumption 1. Then, for any X,Y € S we have

L°+L1HV f(X)

FY) — FOO — (VA B> by, — x,p,.

Proof. Forall X, Y € S we have
f(Y) :f(X)—I—/O <Vf(X+T(Y—X)),Y—X>dT
1
= F(X) + (V)Y — X) + / (VX + (Y — X))~ VF(X),Y - X) dr.

Therefore, using the Cauchy-Schwarz inequality and Assumption 1, we obtain

IF(Y) - f() (VI(X),Y = X)|

< (Y = X)) = Vil (X),Yi = Xi) y dr
< / Z]<vz—f<X+T<YfX>>—vl-f<X>,msz->m dr
< / va FX 7Y = X)) = Vif (X)]|y, ¥ = Xi| iy dr
<

[3o (8 B 0) 1Y~ il

~ LY+ LIV f(X)
2

I
S Y - Xy

i=1

Lemma 2. Suppose that f is L-smooth with respect to the norm defined in (11), i.e.,

||vf(X) - vf(Y)Hmax* — L ”X YHnlax’

where X = [X1,...,X,]andY = [Y1,...,Y,| with X;,Y; € S;. Then Assumption 1 holds with LY < L and L} = 0 for
alli=1,...,p

Proof. L-smoothness and the definition of the norm give
P
SOIViF(X) = Vif (Ml < Lmax {150 = Vil gy o0 15 = Vil |
i=1
forall X, Y € S. In particular, choosing X = [X1,..., X,]and Y = [X3,..., X;_1,Y;, X;41,... X,], we have
P
IV,0(X) = Vi f)l ye < 32 IVaF(X) = Vil (Wl < LIX, - Vil
i=1

forany j € {1,...,p}, proving the claim. O

10

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Table 1: Comparison of convergence guarantees for Gluon (Algorithms 1 and 2) to achieve ming—o,...,k—1 > -, E[| Vi f(X®)[| (1] <
¢, where the O(+) notation hides logarithmic factors. Notation: K = total number of iterations, (L°, L') = the result holds under layer-wise
(L°, L")-smoothness, t¥ = radius/stepsize, 1 — 8¥ = momentum.

Result Stochastic? (L%, LY Rate Stepsizes tf 1— gk
1 1 (b)
[19, Theorem 1] X X (@) (K1/2) const o< 173 —
1 1 (b 1
[19, Theorem 2] v X (@) (K1/4) const o< 374 const oc <1/2
@ 1 1 (® 1
[20, Theorem 2.1]? v X (@) (K1/4) const o< 371 const oc 172
1 1 (b 1
[27, Lemma 5.4] v X (@) (K1/4) const o< 374 < 173
NEW: Theorem 1 X 4 @ (Kll 72) Adaptive —
5 1 1 1
NEW: Theorem 5 v 4 (@) <K1/4) o 374 o 1/2
@ Applies only to the Muon/Scion update in (13) with p = 1.
®) These stepsizes are impractically tiny since they have an inverse dependence on the total number of iterations K.
Lemma 3. Suppose that x1,...,Tp,y1,...,Yp € R, max;epp |2;| > 0and z1,. .., 2z, > 0. Then
P 2
Z j > (Z?:l TY;))
iR B DAY
Proof. Cauchy-Schwarz inequality gives
()) | () y > |) y2)
i i 2
Z iy | = Z Vzizi | < Z - Z 2Ty | -
i=1 o VE im1 i i=1
Rearranging, we obtain the result. O

Lemma 4 (Technical Lemma 10 by Hiibler et al. [10]). Let g € (0,1), p > 0, and p > q. Further, let a,b € N>o with
a <b. Then

b—1 k

al=%— (o —1)1¢
Z (1+Fk)"? H (1-(r+1)79 < (a—l)q”exp< (a—1)) .

k=a—1 T=a—1 1- q

Lemma 5 (Technical Lemma 11 by Hiibler et al. [10]). Let t > 0 and for k € Nsq, set f* = 1 — (k + 1)71/2,
th = t(k +1)73/4 ¢ > 0. Then, for all K € N> the following inequalities hold:

(i) TS T (1= BT 0 (89 < ¢ (5 + V2 log(K),
(i) Yoo 5 5 17 T, 8% < 76 (3 4 log(K).

Proof. This is a direct consequence of Lemma 11 by Hiibler et al. [10]. To obtain (ii), it suffices to take the limit as L' — 0
in statement (ii) of part (b). L]
C. Remarks on the theoretical results

C.1. Note on radii and stepsizes

It is known (see, e.g., Gruntkowska et al. [9, Theorem D.1], who establish this for S = R< under Euclidean norms; the
extension to general normed vector spaces is entirely analogous) that if g is a convex function, then the solution to the

11

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Algorithm 2 Deterministic Adaptive Layer-Wise LMO-based Optimizer

1: Input: Initial model parameters X° = [X7,...,X)] € S
2: fork=0,1,...,K —1do
3: fori=1,2,...,pdo

4: Choose adaptive stepsize/radius tf > 0 for layer ¢
5: Update parameters for layer i via LMO over B := {X; € S; : || X; — XF| ;) < th}:
X = LMOg: (Vif (X*)) == argmin (V;f(X"), X;) ;) (12)
¢ X, eBF
6: end for
7. Update full parameter vector: X*+1 = [XF+1 , X
8: end for=0
problem
arg min g(X)
XeBk

is unique and lies on the boundary of the ball B* := {X € S : || X — X*|| < t*} (unless Vg(X*) = 0, ie., X* isa
stationary point of g).

This applies directly to the LMO subproblem solved at each iteration of Gluon in (10), since the objective (M}, Xi)yisa
linear function of X, and hence convex. In other words, each LMO step moves the iterate from the center of the ball X f to
a new point X f“ located on the boundary of B¥, effectively traversing a distance of ¢¥ at each step. For this reason, we use
the terms radius, stepsize, and learning rate interchangeably.

C.2. Note on prior analyses

As presented, prior convergence results do not directly apply to the algorithms used in practice. However, there is a
workaround. Specifically, some of the existing convergence guarantees [19; 27] expressed in terms of the flat vector x are
transferable to the structured parameters X = [X1, ..., X;] € S by employing the max-norm, defined as

X s 3= max { Xl s 1 Xl } (11)

with corresponding dual norm [|Y || max « = sup| x|,.<1 (X, Y) = >0, [|Yill(i)«- Nevertheless, these works do not make
this connection explicit, and an additional layer of analysis is required to ensure the guarantees meaningfully extend to
the structured practical setting. Even if such a translation was attempted, the global treatment introduces serious practical
limitations. For example, real-world training pipelines tune parameters on a per-layer basis, reflecting the heterogeneous
structure of deep networks. Max-norm-based guarantees overlook this variability and offer no mechanism for per-layer
control in hyperparameter selection.

D. Deterministic case

We begin by considering the deterministic counterpart of Gluon, as formalized in Algorithm 2. We first review several existing
algorithms that fall within this framework (Appendix D.1), followed by a proof of Theorem 1 (Appendix D.2). Finally, we
present an additional convergence guarantee under the layer-wise Polyak—}t.ojasiewicz (PL) condition (Appendix D.3).

