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Abstract
Recent developments in deep learning optimiza-
tion have brought about radically new algorithms
based on the Linear Minimization Oracle (LMO)
framework, such as Muon [15] and Scion [27].
After over a decade of Adam’s dominance, these
LMO-based methods are emerging as viable re-
placements, offering several practical advantages
such as improved memory efficiency, better hyper-
parameter transferability, and most importantly,
superior empirical performance on large-scale
tasks, including LLM training. However, a signif-
icant gap remains between their practical use and
our current theoretical understanding: prior analy-
ses (1) overlook the layer-wise LMO application
of these optimizers in practice, and (2) rely on
an unrealistic smoothness assumption, leading to
impractically small stepsizes. To address both, we
propose a new LMO-based method called Gluon,
capturing prior theoretically analyzed methods as
special cases, and introduce a new refined gener-
alized smoothness model that captures the layer-
wise geometry of neural networks, matches the
layer-wise practical implementation of Muon and
Scion, and leads to convergence guarantees with
strong practical predictive power. Unlike prior
results, our theoretical stepsizes closely match
the fine-tuned values reported by Pethick et al.
[27]. Our experiments with NanoGPT and CNN
confirm that our assumption holds along the op-
timization trajectory, ultimately closing the gap
between theory and practice.

1. Introduction
The success of deep learning models across a wide range
of challenging domains is inseparable from the optimiza-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

tion algorithms used to train them. As neural networks
have grown deeper and datasets larger, optimization has
quietly become one of the most consequential components
of modern machine learning (ML). Nowhere is this more ev-
ident than in the training of large language models (LLMs),
which routinely consume thousands of GPU-hours. Adam
[18] (and lately AdamW [24])—being effective, relatively
reliable, and widely adopted—has for over a decade served
as the default choice for this task. While this reliance has
powered much of deep learning’s progress, it has also ex-
posed the shortcomings of adaptive moment estimation as
a one-size-fits-all solution–namely, sensitivity to learning
rate schedules, heavy tuning requirements [32], and poor
generalization when not carefully calibrated [36]. However,
a shift may now be underway. Recent optimizers, such as
Muon [15] and Scion [27], represent a significant departure
from Adam-type methods: they forgo the adaptive moment
estimation in favor of a geometry-aware approach inspired
by Frank-Wolfe algorithms [7; 28]. These optimizers are
not only simpler to implement and easier to tune, but also
appear empirically stronger, outperforming AdamW in LLM
training [22; 27].

Yet, despite their potential, these new methods are still in
their infancy, and our understanding of their theoretical
foundations and practical utility in LLM training remains
incomplete. Prior convergence guarantees in realistic non-
convex regimes are still far from satisfactory. Indeed, as
we argue in Section 2, the (very few) existing theoretical
analyses fail to capture the true algorithms used in practice,
focusing instead on simplified variants that diverge from
actual implementations. We identify two key mismatches—
neglect of layer-wise structure (Section 2.1) and flawed
stepsize choices stemming from an inaccurate smoothness
model (Section 2.2)—and close this gap with a solution to
both. We elaborate on these advances in the remainder of
the paper.

Our goal is to solve the general optimization problem

min
X∈S

{f(X) := Eξ∼D [fξ(X)]} , (1)

where S is a finite-dimensional vector space and fξ :
S 7→ R are potentially non-convex and non-smooth but
continuously differentiable functions. Here, fξ(X) rep-
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resents the loss of model parameterized by X associated
with training data point ξ sampled from probability dis-
tribution D. To make the problem meaningful, we as-
sume that f inf := infX∈S f(X) > −∞. In this work
we are particularly interested in the scenario when the
parameter vector X ∈ S is obtained by collecting the
matrices Xi ∈ Si := Rmi×ni of trainable parameters
across all layers i = 1, . . . , p of a deep model. For
simplicity, we therefore write X = [X1, . . . , Xp]. This
means that, formally, S is the d-dimensional product space
S :=

⊗p
i=1 Si ≡ S1 ⊗ · · · ⊗ Sp, where d :=

∑p
i=1mini.

With each space Si we associate the trace inner product
⟨Xi, Yi⟩(i) := tr(X⊤

i Yi) for Xi, Yi ∈ Si, and an arbitrary
norm ∥ · ∥(i), not necessarily induced by the inner product.

2. Theory vs. practice of Muon and Scion
In this work, we focus on an algorithm based on iteratively
calling linear minimization oracles (LMOs) across all layers,
formalized in Algorithm 1, for which we coin the name
Gluon. In particular, for each layer i, independently across
all layers, Gluon iteratively updates the parameters via

Xk+1
i = LMOBk

i
(Mk

i ) := argmin
Xi∈Bk

i

⟨Mk
i , Xi⟩(i),

where Bk
i := {Xi ∈ Si : ∥Xi − Xk

i ∥(i) ≤ tki } and
tki > 0 is an adaptively chosen stepsize/radius/learning
rate.1 Note that the momentum Mk = [Mk

1 , . . . ,M
k
p ] ∈ S

accumulates the contributions from the stochastic gradi-
ents ∇fξk(Xk) = [∇1fξk(X

k), . . . ,∇pfξk(X
k)] ∈ S

(see Step 1 of Algorithm 1).

The Gluon framework generalizes a range of methods, in-
cluding Muon and Scion, which are recovered as special
cases under specific norm choices (see Section 4.1 and Ap-
pendix D.1). Beyond their ability to outperform AdamW
on large-scale benchmarks, these optimizers offer a num-
ber of attractive properties: improved memory efficiency,
greater robustness to hyperparameter settings, and the abil-
ity to transfer those settings across model sizes [27; 30].
Moreover, in contrast to Adam, they were theoretically ana-
lyzed shortly after release and are guaranteed to converge
under standard assumptions of Lipschitz smoothness2 and
bounded variance of stochastic gradients [19; 20; 27].

Gluon presents the method that is deployed in practice [14;
26] and has proven highly effective. That said, we argue
that existing analyses [19; 20; 27] do not accurately reflect

1In this context, the radii defining the norm balls in the LMOs
effectively act as stepsizes–see Appendix C.1. Accordingly, we
use the terms radius, stepsize, and learning rate interchangeably
throughout.

2A function f : S 7→ R is L-smooth if ∥∇f(x)−∇f(y)∥⋆ ≤
L ∥x− y∥ for all x, y ∈ S , where S is a finite-dimensional vector
space equipped with a norm ∥ · ∥ and ∥ · ∥⋆ is the dual norm
associated with ∥ · ∥.

this implementation, diverging from it in two key ways. As
such, they fail to explain why the algorithm performs so
well. Let us detail why.

2.1. Layer-wise structure

First, we briefly walk through the theoretical understanding
offered by previous studies. Muon is an optimizer specifi-
cally designed for hidden layers, leaving the first and last
layers to be handled by some other optimizer, e.g., AdamW.
Its original introduction by Jordan et al. [15] was purely
empirical, with no attempt at theoretical analysis. The first
convergence result came from Li & Hong [20], who ana-
lyzed the smooth nonconvex setting but focused solely on
problem (1) with p = 1, effectively limiting the scope to the
single-layer case. The Scion3 optimizer (a special case of
Gluon) proposed by Pethick et al. [27] improves upon Muon
by applying the LMO-based rule to all layers, ultimately
achieving better empirical performance. Both this work
and that of Kovalev [19] analyze (a variant of) the general
update rule

Mk = βkMk−1 + (1− βk)∇fξk(Xk),

Xk+1 = LMOBk(Mk),
(2)

where βk ∈ [0, 1) is momentum, ∇fξk(Xk) is the stochas-
tic gradient sampled at iteration k, and Bk := {X ∈ S :
∥X −Xk∥ ≤ tk} is a norm ball centered at Xk with step-
size tk > 0. This setup closely resembles the structure of
Gluon, but is not exactly the same. Indeed, Gluon updates
the parameters layer-wise, not jointly over the full vector X .
This distinction is critical since for practical, extremely
high-dimensional models, calculating a single global LMO
for the entire parameter vector is prohibitively expensive,
while breaking the problem into “smaller”, per-layer LMOs
restores computational feasibility.

Motivated by this disconnect, we formulate our analysis in
the matrix product space S, explicitly honoring the layer-
wise structure. This enables us to study the actual per-
layer updates (10), with assumptions and hyperparameters
adapted to each layer.

2.2. A theory with predictive power

All prior works claiming to guarantee convergence of Algo-
rithm 1 come with several serious analytical shortcomings–
and these directly translate into practical deficiencies. Con-
cretely, all existing analyses of Muon/Scion are built on the
classical L-smoothness assumption, imposing a uniform
smoothness constant across all layers. This is problematic,

3Pethick et al. [27] introduce two variants of the Scion opti-
mizer: one for constrained optimization, called simply “Scion”,
and another for unconstrained problems, referred to as “uncon-
strained Scion”. In this work, “Scion” refers to either variant, and
“unScion” is used when referring to the unconstrained version.

2
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Figure 1: Token embedding matrix.

0 1000 2000 3000 4000 5000
iteration k

2

3

4

5

6

Name: module._orig_mod.transformer.h.4.attn.c_q.weight
Size: [768, 768] | MSE_rel: 0.0039

Li

Lapprox
i : L0

i = 0.00, L1
i = 68.42

Figure 2: Self-attention query matrix.
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Figure 3: Trajectory smoothness.
Figure 4: Training NanoGPT on FineWeb validates our layer-wise (L0, L1)-smoothness model.

as different layers have different geometries, and thus should
be treated differently.

But the issue runs much deeper. These algorithms are built
for deep learning, where the objective functions are already
well known not to be smooth [5; 35]. This mismatch has
consequences: prior convergence analyses prescribe tiny
constant stepsizes (see Table 1), uniform across all parame-
ter groups, which bear little resemblance to the tuned learn-
ing rates that yield state-of-the-art empirical performance
in practice. Consequently, they completely fail to explain
why these methods perform so well empirically. In other
words, the theory falls short at the one thing it should do
best: guiding practical choices, leaving practitioners reliant
on costly manual tuning.

Our result in Theorem 1 shows this mismatch is not in-
evitable. To better reflect the behavior of deep models, we
introduce a more expressive regularity condition: the layer-
wise (L0, L1)-smoothness–an extension of the generalized
smoothness model of Zhang et al. [35], applied at the layer
level.

Assumption 1 (Layer-wise (L0, L1)-smoothness). The
function f : S 7→ R is layer-wise (L0, L

1)-smooth
with constants L0 := (L0

1, . . . , L
0
p) ∈ Rp

+ and L1 :=
(L1

1, . . . , L
1
p) ∈ Rp

+. That is, the inequality

∥∇if(X)−∇if(Y )∥(i)⋆
∥Xi − Yi∥(i)

≤ L0
i + L1

i ∥∇if(X)∥(i)⋆ (3)

holds for all i = 1, . . . , p and all X = [X1, . . . , Xp] ∈
S, Y = [Y1, . . . , Yp] ∈ S, where ∥ · ∥(i)⋆ is the
dual norm associated with ∥ · ∥(i) (i.e., ∥Xi∥(i)⋆ :=
sup∥Zi∥(i)≤1 ⟨Xi, Zi⟩(i) for any Xi ∈ Si).

Assumption 1 can be viewed as a generalization of the
anisotropic “vector” (L0, L1)–smoothness introduced by
Liu et al. [23] (now framed in terms of arbitrary norms),
which itself is a generalization of the (L0, L1)–smoothness
model of Zhang et al. [35]. As such, our analysis of Gluon
goes beyond all existing results, which have only considered

the classical L-smooth setting. Crucially, however, this is
not generalization for its own sake–we argue that this is in
fact the right model for the problem setting at hand. Why?
There are (at least) two reasons.

First, unlike classical L-smoothness, our formulation aligns
very closely with empirical observations. In Figures 1 and
2, we validate Assumption 1 in the context of training
NanoGPT on the FineWeb dataset. We plot estimated
trajectory smoothness L̂i[k] (defined in (8)) alongside the
approximation L̂approx

i [k] := L0
i+L

1
i ∥∇ifξk+1(Xk+1)∥(i)⋆,

where L0
i , L

1
i are layer-specific parameters estimated from

the training run. The figures show these quantities for pa-
rameters from the embedding layer and one of the trans-
former blocks. The close correspondence between L̂i[k]
and L̂approx

i [k] provides strong evidence that Assumption 1
holds approximately along the training trajectory. In Sec-
tion 5, we further corroborate this finding, showing that our
assumption is satisfied across the entire model architecture
for both the NanoGPT language modeling task and a CNN
trained on CIFAR-10. In all cases, we find that L0

i ≈ 0 for
all i, again highlighting the limitations of classical smooth-
ness. Moreover, as shown in Figure 3, trajectory smoothness
varies substantially across blocks and layers, underscoring
the need for per-layer treatment. Together, these results
suggest that layer-wise (L0, L1)-smoothness offers a signifi-
cantly more realistic model of the loss landscape in modern
deep learning.

