HyperNetwork Approximating Future Parameters for
Time Series Forecasting under Temporal Drifts

Jaehoon Lee; »; Chan Kim;, Gyumin Lee;, Haksoo Lim;, Jeongwhan Choi,
Kookjin Lees;, Dongeun Lee,, Sanghyun Hongs, and Noseong Park,
Yonsei University;, LG Al Researchs, Arizona State Universitys,

Texas A&M University-Commerce,, Oregon State Universitys

Abstract

Models for time series forecasting require the ability to extrapolate from previous
observations. Yet, extrapolation is challenging, especially when the data span-
ning several periods is under temporal drifts where each period has a different
distribution. To address this problem, we propose HyperGPA, a hypernetwork
that generates a target model’s parameters that are expected to work well (i.e.,
be an optimal model) for each period. HyperGPA discovers an underlying hid-
den dynamics which causes temporal drifts over time, and generates the model
parameters for a target period, aided by the structures of computational graphs.
In comprehensive evaluations, we show that target models whose parameters are
generated by HyperGPA are up to 64.1% more accurate than baselines.

1 Introduction

Time series forecasting is one of the most fundamental problems in deep learning, ranging from
classical climate modeling [Brouwer et al., 2019, REN| [2021]] and stock price forecasting [[Ariyo
et al., 2014, |Vijh et al., 2020] to pandemic forecasting [Wu et al.| 2020, Wang et al.| 2021al]. Owing to
recent novel methods, the forecasting accuracy has been significantly enhanced over the past several
years [Kidger et al.| 2020, [Zhou et al.| 2021]]. However, this forecasting is challenging, especially
when temporal drifts, i.e., a data distribution changes over time by an underlying latent dynamics,
exist in time series data [Zhang et al.l 2013, |Oh et al.| 2019, |Li et al.| 2021}, [Kuznetsov and Mohri,
2014, [Kuznetsov et al.,[2015]]. For example, the number of COVID-19 patients fluctuates severely
over time, and a dynamics behind the daily patient numbers is governed by complicated factors.

To defend against the latent dynamics, we B

present a Hypernetwork Generating Bargmeters o train Time S oreast 5

in Advance (HyperGPA). In usual settings, to

forecast the future, one can train the parameters ==~~~ 7=~~~ o HaparGpd T T 77T

of time series models with data from all historical o= read | 777 forecasthidden [loenerate § Time Series]forecast 71
. Approach nput representation of Dy |~ | Model (il

periods. In contrast, HyperGPA reads some re-

cent periods and forecasts the parameters of other . .
neural networks (called target models) that are Figure 1: Comparison between vanilla and our
expected to work well in the future (cf. Fig.[T). ~ approaches. D; means the j-th period.

Our hypernetwork has two parts (L1 and L2). Firstly, L1 is responsible for discovering a hidden un-
derlying dynamics and forecasting a future period’s characteristic from recent periods. By integrating
recent graph neural networks (GNN5s) and neural controlled differential equations (NCDEs) [Kidger
et al.,[2020] into a single framework in L1, we construct a more general method which can process
regular and irregular time series, and M coupled time series simultaneously. As for L2, it generates

*The work is done when the author was in Yonsei University.

Workshop on Distribution Shifts, 37th Conference on Neural Information Processing Systems (NeurIPS 2023).

the future parameters of target models from the hidden representation of the future period forecast by
L1. The parameters are generated based on GNNs since target neural network models are typically
represented by computation graphs.

In our experiments, we test HyperGPA on 24 experimental settings constructed with 4 real-world
datasets and 6 target models. HyperGPA achieves the best forecasting performance against 6 baselines.
Futhermore, it can be successfully applied to various target models for time series forecasting, ranging
from RNNs and NODEs to NCDEs. To sum up, we make the following contributions:

1. We propose HyperGPA which forecasts the future parameters of target models from previous
periods. Aided by GNNs and NCDEs, HyperGPA can be extended to more general cases.

2. When generating the parameters, additional GNNs are employed for the computational graph of
the parameters in target models.

3. HyperGPA improves target models’ errors up to 64.1% against several baseline methods.

2 Related works

When source and target distributions are different, domain adaptation or generalization [Ben-David|
et al., 2007, Wang et al., 2021b] can be a solution. However, these methods cannot be used for time
series under temporal drifts, because the distribution (domain) of this data continuously changes.
Therefore, different strategies are needed to handle temporal drifts. AdaRNN focuses on commonali-
ties across all periods [Du et al., 2021]] for addressing temporal drifts. Also, RevIN is an normalization
layer which removes varying statistical properties from input [Kim et al.| [2022]. In spite of their
success under temporal drifts, their common limitation is that they learn a general time series model
applicable to all periods. Our HyperGPA has fundamentally different approaches in that it aims to
generate the optimal parameters of target models per period. Although Bai et al.| [2023] is similar
to our method, we have advantages in that HyperGPA predicts future parameters based on past data
whereas |Bai et al.| [2023]] utilized past parameters which might contain a larger variance than data.