D.1. Special cases of the LMO framework

As outlined in Section 4.1, deterministic Gluon encompasses a general class of algorithms, parameterized by the choice of

norms || - [|(;) in the LMO. We now provide a more detailed discussion of the most notable special cases.
Layer-wise normalized GD [34]. Let || - [|;y = || - ||2—2 for each parameter group and assume that n; = 1 for all
it =1,...,p. In this case, the spectral norm reduces to the standard Euclidean norm || - ||, yielding the update rule

X = xp b JIXD

Vi (XD oD

12

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

which corresponds to layer-wise normalized GD. With a suitable choice of t¥ (see Theorem 1), the method can also recover
the Gradient Method for (L°, L')-smooth functions [31].

Layer-wise signGD [1]. Suppose that || - |[(;y = || - [[1-c0c for each parameter group, with n; = 1 foralli = 1,...,p.
- |l1= 00 reduces to || - || oo, and the update becomes

XFt = XF —thsign (Vi f(XF)), i=1,...,p,
where the sign function is applied element-wise. This is equivalent to layer-wise signGD.

Muon [15]. Here, the spectral norm || - ||2—2 is used for all parameter groups, without restrictions on 7;. In this case, it
can be shown that (12) is equivalent to

XE = XE R () i= 1 "

where V; f(X*) = UFSF (V) " is the singular value decomposition [2]. This is exactly the per-layer deterministic version
of the Muon optimizer. In practical LLM training, a more general variant of (13) incorporating stochasticity and momentum
is applied to the intermediate layers, while the input and output layers are optimized using other methods.

Unconstrained Scion [27]. We can also recover two variants of unScion introduced by Pethick et al. [27]: one for training
LLMs on next-token prediction, and another for training CNNs for image classification.

* Training LLMs. Define the norms || - [|(;) as follows: for i = 1,...,p — 1, corresponding to weight matrices of
transformer blocks, set || - || ;) = \/"™i/m|| - [|2—2, and for the last group X, representing the embedding and output
layers (which coincide under the weight sharing regime considered here), let || - ||,) = 7| - ||1—00- In this case, (12)
becomes

X = XE b\ aUE (V)L i=1p -,
k+1 kb k "
X, =X} —Emgn(vpf(X),

where V; f(X*) = UFSF (V) is the singular value decomposition. This is equivalent to deterministic layer-wise
unScion optimizer without momentum. A more general variant, incorporating stochasticity and momentum and applied
to all layers, was shown by Pethick et al. [27] to outperform Muon on LLM training tasks.

* Training CNNs. The main difference in the CNN setting is the presence of not only 2D weight matrices, but also 1D
bias vectors and 4D convolutional kernels parameters. Biases are 1D tensors of shape RC? "*, for which we use scaled
Euclidean norms. Convolutional parameters (conv) are 4D tensors with shapes R? YO xkxk where C?u and Ci"
denote the number of output and input channels, and k is the kernel size. To compute norms, we reshape each 4D
tensor to a 2D matrix of shape RS *Ci"¥* and then apply a scaled I - ll2—2 norm. This yields the norm choices

I 1l6y = /Y| - ||z for biases, || - [|(s) = k/Ci"/ct| - |22 for conv, and | - |y = 7| - |10 for the last
group X, associated with classification head weights. Then, it can be shown that (12) is equivalent to

X+ = Xk_tk\/cmuvvjf(()‘fk)u , (for biases),
XEW = Xt [Gr UL () Gorcom (9
KEH 2 X i (9,000), (orhead

where V; f(X*) = UFSF (V/*) is the singular value decomposition. This corresponds to the deterministic layer-wise
unScion optimizer without momentum.

D.2. Proof of Theorem 1

We now state and prove a generalization of Theorem 1.

13

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Theorem 2. Let Assumption 1 hold and fix e > 0. Let X°, ..., XX~ be the iterates of deterministic Gluon (Algorithm 2)

IV F) e o

. . k
run with stepsizes t; = TOr LIV P X T

1. In order to reach the precision

ming—o,... K- 12 1va H()**

it suffices to run the algorithm for

0 0 0or1
K = [2A Zl 1 L 4 24 mex—‘ (16)
iterations,
2. In order to reach the precision
R

LD LS e HV FEO el <5 (a7

it suffices to run the algorithm for

(st)

K — 1 (L})Qz i 2A0 (18)

iterations,

where AY := f(X°) —infxes f(X) and L}

bk i=max;—1,_p Ll

Remark 3. Let us compare bounds (16) and (18). Due to the reweighting of the gradient component norms in (17), the
rates are not exactly equivalent. Nevertheless, both use weights that sum to p, ensuring a fair comparison. Obviously,
(Y/p Z§:1 1/p) =t < L} .., so the second term in (18) is always no worse than its counterpart in (16). The comparison of
the first terms, however, depends on how the sequences {L{} and {L}} relate: if larger values of L?s tend to be attached
to smaller values of L}, then the first term in (18) improves over that in (16), while for a positive correlation the opposite
is true. Indeed, in the extreme case when LY > ... > LY and L} < ... < L] (or the reverse ordering), Chebyshev’s sum
inequality implies that

P L0 P 1,0 P P P
S (GH)GEa) (GE)(EEn) o
i=1 \"q i=1 i i=1 "iq < i=1 i=1 "q _ LO
2 = P 2 — p - Z [
1 1 11 1 1(1 1 i=1
<z¥ﬁ> ;<5.¥ﬁ> v\ 7 211
j=1"3j j=1"j =L

Conversely, if both sequences {L{} and {L}} are sorted in the same order (either increasing or decreasing), the inequality
reverses, and the first term of (16) may be tighter. That said, empirical evidence we provide in Section 5 indicates that in
practice LY ~ 0 across all layers, in which case the first terms in (16) and (18) effectively vanish. Then, (18) is clearly

superior, replacing the worst-case constant L. by the harmonic mean.

Proof. We start with the result obtained in Lemma 1 with X = X* and Y = X*+!

LY + Li|Vif(X*)
2

P
” 7)%
FOXY) < FXR) 4 (VAR XM - X0y 3 W) xk - xFH 2,
=1

L L0+ LX) o

k
(i) 2 Hsz _Xi —HH%i)

p
Z <V f Xk Xk+1 sz>
=1

The update rule (12) and the definition of the dual norm || - [|;, give

2
X5 = XFFHE) < ()

14

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

and
(Vaf (X9, X = XE)) = (VT (0F), LMOgy (Vaf (X)) = XF)
= —tF max (V,f(X"),X;) .
1Xill sy <1 (Vi (X5, Xy
= —tF||Vi f (XF)]I 3y
Consequently,
- L)+ LIIVif (X9 e a2
FOY) < FX) 4 37 | IV () e + ()
i=1
Now, choosing
ko IV f (XF))iy«

C LY+ LIV (X9) s
which minimizes the right-hand side of the last inequality, yields the descent inequality

. - IV fF(X)IE
k+1 ky — o
SO < X = S IV) "

Summing the terms, we obtain

K—-1 p HV-f(Xk)HZ- K-1
< FXF) = f(XMH
2 2 S L) ©)
— £(x0 K (20)
= J(X7) = f(XT)
< 0y _ _. A0
< AX7) - jof f(X) =4
Now, the analysis can proceed in two ways:
1. Upper-bounding L1 by Lmax = maXi—1,. p L} in (20), we obtain
K—1 , ky(2
505 IV X012, a0 o
= = 2(L7 + L IVif (X9) [)+)
Now, applying Lemma 3 with z; = 1, y; = ||V, f(X")||(s)« and z; = 2 (LO + L« HVif(X’“)H(i)*) gives
2
i=1 2 (327 LY +L}me -1 HV f() iye)
5- Vo (X912,
T2 (L Ll Vif (XE))
where ¢(t) := Q(ZLt—?UrLl) Combining the last inequality with (21) and using the fact that ¢ is increasing, we
obtain o
K-1 p
K(b(min ZHV FXM) z)*) < ¢ (Z Hvif(Xk)H(i)*> <A, (22)
k=0 i=1