Secondly, Assumption 1 not only better captures the geom-
etry of the models, but also directly informs the design of
adaptive and practically effective stepsizes. In Theorem 1,
we derive learning rates that reflect the local geometry of
each parameter group, guided by our layer-wise smoothness
model. As demonstrated in Section 5.1, our theoretically
grounded stepsizes turn out to be almost the same as the
ones obtained by Pethick et al. [27] via hyperparameter
tuning–a striking validation of our approach, which further
highlights the need for layer-wise reasoning. This proves
that theoretical stepsizes can have predictive power and
replace trial-and-error tuning in practice.

3
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3. Contributions
We present a comprehensive theoretical and empirical study
of a broad class of layer-wise LMO-based optimization
algorithms. Our key contributions can be summarized as
follows:

⋄ A new generalized smoothness framework for deep
networks. We introduce layer-wise (L0, L1)-smoothness
(Assumption 1), a novel non-Euclidean generalized smooth-
ness condition that reflects the anisotropic, layer-wise struc-
ture of modern deep networks. This framework extends
standard (L0, L1)-smoothness assumption [35] to arbitrary
norms while capturing per-layer variation, offering a realis-
tic foundation for analyzing deep learning optimizers.

⋄ First principled analysis of layer-wise methods. Build-
ing on our new assumption, we develop the first faithful
convergence analysis for a class of LMO-based algorithms
we term Gluon (Algorithms 1 and 2). We recover known
algorithms, including state-of-the-art Muon-type optimiz-
ers, as special cases (Section 4.1 and Appendix D.1), and
pinpoint why earlier theoretical works fail to explain the
empirical success of these methods (Section 2). In contrast
to prior analyses that oversimplify the update rules used
in practice, our framework directly aligns with real-world
implementations, bridging a critical gap between theory and
application.

⋄ Sharper and more general convergence theory. We
develop a convergence theory that extends prior work in
both scope and sharpness. In the deterministic case (Algo-
rithm 2), we establish convergence for general non-convex
objectives under our Assumption 1 (Theorem 1), and under
the block-wise PŁ condition (Theorem 4). Unlike earlier
analyses, our theory yields adaptive, layer-wise stepsizes
that align remarkably well with those selected via tuning in
large-scale experiments [27] (Section 5.1). We next analyze
the practical stochastic variant with time-varying stepsizes
and momentum (Algorithm 1), proving convergence under
non-Euclidean bounded variance assumption (Theorem 1).
In both deterministic and stochastic regimes, our guarantees
are stronger and more general than all prior work (Table 1).
While previous theories fail to explain the empirical suc-
cess of Muon-type methods, we are the first to demonstrate
their provable advantage over SGD, offering tighter conver-
gence rates under more general assumptions (Appendix E).
Moreover, we provide the first theoretical explanation of the
benefits of layer-wise learning rates, clearly establishing the
advantages of structured, anisotropic optimization in deep
learning.

⋄ Empirical evidence. We validate our theoretical insights
through extensive experiments (Section 5 and Appendix F)
in both language modeling (NanoGPT on FineWeb) and
image classification (CNN on CIFAR-10). The results con-

firm that our Assumption 1 holds approximately throughout
training and demonstrate the practical utility of our theoreti-
cally prescribed stepsizes from Theorem 1.

4. Main theory and results
To gain a better intuition into the structure of the updates, we
begin with a deterministic formulation of Gluon, formalized
in Algorithm 2. At each iteration, the method independently
minimizes a linear approximation of f around each param-
eter group Xk

i within a ball of radius tki > 0, ultimately
allowing for layer-specific algorithmic design choices.

4.1. Examples of optimizers satisfying our framework

Deterministic Gluon describes a general class of methods,
parameterized by the choice of norms ∥ · ∥(i) in the LMO.
To illustrate the flexibility of this framework, we highlight
several notable special cases (see Appendix D.1 for more
details). First, observe that the update rule (12) can be
written as

Xk+1
i = Xk

i + tki LMO{∥Xi∥(i)≤1}
(
∇if(X

k)
)
. (4)

For any Xi ∈ Si = Rmi×ni , define ∥Xi∥α→β :=
sup∥z∥α=1 ∥Xiz∥β , where ∥ · ∥α and ∥ · ∥β are some (pos-
sibly non-Euclidean) norms on Rni and Rmi , respectively.
Note that (4) naturally recovers several known updates for
specific choices of the layer norms, e.g., layer-wise normal-
ized GD [34] for Euclidean norms ∥ · ∥(i) = ∥ · ∥2, and
layer-wise signGD [1] for max-norms ∥ · ∥(i) = ∥ · ∥∞.

Two special cases are particularly relevant to our analysis:

⋄ Muon [15] when ∥ · ∥(i) = ∥ · ∥2→2 for all hidden layers.

⋄ unScion for LLM training [27] when ∥·∥(i) =
√

ni/mi∥·
∥2→2 for i = 1, . . . , p− 1, corresponding to weight matri-
ces of transformer blocks, and ∥ · ∥(p) = np∥ · ∥1→∞ for
the last group Xp, representing the embedding and output
layers (the two coincide under the weight sharing regime4

considered here). In this case, update (4) becomes

Xk+1
i = Xk

i − tki

√
mi

ni
Uk
i

(
V k
i

)⊤
, i = 1, . . . , p− 1,

Xk+1
p = Xk

p − tkp
np

sign
(
∇pf(X

k)
)
,

(5)
where the matrices Uk

i , V
k
i are obtained from the (reduced)

SVD of ∇if(X
k) = Uk

i Σ
k
i

(
V k
i

)⊤
.

4.2. Convergence results

Having demonstrated the framework’s flexibility through
concrete examples, we now state a general convergence

4Weight sharing refers to the practice of using the same param-
eters (weights) for different parts of a model, rather than allowing
each part to have its own unique parameters.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

result for deterministic Gluon.
Theorem 1. Let Assumption 1 hold and fix ε > 0. Let
X0, . . . , XK−1 be the iterates of deterministic Gluon (Algo-

rithm 2) run with stepsizes tki =
∥∇if(X

k)∥(i)⋆

L0
i+L1

i ∥∇if(Xk)∥(i)⋆
. Then,

to guarantee that

min
k=0,...,K−1

p∑
i=1

[
1/L1

i
1
p

∑p
j=1

1/L1
j

∥∥∇if(X
k)
∥∥
(i)⋆

]
≤ ε, (6)

it suffices to run the algorithm for

K =

⌈
2∆0(

∑p
i=1

L0
i/(L1

i )2)
ε2( 1

p

∑p
j=1

1/L1
j)

2 + 2∆0

ε( 1
p

∑p
j=1

1/L1
j)

⌉
(7)

iterations, where ∆0 := f(X0)− f inf .

Several important observations follow.

Convergence rate. In Appendix D.2, we prove an addi-
tional result (Theorem 2) that modifies the first term in (7)
to 2∆0∑p

i=1 L0
i/ϵ2, potentially leading to improvements in

certain settings (depending on the relationship between the
sequences {L0

i } and {L1
i }–see Remark 3). However, this

introduces a dependence on L1
max := maxi=1,...,p L

1
i in the

second term. Empirically, we find that L0
i ≈ 0 across all

layers (see Section 5), making the first term vanish in both
bounds. In this case, the rate (7) is clearly superior, replac-
ing the worst-case constant L1

max with the more favorable
harmonic mean.

When p = 1, our rates match the best-known complexity
for finding a stationary point of (L0, L1)-smooth functions,
O
(
L0∆0

/ϵ2 + L1∆0
/ϵ
)
, as established by Vankov et al. [31]

for the Gradient Method. While no prior work has analyzed
deterministic Gluon under general (L0, L1)-smoothness,
there exist analyses under classical L-smoothness, treating
the parameters as a single vector. The analysis by Kovalev
[19] guarantees convergence in K =

⌈
6L∆0

/ϵ2
⌉

iterations.
The same bound appears in Li & Hong [20] and Pethick et al.
[27] (by setting σ2 = 0). Since for p = 1, L-smoothness
implies Assumption 1 with L1 = 0 (Lemma 2), our rates
match these prior results up to a constant factor. Thus, even
in the smooth setting, our bounds are as tight as those de-
rived specifically for it.

However, the real strength of our guarantees lies in their
broader applicability. Our analysis is much more general
than prior studies, as it extends beyond standard smoothness–
allowing L1

i > 0 introduces additional terms that drive the
accelerated convergence enabled by (L0, L1)-smoothness.
This richer model is essential for explaining the empirical
speedup of methods like Muon, and much more accurately
reflects the geometry of neural network loss surfaces. In-
deed, as we demonstrate in Section 5, the assumption typi-
cally holds with L0

i ≈ 0 and L1
i > 0.

Practical radii tki . Unlike previous analyses [19; 20; 27],
which prescribe impractically small constant radii propor-

tional to ϵ, our framework allows tki to be adaptive to the
loss landscape. Therefore, tki can be larger early in training
when ∥∇if(X

k)∥(i)⋆ is large and gradually shrink as the
gradient norm decreases. In the special case when L0

i ≈ 0
(as observed empirically), tki ≈ 1/L1

i , which is substantially
larger than the radii dictated by earlier analyses. Crucially,
as shown in Section 5.1, our adaptive stepsizes closely match
those that yield state-of-the-art empirical performance iden-
tified by Pethick et al. [27] through hyperparameter tuning.
This alignment demonstrates that principled, theory-driven
stepsize selection could effectively replace costly manual
tuning.

5. Experiments
Below, we highlight selected experimental results for the un-
Scion optimizer, a special case of Gluon (see Appendix D.1).
Additional details and further experiments are provided in
Appendix F.5

5.1. Training NanoGPT on FineWeb

In the first set of experiments, we aim to verify layer-
wise (L0, L1)-smoothness (Assumption 1). To this end,
we train the NanoGPT model with 124M parameters on
the FineWeb dataset, leveraging two open-source GitHub
repositories [14; 26]. We use the unScion optimizer, i.e.,
Gluon with the norm choices as in (5). We adopt the hy-
perparameters from Pethick et al. [27, Table 7], mapping
their values γ = 0.00036, ρ2 = 50, and ρ3 = 3000
into our notation as follows: tki ≡ γρ2 = 0.018 for
i = 1, . . . , p − 1 (corresponding to the transformer block
layers), and tkp ≡ γρ3 = 1.08 (token embeddings and out-
put projections, due to weight sharing). We set the number
of warmdown iterations to 0 to keep the learning rates con-
stant throughout training. The model is trained for 5,000
iterations in accordance with the Chinchilla scaling laws to
ensure compute-optimal training.

In Figures 5, 7, 8, we plot the estimated trajectory smooth-
ness as a function of the iteration index k

L̂i[k] :=
∥∇ifξk+1 (X

k+1)−∇ifξk (X
k)∥(i)⋆

∥Xk+1
i −Xk

i ∥(i)
(8)

for parameter groups from the embedding layer and 4th and
8th transformer blocks (with similar trends observed across
all blocks). We compare this to the approximation

L̂approx
i [k] := L0

i + L1
i ∥∇ifξk+1(Xk+1)∥(i)⋆,

where L0
i , L

1
i ≥ 0 are fitted to minimize the Euclidean error

between L̂i[k] and L̂approx
i [k], with hinge-like penalty on

underestimation (see Appendix F.2). The close alignment
between these curves implies that Assumption 1 is approx-
imately satisfied along the training trajectories. Based on

5Code for all experiments is available here.
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the estimated values of L0
i and L1

i , assuming that Assump-
tion 1 holds and ignoring gradient stochasticity, Theorem 1
suggests the stepsizes

tki =
∥∇ifξk (X

k)∥(i)⋆

L0
i+L1

i ∥∇ifξk (X
k)∥(i)⋆

≈ 1
L1

i
≈ 1

70 ≈ 0.014, i < p,

tkp =
∥∇pfξk (X

k)∥(p)⋆

L0
p+L1

p∥∇pfξk (X
k)∥(p)⋆

≈ 1
L1

p
≈ 1

1.3 ≈ 0.77.