3 Methods

3.1 Problem definition & notations

LetD; ; = {xk }I 3| be the i-th time series at the j-th (disjoint) period, where x¥ i € RAim ()
denotes the k-th observatlon For example, in the U.S. flu dataset, D; ; denotes time series of the i-th
state at the j-th year. Then, our task is to train a hypernetwork to i) understand coupled underlying
hidden dynamics causing the drifts, ii) predict the characteristics of {D;, N}f‘il (as a form of latent
vectors {h;, N}i]‘il), and iii) generate the parameters of target models, which works well for D; .

We represent the target model of the ¢-th time series as B;. 8; ; denotes the parameters of B; which
are generated by HyperGPA and expected to work well in the j-th period. K is an input period size
(cf. Fig. . The task of B; is to forecast the next s,,; observations given past s;,, observations. We
represent the adjacency matrix of the computation graph of 3; as A. We assume that all B; have the
same structure A. v; is the [-th vertex of A, which denotes the [-th parameter of B; (e.g., a weight or
a bias). L is the number of vertices in A.

3.2 Architecture of HyperGPA

Let Dippur = {{Di,; N 1M be the collected time
series data for K recent periods Then, L1 reads the
previous periods D;y,p,+ and forecasts {h;, N 1 the
hidden representation of the next period {D; n }2,. At
this step, we utilize the GNNs to discover relationships
among those M different correlated time series. As for
GNNs, we employ adaptive graph convolutional (AGC)
function to discover latent relationships. Therefore, our ., oo > Forocast <= > Gradientfow
method can be used even when the explicit relationships
among M time series are unknown, which improves the
applicability. We use the following method to combine NCDEs and AGC into a single framework:

HyperGPA

Figure 2: Overall workflow of HyperGPA

h';(1) = Ti(xi(1) (1
W(T) / G({I (1)} 06)dX, (2), @

where h; y = h’;(T") and h’;(¢) is an NCDE hidden vector of the i-th time series at integral time ¢.

Also, the final integral time 7" is the total time length of input for recent periods, 7' = Z na N x| Dijl.
T should be the same for all i-th time series because they should evolve together with a graph function
in NCDEs. {x;(1)}M, are feature vectors at initial time in Djy,ys, and {X;(t)}M are interpolated
lines of D;y,py:. Each I'; maps the initial feature vector x;(1) into the initial NCDE hidden vector
h';(1). Along the interpolated path, NCDEs generate the final NCDE hidden vector, h’;(T). Because
G incorporates the AGC function, all ¢-th time series are processed simultaneously through NCDEs
and help each other to forecast the next hidden representation.

Given h; n, we use an attention-based parameter generation method and GCNS to generate 92»7 NG

{z. v}z = ®(h; n309), 3)
{qé,N}lel = GNN({z; N }/21; A, Ocy), 4)
N ~1
91’,N = Attn(an, {oéey,c}g:b {ec}§:1)7 (5)

where Attn(Q, K, V) = softmax(%)V, where dj, is the size of key vectors. For parameter

generation, we use an attention-based method [[Vaswani et al., 2017|]. Query vectors {qi N, fora

parameter vertex v; are mapped from h; x by ® and GNNs with A. Values are candidate parameters
~1 .

{6.}C_, and each candidate has a key {6}, .}, € R%“™(®), where C is the number of candidate

parameters. After generating éz N, Bi equipped with it performs a seq-to-seq forecasting task in

n—1
k=n—=sin

n+sout 1

Din = {x}, ‘k 11b|, reading {x}, and forecasting {x},

Training procedure. Let {{D; ,7}N 1} ", be the entire training time series data. Then, we create

several mini-batches ({{D; ;}°Z - o kM ADi M), where K +1 < b < N — 1. We train

HyperGPA using mean squared error (MSE) between the forecasting results of the target model
and ground truth. In a training stage, HyperGPA is trained by two types of MSE: one is from B;

configured with 91»71, and the other is with éc* where ¢* denotes an index which has the maximum
attention score. With the second M SF, each candidate becomes meaningful (i.e. forecasts well).

4 Experiments

4.1 Experimental setup

Datasets. We evaluate our approach on four time series forecasting benchmarks ranging from pan-
demic and stock to climate datasets: Flu, Stock-US, Stock-China, and USHCN. In our evaluations,
we use the last and the second to the last window as a test and a validation set, respectively.