15

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

and hence

AO
ZIIVfX’“H(z <4 ()

where ¢! is the inverse function (which exists since ¢ is increasing). Therefore, to reach the precision
ming—o,... K—1 Zle ||Vif(Xk)||(i)* < ¢, it is sufficient to choose the number of iterations to be

oo [A%] _[250, 10A° 2LL,.AY
o(e) €2 € '

. Alternatively, we can start from the inequality (20) and apply Lemma 3 with z; = 1/L}, y; = HVZ F(XF) || (i)x and
2 =2(LY + L} HVif(Xk)H(i)*) to obtain

(S IV MR,
Az Y LIV AT
o (S v e,)
=10 = (L°+L1\|Vf(X’“)II)
B Kz_:l (flLl HV»f Xk)H(i)*)
D2 (T e+ X A IV)
K-1 p 1
-2 w(; o ||vif<X’“)||(i)*>,
where 1(t) := m Since the function 1 is increasing for ¢ > 0, ¢! exists. It follows that

k=0 i=1 Z

: S
Ky <k_0{¥}}}}<_1 ; o HVJ(X’“>||(¢>*),

K—-1 j2
A Zw(z RNTARS HW)

Y]

and hence

P 1
LI k:
min > | s IV (X)), | <5
k=0, K1 £ szzlf; (4)
it suffices to run the algorithm for
o(xr LY
AY 24 (i=1 (L] 2) 2A°
K — _ (L3) i

iterations.

16

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

D.3. Convergence under the PL. condition

We now establish convergence rates under the layer-wise Polyak—t.ojasiewicz (PL) condition, introduced in Assumption 2.
This property is especially relevant for heavily over-parameterized neural networks, as it has been shown to capture the
properties of their loss landscapes [21].

Assumption 2 (Layer-wise Polyak-f.ojasiewicz condition). The function f : S +— R satisfies the layer-wise Polyak-
Lojasiewicz (PL) condition with a constant i1 > 0, i.e., forany X € S

D IVif O = 26 (F(X) =),
=1

where f* :=infxcs f(X) > —oc.

Assumption 2 reduces to the standard PL. condition [16] by vectorizing the parameters and adopting the Euclidean norm
[IRPS
Theorem 4. Let Assumptions 1 and 2 hold and fix ¢ > 0. Let X°,..., XX~ be the iterates of deterministic Gluon

: ok IVif (X)),
(Algorithm 2) run with t7 = O LIV, F X T os

1. If L} > 0, then to reach the precision ming—o ___rc—1 F(XFY — f* < ¢ it suffices to run the algorithm for

K = :7157:1 L?AO 4 \/ﬁLrlnaxAO
e NG

iterations,

2. IfL} =0foralli=1,...,p, then to reach the precision f(XX) — f* < ¢, it suffices to run the algorithm for
L A°
K= {max log —‘ ,
W €

where LY = max;=1,...p LY, Ll . = Max;=1, . p LY A := f(X°) — f*and f* = infxes f(X).

ma

Proof. We consider two scenarios: (1) the general case with arbitrary L,} > 0and (2) L} =0foralli=1,...,p.

Case 1: L} > 0. We start by following the same steps as in the proof of Theorem 1. From (22), we have

K—-1 D
¢ (Z ”vif(Xk)”(i)*> <A

k=0 i=1

where ¢(t) := wa) Now, using Assumption 2, we get

max

P P
(Z ||vif<X’“>||<i>*> Z IV f Xy = 20 (FXF) = £7).
i=1 i=1
Consequently, since ¢ is an increasing function,

Ko (Vo /10 - 1) < ¥

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

where k* := argmin,_, g, f(X*) — f*. Denoting the corresponding inverse function (which exists since ¢ is

0
V2 F(XE) = fr <ot (é) </ 2pe.

Therefore, to reach the precision f(X ’“*) — f* <, itis sufficient to choose the number of iterations

AV PULOAY 2L A°
— 7 7 + max .
10) (\/2#6) LE /L€

K =

Case 2: L} = 0. Inequality (19) from the proof of Theorem 1 with L} = 0 gives

P Vi f(XP)|IZ
k (1)*
FXFY < f(X)*ZT

i=1

Using the fact that

p . p
el > k I ’f

along with Assumption 2, we obtain

FXMY) < F(XR) = = (FXM) = 1)

max

The remaining part of the proof follows from the simple observation

Ao 1
< < —_— .
log(.) kLmax k:log(l_Lo)

max

E. Stochastic case

In practice, computing full gradients is often infeasible due to the scale of modern ML problems. We therefore turn to the
practical Gluon (Algorithm 1), a stochastic variant of Algorithm 2 that operates with noisy gradient estimates available
through a stochastic gradient oracle V f¢, & ~ D.

Assumption 3. The stochastic gradient estimator V f¢ : S +— S is unbiased and has bounded variance. That is,
Eep [V fe(X)] = Vf(X) forall X € S and there exists o > 0 such that

Eep [|Vife(X) = Vif (X)) <0®, VX €S, i=1,....p

Note that the choice of norm in Assumption 3 is not restrictive: in finite-dimensional spaces, all norms are equivalent, so
variance bounds remain valid up to a constant factor when compared to those based on the standard Euclidean norm. The
following result establishes the convergence properties.

Theorem 5. Let Assumptions 1 and 3 hold and fix € > 0. Let X°, ..., X5~ be the iterates of Gluon (Algorithm 1) run
with BF =1 — (k+1)"Y2, ¢k = t,(k + 1)73/4 for some t; > 0, andMO Vi feo(XP). Then

i St Vi f(XF) A . L) 23
k:OI?.l,I}(—l-2112L1 [1V:£ (X5l]NK1/4 K1/4Z L1+(L7,) ’ 29

=

where A := f(X°) — f™f and the notation < hides numerical constants and logarithmic factors.

18

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

For p = 1, our rate in (23) recovers the complexity for finding a stationary point of (L°, L*)-smooth functions established
by Hiibler et al. [10] for normalized SGD with momentum. When p > 1, compared to existing guarantees for Gluon, our
Theorem 5 operates under the significantly more general Assumption 1 and uniquely supports training with significantly
larger, non-constant stepsizes ¥ oc k=3/%. In contrast, prior analyses prescribe constant, vanishingly small stepsizes
th =t; oc K—3/4, tied to the total number of iterations K (see Table 1).

E.1. Adaptive stepsizes
Before proving the main result from Appendix E, we first present an attempt to formulate an adaptive stepsize strategy for
the stochastic setting. This requires the following assumption:

Assumption 4. The stochastic gradient estimator V f¢ : S — S is unbiased and has bounded relative variance. That is,
E[Vfe(X)] = Vf(X) forall X € S and there exists 0 < ¢ < 1 such that

[Vife(X) = Vif (X)ll@yx < CIVife(X)lGyss i=1,...,p
holds almost surely for all X € S.

This assumption is somewhat unconventional due to the presence of the stochastic gradients on the right-hand side of the
inequality. It does not follow from standard conditions and does not fall within known frameworks for modeling stochasticity,
such as the ABC inequality of Khaled & Richtarik [17]. Instead, it introduces a novel structure with parallels to the literature
on contractive compression [4; 6].