(9)

Remarkably, these values align closely with the manually
tuned values reported earlier, again underscoring the predic-
tive power of our theoretical prescriptions (see Section 4).

0 1000 2000 3000 4000 5000
iteration k

8

10

12

14

16

Name: module._orig_mod.transformer.h.8.mlp.c_proj.weight
Size: [768, 3072] | MSE_rel: 0.0021

Li

Lapprox
i : L0

i = 0.00, L1
i = 70.11

Figure 5: Validation of Assumption 1 for parameters from
the 8th transformer block in NanoGPT-124M during un-
Scion training.

Effect of scaling factors. We next evaluate the impact
of the learning rate scaling factors ρ2 and ρ3 on the per-
formance of the unScion optimizer. For consistency, all
other hyperparameters are fixed as described earlier. As a
baseline, we include results obtained with the AdamW opti-
mizer, using the hyperparameter settings from Section F.3.3.
Figure 6 presents (a) validation curves for both optimiz-
ers, with varying ρ3 in unScion.The best performance is
achieved with ρ2 = 50 and ρ3 = 3000, i.e., tki = 0.018
for i = 1, . . . , p − 1 and tkp = 1.08, consistent with our
theoretical prediction (9). This supports the use of non-
uniform scaling across layers, with larger stepsizes for the
embedding layer.

Additional ablation studies. In Appendix F.3.2, we
present an ablation study demonstrating that specialized
norms provide a better approximation of trajectory smooth-
ness compared to the standard Euclidean norm. Ap-
pendix F.3.3 demonstrates that the layer-wise (L0, L1)-
smoothness model also closely approximates trajectory
smoothness during AdamW training. Notably, we observe
a similar gap between transformer and embedding layers
as with Scion, suggesting that smoothness statistics from

0 1000 2000 3000 4000 5000
Iteration k

3.4

3.5

3.6

3.7

3.8

3.9

4.0

Va
lid

at
io

n 
Lo

ss

AdamW
unScion: 2 = 50, 3 = 10000
unScion: 2 = 50, 3 = 5000
unScion: 2 = 50, 3 = 3000 (tuned)
unScion: 2 = 50, 3 = 500
unScion: 2 = 50, 3 = 50

Figure 6: Validation curves for AdamW and unScion with
varying ρ3 values

AdamW training can guide per-layer learning rate tuning in
Scion.

CNN on CIFAR-10. Training a CNN on CIFAR-10
with unScion further validated our layer-wise (L0, L1)-
smoothness assumption (Assumption 1), finding L0

i ≈ 0
in both full-batch (deterministic) and stochastic gradient
settings. Observed variations in estimated L1

i across lay-
ers corresponded well with empirically tuned non-uniform
stepsizes [27]. Full details are in Appendix F.4.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Algorithm 1 Gluon: Stochastic Adaptive Layer-Wise LMO-based Optimizer with Momentum

1: Input: Initial model parameters X0 = [X0
1 , . . . , X

0
p ] ∈ S, momentum M0 = [M0

1 , . . . ,M
0
p ] ∈ S, momentum decay

factors βk ∈ [0, 1) for all iterations k ≥ 0
2: for k = 0, 1, 2, . . . ,K − 1 do
3: Sample ξk ∼ D
4: for i = 1, 2, . . . , p do
5: Compute stochastic gradient ∇ifξk(X

k) for layer i
6: Update momentum Mk

i = βkMk−1
i + (1− βk)∇ifξk(X

k) for layer i
7: Choose adaptive stepsize/radius tki > 0 for layer i
8: Update parameters for layer i via LMO over Bk

i := {Xi ∈ Si : ∥Xi −Xk
i ∥(i) ≤ tki }:

Xk+1
i = LMOBk

i

(
Mk

i

)
:= argmin

Xi∈Bk
i

⟨Mk
i , Xi⟩(i) (10)

9: end for
10: end for
11: Update full parameter vector Xk+1 = [Xk+1

1 , . . . , Xk+1
p ] =0

A. Related works
Generalized Smoothness. The classical L-smoothness assumption, where the gradient is Lipschitz continuous with a
global constant L, often fails to accurately capture the complex geometry of loss landscapes in deep learning [5; 35].
To address this, Zhang et al. [35] introduced the (L0, L1)-smoothness condition, empirically observing from language
model experiments that a bound of the form ∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥ better described the Hessian norm behavior.
This model, where smoothness can depend on the gradient norm, allows for larger steps when gradients are small and
more conservative steps when gradients are large, reflecting typical training dynamics. Subsequent works have analyzed
standard optimization algorithms under this generalized smoothness framework. For instance, Gorbunov et al. [8] and
Vankov et al. [31] provided convergence analyses for the Gradient Method. Hübler et al. [10] analyzed Normalized SGD
with momentum in a parameter-agnostic setting under (L0, L1)-smoothness. Our work extends this line by incorporating
(L0, L1)-smoothness into a layer-wise context using arbitrary norms, an approach that is particularly well-suited for the
LMO-based optimizers we study.

Anisotropic Smoothness. Recognizing the heterogeneous nature of parameters in large models, researchers have explored
anisotropic smoothness conditions, where smoothness constants can vary across different dimensions or parameter blocks.
Early work in this direction includes coordinate-wise Lipschitz continuity for coordinate descent methods [25; 29]. More
recently, Bernstein et al. [3] analyzed SignSGD under a weaker notion of coordinate-wise smoothness. Crawshaw et al. [5]
further developed this by analyzing Generalized SignSGD under a generalized coordinate-wise smoothness assumption,
highlighting that different parameter groups can exhibit vastly different geometries. Jiang et al. [12] focused on Adagrad’s
analysis under coordinate-wise smoothness and established lower bounds for SGD, underscoring the benefits of adaptivity.
Liu et al. [23] proposed “Anisotropic (L0, L1)-smoothness” (a vector version of (L0, L1)-smoothness applied coordinate-
wise) and demonstrated Adagrad’s provable advantages over SGD in this setting. Xie et al. [33] also leveraged anisotropic
smoothness concepts in their convergence analysis of Adam. Our work contributes by defining and analyzing layer-wise
(L0, L1)-smoothness, which combines the benefits of the generalized smoothness model with a structured, anisotropic
perspective tailored to the layer-block architecture of neural networks and compatible with arbitrary layer-specific norms.
This framework is essential for understanding LMO-based methods like Muon and Scion.

LMO-based Optimizers. The optimizers Muon [15] and Scion [27] represent a recent class of methods that have shown
strong empirical performance in deep learning. Muon was initially introduced as an effective empirical method, with its
update rule for hidden layers inspired by ideas from Bernstein & Newhouse [2]. Subsequently, Pethick et al. [27] (authors
of Scion) explicitly connected these types of updates to the Frank-Wolfe (FW) framework [7; 11], proposing the use of
layer-specific norms within an LMO-based update rule. These methods perform updates by solving, for each layer, a
linear minimization problem over a norm ball centered at the current iterate. Prior theoretical analyses of these optimizers
[19; 20; 27] have typically relied on standard L-smoothness and analyzed a simplified global update. Our work provides the
first convergence guarantees for these methods under the more realistic layer-wise (L0, L1)-smoothness, directly addressing
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their practical layer-wise nature and leveraging the geometric insights offered by LMOs over general norms.

B. Auxiliary lemmas
Lemma 1. Let f : S 7→ R satisfy Assumption 1. Then, for any X,Y ∈ S we have

|f(Y )− f(X)− ⟨∇f(X), Y −X⟩| ≤
p∑

i=1

L0
i + L1

i ∥∇if(X)∥(i)⋆
2

∥Yi −Xi∥2(i).

Proof. For all X,Y ∈ S we have

f(Y ) = f(X) +

∫ 1

0

⟨∇f(X + τ(Y −X)), Y −X⟩ dτ

= f(X) + ⟨∇f(X), Y −X⟩+
∫ 1

0

⟨∇f(X + τ(Y −X))−∇f(X), Y −X⟩ dτ.

Therefore, using the Cauchy-Schwarz inequality and Assumption 1, we obtain

|f(Y )− f(X)− ⟨∇f(X), Y −X⟩|

≤

∣∣∣∣∣
∫ 1

0

p∑
i=1

⟨∇if(X + τ(Y −X))−∇if(X), Yi −Xi⟩(i) dτ

∣∣∣∣∣
≤

∫ 1

0

p∑
i=1

∣∣∣⟨∇if(X + τ(Y −X))−∇if(X), Yi −Xi⟩(i)
∣∣∣ dτ

≤
∫ 1

0

p∑
i=1

∥∇if(X + τ(Y −X))−∇if(X)∥(i)⋆ ∥Yi −Xi∥(i)dτ

≤
∫ 1

0

p∑
i=1

τ
(
L0
i + L1

i ∥∇if(X)∥(i)⋆
)
∥Yi −Xi∥2(i)dτ

=

p∑
i=1

L0
i + L1

i ∥∇if(X)∥(i)⋆
2

∥Yi −Xi∥2(i).

Lemma 2. Suppose that f is L-smooth with respect to the norm defined in (11), i.e.,

∥∇f(X)−∇f(Y )∥max ⋆ ≤ L ∥X − Y ∥max ,

where X = [X1, . . . , Xp] and Y = [Y1, . . . , Yp] with Xi, Yi ∈ Si. Then Assumption 1 holds with L0
i ≤ L and L1

i = 0 for
all i = 1, . . . , p.

Proof. L-smoothness and the definition of the norm give

p∑
i=1

∥∇if(X)−∇if(Y )∥(i)⋆ ≤ Lmax
{
∥X1 − Y1∥(1) , . . . , ∥Xp − Yp∥(p)

}
for all X,Y ∈ S. In particular, choosing X = [X1, . . . , Xp] and Y = [X1, . . . , Xj−1, Yj , Xj+1, . . . Xp], we have

∥∇jf(X)−∇jf(Y )∥(j)⋆ ≤
p∑

i=1

∥∇if(X)−∇if(Y )∥(i)⋆ ≤ L ∥Xj − Yj∥(j)

for any j ∈ {1, . . . , p}, proving the claim.
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Table 1: Comparison of convergence guarantees for Gluon (Algorithms 1 and 2) to achieve mink=0,...,K−1

∑p
i=1 E[∥∇if(X

k)∥(i)⋆] ≤
ε, where the O(·) notation hides logarithmic factors. Notation: K = total number of iterations, (L0, L1) = the result holds under layer-wise
(L0, L1)-smoothness, tki = radius/stepsize, 1− βk = momentum.

Result Stochastic? (L0, L1) Rate Stepsizes tki 1 − βk

[19, Theorem 1] ✗ ✗ O
(

1

K1/2

)
const ∝ 1

K1/2
(b) —

[19, Theorem 2] ✓ ✗ O
(

1

K1/4

)
const ∝ 1

K3/4
(b) const ∝ 1

K1/2

[20, Theorem 2.1](a) ✓ ✗ O
(

1

K1/4

)
const ∝ 1

K3/4
(b) const ∝ 1

K1/2

[27, Lemma 5.4] ✓ ✗ O
(

1

K1/4

)
const ∝ 1

K3/4
(b) ∝ 1

k1/2

NEW: Theorem 1 ✗ ✓ O
(

1

K1/2

)
Adaptive —

NEW: Theorem 5 ✓ ✓ O
(

1

K1/4

)
∝ 1

k3/4
∝ 1

k1/2

(a) Applies only to the Muon/Scion update in (13) with p = 1.
(b) These stepsizes are impractically tiny since they have an inverse dependence on the total number of iterations K.

Lemma 3. Suppose that x1, . . . , xp, y1, . . . , yp ∈ R, maxi∈[p] |xi| > 0 and z1, . . . , zp > 0. Then

p∑
i=1

y2i
zi

≥
(
∑p

i=1 xiyi)
2∑p

i=1 zix
2
i

.

Proof. Cauchy-Schwarz inequality gives(
p∑

i=1

xiyi

)2

=

(
p∑

i=1

yi√
zi

√
zixi

)2

≤

(
p∑

i=1

y2i
zi

)(
p∑

i=1

zix
2
i

)
.

Rearranging, we obtain the result.