Target models & baselines. The target model is a time series model which performs a seq-to-seq
forecasting task, whereas the baseline is a way to generate or train the target model’s parameters.
For target models, we use six time series models: 1) LSTM [Hochreiter and Schmidhuber, [1997],
ii) GRU [Cho et al.| [2014], iii-iv) SeqToSeq equipped with LSTM and GRU [Sutskever et al., [2014]],
v) ODERNN [Rubanova et al., 2019], vi) NCDE [Kidger et al., [2020]. For baselines, there are four
categories: i) In a vanilla method, one can directly train the parameters of a target model without
hypernetworks or approaches addressing temporal drifts, denoted by Vanilla. ii) There are two
hypernetwork-based methods. HyperLSTM or HyperGRU [Ha et al.| [2016]] are for LSTM, GRU,
SeqToSeq(LSTM), and SeqToSeq(GRU), and ANODEV?2 [Zhang et al.,[2019]] is for ODERNN and
NCDE. iii) The third type is approaches to address the temporal drifts. RevIN [Kim et al.|[2022]] can be
used for various target models, whereas AdaLSTM and AdaGRU [Du et al.,[2021] are for LSTM and
GRU only, respectively. iv) Lastly, there is a statistical model, ARIMA [Hillmer and Tiao, |1982]].

Others. For validation and test metric, we use MSE. We run 5 times and report their mean and
standard deviation values. Refer to an appendix for additional information for experimental settings.

— Flu 05 Flu 0.08 Stock-China 14 LSTM
x ol Test A e HyperGPA e HyperGPA w — Hy’gfp‘* = “E‘tAhGeé
— o ¥ e] 0.4 . . s no no
15100 200 300 400 500 Vanilla 0.06 Vanilla >
Predicted Line(SeaToSeq(LSTM)) | 5 8oz
S crouna Tn) s =0
vanilla . 2
2{ - HypertsTh 0.2 £
x 1 RevIN 2
— HyperGPA — — oo ——o—o—=
0] 7 0.1 0.02 0.0 n
8 16 32 64 128 256 8 16 32 64 128 256 Flu Stock-US Stock-China

420 440 460 480 500 520
t

(a) Forecasting results

Hidden Size of Target model

Hidden Size of Target model

(b) Senstivity to the hidden size of target models

Data

(c) Ablation study to GNN

Figure 3: (a) Forecasting results when data is Flu and a target model is SeqToSeq (LSTM). (b)
Sensitivity to the hidden size of the two target models, GRU with Flu, and LSTM with Stock-China.
(c) Ablation with or without GNNs. To address different scale, min-max normalizations are applied
to MSE scores where the min and max value is 0.1, 1, respectively.

Table 1: Test MSE in forecasting tasks. The best result for each target model is in boldface and for
all target models with asterisk*. For ARMIA, we remove it to due to the worst performance.

Target | Mothod | Flu Stock-US Stock-China USHON | 2% | Method | Flu Stock-US Stock-China USHCN
Model Model

Vanilla 0.367 0.213 0.050 0.239 Vanilla 0.275 0.102 0.037 0.232

HyperLSTM | 0.582 0.751 0.103 0.249 HyperGRU | 0.520 0.462 0.075 0.244

LSTM RevIN 0.506 0.063 0.049 0.589 GRU RevIN 0.379 0.060 0.040 0.465

AdaLSTM [0.740 0.379 0.321 0.595 AdaGRU | 0.616 0.233 0.170 0.472

HyperGPA [0.118 0.050 0.026 0.221 HyperGPA |0.116 0.052 0.026 0.229

Vanilla 0.353 0.167 0.045 0.236 Vanilla 0.250 0.112 0.035 0.232

SeqToSeq | HyperLSTM | 0.559 0.643 0.097 0.243 | SeqToSeq | HyperGRU | 0.502 0.464 0.073 0.236

(LSTM) RevIN 0.345 0.061 0.044 0.585 (GRU) RevIN 0.291 0.060 0.039 0.519

HyperGPA [0.128 0.048™ 0.026 0.220* HyperGPA | 0.130 0.049 0.025* 0.222

Vanilla 0.361 0.200 0.056 0.235 Vanilla 0.387 0.130 0.040 0.234

ODERNN ANODEV2 [0.298 0.120 0.037 0.233 NCDE ANODEV2 | 0.821 0.244 0.141 0.483

RevIN 0.549 0.068 0.048 0.855 RevIN 0.439 0.060 0.040 0.713

HyperGPA 10.134 0.050 0.026 0.226 HyperGPA | 0.167 0.049 0.027 0.227

4.2 Experimental results

Forecasting results. In Table[T] HyperGPA consistently outperforms all baselines for all target
models. Also, in Fig.[3(a), HyperGPA captures temporal dynamics better than others. This shows
that the superiority of our methods in forecasting under temporal drifts.