To elaborate, recall the definition of a contractive compressor:
Definition 6 (Contractive compressor). A stochastic mapping C : S — S is called a contractive compressor if there exists
« € [0,1) such that

E[le(x) = X|IP] < (1 =)| X (24)
forany X € S.

There is a conceptual similarity between Assumption 4 and the contractive property in (24). Assumption 4 can be interpreted
as asserting that the true gradient V f(X) is effectively a contraction of the stochastic gradient V f¢(X), with contraction
factor 1 — ¢. Unlike contractive compressors, there is no explicit mapping from V f¢(X) to V f(X), and the uniform bound
implies the same contraction-like behavior across all stochastic gradients.

Although Assumption 4 is admittedly strong, it allows us to establish a convergence theorem using an adaptive stepsize
strategy similar to the one employed in the deterministic case in Theorem 2.
Theorem 7. Let Assumptions 1 and 4 hold and fix e > 0. Let X°, ..., X5~ be the iterates of Gluon (Algorithm 1) run

. ko ko A=V fer (X (i
with 3% = 0 and t7 = L?+(1+C)L}Héifgk(X’“)Hm*’ Then,

1. In order to reach the precision

p
k:Or,I}.igffl ZE {Hvif(Xk)H(i)*} =6
i=1

it suffices to run the algorithm for

_ 2 Zg):l L?AO + 2(1 + C)L}naxAO
(1-¢)%e (1-¢)%e
iterations.

2. In order to reach the precision

P 1

min) %HVJ(XAC)HW <e

k=0,...,K—1 X
i=1 | p &=j=1 L]

19

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

it suffices to run the algorithm for

L
K = 200370 @i 2A°(1 +¢)
£2(1 -)2 (; " %) e(1-¢) (% > %)

iterations,

where A := f(X°) —infxes f(X) and L}, := max;—1,_, L;.

Proof. Lemma | with X = X* and Y = X*+! gives

o

L LY+ LIV (X))
< SR (VIR XX £ O xE - XY,

i=1

L+ LYV F(X5) |3y
+ W) xk X B2,

k+1 k

p
X+ |(
=) £ 30 [(Fufer O08), KBV 308) (X5 — Vs (X9, XE X |

i=1

- +L1IIV FX5)l iy
2_: (@)

1XE = XFFUIR,
and applying the Cauchy-Schwarz inequality, we get

FOXRH) < (XY + 37 | (Vafer (XF), XEH = XF)

+ IV f(XF) = Vifer (X @I XFTE = XF)|

L L0+ LV) .

: ok — X .

The update rule (10) and the definition of the dual norm || - [| ;). give
2
Ik — XEE, < ()

and

(Vifor (X9), XEFL = X)) = (Vifer (XF), LMOgss (Vi fer (X)) = XF)

= —tF Vi fer (XF), X))
e, (Veler (X0, Xy

(@)

= —tF Vi fer (XF) i)

20

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Consequently, using Assumption 4, we obtain

P
FXMNY < FXR) + 30 | = tHIVafer (XM loye + EEIVif (XF) = Vifer (XF)
i=1

L0+ LYV f(X5) s

— (L= Ot IVifer (X*) s

+ L? + (1 + C)L%!szfk (Xk)H(Z)* (tf)2‘| .

Minimizing the right-hand side of the last inequality with respect to t¥ yields

o (L= OV ifer (XF)]| iy
LY+ (L QLIVifer (XF) [y

This greedy approach for choosing ¢¥ gives the descent inequality

FIXFEYY < F(X9) zp: - 0|V f&’”(Xk)”()
= 2((L + OLHVifer (XF) | (iye)
Taking expectations, we have
- (1= 2V fer (XF)IIZ.
E[f(X* D] <E[f(X")] =D E | 577 : © ,
= 2(L) + (L+ QL Vifer (XF) [l (1))
Now, let us define the function ¢;(t) := %Lé%fit;ﬂﬂ Since ¢;(t) is convex, Jensen’s inequality gives

E[f(X*)] — E[f(X*1)] ZE

1

(O2(Vifer (XP)|I2,,]
Z + (14 OLYVi fer (X%) iy

Zp:)2 (E [IVifer (X5l ye])”
2 1+C)L1]E IV fer (XPF)liye])

I \%

i=1
By Jensen’s inequality and Assumption 4
E[[[Vif (X oy, | = E [I[E [Vife (X5 X*]]| o]
<E[E[I7:fe. 0 .| 5]
:E“Wifik(X H(i)*}’

and hence, using the fact that ¢; is increasing, we get

2
(=02 (B [IVS X9 .])
= 2(L0+ (1 + QLIE IV (X¥)]])

21

(25)

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Summing the terms gives

-0 (EB[|virex),.]) xa
k=0 i=1 2 (LO 1+ QLE {“vif(Xk)H(i)*D k=0

(26)
= E[f(X°)] - E[f(X™)]
< 0y _ ; —. A0
< f(X7) = jnf f(X) =: A%,
The remaining part of the proof closely follows the proof of Theorem 2. We can proceed in two ways:
. Upper-bounding L} by L} = :=max;—1 __, L} in (26), we obtain
2
g O E[IVIE].)) :

> < A°. (27)

= T 2 (L0 (14 OLhE [IV:£ (X))

Now, Lemma 3 with z; = 1, y; = (1 — O)E [||Vi £(X*)]|s).] and 2; = 2 (LO +(1+ 0Lk, {HVJ(X’“)H(U*D

gives
p p k 2
(1= 2 E{IVif (X))«
¢<ZE[vif<Xk>||<i>*]> - | o]
= 22-:1(+ (L+ QLB [IVif (X))
2
zp: — O)’E [V f(X¥)]3)s]
=2 (n <1+<> LB [IV £ (X0 5,])
where ¢(t) := 5 a +<()125)<)L1 ok Combining the last inequality with (27) and using the fact that ¢ is increasing,
we get =1 z max
K—-1 P
K¢< min_ ZE [IV:.f(XF)I >*> > ¢ (ZE[l%f(X’“Mui)*]) <A
k=0 i=1
and hence

p
AO
i E[|IVif (X®) @] <071 | ==
k:of?.l}71§ [IVif (XMl oe] < ¢ (K)
where ¢! denotes the inverse function (which exists since ¢ is increasing). Therefore, to reach the precision

ming—o,...xk—1 Y r_q B [IVif(X¥)||¢iy+] < e it suffices to run the algorithm for

w= gl = e]

iterations.
2. Alternatively, we can start from inequality (26) and apply Lemma 3 with z; = 1/r}, y; = (1 — {)E [HVJ(X’“) H(i)*}

and 21:2(L?+(1+C)L11]E {HVJ(X’“M D to obtain

e

(2))
(1= 0% [|var x| ~>J

(LO (1 +<)L1]E[||Vf D

p
AO > Z

L -0 [waku J)
2oy, (e + 1+ OKE [IIVf(X’“)II J)
K-1 p
- (S aeleaen)

22

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

where 9 (t) := a- C) i . Since the function 1/ is increasing for ¢ > 0, 1)~ ! exists. It follows that
2(S0 e + (1401

-1

K p
AY > Zip(ZLllE[HV”E(Xk)HWD
k=0 =1 ?