Lemma 4 (Technical Lemma 10 by Hübler et al. [10]). Let q ∈ (0, 1), p ≥ 0, and p ≥ q. Further, let a, b ∈ N≥2 with
a ≤ b. Then

b−1∑
k=a−1

(1 + k)−p
k∏

τ=a−1

(
1− (τ + 1)−q

)
≤ (a− 1)q−p exp

(
a1−q − (a− 1)1−q

1− q

)
.

Lemma 5 (Technical Lemma 11 by Hübler et al. [10]). Let t > 0 and for k ∈ N≥0, set βk = 1 − (k + 1)−1/2,
tk = t(k + 1)−3/4, t > 0. Then, for all K ∈ N≥1 the following inequalities hold:

(i)
∑K−1

k=0 tk
√∑k

τ=0(1− βτ )2
∏k

κ=τ+1(β
κ)2 ≤ t

(
7
2 +

√
2e2 log(K)

)
,

(ii)
∑K−1

k=0 tk
∑k

τ=1 t
τ
∏k

κ=τ β
κ ≤ 7t2 (3 + log(K)).

Proof. This is a direct consequence of Lemma 11 by Hübler et al. [10]. To obtain (ii), it suffices to take the limit as L1 → 0
in statement (ii) of part (b).

C. Remarks on the theoretical results
C.1. Note on radii and stepsizes

It is known (see, e.g., Gruntkowska et al. [9, Theorem D.1], who establish this for S = Rd under Euclidean norms; the
extension to general normed vector spaces is entirely analogous) that if g is a convex function, then the solution to the

11
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Algorithm 2 Deterministic Adaptive Layer-Wise LMO-based Optimizer

1: Input: Initial model parameters X0 = [X0
1 , . . . , X

0
p ] ∈ S

2: for k = 0, 1, . . . ,K − 1 do
3: for i = 1, 2, . . . , p do
4: Choose adaptive stepsize/radius tki > 0 for layer i
5: Update parameters for layer i via LMO over Bk

i := {Xi ∈ Si : ∥Xi −Xk
i ∥(i) ≤ tki }:

Xk+1
i = LMOBk

i

(
∇if(X

k)
)
:= argmin

Xi∈Bk
i

⟨∇if(X
k), Xi⟩(i) (12)

6: end for
7: Update full parameter vector: Xk+1 = [Xk+1

1 , . . . , Xk+1
p ]

8: end for=0

problem

argmin
X∈Bk

g(X)

is unique and lies on the boundary of the ball Bk := {X ∈ S : ∥X − Xk∥ ≤ tk} (unless ∇g(Xk) = 0, i.e., Xk is a
stationary point of g).

This applies directly to the LMO subproblem solved at each iteration of Gluon in (10), since the objective ⟨Mk
i , Xi⟩(i) is a

linear function of Xi, and hence convex. In other words, each LMO step moves the iterate from the center of the ball Xk
i to

a new point Xk+1
i located on the boundary of Bk

i , effectively traversing a distance of tki at each step. For this reason, we use
the terms radius, stepsize, and learning rate interchangeably.

C.2. Note on prior analyses

As presented, prior convergence results do not directly apply to the algorithms used in practice. However, there is a
workaround. Specifically, some of the existing convergence guarantees [19; 27] expressed in terms of the flat vector x are
transferable to the structured parameters X = [X1, . . . , Xl] ∈ S by employing the max-norm, defined as

∥X∥max := max
{
∥X1∥(1) , . . . , ∥Xp∥(p)

}
, (11)

with corresponding dual norm ∥Y ∥max ⋆ = sup∥X∥max≤1⟨X,Y ⟩ =
∑p

i=1 ∥Yi∥(i)⋆. Nevertheless, these works do not make
this connection explicit, and an additional layer of analysis is required to ensure the guarantees meaningfully extend to
the structured practical setting. Even if such a translation was attempted, the global treatment introduces serious practical
limitations. For example, real-world training pipelines tune parameters on a per-layer basis, reflecting the heterogeneous
structure of deep networks. Max-norm-based guarantees overlook this variability and offer no mechanism for per-layer
control in hyperparameter selection.

D. Deterministic case
We begin by considering the deterministic counterpart of Gluon, as formalized in Algorithm 2. We first review several existing
algorithms that fall within this framework (Appendix D.1), followed by a proof of Theorem 1 (Appendix D.2). Finally, we
present an additional convergence guarantee under the layer-wise Polyak–Łojasiewicz (PŁ) condition (Appendix D.3).

D.1. Special cases of the LMO framework

As outlined in Section 4.1, deterministic Gluon encompasses a general class of algorithms, parameterized by the choice of
norms ∥ · ∥(i) in the LMO. We now provide a more detailed discussion of the most notable special cases.

Layer-wise normalized GD [34]. Let ∥ · ∥(i) = ∥ · ∥2→2 for each parameter group and assume that ni = 1 for all
i = 1, . . . , p. In this case, the spectral norm reduces to the standard Euclidean norm ∥ · ∥2, yielding the update rule

Xk+1
i = Xk

i − tki
∇if(X

k)
∥∇if(Xk)∥2

, i = 1, . . . , p,

12
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which corresponds to layer-wise normalized GD. With a suitable choice of tki (see Theorem 1), the method can also recover
the Gradient Method for (L0, L1)-smooth functions [31].

Layer-wise signGD [1]. Suppose that ∥ · ∥(i) = ∥ · ∥1→∞ for each parameter group, with ni = 1 for all i = 1, . . . , p.
Then, ∥ · ∥1→∞ reduces to ∥ · ∥∞, and the update becomes

Xk+1
i = Xk

i − tki sign
(
∇if(X

k)
)
, i = 1, . . . , p,

where the sign function is applied element-wise. This is equivalent to layer-wise signGD.

Muon [15]. Here, the spectral norm ∥ · ∥2→2 is used for all parameter groups, without restrictions on ni. In this case, it
can be shown that (12) is equivalent to

Xk+1
i = Xk

i − tki U
k
i

(
V k
i

)⊤
, i = 1, . . . , p, (13)

where ∇if(X
k) = Uk

i Σ
k
i

(
V k
i

)⊤
is the singular value decomposition [2]. This is exactly the per-layer deterministic version

of the Muon optimizer. In practical LLM training, a more general variant of (13) incorporating stochasticity and momentum
is applied to the intermediate layers, while the input and output layers are optimized using other methods.

Unconstrained Scion [27]. We can also recover two variants of unScion introduced by Pethick et al. [27]: one for training
LLMs on next-token prediction, and another for training CNNs for image classification.

• Training LLMs. Define the norms ∥ · ∥(i) as follows: for i = 1, . . . , p − 1, corresponding to weight matrices of
transformer blocks, set ∥ · ∥(i) =

√
ni/mi∥ · ∥2→2, and for the last group Xp, representing the embedding and output

layers (which coincide under the weight sharing regime considered here), let ∥ · ∥(p) = np∥ · ∥1→∞. In this case, (12)
becomes

Xk+1
i = Xk

i − tki

√
mi

ni
Uk
i

(
V k
i

)⊤
, i = 1, . . . , p− 1,

Xk+1
p = Xk

p − tkp
np

sign
(
∇pf(X

k)
)
,

(14)

where ∇if(X
k) = Uk

i Σ
k
i

(
V k
i

)⊤
is the singular value decomposition. This is equivalent to deterministic layer-wise

unScion optimizer without momentum. A more general variant, incorporating stochasticity and momentum and applied
to all layers, was shown by Pethick et al. [27] to outperform Muon on LLM training tasks.

• Training CNNs. The main difference in the CNN setting is the presence of not only 2D weight matrices, but also 1D
bias vectors and 4D convolutional kernels parameters. Biases are 1D tensors of shape RCout

i , for which we use scaled
Euclidean norms. Convolutional parameters (conv) are 4D tensors with shapes RCout

i ×Cin
i ×k×k, where Cout

i and Cin
i

denote the number of output and input channels, and k is the kernel size. To compute norms, we reshape each 4D
tensor to a 2D matrix of shape RCout

i ×Cin
i k2

, and then apply a scaled ∥ · ∥2→2 norm. This yields the norm choices
∥ · ∥(i) =

√
1/Cout

i ∥ · ∥2 for biases, ∥ · ∥(i) = k2
√

Cin
i /Cout

i ∥ · ∥2→2 for conv, and ∥ · ∥(p) = np∥ · ∥1→∞ for the last
group Xp, associated with classification head weights. Then, it can be shown that (12) is equivalent to

Xk+1
i = Xk

i − tki
√
Cout

i
∇if(X

k)
∥∇if(Xk)∥2

, (for biases),

Xk+1
i = Xk

i − tki
1
k2

√
Cout

i

Cin
i
Uk
i

(
V k
i

)⊤
, (for conv),

Xk+1
p = Xk

p − tkp
np

sign
(
∇pf(X

k)
)
, (for head)

(15)

where ∇if(X
k) = Uk

i Σ
k
i

(
V k
i

)⊤
is the singular value decomposition. This corresponds to the deterministic layer-wise

unScion optimizer without momentum.

D.2. Proof of Theorem 1

We now state and prove a generalization of Theorem 1.

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

Theorem 2. Let Assumption 1 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of deterministic Gluon (Algorithm 2)

run with stepsizes tki =
∥∇if(X

k)∥(i)⋆

L0
i+L1

i ∥∇if(Xk)∥(i)⋆
. Then,

1. In order to reach the precision

mink=0,...,K−1

∑p
i=1

∥∥∇if(X
k)
∥∥
(i)⋆

≤ ϵ,

it suffices to run the algorithm for

K =
⌈
2∆0∑p

i=1 L0
i

ϵ2 +
2∆0L1

max

ϵ

⌉
(16)

iterations;

2. In order to reach the precision

min
k=0,...,K−1

p∑
i=1

[
1

L1
i

1
p

∑p
j=1

1

L1
j

∥∥∇if(X
k)
∥∥
(i)⋆

]
≤ ε, (17)

it suffices to run the algorithm for

K =


2∆0

(∑p
i=1

L0
i

(L1
i
)2

)
ε2
(

1
p

∑p
j=1

1

L1
j

)2 + 2∆0

ε

(
1
p

∑p
j=1

1

L1
j

)
 (18)

iterations,

where ∆0 := f(X0)− infX∈S f(X) and L1
max := maxi=1,...,p L

1
i .

Remark 3. Let us compare bounds (16) and (18). Due to the reweighting of the gradient component norms in (17), the
rates are not exactly equivalent. Nevertheless, both use weights that sum to p, ensuring a fair comparison. Obviously,
(1/p

∑p
j=1

1/L1
j)

−1 ≤ L1
max, so the second term in (18) is always no worse than its counterpart in (16). The comparison of

the first terms, however, depends on how the sequences {L0
i } and {L1

i } relate: if larger values of L0
i s tend to be attached

to smaller values of L1
i , then the first term in (18) improves over that in (16), while for a positive correlation the opposite

is true. Indeed, in the extreme case when L0
1 ≥ . . . ≥ L0

p and L1
1 ≤ . . . ≤ L1

p (or the reverse ordering), Chebyshev’s sum
inequality implies that

p∑
i=1

L0
i

(L1
i
)2(

1
p

p∑
j=1

1

L1
j

)2 ≤

(
1
p

p∑
i=1

L0
i

L1
i

)(
1
p

p∑
i=1

1

L1
i

)
1
p

(
1
p

p∑
j=1

1

L1
j

)2 ≤

(
1
p

p∑
i=1

L0
i

)(
1
p

p∑
i=1

1

L1
i

)
1
p

(
1
p

p∑
j=1

1

L1
j

) =
p∑

i=1

L0
i .

Conversely, if both sequences {L0
i } and {L1

i } are sorted in the same order (either increasing or decreasing), the inequality
reverses, and the first term of (16) may be tighter. That said, empirical evidence we provide in Section 5 indicates that in
practice L0

i ≈ 0 across all layers, in which case the first terms in (16) and (18) effectively vanish. Then, (18) is clearly
superior, replacing the worst-case constant L1

max by the harmonic mean.

Proof. We start with the result obtained in Lemma 1 with X = Xk and Y = Xk+1

f(Xk+1) ≤ f(Xk) +
〈
∇f(Xk), Xk+1 −Xk

〉
+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

= f(Xk) +

p∑
i=1

[〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

]
.

The update rule (12) and the definition of the dual norm ∥ · ∥(i)⋆ give

∥Xk
i −Xk+1

i ∥2(i) ≤
(
tki
)2

14
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and 〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

=
〈
∇if(X

k),LMOBk
i

(
∇if(X

k)
)
−Xk

i

〉
(i)

= −tki max
∥Xi∥(i)≤1

〈
∇if(X

k), Xi

〉
(i)

= −tki ∥∇if(X
k)∥(i)⋆.