Sensitivity to target model size. We compare Vanilla and HyperGPA, varying the hidden size of
target models — a larger hidden size leads to a larger target model size. As in Fig.[3(b), HyperGPA
shows stable errors regardless of the hidden size whereas Vanilla does not show reliable forecasting
accuracy when the target model size is small. This result shows that we can use small target models
with HyperGPA, which drastically reduces the overheads for maintaining target models in practice.

Ablating GNNs. We use AGC in L1 (Eq. (]Z[)) and GAT [Velickovic et al., 2018]] in L2 (Eq. @)) for
GNNG. In this paragraph, we remove AGC from L1 GAT from L2. Fig.[3(c) shows MSE for each
case where the target model is LSTM. HyperGPA denotes our full model; neither means our model
without AGC or GAT. In almost all cases, HyperGPA shows the lowest errors. Higher errors of no
AGC show that considering different correlated time series simultaneously helps HyperGPA to better
discover underlying dynamics. Also, no GAT has worse results, which means that the information of
a computation graph is needed for generating reliable parameters.

Other experiments. Additional experimental results and visualization is available in an appendix.

5 Conclusion

We presented HyperGPA to address the temporal drifts by generating the future parameters of a target
model. HyperGPA can be applied to various target models, showing the best performance in most
cases. Also, we showed that HyperGPA allows target models to be small in real-world applications,
which drastically reduces the maintenance overhead of target models. We leave testing HyperGPA on
irregular cases and more complicated target models, such as transformers, as future works.

Acknowledgements

Noseong Park is the corresponding author. This work was supported by an IITP grant funded by
the Korean government (MSIT) (No0.2020-0-01361, Artificial Intelligence Graduate School Program
(Yonsei University); No.2022-0-00113, Developing a Sustainable Collaborative Multi-modal Lifelong
Learning Framework).

References

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. Gru-ode-bayes: Continuous
modeling of sporadically-observed time series. In NeurIPS, 2019.

Deep learning-based weather prediction: A survey. Big Data Research, 23:100178, 2021. ISSN
2214-5796. doi: https://doi.org/10.1016/j.bdr.2020.100178.

Adebiyi A. Ariyo, Adewumi O. Adewumi, and Charles K. Ayo. Stock price prediction using the
arima model. In 2014 UKSim-AMSS 16th International Conference on Computer Modelling and
Simulation, pages 106-112, 2014. doi: 10.1109/UKSim.2014.67.

Mehar Vijh, Deeksha Chandola, Vinay Anand Tikkiwal, and Arun Kumar. Stock closing price
prediction using machine learning techniques. Procedia Computer Science, 2020. ISSN 1877-
0509. doi: https://doi.org/10.1016/j.procs.2020.03.326.

Neo Wu, Bradley Green, Xue Ben, and Shawn O’Banion. Deep transformer models for time series
forecasting: The influenza prevalence case, 2020.

Rui Wang, Danielle Maddix, Christos Faloutsos, Yuyang Wang, and Rose Yu. Bridging physics-
based and data-driven modeling for learning dynamical systems. In Ali Jadbabaie, John Lygeros,
George J. Pappas, Pablo A. Parrilo, Benjamin Recht, Claire J. Tomlin, and Melanie N.
Zeilinger, editors, Proceedings of the 3rd Conference on Learning for Dynamics and Control,
Proceedings of Machine Learning Research. PMLR, 07 — 08 June 2021a.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations
for irregular time series, 2020.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting, 2021.

Kun Zhang, Bernhard Scholkopf, Krikamol Muandet, and Zhikun Wang. Domain adaptation under
target and conditional shift. In ICML, 2013.

Jeeheh Oh, Jiaxuan Wang, Shengpu Tang, Michael W. Sjoding, and Jenna Wiens. Relaxed parameter
sharing: Effectively modeling time-varying relationships in clinical time-series. Proceedings of
Machine Learning Research, 106, 2019.

Zijian Li, Ruichu Cai, Tom Z. J. Fu, and Kun Zhang. Transferable time-series forecasting under
causal conditional shift. CoRR, abs/2111.03422, 2021.

Vitaly Kuznetsov and Mehryar Mohri. Generalization bounds for time series prediction with non-
stationary processes. In Peter Auer, Alexander Clark, Thomas Zeugmann, and Sandra Zilles, editors,
Algorithmic Learning Theory, pages 260-274, Cham, 2014. Springer International Publishing.
ISBN 978-3-319-11662-4.