. |
Ky (mKZLE [Hviﬂkaw}),

)

Y

and hence

. "1 . a0
i g v,] <o (F)

This in turn means that to reach the precision

AO
K= 1vp 1
v((Gm))
[onosr L 0
B i=1 [T1)2 N 2A°(1+¢)
1 1
a-cpe (A, &) 0o (0)
iterations.
O
E.2. Proof of Theorem 5

We now establish the main result of Appendix E. The guarantees in Theorem 5 follow from the more general result below.

Theorem 8. Let Assumptions 1 and 3 hold and fix e > 0. Let X°, ..., XX~ be the iterates of Gluon (Algorithm 1) run
with BF =1 — (k+1)7V/2, tF = t;(k + 1)73/% for some t; > 0, andMO Vi feo (X0).

2. IfL} #0, then for t; =

1. IfLZ1 =0, then
p

D THE IV (X5 o]
i=1

AP 1< 87
— + = E ; V2e2 042 [22
< i T T 2 [atl (7+2 2e log(K)) + Ljt; (2 +1410g(K)> ,

12L1, we have

P
. 1 k
et D B Vi (X))

2A0 1 & 0
< K1/4 + K1/4 Z
=1

5 (87 + 28log(K))]

nay
6L

23

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

where A° := f(X°) —infxes f(X).

Proof. We again start with the result in Lemma 1 with X = X* and Y = X**!, obtaining

LY + L[| Vif (X*)]l iy«
2

FIXF < f(XF) + (VF(XR), XP - W+§j 17— XFUIE

i=1
‘ L0+ LYV £ (X5 | o
= FOXR) Y (TR, XET - XE) ; O | xF - XEF2,
=1
p
k k k+1 k k k k+1 k
= f(X)+Zl <M¢;Xi+ _Xi>(i)+<vif(X)_Miin+ _Xi>(i)1
P LY+ LY Vi f (XH)|l
+> O xE - X

=1

Applying the Cauchy-Schwarz inequality, we have

fXE) < ﬂXﬂ+fj

i=1

(MF, xFH — sz>(i) + Vi f(XP) = MF|| | XEH — Xik|(¢)]

o — i,

Zp: +L1HV FX*)

Now, the update rule (10) and the definition of the dual norm || - || ;, give
2
1 = XEFIG) < (8)

and

(MF,XFF = XF) = <Ml.k,LMOB§ (M}) - Xk> — Hx?ﬁi}fg (MF, X;) = —t5 || MF|| (o)

Consequently,

f(Xk:+1)

p

< fxXM+Y
z;l
R ICOEDY
1=1
pAm+LWVNXﬂm

>

F(XF) +§j [—t5IV5 F (X iy + 265 | ME = Vi f(X5) i)

LY+ LHIVif (X5)ll

SO gy

— 7| MF = Vif (X*) + Vi f(XP)| oy + 7| M — Vz-f(Xk)u)*]

~t 1M |y + PNV F (XF) = M|y +

- ()’

IN

P 1 k
L +LiHvif(X Meiye /2
+ Z 2 (ti) .
i=1
Taking expectations, we obtain

E[f (X)) <E[F(X] + Y |~ tEIVT (X9 ll.] + 205B [M5 = Ti7 (x|,

| L0+ LIV (X))

el)

24

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Telescoping the last inequality gives

p K-1 p K-1
> > HENViA (X <A+ 2thE[|Mk vif<X"‘>H(i)*] (28)
i=1 k=0 i=1 k=0
K-1))
+ 3 () +Z E[|Vif (X") mm],
k=0

where AY := f(X?) —infxes f(X).

Now, inspired by the analysis in Hiibler et al. [10], we introduce the following notation: p¥ := MF — V, f(XF), vF .=
Vifer (XF) = Vi f(XF), aF =1 - gF, gt =TI _, B* and SF := V, f(X*~1) — V, f(X*). Then, we can rewrite the
algorithm’s momentum update rule as

M = BEME + (1= B8V fer (XF)
= B8 (it + Vi f(XET) 4 (1 - ﬁk) (v + Y, F(XP))
= Vif (X*) +ayf + FSF + BFul

This yields

pi = MF =V, f (X"
Oék’}/k + ﬂksk Bk l_c—l

k
ZZ,BTJrl)k T,YT+Z/BTkST Blk
T=1

k
_ 3BT + 30 S,
=0 =1

where the last line follows from the fact that M} = V, f¢o (X°) and % = 0. Thus,

E[[Ipf = Vit (X)) =B []

k k
<E (|3 pm0%aryrl |+ 3R (17]
=0 (i) T=1
k) k
=\ 2 (e B [T+ 0 7B (157 o]

where in the last equality we used the fact that for all ¢ < [
E[()Tf] =E[E[() T | X)) =E[E [} | X1] " +¢]
—E |(E [Vifa(X) - Vif (x) | X1]) " ¢] =0,

Using Assumptions | and 3, we get

E{IhiI5.] = E[E (17 3. 1 X7]] <o’

<o?

and

157 lye < (L2 + LiIVaf (X)) 1X7 = XT oy < (L8 + Li [Vaf (X7l aye) £

25

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Therefore,

k k

E |:HM]" v f Xk ||()*:| < 0o Z (5(T+1):ka7—)2 +L?ZBTkt:
=0 T=1
k
LY BTMIE [V (X7 oy -
T=1
Combining the last inequality with (28) gives
p K-1 p K-1 k K-1 k
STS TRV] A"+ |20 Dt 2(5(7+1):ka7)2+2L?thZBT‘kt{
i=1 k=0 i=1 k=0 =0 k=0 7=1
_.Il :'12
K-1
+2L} Yt ZﬂT STE (Vi (X))
k=0 =1
=13
70 K71 L K—1
+ 71 7 Z E[IVif (X)) |- (29)
k:O =0
=:14

Let us now upper-bound each term [;, 7 = 1,2, 3, 4.

I;: using Lemma 5, we obtain

I < ot; (7 +2V2¢? log(K)> .

I5: using Lemma 5, we obtain

Iy < 14L%2 (3 + log(K)) .

I5: rearranging the sums and using Lemma 4 witha =7+ 1, b= K, p = 3/4 and ¢ = 1/2, we have

k

Iy = 2L} Z thﬁT MTE IV (X))
K—-1 P
— 2L} Z t7 (Z trs ’“) IV f (X7 oy
K-1
= 2! Z Tt (Z k+ 1)‘”“6”) E [[Vaf (X))

k=1
K-l 1/2 1/2
<2Lb 3" t7tr VA AT B G £)
T=1 <e2(vV2-1) for 7>1

K—-1
< 22 V2DLEN " 47 TR [V £ (X)L oy
=1
K-—1
< 22 V2DLEN T GE [V f(X9)] -
k=0

26

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

I4Z
L 0 K— 1 0 e
iy k _ 1 2 -3/2
5 Z) -t Z (1+k)
k=0
L? 2 ! _ 3L

Combining the upper-bounds for [;, i = 1,2, 3,4 with (29) gives

B[V f (XF) o] < A+ [ati (7 + 2@10g([()) +14L%2 (3 + log(K))

K-1

+2e2V2D L Z LR [V f (X e]

310 g1 Kl)
+ 5t 5 Y () BV (Xl |-
k=0

Using the fact that t¥ = ¢;(1 + k)*3/4 < t;, and denoting C := 2e2(V2-1) 4 % < 5.1, we get

=

p — p
SN RV] < A+ S [ati (7+ 2V log(K)) + 141072 (87
=1 1=1

T log(K)>

=~
Il

0

K-1
+CLit; Y R [[Vif (X*)lls]] :
k=0

Now, let us consider two options: (1) L} = 0foralli € {1,...,p} and (2) L} # 0, foralli € {1,...,p}.