Consequently,

f(Xk+1) ≤ f(Xk) +

p∑
i=1

[
−tki ∥∇if(X

k)∥(i)⋆ +
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki
)2]

.

Now, choosing

tki =
∥∇if(X

k)∥(i)⋆
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
,

which minimizes the right-hand side of the last inequality, yields the descent inequality

f(Xk+1) ≤ f(Xk)−
p∑

i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
) . (19)

Summing the terms, we obtain

K−1∑
k=0

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
) ≤

K−1∑
k=0

(
f(Xk)− f(Xk+1)

)
= f(X0)− f(XK)

≤ f(X0)− inf
X∈S

f(X) =: ∆0.

(20)

Now, the analysis can proceed in two ways:

1. Upper-bounding L1
i by L1

max := maxi=1,...,p L
1
i in (20), we obtain

K−1∑
k=0

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

max∥∇if(Xk)∥(i)⋆
) ≤ ∆0. (21)

Now, applying Lemma 3 with xi = 1, yi = ∥∇if(X
k)∥(i)⋆ and zi = 2

(
L0
i + L1

max

∥∥∇if(X
k)
∥∥
(i)⋆

)
gives

ϕ

(
p∑

i=1

∥∇if(X
k)∥(i)⋆

)
=

(∑p
i=1 ∥∇if(X

k)∥(i)⋆
)2

2
(∑p

i=1 L
0
i + L1

max

∑p
i=1 ∥∇if(Xk)∥(i)⋆

)
≤

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

max∥∇if(Xk)∥(i)⋆
) ,

where ϕ(t) := t2

2(
∑p

i=1 L0
i+L1

maxt)
. Combining the last inequality with (21) and using the fact that ϕ is increasing, we

obtain

Kϕ

(
min

k=0,...,K−1

p∑
i=1

∥∇if(X
k)∥(i)⋆

)
≤

K−1∑
k=0

ϕ

(
p∑

i=1

∥∇if(X
k)∥(i)⋆

)
≤ ∆0, (22)
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and hence

min
k=0,...,K−1

p∑
i=1

∥∇if(X
k)∥(i)⋆ ≤ ϕ−1

(
∆0

K

)
,

where ϕ−1 is the inverse function (which exists since ϕ is increasing). Therefore, to reach the precision
mink=0,...,K−1

∑p
i=1

∥∥∇if(X
k)
∥∥
(i)⋆

≤ ϵ, it is sufficient to choose the number of iterations to be

K =

⌈
∆0

ϕ(ϵ)

⌉
=

⌈
2
∑p

i=1 L
0
i∆

0

ϵ2
+

2L1
max∆

0

ϵ

⌉
.

2. Alternatively, we can start from the inequality (20) and apply Lemma 3 with xi = 1/L1
i , yi =

∥∥∇if(X
k)
∥∥
(i)⋆

and

zi = 2(L0
i + L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

) to obtain

∆0 ≥
K−1∑
k=0

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2
(
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
)

≥
K−1∑
k=0

(∑p
i=1

1
L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

)2
2
(∑p

i=1
1

(L1
i )

2

(
L0
i + L1

i ∥∇if(Xk)∥(i)⋆
))

=

K−1∑
k=0

(∑p
i=1

1
L1

i

∥∥∇if(X
k)
∥∥
(i)⋆

)2
2
(∑p

i=1
L0

i

(L1
i )

2 +
∑p

i=1
1
L1

i
∥∇if(Xk)∥(i)⋆

)
=

K−1∑
t=0

ψ

(
p∑

i=1

1

L1
i

∥∥∇if(X
k)
∥∥
(i)⋆

)
,

where ψ(t) := t2

2

(∑p
i=1

L0
i

(L1
i
)2

+t

) . Since the function ψ is increasing for t > 0, ψ−1 exists. It follows that

∆0 ≥
K−1∑
k=0

ψ

(
p∑

i=1

1

L1
i

∥∥∇if(X
k)
∥∥
(i)⋆

)

≥ Kψ

(
min

k=0,...,K−1

p∑
i=1

1

L1
i

∥∥∇if(X
k)
∥∥
(i)⋆

)
,

and hence

min
k=0,...,K−1

p∑
i=1

1

L1
i

∥∥∇if(X
k)
∥∥
(i)⋆

≤ ψ−1

(
∆0

K

)
.

This in turn means that to reach the precision

min
k=0,...,K−1

p∑
i=1

 1
L1

i

1
p

∑p
j=1

1
L1

j

∥∥∇if(X
k)
∥∥
(i)⋆

 ≤ ε,

it suffices to run the algorithm for

K =

 ∆0

ψ
(
ε
(

1
p

∑p
j=1

1
L1

j

))
 =


2∆0

(∑p
i=1

L0
i

(L1
i )

2

)
ε2
(

1
p

∑p
j=1

1
L1

j

)2 +
2∆0

ε
(

1
p

∑p
j=1

1
L1

j

)


iterations.
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D.3. Convergence under the PŁ condition

We now establish convergence rates under the layer-wise Polyak–Łojasiewicz (PŁ) condition, introduced in Assumption 2.
This property is especially relevant for heavily over-parameterized neural networks, as it has been shown to capture the
properties of their loss landscapes [21].

Assumption 2 (Layer-wise Polyak-Łojasiewicz condition). The function f : S 7→ R satisfies the layer-wise Polyak-
Łojasiewicz (PŁ) condition with a constant µ > 0, i.e., for any X ∈ S

p∑
i=1

∥∇if(X)∥2(i)⋆ ≥ 2µ (f(X)− f⋆) ,

where f⋆ := infX∈S f(X) > −∞.

Assumption 2 reduces to the standard PŁ condition [16] by vectorizing the parameters and adopting the Euclidean norm
∥ · ∥2.

Theorem 4. Let Assumptions 1 and 2 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of deterministic Gluon

(Algorithm 2) run with tki =
∥∇if(X

k)∥(i)⋆

L0
i+L1

i ∥∇if(Xk)∥(i)⋆
.

1. If L1
i ≥ 0, then to reach the precision mink=0,...,K−1 f(X

k)− f⋆ ≤ ϵ, it suffices to run the algorithm for

K =

⌈∑p
i=1 L

0
i∆

0

µϵ
+

√
2L1

max∆
0

√
µϵ

⌉
iterations,

2. If L1
i = 0 for all i = 1, . . . , p, then to reach the precision f(XK)− f⋆ ≤ ϵ, it suffices to run the algorithm for

K =

⌈
L0
max

µ
log

∆0

ϵ

⌉
,

where L0
max := maxi=1,...,p L

0
i , L1

max := maxi=1,...,p L
1
i , ∆0 := f(X0)− f⋆ and f⋆ := infX∈S f(X).

Proof. We consider two scenarios: (1) the general case with arbitrary L1
i ≥ 0 and (2) L1

i = 0 for all i = 1, . . . , p.

Case 1: L1
i ≥ 0. We start by following the same steps as in the proof of Theorem 1. From (22), we have

K−1∑
k=0

ϕ

(
p∑

i=1

∥∇if(X
k)∥(i)⋆

)
≤ ∆0,

where ϕ(t) := t2

2(
∑p

i=1 L0
i+L1

maxt)
. Now, using Assumption 2, we get(

p∑
i=1

∥∇if(X
k)∥(i)⋆

)2

≥
p∑

i=1

∥∇if(X
k)∥2(i)⋆ ≥ 2µ

(
f(Xk)− f⋆

)
.

Consequently, since ϕ is an increasing function,

Kϕ

(√
2µ
√
f(Xk⋆)− f⋆

)
≤

K−1∑
k=0

ϕ

(√
2µ
√
f(Xk)− f⋆

)

≤
K−1∑
k=0

ϕ

(
p∑

i=1

∥∇if(X
k)∥(i)⋆

)
≤ ∆0,
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where k⋆ := argmink=0,...,K−1 f(X
k) − f⋆. Denoting the corresponding inverse function (which exists since ϕ is

increasing) by ϕ−1, it follows that √
2µ
√
f(Xk⋆)− f⋆ ≤ ϕ−1

(
∆0

K

)
≤
√
2µϵ.

Therefore, to reach the precision f(Xk⋆

)− f⋆ ≤ ϵ, it is sufficient to choose the number of iterations

K =

⌈
∆0

ϕ
(√

2µϵ
)⌉ =

⌈∑p
i=1 L

0
i∆

0

µϵ
+

√
2L1

max∆
0

√
µϵ

⌉
.

Case 2: L1
i = 0. Inequality (19) from the proof of Theorem 1 with L1

i = 0 gives

f(Xk+1) ≤ f(Xk)−
p∑

i=1

∥∇if(X
k)∥2(i)⋆

2L0
i

.

Using the fact that

p∑
i=1

∥∇if(X
k)∥2(i)⋆

2L0
i

≥ min
j=1,...,p

1

2L0
j

p∑
i=1

∥∇if(X
k)∥2(i)⋆ =

1

2maxj=1,...,p L0
j

p∑
i=1

∥∇f(Xk)∥2(i)⋆

along with Assumption 2, we obtain

f(Xk+1) ≤ f(Xk)− µ

L0
max

(
f(Xk)− f⋆

)
.

The remaining part of the proof follows from the simple observation

log

(
∆0

ϵ

)
≤ k

µ

L0
max

≤ k log

(
1

1− µ
L0

max

)
.

E. Stochastic case
In practice, computing full gradients is often infeasible due to the scale of modern ML problems. We therefore turn to the
practical Gluon (Algorithm 1), a stochastic variant of Algorithm 2 that operates with noisy gradient estimates available
through a stochastic gradient oracle ∇fξ, ξ ∼ D.

Assumption 3. The stochastic gradient estimator ∇fξ : S 7→ S is unbiased and has bounded variance. That is,
Eξ∼D[∇fξ(X)] = ∇f(X) for all X ∈ S and there exists σ ≥ 0 such that

Eξ∼D
[
∥∇ifξ(X)−∇if(X)∥2(i)⋆

]
≤ σ2, ∀X ∈ S, i = 1, . . . , p.

Note that the choice of norm in Assumption 3 is not restrictive: in finite-dimensional spaces, all norms are equivalent, so
variance bounds remain valid up to a constant factor when compared to those based on the standard Euclidean norm. The
following result establishes the convergence properties.

Theorem 5. Let Assumptions 1 and 3 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of Gluon (Algorithm 1) run
with βk = 1− (k + 1)−1/2, tki = ti(k + 1)−3/4 for some ti > 0, and M0

i = ∇ifξ0(X
0). Then

min
k=0,...,K−1

p∑
i=1

1

12L1
i

E
[
∥∇if(X

k)∥(i)⋆
]
≲

∆0

K1/4
+

1

K1/4

p∑
i=1

[
σ

L1
i

+
L0
i

(L1
i )

2

]
, (23)

where ∆0 := f(X0)− f inf and the notation ≲ hides numerical constants and logarithmic factors.
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For p = 1, our rate in (23) recovers the complexity for finding a stationary point of (L0, L1)-smooth functions established
by Hübler et al. [10] for normalized SGD with momentum. When p ≥ 1, compared to existing guarantees for Gluon, our
Theorem 5 operates under the significantly more general Assumption 1 and uniquely supports training with significantly
larger, non-constant stepsizes tki ∝ k−3/4. In contrast, prior analyses prescribe constant, vanishingly small stepsizes
tki ≡ ti ∝ K−3/4, tied to the total number of iterations K (see Table 1).

E.1. Adaptive stepsizes

Before proving the main result from Appendix E, we first present an attempt to formulate an adaptive stepsize strategy for
the stochastic setting. This requires the following assumption:

Assumption 4. The stochastic gradient estimator ∇fξ : S 7→ S is unbiased and has bounded relative variance. That is,
E[∇fξ(X)] = ∇f(X) for all X ∈ S and there exists 0 ≤ ζ < 1 such that

∥∇ifξ(X)−∇if(X)∥(i)⋆ ≤ ζ∥∇ifξ(X)∥(i)⋆, i = 1, . . . , p

holds almost surely for all X ∈ S.

This assumption is somewhat unconventional due to the presence of the stochastic gradients on the right-hand side of the
inequality. It does not follow from standard conditions and does not fall within known frameworks for modeling stochasticity,
such as the ABC inequality of Khaled & Richtárik [17]. Instead, it introduces a novel structure with parallels to the literature
on contractive compression [4; 6].