Kuznetsov, Vitaly, Mohri, and Mehryar. Learning theory and algorithms for forecasting non-stationary
time series. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations
for domain adaptation. In B. Scholkopf, J. Platt, and T. Hoffman, editors, Advances in Neural
Information Processing Systems, volume 19. MIT Press, 2007.

Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yigiang Chen, Wenjun
Zeng, and Philip S. Yu. Generalizing to unseen domains: A survey on domain generalization,
2021b. URL https://arxiv.org/abs/2103.03097,

https://arxiv.org/abs/2103.03097

Yuntao Du, Jindong Wang, Wenjie Feng, Sinno Pan, Tao Qin, Renjun Xu, and Chongjun Wang.
Adarnn: Adaptive learning and forecasting of time series, 2021.

Taesung Kim, Jinhee Kim Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi Choi, and Jaegul Choo.
Reversible instance normalization for accurate time-series forecasting against distribution shift. In
Submitted to The Tenth International Conference on Learning Representations, 2022.

Guangji Bai, Chen Ling, and Liang Zhao. Temporal domain generalization with drift-aware dynamic
neural networks. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=sW0sRj4nT1in.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2017. URL https://arxiv.org/abs/
1706.03762.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9:1735-80,
12 1997. doi: 10.1162/neco.1997.9.8.1735.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation, 2014.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In NeurlIPS, pages 3104-3112, 2014.

Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud. Latent odes for irregularly-sampled time
series, 2019.

David Ha, Andrew Dai, and Quoc V. Le. Hypernetworks, 2016.

Tianjun Zhang, Zhewei Yao, Amir Gholami, Kurt Keutzer, Joseph Gonzalez, George Biros, and
Michael Mahoney. Anodev2: A coupled neural ode evolution framework, 2019.

S. C. Hillmer and G. C. Tiao. An arima-model-based approach to seasonal adjustment. Journal of the
American Statistical Association, 77(377):63-70, 1982. doi: 10.1080/01621459.1982.10477767.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks, 2018.

CDC. Centers for disease control and prevention. https://www.cdc.gov/, 1946.
Investing.com. Stock datasets. https://www.investing.com/, 2007.
USHCN. US Historical Climatology Network. https://www.ncei.noaa.gov, 1987.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks,
2017.

Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent
network for traffic forecasting, 2020.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting?, 2022.

https://openreview.net/forum?id=sWOsRj4nT1n
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://www.cdc.gov/
https://www.investing.com/
https://www.ncei.noaa.gov

Supplementary Material

HyperGRU

We define HyperGRU since only HyperLSTM is defined in|Ha et al.|[2016]. Let x; be a time series
observation at time ¢. GRU [Cho et al.,|2014] is defined as follows:

=o(Wext + Wphy_1 +07), (6)
=o(W2x; + Wih_1 + b7), @)
g = d(Wex; + 1, © Wh,_1 +b8), ®)
hy =(1—-2;)©g: +2z ©hyy,)

where o is a sigmoid function, ¢ is a hyperbolic tangent function, and ® is an element-wise multipli-
cation. Likewise, HyperGRU is defined as follows:

X =% ®hy_q, (10)
£, = o(LN(Wi%, + Wihe_1 + %)), (11)
= o(LN(WZ%, + Wih,_y + %)), (12)
= §(LN(WE%; +#, ©® Wght 1+ b8)), (13)
ﬁt = (1fzt)®gt+zt®ht_1, (14)

. - : h b
where @ means a concatenation. From hy, the embeddings of each gate a,"¥, a;"¥, a,”¥ are generated,

where y € {r, z, g}. In addition, those embeddings are transformed into d™¥, d3*¥, d¥:
y _ Wg:’yfltfl + bg’y, 15)
a; =W heq + 02, (16)
apy = WPVh,_ 0, an
ahv — Wh,yahy+bhy (18)
AV = WXYaly 4 by, (19)
dP¥ = WPvaby 4 pbw, (20)

Finally, Y, dY, df’y adjust the parameters of the main GRU and h; is generated:

= o(LN(dF" © WEx, +d" @ Wihy_y 4+ dPT)), 1)
z; = o(LN(d* © W2xy + df"* © WZh,_; + dP%)), (22)
g = S(LN(d"® © Wex; + 1, © di"8 © W, 1 +d;%)), (23)
hy=(1-2z)0g +2z ©hy. 24)

Reproducibility

We implement HyperGPA with Python v3.7 and PyTorch v1.8 and run our experiments on a ma-
chine equipped with Nvidia RTX Titan or 3090. The code is available in https://github.com/
leejaehoon2016/HyperGPA/tree/main,

Datasets. F1lu contains the number of flu patients, total patients, and providers who give information
about patients, in each of the 51 U.S. states, collected weekly by the Centers for Disease Control and
Prevention [CDC||1946], i.e., dim(x) = 3. The data collection period is 2011-2020. In HyperGPA,
we set the length of one window D; ; to a year; the length is 52 (or 53) weeks. For Flu, each target
time series model BB; reads recent s;,, = 10 observations and forecasts next s,,; = 2 observations.