Casel: L} =0,i=1,...,p. Inthis case,

K—

p p
DD HEVF (XM < A%+
i=1

i=1 k=0

)_.

ot; (7 +2V2¢2 log(K)> + 14192 <§; + log(K))]

and therefore,

k=0,...,

p
s . . k .
min_ 2-571 R[] Vi f (X))«

x|
N&Mf

H

IN
—

thE va H(z }

i=1

<

Ki/4 ti(1+ k) UEVif (X))

k=0 i=1
1 K—-1 p

= Kia Zt EIVaf (X)) 4]
k=0 i=1

IN

A° 1 /o3 0,2 (87

27

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Case2: L} #0,i=1,...,p. Letuschooset; = 12L1 Then
p K-1 14
STST BRIV] < 28°+ 3 | 201, (7 +2V2¢? 1og(K)) + 102 (87 + 28 log(K))
i=1 k=0 i=1

and hence

) 1
min 21211 (V6 £ (X1 iyl

k=0,...,K—1 4
i=1
1 K—-1 p
< 2= D0 D BV (XD
k=0 =1
K—-1 p
< WZZMM)RV £ (X))
k=0 i=1
1 p K-1
= a2 2 HEViF (XNl
1=1 k=0
< 2 i Z (74 2v210g(K)) + L (87+98log(K)) |.
- K1/4 Kl/ pt 67Ll1 €= 108 144(L1) 0og

F. Additional experimental results and details
F.1. Experimental details

All experiments for the NanoGPT model are conducted using PyTorch® with Distributed Data Parallel (DDP)’ across 4
NVIDIA A100 GPUs (40GB each). For the CNN experiments, training is performed on a single NVIDIA A100 GPU (40GB).
The training and evaluation pipelines are implemented using open-source codebases [13; 14; 26], with all modifications
clearly documented and properly referenced where applicable.

For LMO-based methods, we compute inexact LMOs using the Newton—Schulz iteration when an analytical solution is
unavailable (e.g., for SVD-type updates), following the approach proposed by Jordan et al. [15]. This method provides a
computationally efficient approximation of the required orthogonalization while preserving the convergence behavior of the
overall algorithm.

F.2. Fitting L? and L}

To minimize the Euclidean error between the true value ;[k] and its approximation L*™**[k], while penalizing underesti-
mation, we incorporate a hinge-like penalty term. Specifically, we fit LY and L} by minimizing the loss function

K-1 K—-1
£(L0,L}) =Y (L-[k] — ferx [k;])2 +AY max (o, Li[k] — Lo [k])z. (30)
k=0 k=0

The first term of £; captures the standard Euclidean (squared) error, while the second term introduces an additional penalty
proportional to the amount of underestimation (i.e., when L;[k] > L3*°*[k]). The hyperparameter A > 0 controls the
strength of this penalty.

F.3. Training NanoGPT on FineWeb.

In this section, we present additional results and experimental details for the experiment described in the main text, which
involves training a NanoGPT model on the FineWeb dataset using the unScion optimizer.

6PyTorch Documentation. Available at: https://pytorch.org/docs/stable/index.html
"Distributed Data Parallel (DDP) in PyTorch. Available at: https://pytorch.org/docs/stable/notes/ddp.html

28

https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/notes/ddp.html

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

F.3.1. EMPIRICAL VALIDATION OF ASSUMPTION 1

We begin by presenting additional results for the experiment described in Section 5.1, aimed at empirically validating
~ . k+1y_ . k .
Assumption 1. We plot the estimated trajectory smoothness L;[k] := ”Vifﬁk“ﬁikﬂ) XV,:{&'C(X ey
i T 1)
LK) == LY + L}V ferrr (X*T1)|| 5y« as functions of the iteration index k, where LY, L} > 0 are fitted using the
procedure described in Appendix F.2.

and its approximation

Figures 7, 8, and 9 show results for parameter groups from the embedding layer and from the 4th and 8th transformer
blocks. Similar patterns are observed across all layers. In each case, we see a strong agreement between L; [k] and L™*[k],
suggesting that Assumption 1 holds approximately along the optimization trajectory.

Name: module._orig_mod.transformer.wte.weight Name: module._orig_mod.transformer.wte.weight
Size: [50304, 768] | MSE_rel: 0.0005 0.10 Size: [50304, 768] | MSE_rel: 0.0005
— 0 — 0
e —e— [P 020,00, L1 =133 0.09 —e— [PPP%10=0.00, L} =133

2x107

6x1072

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k

Figure 7: Validation of layer-wise (L°, L!)-smoothness for the group of parameters from the embedding layer of
NanoGPT-124M along unScion training trajectories. The group norm is || - || = 7yl - [[1500. With fitted values
Lg ~ 0, Lzl) ~ 1.3. The same plot is shown twice with different y-axis limits.

Name: module._orig_mod.transformer.h.4.attn.c_g.weight Name: module._orig_mod.transformer.h.4.attn.c_k.weight Name: module._orig_mod.transformer.h.4.attn.c_v.weight
Size: [768, 768] | MSE_rel: 0.0039 ; Size: [768, 768] | MSE_rel: 0.0090 Size: [768, 768] | MSE_rel: 0.0128
6
— [—— 8 —— [
—— [PPP%:1020,00, L} = 68.42 6 —e— [2PP%;10=0.00, L} =70.51 —e— [2PPrX.1020.00, L} =71.16
5
7
4 6
5
3
4
2 3
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k iteration k
Name: module._orig_mod.transformer.h.4.attn.c_proj.weight Name: module._orig_mod.transformer.h.4.mlp.c_fc.weight Name: module. ori P
e X ! PRt A - : ._orig_mod.transformer.h.4.mlp.c_proj.weight
Size: [768, 768] | MSE_rel: 0.0050 2 Size: [3072, 768] | MSE_rel: 0.0019 Size: [768, 3072] | MSE._rel: 0.0029
; —— L — L 25.0 — 0
—e— [P 10=0.00, L} =68.17 2 —— [P 10 =0.00, L} = 69.92 —e— [P 10=0.00, L} =70.87
22,5 -
6
18 20.0
5 175
16
4 15.0
12.5
5 14
10.0
2 12
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k iteration k

Figure 8: Validation of layer-wise (L°, L')-smoothness for the group of parameters from the 4th transformer block of
NanoGPT-124M along unScion training trajectories. The group norms are || - [|(;y = /™i/ms| - |22, with fitted values
LY ~ 0, L} ~ 70.

29

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Name: module._orig_mod.transformer.h.8.attn.c_q.weight Name: module._orig_mod.transformer.h.8.attn.c_k.weight Name: module._orig_mod.transformer.h.8.attn.c_v.weight
Size: [768, 768] | MSE.rel: 0.0022 Size: [768, 768] | MSE_rel: 0.0068 Size: [768, 768] | MSE_rel: 0.0133
4.5 i N ——
N 5 A N
.0 —e [P 020,00, L} = 67.07 —e— [2PP%.10=0.00, L} = 69.60 6 —e— [PP% 020,00, L} =71.46
3.5
3.0
2.5
2.0
15
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k iteration k
Name: module._orig_mod.transformer.h.8.attn.c_proj.weight Name: module._orig_mod.transformer.h.8.mlp.c_fc.weight Name: module._orig_mod.transformer.h.8.mlp.c_proj.weight
Size: [768, 768] | MSE_rel: 0.0056 Size: [3072, 768] | MSE_rel: 0.0012 Size: [768, 3072] | MSE_rel: 0.0021
~ 19 ~ ~
0 — [——
e [3P1O% 020,00, L} = 68.96 18 f —e— [2P7% 020,02, L} =69.43 16 —— [2PPO%, 102000, L} =70.11

17

16 14
15

12
14

13
10
12

11

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k iteration k

Figure 9: Validation of layer-wise (LY, L')-smoothness for the group of parameters from the 8th transformer block of
NanoGPT-124M along unScion training trajectories. The group norms are || - [|;y = /™i/m| - ||2—s2, with fitted values
LY ~ 0, L} ~ 70.