To elaborate, recall the definition of a contractive compressor:

Definition 6 (Contractive compressor). A stochastic mapping C : S → S is called a contractive compressor if there exists
α ∈ [0, 1) such that

E
[
∥C(X)−X∥2

]
≤ (1− α)∥X∥2 (24)

for any X ∈ S.

There is a conceptual similarity between Assumption 4 and the contractive property in (24). Assumption 4 can be interpreted
as asserting that the true gradient ∇f(X) is effectively a contraction of the stochastic gradient ∇fξ(X), with contraction
factor 1− ζ . Unlike contractive compressors, there is no explicit mapping from ∇fξ(X) to ∇f(X), and the uniform bound
implies the same contraction-like behavior across all stochastic gradients.

Although Assumption 4 is admittedly strong, it allows us to establish a convergence theorem using an adaptive stepsize
strategy similar to the one employed in the deterministic case in Theorem 2.

Theorem 7. Let Assumptions 1 and 4 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of Gluon (Algorithm 1) run

with βk = 0 and tki =
(1−ζ)∥∇ifξk (X

k)∥(i)⋆

L0
i+(1+ζ)L1

i ∥∇ifξk (X
k)∥(i)⋆

. Then,

1. In order to reach the precision

min
k=0,...,K−1

p∑
i=1

E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
≤ ϵ,

it suffices to run the algorithm for

K =

⌈
2
∑p

i=1 L
0
i∆

0

(1− ζ)
2
ϵ2

+
2(1 + ζ)L1

max∆
0

(1− ζ)
2
ϵ

⌉
iterations.

2. In order to reach the precision

min
k=0,...,K−1

p∑
i=1

 1
L1

i

1
p

∑p
j=1

1
L1

j

∥∥∇if(X
k)
∥∥
(i)⋆

 ≤ ε,
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it suffices to run the algorithm for

K =


2∆0

∑p
i=1

L0
i

(L1
i )

2

ε2(1− ζ)2
(

1
p

∑p
j=1

1
L1

j

)2 +
2∆0(1 + ζ)

ε(1− ζ)2
(

1
p

∑p
j=1

1
L1

j

)


iterations,

where ∆0 := f(X0)− infX∈S f(X) and L1
max := maxi=1,...,p L

1
i .

Proof. Lemma 1 with X = Xk and Y = Xk+1 gives

f(Xk+1)

≤ f(Xk) +
〈
∇f(Xk), Xk+1 −Xk

〉
+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

= f(Xk) +

p∑
i=1

[〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

]

= f(Xk) +

p∑
i=1

[ 〈
∇ifξk(X

k), Xk+1
i −Xk

i

〉
(i)

+
〈
∇if(X

k)−∇ifξk(X
k), Xk+1

i −Xk
i

〉
(i)

]
+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i),

and applying the Cauchy-Schwarz inequality, we get

f(Xk+1) ≤ f(Xk) +

p∑
i=1

[ 〈
∇ifξk(X

k), Xk+1
i −Xk

i

〉
(i)

+ ∥∇if(X
k)−∇ifξk(X

k)∥(i)⋆∥Xk+1
i −Xk

i ∥(i)

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

]
.

The update rule (10) and the definition of the dual norm ∥ · ∥(i)⋆ give

∥Xk
i −Xk+1

i ∥2(i) ≤
(
tki
)2

and

〈
∇ifξk(X

k), Xk+1
i −Xk

i

〉
(i)

=
〈
∇ifξk(X

k),LMOBk
i

(
∇ifξk(X

k)
)
−Xk

i

〉
(i)

= −tki max
∥Xi∥(i)≤1

〈
∇ifξk(X

k), Xi

〉
(i)

= −tki ∥∇ifξk(X
k)∥(i)⋆.
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Consequently, using Assumption 4, we obtain

f(Xk+1) ≤ f(Xk) +

p∑
i=1

[
− tki ∥∇ifξk(X

k)∥(i)⋆ + tki ∥∇if(X
k)−∇ifξk(X

k)∥(i)⋆

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki
)2 ]

≤ f(Xk) +

p∑
i=1

[
− (1− ζ)tki ∥∇ifξk(X

k)∥(i)⋆

+
L0
i + (1 + ζ)L1

i ∥∇ifξk(X
k)∥(i)⋆

2

(
tki
)2 ]

.

Minimizing the right-hand side of the last inequality with respect to tki yields

tki =
(1− ζ)∥∇ifξk(X

k)∥(i)⋆
L0
i + (1 + ζ)L1

i ∥∇ifξk(Xk)∥(i)⋆
.

This greedy approach for choosing tki gives the descent inequality

f(Xk+1) ≤ f(Xk)−
p∑

i=1

(1− ζ)2∥∇ifξk(X
k)∥2(i)⋆

2
(
L0
i + (1 + ζ)L1

i ∥∇ifξk(Xk)∥(i)⋆
) .

Taking expectations, we have

E[f(Xk+1)] ≤ E[f(Xk)]−
p∑

i=1

E

[
(1− ζ)2∥∇ifξk(X

k)∥2(i)⋆
2
(
L0
i + (1 + ζ)L1

i ∥∇ifξk(Xk)∥(i)⋆
)] . (25)

Now, let us define the function ϕi(t) :=
(1−ζ)2t2

2(L0
i+(1+ζ)L1

i t)
. Since ϕi(t) is convex, Jensen’s inequality gives

E[f(Xk)]− E[f(Xk+1)] ≥
p∑

i=1

E

[
(1− ζ)2∥∇ifξk(X

k)∥2(i)⋆
2
(
L0
i + (1 + ζ)L1

i ∥∇ifξk(Xk)∥(i)⋆
)]

≥
p∑

i=1

(1− ζ)2
(
E
[
∥∇ifξk(X

k)∥(i)⋆
])2

2
(
L0
i + (1 + ζ)L1

iE
[
∥∇ifξk(Xk)∥(i)⋆

]) .
By Jensen’s inequality and Assumption 4

E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
= E

[∥∥E [∇ifξk(X
k)
∣∣Xk

]∥∥
(i)⋆

]
≤ E

[
E
[∥∥∇ifξk(X

k)
∥∥
(i)⋆

∣∣∣Xk
]]

= E
[∥∥∇ifξk(X

k)
∥∥
(i)⋆

]
,

and hence, using the fact that ϕi is increasing, we get

E[f(Xk)]− E[f(Xk+1)] ≥
p∑

i=1

(1− ζ)2
(
E
[∥∥∇if(X

k)
∥∥
(i)⋆

])2
2
(
L0
i + (1 + ζ)L1

iE
[
∥∇if(Xk)∥(i)⋆

]) .
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Summing the terms gives

K−1∑
k=0

p∑
i=1

(1− ζ)2
(
E
[∥∥∇if(X

k)
∥∥
(i)⋆

])2
2
(
L0
i + (1 + ζ)L1

iE
[
∥∇if(Xk)∥(i)⋆

]) ≤
K−1∑
k=0

(
E[f(Xk)]− E[f(Xk+1)]

)
= E[f(X0)]− E[f(XK)]

≤ f(X0)− inf
X∈S

f(X) =: ∆0,

(26)

The remaining part of the proof closely follows the proof of Theorem 2. We can proceed in two ways:

1. Upper-bounding L1
i by L1

max := maxi=1,...,p L
1
i in (26), we obtain

K−1∑
k=0

p∑
i=1

(1− ζ)2
(
E
[∥∥∇if(X

k)
∥∥
(i)⋆

])2
2
(
L0
i + (1 + ζ)L1

maxE
[
∥∇if(Xk)∥(i)⋆

]) ≤ ∆0. (27)

Now, Lemma 3 with xi = 1, yi = (1− ζ)E
[
∥∇if(X

k)∥(i)⋆
]

and zi = 2
(
L0
i + (1 + ζ)L1

maxE
[∥∥∇if(X

k)
∥∥
(i)⋆

])
gives

ϕ

(
p∑

i=1

E
[
∥∇if(X

k)∥(i)⋆
])

=

(
(1− ζ)

∑p
i=1 E

[
∥∇if(X

k)∥(i)⋆
])2

2
∑p

i=1

(
L0
i + (1 + ζ)L1

maxE
[
∥∇if(Xk)∥(i)⋆

])
≤

p∑
i=1

(1− ζ)2E
[
∥∇if(X

k)∥(i)⋆
]2

2
(
L0
i + (1 + ζ)L1

maxE
[
∥∇if(Xk)∥(i)⋆

])
where ϕ(t) := (1−ζ)2t2

2(
∑p

i=1 L0
i+(1+ζ)L1

maxt)
. Combining the last inequality with (27) and using the fact that ϕ is increasing,

we get

Kϕ

(
min

k=0,...,K−1

p∑
i=1

E
[
∥∇if(X

k)∥(i)⋆
])

≤
K−1∑
k=0

ϕ

(
p∑

i=1

E
[
∥∇if(X

k)∥(i)⋆
])

≤ ∆0.

and hence

min
k=0,...,K−1

p∑
i=1

E
[
∥∇if(X

k)∥(i)⋆
]
≤ ϕ−1

(
∆0

K

)
,

where ϕ−1 denotes the inverse function (which exists since ϕ is increasing). Therefore, to reach the precision
mink=0,...,K−1

∑p
i=1 E

[
∥∇if(X

k)∥(i)⋆
]
≤ ϵ, it suffices to run the algorithm for

K =

⌈
∆0

ϕ(ϵ)

⌉
=

⌈
2∆0

∑p
i=1 L

0
i

(1− ζ)2ϵ2
+

2∆0(1 + ζ)L1
max

(1− ζ)2ϵ

⌉
iterations.

2. Alternatively, we can start from inequality (26) and apply Lemma 3 with xi = 1/L1
i , yi = (1− ζ)E

[∥∥∇if(X
k)
∥∥
(i)⋆

]
and zi = 2

(
L0
i + (1 + ζ)L1

iE
[∥∥∇if(X

k)
∥∥
(i)⋆

])
to obtain

∆0 ≥
K−1∑
k=0

p∑
i=1

(1− ζ)2E
[∥∥∇if(X

k)
∥∥
(i)⋆

]2
2
(
L0
i + (1 + ζ)L1

iE
[
∥∇if(Xk)∥(i)⋆

])
≥

K−1∑
k=0

(∑p
i=1

1
L1

i
(1− ζ)E

[∥∥∇if(X
k)
∥∥
(i)⋆

])2
2
∑p

i=1

(
L0

i

(L1
i )

2 + (1 + ζ) 1
L1

i
E
[
∥∇if(Xk)∥(i)⋆

])
=

K−1∑
t=0

ψ

(
p∑

i=1

1

L1
i

E
[∥∥∇if(X

k)
∥∥
(i)⋆

])
,
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where ψ(t) := (1−ζ)2t2

2

(∑p
i=1

L0
i

(L1
i
)2

+(1+ζ)t

) . Since the function ψ is increasing for t > 0, ψ−1 exists. It follows that

∆0 ≥
K−1∑
k=0

ψ

(
p∑

i=1

1

L1
i

E
[∥∥∇if(X

k)
∥∥
(i)⋆

])

≥ Kψ

(
min

k=0,...,K−1

p∑
i=1

1

L1
i

E
[∥∥∇if(X

k)
∥∥
(i)⋆

])
,

and hence

min
k=0,...,K−1

p∑
i=1

1

L1
i

E
[∥∥∇if(X

k)
∥∥
(i)⋆

]
≤ ψ−1

(
∆0

K

)
.

This in turn means that to reach the precision

min
k=0,...,K−1

p∑
i=1

 1
L1

i

1
p

∑p
j=1

1
L1

j

∥∥∇if(X
k)
∥∥
(i)⋆

 ≤ ε,

it suffices to run the algorithm for

K =

 ∆0

ψ
(
ε
(

1
p

∑p
j=1

1
L1

j

))


=


2∆0

∑p
i=1

L0
i

(L1
i )

2

(1− ζ)2ε2
(

1
p

∑p
j=1

1
L1

j

)2 +
2∆0(1 + ζ)

(1− ζ)2ε
(

1
p

∑p
j=1

1
L1

j

)


iterations.

E.2. Proof of Theorem 5

We now establish the main result of Appendix E. The guarantees in Theorem 5 follow from the more general result below.