We also use the daily historical stock prices of the U.S. and China (Stock-US and Stock-China)
collected by [Investing.com| [2007] over 20 months. Each dataset contains the opening, closing,
highest, and lowest stock prices per day, i.e., dim(x) = 4. We choose the top-30 companies with the
highest market capitalization. For those two datasets, we set the window length to two months. Note

https://github.com/leejaehoon2016/HyperGPA/tree/main
https://github.com/leejaehoon2016/HyperGPA/tree/main

Table 2: Hyperparameters for HyperGPA Table 3: Hyperparameters for Vanilla

Data Target Model [dim(h”) dim(z) C X Data Target Model | dim(hg) ng
LSTM 128 2048 3 0.1 LSTM 64 1

GRU 128 1024 3 0.01 GRU 64 1

Flu SeqToSeq(LSTM) 128 1024 10 0.1 Flu SeqToSeq (LSTM) 64 1
SeqToSeq (GRU) 128 2048 3 0.01 SeqToSeq (GRU) 64 1

ODERNN 128 2048 10 0.0 ODERNN 32 1

NCDE 128 512 3 0.1 NCDE 32 3

LSTM 128 512 3 00 LSTM 64 1

GRU 128 512 10 0.01 GRU 64 1
SeqToSeq(LSTM) 128 512 3 0.1 SeqToSeq (LSTM) 64 1

Stock-US goqToSeq(GRUY | 128 1024 5 00 Stock-US geqToSeq (GRU) | 64 1
ODERNN 128 512 10 0.01 ODERNN 64 3

NCDE 128 512 10 0.0 NCDE 16 2

LSTM 128 512 3 0.1 LSTM 64 1

GRU 128 512 10 0.0 GRU 16 1

. SeqToSeq(LSTM) 128 2048 5 0.1 . SeqToSeq (LSTM) 64 1
Stock-China SeqToSeq(GRU) 128 512 3 0.01 Stock-China SeqToSeq (GRU) 64 1
ODERNN 128 1024 3 0.0 ODERNN 32 1

NCDE 128 1024 5 00 NCDE 64 2

LSTM 128 512 48 0.01 LSTM 32 1

GRU 32 512 48 0.1 GRU 16 1
SeqToSeq(LSTM) 32 512 48 0.01 SeqToSeq (LSTM) 16 1

USHCN SeqToSeq(GRU) 128 512 48 0.1 USHCN SeqToSeq (GRU) 32 1
ODERNN 64 512 48 0.1 ODERNN 64 2

NCDE 32 512 48 0.01 NCDE 32 3

that the stock prices for those companies are interconnected, i.e., they are loosely-coupled data. s;,
and s, for stock datasets are 10 and 4, respectively.

USHCN is a climate dataset that contains monthly average, minimum, and maximum temperature and
precipitation in the U.S. states from the U.S. historical climatology network [USHCN; [1987]], i.e.,
dim(x) = 4. The collection period is 1981-2012. The length of one window is a year, 12 months.
We set s;,, and s, to 10 and 2.

After making the input and output pairs of target models like training procedure in Sec. Flu
has 20K training pairs, 3K validation pairs, and 3K test pairs. Both Stock-US and Stock-China
have 10K training pairs, 1K validation pairs, and 1K test pairs. USHCN has 17K training pairs, 0.5K
validation pairs, and 0.5K test pairs.

Hyperparameters in baselines. In this section, we show the best hyperparameters for our baselines
for reproducibility in Tables [2to[8} For our baselines, we have two hyperparameters for the target
models, a hidden size and the number of layers. The hidden size is in {16, 32,64} and the number
of layers is in {1,2,3}. We set the learning rate to 10~3 and the coefficient of Lo regularization
term to 1075, The size of mini-batch is 256. For Vanilla, there is no additional hyperparameter.
For HyperLSTM/GRU, there are 2 additional hyperparameters, dim fl) and dim(a), that are the
dimensionality of h and a, defined in Ha et al|[2016] or Appendix |5 As dim(a) < dim(h) <
dim(hg) recommended in |[Ha et al. [2016], dim(fl) is in {32,16, 8}, and dim(a) is in {16, 8,4}.
For ANODEV2, we configure the baseline as in [Zhang et al.| [2019] and RevIN is just adding an
adaptation layer, so additional hyperparameters are not needed. AdaGRU/LSTM has an additional
hyperparameter, A which is the coefficient of a drift-related loss. In an ARIMA case, there are 3
hyperparameters. p, d, and g denote the autoregressive, differences, and moving average components,
respectively. pisin {1,2,3}, din {0,1,2}, ¢ in {1,2,3}.