F.3.2. GENERALIZED SMOOTHNESS UNDER EUCLIDEAN VS. SPECIALIZED NORMS

In this experiment, we compare how well the layer-wise (LY, L!)-smoothness assumption is satisfied under the standard
Euclidean norms || - ||2 for each parameter block, as opposed to the specialized norms described in (14). We adopt the same
training setup as in Section 5.1, plotting the estimated trajectory smoothness L; and its approximation L:"** along the
training trajectories across several parameter groups. Unlike previous sections, here we do not penalize instances where
L; > L®" in order to find the best approximation (i.e., A = 0 in (30)). Additionally, when using the standard Euclidean

norm || - || for approximation, we exclude the first point, as it could distort the result.

We evaluate the quality of each approximation using the relative mean squared error (MSEgel, denoted MSE _rel in the
figures), defined as
K $ 7 approx
1 L;[k] — L; k
MSE?I I Z [] i []
i=1 Li [k]
where a lower value indicates a better fit.
As shown in Figures 10 and 11, both visually and in terms of MSEZr-el, using specialized norms for each group of parameters
provides a better approximation than the standard Euclidean norm || - ||. Notably, the relative mean squared error MSE}®! is
consistently an order of magnitude lower under specialized norms.

30

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Name: module._orig_mod.transformer.h.4.attn.c_g.weight
Size: [768, 768] | MSE_rel: 0.0023

Name: module._orig_mod.transformer.h.4.attn.c_k.weight
Size: [768, 768] | MSE_rel: 0.0048

Name: module._orig_mod.transformer.h.4.attn.c_v.weight

Size: [768, 768] | MSE_rel: 0.0065

— i i 8 ~ i
5 —e— [2PPr% 020,00, L} = 66.20 6 —e— [P 19=0.00, L} =67.59 —e— [P, 020,00, L} = 67.51
7
5
4 6
4
5
3
3 4
2
2 3
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k iteration k
rel el 1
MSE;® = 0.0023 MSE;® = 0.0048 MSE;® = 0.0065
Name: module._orig_mod.transformer.h.4.attn.c_proj.weight N . dul : d.t £ h.4.ml i.weight Name: module._orig_mod.transformer.wte.weight
Size: [768, 768] | MSE_rel: 0.0025 A O va: (768, 3072] | MSE rel 0,000 o0 o010 Size: [50304, 768] | MSE._rel: 0.0003
7 — L 25.0 0 —
—e— [2PPI%10=0,00, L} = 65.59 s e [9P%, 020,00, L} = 68.29 0.00 —e— [2PPO%, 102000, L} =131
6 .
5
4
3
2
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k iteration k

MSE! = 0.0025

MSE?! = 0.001

MSE:® = 0.0003

Figure 10: Validation of layer-wise (L°, L')-smoothness for different groups of parameters in NanoGPT-124M along

training trajectories of unScion using the specialized norm choices defined in (14).

Name: module._orig_mod.transformer.h.4.attn.c_g.weight
Size: [768, 768] | MSE_rel: 0.0368

Name: module._orig_mod.transformer.h.4.attn.c_k.weight
Size: [768, 768] | MSE_rel: 0.0393

Name: module._orig_mod.transformer.h.4.attn.c_v.weight
Size: [768, 768] | MSE_rel: 0.0346

0.07 0.07 0.30
— 0 — 0 —
0.06 —e— [2PPO% 020,00, L} =3.43 0.06 —— [2PPO%. 100,00, L} =3.51 025 —e— [2PPO% 102000, L} =375
0.05 0.05
0.20
0.04 0.04
0.15
0.03 0.03
0.02 0.02 0.10
0.01 0.01 0.05
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k iteration k
rel rel rel
MSE;® = 0.0368 MSE;® = 0.0393 MSE;® = 0.0346
Name: module._orig_mod.transformer.h.4.attn.c_proj.weight Name: module._orig_mod.transformer.h.4.mip.c_proj.weight Name: module._orig_mod.transformer.wte.weight
014 Size: [768, 768] | MSE_rel: 0.0307 0.6 Size: [768, 3072] | MSE_rel: 0.0133 Size: [50304, 768] | MSE_rel: 0.0510
) - R 0.09 .
— —— L — L
012 —— [P 10 =0.00, L} =3.59 05 —— [P 10 =0.00, L} =6.64 0.08 —— [P0 10=0.01, L} =0.12
0.10 0.07
0.08
0.06
0.06
0.05
0.04
0.04
0.02
0.03
0.00
0.02
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k iteration k

MSE™ = 0.0307

MSE™ = 0.0133

MSE! = 0.051

Figure 11: Validation of layer-wise (L°, L!)-smoothness for different groups of parameters in NanoGPT-124M along
training trajectories of unScion using the standard Euclidean norm || - ||2.

31

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

F.3.3. LEARNING RATE TRANSFER FROM ADAMW

We now aim to verify layer-wise (L, L')-smoothness following the approach used in Section 5.1, but employing the
AdamW optimizer. We use hyperparameters specified in Pethick et al. [27, Table 7]. In Figure 12, we present the results for
the estimated trajectory smoothness L; and its approximation ﬁ?p Pl across several parameter groups along the training
trajectories. Notably, for the group of parameters from the embedding layer X, (the last plot in Figure 12), the fitted value of
L,, is approximately 20-30 times smaller than in other groups. Since in all plots we observe that L) < L[|V fer (X*)]| i)
Theorem 1 implies that ¢} ~ 1/L¥. Thus, ¢¥ should be 20-30 times larger than ¢} fori = 1,...,p — 1, which is consistent
with the tuned parameters from Pethick et al. [27, Table 7].

This insight provides an efficient and principled method for initializing learning rates in Scion. Smoothness statistics
collected during standard AdamW training (which is commonly used for training LLMs) can serve as a strong prior, allowing
practitioners to directly incorporate structure-aware choices, such as larger stepsizes for embedding layers, into their tuning
process. Importantly, computing these statistics is computationally inexpensive, introducing minimal additional cost.

Name: module._orig_mod.transformer.h.4.attn.c_g.weight Name: module._orig_mod.transformer.h.4.attn.c_k.weight Name: module._orig_mod.transformer.h.4.attn.c_v.weight
Size: [768, 768] | MSE_rel: 0.1177 Size: [768, 768] | MSE_rel: 0.1268 Size: [768, 768] | MSE_rel: 0.1265

— L — I
—e— [2PP%.10-205,1}=86.99 20 e [2PPr%. | 0= 552, |1 =60.30

R A

—— 0

[2PProx. 102026, L} =81.42

= ‘%,11 . 'l‘ b Wi 8

10

15

10

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k iteration k
Name: module._orig_mod.transformer.h.4.mip.c_fc.weight Name: module._orig_mod.transformer.h.4.mlp.c_proj.weight Name: module._orig_mod.transformer.wte.weight
Size: [3072, 768] | MSE_rel: 0.0140 Size: [768, 3072] | MSE_rel: 0.0196 _ Size: [50304, 768] | MSE_rel: 0.0026

80 — I — 16 —— L

—e— [P, 920,00, L} =37.13 —— [P 10=021, L} =469

L”/appmx: L?=0.00, L} =96.98
W W 12

70

60

50

1.3
40 8
1.2
30 6
11
20 4
1.0
10 2
0.9
0 0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
iteration k iteration k iteration k

Figure 12: Validation of layer-wise (L°, L')-smoothness for different groups of parameters in NanoGPT-124M along
AdamW training trajectories.