Theorem 8. Let Assumptions 1 and 3 hold and fix ε > 0. Let X0, . . . , XK−1 be the iterates of Gluon (Algorithm 1) run
with βk = 1− (k + 1)−1/2, tki = ti(k + 1)−3/4 for some ti > 0, and M0

i = ∇ifξ0(X
0).

1. If L1
i = 0, then

min
k=0,...,K−1

p∑
i=1

tiE
[
∥∇if(X

k)∥(i)⋆
]

≤ ∆0

K1/4
+

1

K1/4

p∑
i=1

[
σti

(
7 + 2

√
2e2 log(K)

)
+ L0

i t
2
i

(
87

2
+ 14 log(K)

)]
,

2. If L1
i ̸= 0, then for ti = 1

12L1
i

, we have

min
k=0,...,K−1

p∑
i=1

1

12L1
i

E
[
∥∇if(X

k)∥(i)⋆
]

≤ 2∆0

K1/4
+

1

K1/4

p∑
i=1

[
σ

6L1
i

(
7 + 2

√
2e2 log(K)

)
+

L0
i

144(L1
i )

2
(87 + 28 log(K))

]
,

23



1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

where ∆0 := f(X0)− infX∈S f(X).

Proof. We again start with the result in Lemma 1 with X = Xk and Y = Xk+1, obtaining

f(Xk+1) ≤ f(Xk) +
〈
∇f(Xk), Xk+1 −Xk

〉
+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

= f(Xk) +

p∑
i=1

[〈
∇if(X

k), Xk+1
i −Xk

i

〉
(i)

+
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i)

]

= f(Xk) +

p∑
i=1

[ 〈
Mk

i , X
k+1
i −Xk

i

〉
(i)

+
〈
∇if(X

k)−Mk
i , X

k+1
i −Xk

i

〉
(i)

]

+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i).

Applying the Cauchy-Schwarz inequality, we have

f(Xk+1) ≤ f(Xk) +

p∑
i=1

[ 〈
Mk

i , X
k+1
i −Xk

i

〉
(i)

+ ∥∇if(X
k)−Mk

i ∥(i)⋆∥Xk+1
i −Xk

i ∥(i)

]

+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2
∥Xk

i −Xk+1
i ∥2(i).

Now, the update rule (10) and the definition of the dual norm ∥ · ∥(i)⋆ give

∥Xk
i −Xk+1

i ∥2(i) ≤
(
tki
)2

and 〈
Mk

i , X
k+1
i −Xk

i

〉
=
〈
Mk

i ,LMOBk
i

(
Mk

i

)
−Xk

i

〉
= −tki max

∥Xi∥(i)≤1

〈
Mk

i , Xi

〉
= −tki ∥Mk

i ∥(i)⋆.

Consequently,

f(Xk+1)

≤ f(Xk) +

p∑
i=1

[
−tki ∥Mk

i ∥(i)⋆ + tki ∥∇if(X
k)−Mk

i ∥(i)⋆ +
L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki
)2]

= f(Xk) +

p∑
i=1

[
− tki ∥Mk

i −∇if(X
k) +∇if(X

k)∥(i)⋆ + tki ∥Mk
i −∇if(X

k)∥(i)⋆

]

+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki
)2

≤ f(Xk) +

p∑
i=1

[
−tki ∥∇if(X

k)∥(i)⋆ + 2tki ∥Mk
i −∇if(X

k)∥(i)⋆
]

+

p∑
i=1

L0
i + L1

i ∥∇if(X
k)∥(i)⋆

2

(
tki
)2
.

Taking expectations, we obtain

E[f(Xk+1)] ≤ E[f(Xk)] +

p∑
i=1

[
− tki E[∥∇if(X

k)∥(i)⋆] + 2tki E
[∥∥Mk

i −∇if(X
k)
∥∥
(i)⋆

]
+
L0
i + L1

iE[∥∇if(X
k)∥(i)⋆]

2

(
tki
)2 ]

.
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Telescoping the last inequality gives

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
2

K−1∑
k=0

tki E
[∥∥Mk

i −∇if(X
k)
∥∥
(i)⋆

]
(28)

+

K−1∑
k=0

L0
i

2

(
tki
)2

+

K−1∑
k=0

L1
i

2
E[∥∇if(X

k)∥(i)⋆]
(
tki
)2 ]

,

where ∆0 := f(X0)− infX∈S f(X).

Now, inspired by the analysis in Hübler et al. [10], we introduce the following notation: µk
i := Mk

i −∇if(X
k), γki :=

∇ifξk(X
k)−∇if(X

k), αk = 1− βk, βa:b :=
∏b

k=a β
k and Sk

i := ∇if(X
k−1)−∇if(X

k). Then, we can rewrite the
algorithm’s momentum update rule as

Mk
i = βkMk−1

i + (1− βk)∇ifξk(X
k)

= βk
(
µk−1
i +∇if(X

k−1)
)
+ (1− βk)

(
γki +∇if(X

k)
)

= ∇if
(
Xk
)
+ αkγki + βkSk

i + βkµk−1
i .

This yields

µk
i =Mk

i −∇if
(
Xk
)

= αkγki + βkSk
i + βkµk−1

i

=

k∑
τ=1

β(τ+1):kατγτi +

k∑
τ=1

βτ :kSτ
i + β1:kµ0

i

=

k∑
τ=0

β(τ+1):kατγτi +

k∑
τ=1

βτ :kSτ
i ,

where the last line follows from the fact that M0
i = ∇ifξ0(X

0) and β0 = 0. Thus,

E
[∥∥Mk

i −∇if(X
k)
∥∥
(i)⋆

]
= E

[∥∥µk
i

∥∥
(i)⋆

]
≤ E

∥∥∥∥∥
k∑

τ=0

β(τ+1):kατγτi

∥∥∥∥∥
(i)⋆

+

k∑
τ=1

βτ :kE
[
∥Sτ

i ∥(i)⋆
]

=

√√√√ k∑
τ=0

(
β(τ+1):kατ

)2 E [∥γτi ∥2(i)⋆]+ k∑
τ=1

βτ :kE
[
∥Sτ

i ∥(i)⋆
]
,

where in the last equality we used the fact that for all q < l

E
[
(γli)

⊤γqi
]
= E

[
E
[
(γli)

⊤γqi | X l
i

]]
= E

[
E
[
γli | X l

i

]⊤
γqi

]
= E

[(
E
[
∇ifξl(X

l)−∇if(X
l) | X l

i

])⊤
γqi

]
= 0,

Using Assumptions 1 and 3, we get

E
[
∥γτi ∥

2
(i)⋆

]
= E

[
E
[
∥γτi ∥

2
(i)⋆ | Xτ

i

]
︸ ︷︷ ︸

≤σ2

]
≤ σ2

and

∥Sτ
i ∥(i)⋆ ≤

(
L0
i + L1

i ∥∇if(X
τ )∥(i)⋆

)
∥Xτ+1

i −Xτ
i ∥(i) ≤

(
L0
i + L1

i ∥∇if(X
τ )∥(i)⋆

)
tτi .
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Therefore,

E
[∥∥Mk

i −∇if(X
k)
∥∥
(i)⋆

]
≤ σ

√√√√ k∑
τ=0

(
β(τ+1):kατ

)2
+ L0

i

k∑
τ=1

βτ :ktτi

+L1
i

k∑
τ=1

βτ :ktτi E
[
∥∇if(X

τ )∥(i)⋆
]
.

Combining the last inequality with (28) gives

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
2σ

K−1∑
k=0

tki

√√√√ k∑
τ=0

(
β(τ+1):kατ

)2
︸ ︷︷ ︸

=:I1

+2L0
i

K−1∑
k=0

tki

k∑
τ=1

βτ :ktτi︸ ︷︷ ︸
=:I2

+ 2L1
i

K−1∑
k=0

tki

k∑
τ=1

βτ :ktτi E
[
∥∇if(X

τ )∥(i)⋆
]

︸ ︷︷ ︸
=:I3

+
L0
i

2

K−1∑
k=0

(
tki
)2

︸ ︷︷ ︸
=:I4

+
L1
i

2

K−1∑
k=0

(
tki
)2 E [∥∇if(X

k)∥(i)⋆
] ]
. (29)

Let us now upper-bound each term Ii, i = 1, 2, 3, 4.

I1: using Lemma 5, we obtain

I1 ≤ σti

(
7 + 2

√
2e2 log(K)

)
.

I2: using Lemma 5, we obtain

I2 ≤ 14L0
i t

2
i (3 + log(K)) .

I3: rearranging the sums and using Lemma 4 with a = τ + 1, b = K, p = 3/4 and q = 1/2, we have

I3 = 2L1
i

K−1∑
k=0

tki

k∑
τ=1

βτ :ktτi E
[
∥∇if(X

τ )∥(i)⋆
]

= 2L1
i

K−1∑
τ=1

tτi

(
K−1∑
k=τ

tki β
τ :k

)
E
[
∥∇if(X

τ )∥(i)⋆
]

= 2L1
i

K−1∑
τ=1

tτi ti

(
K−1∑
k=τ

(k + 1)−3/4βτ :k

)
E
[
∥∇if(X

τ )∥(i)⋆
]

≤ 2L1
i

K−1∑
τ=1

tτi tiτ
−1/4 e2((τ+1)1/2−τ1/2)︸ ︷︷ ︸

≤e2(
√

2−1) for τ≥1

E
[
∥∇if(X

τ )∥(i)⋆
]

≤ 2e2(
√
2−1)L1

i

K−1∑
τ=1

tτi tiτ
−1/4E

[
∥∇if(X

τ )∥(i)⋆
]

≤ 2e2(
√
2−1)L1

i

K−1∑
k=0

tki tiE
[
∥∇if(X

k)∥(i)⋆
]
.
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I4:

I4 =
L0
i

2

K−1∑
k=0

(
tki
)2 ≤ L0

i

2

∞∑
k=0

(
tki
)2

=
L0
i

2
t2i

∞∑
k=0

(1 + k)−3/2

≤ L0
i

2
t2i

(
1 +

∫ ∞

1

1

z3/2
dz

)
=

3L0
i

2
t2i .

Combining the upper-bounds for Ii, i = 1, 2, 3, 4 with (29) gives

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
σti

(
7 + 2

√
2e2 log(K)

)
+ 14L0

i t
2
i (3 + log(K))

+ 2e2(
√
2−1)L1

i

K−1∑
k=0

tki tiE
[
∥∇if(X

k)∥(i)⋆
]

+
3L0

i

2
t2i +

L1
i

2

K−1∑
k=0

(
tki
)2 E[∥∇if(X

k)∥(i)⋆]

]
.

Using the fact that tki = ti(1 + k)−3/4 ≤ ti, and denoting C := 2e2(
√
2−1) + 1

2 ≤ 5.1, we get

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
σti

(
7 + 2

√
2e2 log(K)

)
+ 14L0

i t
2
i

(
87

28
+ log(K)

)

+ CL1
i ti

K−1∑
k=0

tki E
[
∥∇if(X

k)∥(i)⋆
] ]
.

Now, let us consider two options: (1) L1
i = 0 for all i ∈ {1, . . . , p} and (2) L1

i ̸= 0, for all i ∈ {1, . . . , p}.

Case 1: L1
i = 0, i = 1, . . . , p. In this case,

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ ∆0 +

p∑
i=1

[
σti

(
7 + 2

√
2e2 log(K)

)
+ 14L0

i t
2
i

(
87

28
+ log(K)

)]
,

and therefore,

min
k=0,...,K−1

p∑
i=1

tiE[∥∇if(X
k)∥(i)⋆]

≤ 1

K

K−1∑
k=0

p∑
i=1

tiE[∥∇if(X
k)∥(i)⋆]

≤ 1

K1/4

K−1∑
k=0

p∑
i=1

ti(1 + k)−3/4E[∥∇if(X
k)∥(i)⋆]

=
1

K1/4

K−1∑
k=0

p∑
i=1

tki E[∥∇if(X
k)∥(i)⋆]

≤ ∆0

K1/4
+

1

K1/4

p∑
i=1

[
σti

(
7 + 2

√
2e2 log(K)

)
+ L0

i t
2
i

(
87

2
+ 14 log(K)

)]
.
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Case 2: L1
i ̸= 0, i = 1, . . . , p. Let us choose ti = 1

12L1
i

. Then

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆] ≤ 2∆0 +

p∑
i=1

[
2σti

(
7 + 2

√
2e2 log(K)

)
+ L0

i t
2
i (87 + 28 log(K))

]
,

and hence

min
k=0,...,K−1

p∑
i=1

1

12L1
i

E[∥∇if(X
k)∥(i)⋆]

≤ 1

K

K−1∑
k=0

p∑
i=1

tiE[∥∇if(X
k)∥(i)⋆]

≤ 1

K1/4

K−1∑
k=0

p∑
i=1

ti(1 + k)−3/4E[∥∇if(X
k)∥(i)⋆]

=
1

K1/4

p∑
i=1

K−1∑
k=0

tki E[∥∇if(X
k)∥(i)⋆]

≤ 2∆0

K1/4
+

1

K1/4

p∑
i=1

[
σ

6L1
i

(
7 + 2

√
2e2 log(K)

)
+

L0
i

144(L1
i )

2
(87 + 28 log(K))

]
.