Hyperparameters in HyperGPA. For HyperGPA, the learning rate is set to 1072, the coefficient of
L, regularization term to 10~°, and the size of mini-batch to 10*. The reason why the size of the
mini-batch for HyperGPA is much larger than that for the baselines is that i) HyperGPA generates the
parameters of all target models, and ii) all target models are trained simultaneously. Because there
are about 30 to 50 target models, the size of mini-batch for one target model is about 256. Each of
dim(hg) and ng in HyperGPA is set to 16 and 1, respectively.

The hidden size and the number of layers for I" in Eq. |I|are set to 32 and 2, respectively. The hidden
size of NCDEs, dim(h’) in Eq. (), is in {32, 64, 128}. In AGC function, the node embedding size
and the output size are set to 32. ® is a one-layer fully connected layer without bias. The size of initial
query vectors in Eq. 3] dim(z), is in {512,1024,2048}. In Eq. (@), GAT has three hyperparameters:
1) number of heads, ii) depth, and iii) hidden size. The number of heads is set to 4, the depth to

Table 5: Hyperparameters for RevIN

Data Target Model dim(hg) ng
LSTM 16 3
Table 4: Hyperparameters for HyperLSTM/GRU Sout SGRU s :g f
. . — eqToSeq
Data Target Model |dim(hg) np dim(a) dim(h) Flu SeqToSeq (GRU) 3 1
LSTM 64 1 16 8 ODERNN 32 3
Flu GRU 32 1 8 8 NCDE 64 3
SeqToSeq (LSTM) 64 1 4 8 LSTM 16 1
SeqToSeq (GRU) 16 1 4 16 GRU 16 1
LSTM 32 1 4 16 _ SeqToSeq (LSTM) 16 1
Stock.US GRU 6 1 16 8 Stock-US goqToSeq (GRU) | 16 1
SeqToSeq (LSTM) 32 1 8 8 ODERNN 32 2
SeqToSeq (GRU) 64 1 4 8 NCDE 16 3
LSTHM 16 I Z 8 LSTM 32 I
Stock-Chi GRU 16 1 4 8 GRU 16 2
OCR-LIINA goqToSeq (LSTM) 16 1 4 8 Stock.China SedToSeq (LSTID 16 1
SeqToSeq (GRU) 32 1 4 8 SeqToSeq (GRU) 16 1
LSTM 32 1 Z 16 ODERNN 64 3
GRU 64 1 4 8 NCDE 32 3
USHCN goqToSeq (LSTM) | 64 1 4 2 LSTN W) T
SeqToSeq (GRU) 64 1 4 8 GRU 16 3
SeqToSeq (LSTM) 64 1
USHCN SeqToSeq (GRU) 32 3
ODERNN 64 2
NCDE 64 3
Table 6: Hyperparameters for ANODEV?2 Table 7: Hyperparameters for AdaLSTM/GRU
Data Target Model | dim(hg) ng Data Target Model [dim(hg) ny A
ODERNN 64 3 LSTM 64 1 10
Flu NCDE 6 3 Flu GRU 64 1 10
ODERNN 64 3 LSTH 64 T 1.0
Stock-US NCDE 64 3 Stock-US GRU 64 1 1.0
: ODERNN 64 2) LSTH 64 T 1.0
Stock-China NCDE 16) Stock-China GRU 64 1 05
ODERNN 64 3 LSTM 64 T 1.0
USHCN NCDE 23 USHCN GRU 3 1 1.0

Table 8: Hyperparameters for ARIMA

Data pdq
Flu 211
Stock-US |1 1 2
Stock-China|l 1 1
USHCN 112

3, and the hidden size to 128. In an attention-based generation method, the number of candidates
model C'is in {3, 5, 10, 20, 48}, and the regularization coefficient of M SE,, A, is in {0,0.1,0.01}.
For input window size K, we use K = 2 in Flu, Stock-China, and Stock-China, and K = 3
in USHCN. Note that all baselines are trained separately for each target model, whereas our method,
which internally has a shared multi-task layer, is trained collectively and generates multiple target
models’ parameters simultaneously.