F.4. Training CNN on CIFAR-10

This section provides detailed results for the CNN experiments on CIFAR-10. The aim is to further validate the layer-wise
(L°, L')-smoothness (Assumption 1). The CNN model was trained using the unScion optimizer (with norm choices from
(15) in Appendix D.1), following implementations from Jordan [13] and Pethick et al. [26]. Hyperparameters were adopted
from Pethick et al. [27, Table 10], with the exception of training for more epochs.

We present results for two settings:

¢ Full-batch (deterministic) gradients: Uses V; f, no momentum, and no learning rate decay.

* Stochastic gradients: Uses V; fcx, momentum as in Pethick et al. [27, Table 10], but no linear decay schedule.

For both settings, similar to the NanoGPT experiments (Section 5.1), we plot the estimated trajectory smoothness Li [k]

32

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

against its approximation L:""**[k]. We consider a simplified variant of Assumption 1 by setting L) = 0 and estimate

L} > 0 using the procedure from Appendix Appendix F.2. The trajectory smoothness is defined as:

Fifk] = Vi fgrer (X)) = Vi fur (X9) |y
o IXFF — Xl

)

where f,r represents f for full-batch or fex for stochastic gradients. The approximation is:

LK) o= LY Vi fgrrn (X)) e
Full-batch (deterministic) gradients. Figure 13 shows the results for various parameter groups using full-batch gradients.
The plots confirm that Assumption 1 (with LY = 0) holds approximately along the training trajectory. As discussed in the
main text (Section 5), when this condition holds, Theorem 1 implies that theoretically derived stepsizes tf =t; =1/ L} are
appropriate. The estimated L values are L} ~ 3 for most parameter groups, except for the classification head weights X,
where Lll7 ~ 0.03. This significant difference (~100x) aligns with and justifies the much larger radius t’; used for the head
weights in the empirically tuned configurations by Pethick et al. [27].

Name: layers.1.conv2.weight Name: layers.2.convl.weight Name: layers.3.conv2.weight
70 Size: [64, 64, 3, 3] | MSE_rel: 0.0167 Size: [256, 64, 3, 3] | MSE_rel: 0.0058 Size: [256, 256, 3, 3] | MSE_rel: 0.0060
3 45 i
120 —— L —— L
60 —e— [P 102000, L} =2.81 —e— [7PPOX; 100,00, L} =2.84

110
50

. Gy N

40
90
30

30
80

25

20 70

60 20

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
epoch epoch epoch
Name: layers.1.norm2.bias Name: layers.2.norm1l.bias . .
Size: [64] | MSE rel: 0.0360 Size: [256] | MSE _rel: 0.0206 Size: [{‘[f’ggég‘lea,\,‘l’s"ger'gﬁtomgs
50 3 T HE
—— L 35 —— L 0.012 0
—e— [2PP%; 10 20,00, L} = 4.06 —e— [2PP%; 1021000, L} =3.89 —e— [PPP%.1020.00, L} =0.04

40
0.010

30
0.008

20
0.006

0.004

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
epoch epoch

Figure 13: Validation of layer-wise (L%, L!)-smoothness (Assumption 1 with LY = 0) for various parameter groups in a
CNN trained on CIFAR-10 with unScion using full-batch gradients. Each plot shows L; [k] (blue) and its approximation
L:PP*[k] (green). The norms || - ||(;) are defined as in Appendix D.1 for CNNG.

Stochastic gradients. Figure 14 presents analogous results for the stochastic gradient setting. Despite the added noise
from stochastic gradients, the trajectory smoothness L; [k] still approximately adheres to the model L2*"*[k] predicted by
Assumption 1 (with LY = 0). This suggests that our smoothness framework remains relevant even in the more practical
stochastic training regime. The observed L} values show similar trends to the deterministic case regarding the differences
between convolutional layers and the classification head.

G. Conclusion and future work

In this work, we propose Gluon, an LMO-based optimization method that recovers state-of-the-art optimizers such as
Muon and Scion as special cases. We develop a principled analytical framework for layer-wise optimization based on a

33

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Name: layers.1.conv2.weight Name: layers.2.convl.weight Name: layers.3.conv2.weight
Size: [64, 64, 3, 3] | MSE_rel: 0.0148 Size: [256, 64, 3, 3] | MSE_rel: 0.0061 Size: [256, 256, 3, 3] | MSE_rel: 0.0108
= 700

600 i i i

—e— [2PPr% 020,00, L} = 2.96

1200 —e— [2PP%. 102000, L} =2.70 —e— [3PPX: (020,00, L} =2.86

500
1000

400 500

800

300 400

600

400

0 1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
epoch epoch epoch
Name: layers.1.norm?2.bias Name: layers.2.norm1.bias Name: head.weight
Size: [64] | MSE_rel: 0.0557 Size: [256] | MSE_rel: 0.0304 Size: [10, 256] | MSE_rel: 0.0496
600 0.18
g = 17) = U |- —— [— [

estimate«
-6 Y 0

. [:approx. | 0 _ 1
500 {90ro%, 10~ 0,00, L1 = 3.91 —— [P 19 =0.00, L} =3.59

—e— [PPOX; 020,00, L} = 0.04

400
400

300 300
200 200 0.06

100

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
epoch epoch epoch

Figure 14: Validation of layer-wise (L°, L')-smoothness (Assumption 1 with LY = 0) for various parameter groups in a
CNN trained on CIFAR-10 with unScion using stochastic gradients. Each plot shows L; [k] (blue) and its approximation
LPP*[k] (green). Norms are as defined for CNNs in Appendix D.1.

novel layer-wise (L°, L')-smoothness assumption, which captures the anisotropic structure of modern deep networks. This
assumption enables sharper and more general convergence guarantees and, unlike prior analyses, yields theoretical stepsizes
that closely match those found via finetuning. Our framework thus provides the first rigorous and practically predictive
analysis of modern layer-wise optimizers. Experiments confirm that the assumption holds approximately throughout training,
reinforcing its practical relevance. Together, these results offer a refined foundation for structured optimization in deep
learning.

While this work resolves two key theoretical gaps (Sections 2.1 and 2.2), it also highlights important directions for
future research. Our analysis assumes exact LMO computations, whereas practical implementations use approximations
(Appendix F.1). Additionally, our stochastic guarantees (Theorem 5) rely on the widely adopted bounded variance
assumption, which may not hold in certain scenarios, e.g., under subsampling [17]. Finally, our support for adaptive
stepsizes is currently restricted to the deterministic setting. While they also perform well empirically in the stochastic regime
(Section 5.1), a complete theoretical justification remains an open challenge.

In summary, although we make substantial progress by closing the two most critical gaps—establishing a realistic generalized
smoothness model and aligning analysis with actual implementations—no single work can exhaust the subject. The field
remains open, with many fruitful directions left to pursue.

34