F. Additional experimental results and details
F.1. Experimental details

All experiments for the NanoGPT model are conducted using PyTorch6 with Distributed Data Parallel (DDP)7 across 4
NVIDIA A100 GPUs (40GB each). For the CNN experiments, training is performed on a single NVIDIA A100 GPU (40GB).
The training and evaluation pipelines are implemented using open-source codebases [13; 14; 26], with all modifications
clearly documented and properly referenced where applicable.

For LMO-based methods, we compute inexact LMOs using the Newton–Schulz iteration when an analytical solution is
unavailable (e.g., for SVD-type updates), following the approach proposed by Jordan et al. [15]. This method provides a
computationally efficient approximation of the required orthogonalization while preserving the convergence behavior of the
overall algorithm.

F.2. Fitting L0
i and L1

i

To minimize the Euclidean error between the true value L̂i[k] and its approximation L̂approx
i [k], while penalizing underesti-

mation, we incorporate a hinge-like penalty term. Specifically, we fit L0
i and L1

i by minimizing the loss function

Li

(
L0
i , L

1
i

)
:=

K−1∑
k=0

(
L̂i[k]− L̂approx

i [k]
)2

+ λ

K−1∑
k=0

max
(
0, L̂i[k]− L̂approx

i [k]
)2
. (30)

The first term of Li captures the standard Euclidean (squared) error, while the second term introduces an additional penalty
proportional to the amount of underestimation (i.e., when L̂i[k] > L̂approx

i [k]). The hyperparameter λ ≥ 0 controls the
strength of this penalty.

F.3. Training NanoGPT on FineWeb.

In this section, we present additional results and experimental details for the experiment described in the main text, which
involves training a NanoGPT model on the FineWeb dataset using the unScion optimizer.

6PyTorch Documentation. Available at: https://pytorch.org/docs/stable/index.html
7Distributed Data Parallel (DDP) in PyTorch. Available at: https://pytorch.org/docs/stable/notes/ddp.html

28

https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/notes/ddp.html


1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

F.3.1. EMPIRICAL VALIDATION OF ASSUMPTION 1

We begin by presenting additional results for the experiment described in Section 5.1, aimed at empirically validating

Assumption 1. We plot the estimated trajectory smoothness L̂i[k] :=
∥∇ifξk+1 (X

k+1)−∇ifξk (X
k)∥(i)⋆

∥Xk+1
i −Xk

i ∥(i)
and its approximation

L̂approx
i [k] := L0

i + L1
i ∥∇ifξk+1(Xk+1)∥(i)⋆ as functions of the iteration index k, where L0

i , L
1
i ≥ 0 are fitted using the

procedure described in Appendix F.2.

Figures 7, 8, and 9 show results for parameter groups from the embedding layer and from the 4th and 8th transformer
blocks. Similar patterns are observed across all layers. In each case, we see a strong agreement between L̂i[k] and L̂approx

i [k],
suggesting that Assumption 1 holds approximately along the optimization trajectory.
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Figure 7: Validation of layer-wise (L0, L1)-smoothness for the group of parameters from the embedding layer of
NanoGPT-124M along unScion training trajectories. The group norm is ∥ · ∥(p) = np∥ · ∥1→∞, with fitted values
L0
p ≈ 0, L1

p ≈ 1.3. The same plot is shown twice with different y-axis limits.
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Figure 8: Validation of layer-wise (L0, L1)-smoothness for the group of parameters from the 4th transformer block of
NanoGPT-124M along unScion training trajectories. The group norms are ∥ · ∥(i) =

√
ni/mi∥ · ∥2→2, with fitted values

L0
i ≈ 0, L1

i ≈ 70.
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Figure 9: Validation of layer-wise (L0, L1)-smoothness for the group of parameters from the 8th transformer block of
NanoGPT-124M along unScion training trajectories. The group norms are ∥ · ∥(i) =

√
ni/mi∥ · ∥2→2, with fitted values

L0
i ≈ 0, L1

i ≈ 70.

F.3.2. GENERALIZED SMOOTHNESS UNDER EUCLIDEAN VS. SPECIALIZED NORMS

In this experiment, we compare how well the layer-wise (L0, L1)-smoothness assumption is satisfied under the standard
Euclidean norms ∥ · ∥2 for each parameter block, as opposed to the specialized norms described in (14). We adopt the same
training setup as in Section 5.1, plotting the estimated trajectory smoothness L̂i and its approximation L̂approx

i along the
training trajectories across several parameter groups. Unlike previous sections, here we do not penalize instances where
L̂i > L̂approx

i in order to find the best approximation (i.e., λ = 0 in (30)). Additionally, when using the standard Euclidean
norm ∥ · ∥2 for approximation, we exclude the first point, as it could distort the result.

We evaluate the quality of each approximation using the relative mean squared error (MSErel
i , denoted MSE rel in the

figures), defined as

MSErel
i :=

1

K

K∑
i=1

(
L̂i[k]− L̂approx

i [k]

L̂i[k]

)2

,

where a lower value indicates a better fit.

As shown in Figures 10 and 11, both visually and in terms of MSErel
i , using specialized norms for each group of parameters

provides a better approximation than the standard Euclidean norm ∥ · ∥2. Notably, the relative mean squared error MSErel
i is

consistently an order of magnitude lower under specialized norms.
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Figure 10: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters in NanoGPT-124M along
training trajectories of unScion using the specialized norm choices defined in (14).
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Figure 11: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters in NanoGPT-124M along
training trajectories of unScion using the standard Euclidean norm ∥ · ∥2.

31



1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759

Gluon: Making Muon & Scion Great Again! (Bridging Theory and Practice of LMO-based Optimizers for LLMs)

F.3.3. LEARNING RATE TRANSFER FROM ADAMW

We now aim to verify layer-wise (L0, L1)-smoothness following the approach used in Section 5.1, but employing the
AdamW optimizer. We use hyperparameters specified in Pethick et al. [27, Table 7]. In Figure 12, we present the results for
the estimated trajectory smoothness L̂i and its approximation L̂approx

i across several parameter groups along the training
trajectories. Notably, for the group of parameters from the embedding layer Xp (the last plot in Figure 12), the fitted value of
L1
p is approximately 20–30 times smaller than in other groups. Since in all plots we observe that L0

i ≪ L1
i ∥∇ifξk(X

k)∥(i)⋆,
Theorem 1 implies that tki ≈ 1/Lk

i . Thus, tkp should be 20–30 times larger than tki for i = 1, . . . , p− 1, which is consistent
with the tuned parameters from Pethick et al. [27, Table 7].

This insight provides an efficient and principled method for initializing learning rates in Scion. Smoothness statistics
collected during standard AdamW training (which is commonly used for training LLMs) can serve as a strong prior, allowing
practitioners to directly incorporate structure-aware choices, such as larger stepsizes for embedding layers, into their tuning
process. Importantly, computing these statistics is computationally inexpensive, introducing minimal additional cost.
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Figure 12: Validation of layer-wise (L0, L1)-smoothness for different groups of parameters in NanoGPT-124M along
AdamW training trajectories.

F.4. Training CNN on CIFAR-10

This section provides detailed results for the CNN experiments on CIFAR-10. The aim is to further validate the layer-wise
(L0, L1)-smoothness (Assumption 1). The CNN model was trained using the unScion optimizer (with norm choices from
(15) in Appendix D.1), following implementations from Jordan [13] and Pethick et al. [26]. Hyperparameters were adopted
from Pethick et al. [27, Table 10], with the exception of training for more epochs.

We present results for two settings:

• Full-batch (deterministic) gradients: Uses ∇if , no momentum, and no learning rate decay.

• Stochastic gradients: Uses ∇ifξk , momentum as in Pethick et al. [27, Table 10], but no linear decay schedule.

For both settings, similar to the NanoGPT experiments (Section 5.1), we plot the estimated trajectory smoothness L̂i[k]
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against its approximation L̂approx
i [k]. We consider a simplified variant of Assumption 1 by setting L0

i = 0 and estimate
L1
i ≥ 0 using the procedure from Appendix Appendix F.2. The trajectory smoothness is defined as:

L̂i[k] :=
∥∇ifϕk+1(Xk+1)−∇ifϕk(Xk)∥(i)⋆

∥Xk+1
i −Xk

i ∥(i)
,

where fϕk represents f for full-batch or fξk for stochastic gradients. The approximation is:

L̂approx
i [k] := L1

i ∥∇ifϕk+1(Xk+1)∥(i)⋆.

Full-batch (deterministic) gradients. Figure 13 shows the results for various parameter groups using full-batch gradients.
The plots confirm that Assumption 1 (with L0

i = 0) holds approximately along the training trajectory. As discussed in the
main text (Section 5), when this condition holds, Theorem 1 implies that theoretically derived stepsizes tki ≡ ti = 1/L1

i are
appropriate. The estimated L1

i values are L1
i ≈ 3 for most parameter groups, except for the classification head weights Xp,

where L1
p ≈ 0.03. This significant difference (∼100x) aligns with and justifies the much larger radius tkp used for the head

weights in the empirically tuned configurations by Pethick et al. [27].
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Figure 13: Validation of layer-wise (L0, L1)-smoothness (Assumption 1 with L0
i = 0) for various parameter groups in a

CNN trained on CIFAR-10 with unScion using full-batch gradients. Each plot shows L̂i[k] (blue) and its approximation
L̂approx
i [k] (green). The norms ∥ · ∥(i) are defined as in Appendix D.1 for CNNs.

Stochastic gradients. Figure 14 presents analogous results for the stochastic gradient setting. Despite the added noise
from stochastic gradients, the trajectory smoothness L̂i[k] still approximately adheres to the model L̂approx

i [k] predicted by
Assumption 1 (with L0

i = 0). This suggests that our smoothness framework remains relevant even in the more practical
stochastic training regime. The observed L1

i values show similar trends to the deterministic case regarding the differences
between convolutional layers and the classification head.

G. Conclusion and future work
In this work, we propose Gluon, an LMO-based optimization method that recovers state-of-the-art optimizers such as
Muon and Scion as special cases. We develop a principled analytical framework for layer-wise optimization based on a
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Figure 14: Validation of layer-wise (L0, L1)-smoothness (Assumption 1 with L0
i = 0) for various parameter groups in a

CNN trained on CIFAR-10 with unScion using stochastic gradients. Each plot shows L̂i[k] (blue) and its approximation
L̂approx
i [k] (green). Norms are as defined for CNNs in Appendix D.1.

novel layer-wise (L0, L1)-smoothness assumption, which captures the anisotropic structure of modern deep networks. This
assumption enables sharper and more general convergence guarantees and, unlike prior analyses, yields theoretical stepsizes
that closely match those found via finetuning. Our framework thus provides the first rigorous and practically predictive
analysis of modern layer-wise optimizers. Experiments confirm that the assumption holds approximately throughout training,
reinforcing its practical relevance. Together, these results offer a refined foundation for structured optimization in deep
learning.

While this work resolves two key theoretical gaps (Sections 2.1 and 2.2), it also highlights important directions for
future research. Our analysis assumes exact LMO computations, whereas practical implementations use approximations
(Appendix F.1). Additionally, our stochastic guarantees (Theorem 5) rely on the widely adopted bounded variance
assumption, which may not hold in certain scenarios, e.g., under subsampling [17]. Finally, our support for adaptive
stepsizes is currently restricted to the deterministic setting. While they also perform well empirically in the stochastic regime
(Section 5.1), a complete theoretical justification remains an open challenge.

In summary, although we make substantial progress by closing the two most critical gaps–establishing a realistic generalized
smoothness model and aligning analysis with actual implementations–no single work can exhaust the subject. The field
remains open, with many fruitful directions left to pursue.
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