Additional Experiments about Design Choice

Attention-based method or simple mapping method. Fig. @[a,b) show the advantages of our
attention-based parameter generation method, compared to the simple mapping method where
h; n are directly mapped into the parameters of a target model through linear layers. According
to Fig. @), as the hidden size of target models increases, the required number of parameters of
HyperGPA increases more rapidly in the simple mapping method than in the attention-based method.
In addition, our attention-based method is more robust to overfitting as in Fig. d{b).

Period size K. Fig.[5|shows sensitivity analyses w.r.t. the input period size K. As shown, K < 3
produces the best outcomes. Feeding too much information leads to sub-optimal outcomes. For this
reason, we use 2 or 3 as K.

Flu Train MSE Test MSE

21 .] . - . . e .
o o Attention BN Attention Mapping BN Attention Mapping

R » Mappin g &
£ 10 > pping Q 0.04 0.15
g /
i
Y 0.02 #—4 L1 & on \) 3 %
~ 16 6“'\ 0‘3 9“'\ e‘*\’ @“ ® e““ o‘?* s““ e@) @\‘\00
"9
15 «o Q »\o 0\
8 16 32 64 128 256 512 ™ o e e
Hidden Size of Target model Target Model Target Model
(a) Required model size (b) Train and Test MSE

Figure 4: (a) The required model size, and (b) Train and test MSE of the two possible parameter
generation methods in Flu. ‘Attention” means our full model.

Stock-US NCDE SeqToSeq (LSTM)
0.070 0.35 0.16
o LSTM w 0.30 mm AGC W o.14 mm AGC
0065{ ¢ GRU = - GCN =0.12 GCN
SeqToSeq(LSTM) - 0.25 B 0.10
W 0.060 e SeqToSeq(GRU) Ag 0.20 B GAT g 0.08 BN GAT
= . ©0.15 =Y
0.06
0.055{ gollo §0.04
0.050 = 0.05 Z0.02
1 3 3 " 3 3 0.00 Flu Stock-China Stock-US 0.00 Flu Stock-US Stock-China
K Data Data

Figure 5: Sensitivity to the input period size Figure 6: Changing the type of graph functions on the
K parameter generating layer (L2)

Type of graph function in L2. Fig. [f|shows the results by varying the graph function of the parameter
generating layer (L2) in Eq. (@).We test with a graph attention neural network (GAT)
2018]], a graph convolutional network (GCN) [Kipf and Welling| [2017] and an adaptive graph
convolutional network (AGC) 2020]. In most cases, GAT shows reasonable performance.
Therefore, we use GAT as our GNNs in L2.

Regularization coefficient of M SF5, A. As opoeSgroSeq(LSTM) NCDE
we mentioned before, we use the two types of
. . . A (4] N
MSE, one of which is measured with 8; n ="* o
. . ~1) :
and the other is with 8, . When the first 12750 o601 of1 01 10 %1% 0,601 081 01 10

and second M SE are denoted as MSE; and o)

M SEs,, respectively, our final training loss is Figure 7: Sensitivity to the coefficient of the sec-
MSE; + AMSEs. In Fig. m we conduct sensi- ond MSE, A

tivity studies to A with HyperGPA whose target

model is SeqToSeq (LSTM) or NCDE in Flu. The performance of HyperGPA improves as) increases
from 0 to some points. However, when \ gets too large, MSE scores deteriorate. Therefore, we use
{0,0.1,0.01} as the candidate hyperparameters of \.

Additional Experimental Results

Full experimental results. Full experimental results are shown from Table. [9] to Table. [I2} Val. MSE
is the MSE value in validation data, which is the criterion for selecting the best models. We also add
a simple linear model as baselines because shows that the simple linear model
outperform complex neural networks, such as transformers.

Forecasting performance in more complex scenarios. To examine the performance of HyperGPA
more complex scenarios, we increase the dimensionality of input time series. Because it is hard
to find time-series datasets with a large number of features which are appropriate for our task, we
increase the number of input length for target models, s;,,. s;, 1S set to twice the originally used s;,,
in each dataset. We examine the performance of HyperGPA, Vanilla, and RevIN for this task where a
target model is GRU. Table. [I3]shows that HyperGPA still performs best, compared to baselines.

10

Table 9: Experimental results for Flu

Target Model Generation Way | Val.MSE PCC R? Exp. MSE MAE
Linear 0.126 0.944 0.870 0.873 0.221 0.231

ARIMA 0.502+0.000 0.695+0.000 0.152+0.000 0.168+0.000 1.091+0.000 0.579+0.000

Vanilla 0.174+0.004 0.910+0.003 0.718+0.023 0.730+0.021 0.367+0.016 0.299+0.008

HyperLSTM | 0.236+0.008 0.852+0.005 0.434+0.038 0.471+0.032 0.582+0.019 0.388+0.010

LSTM RevIN 0.230£0.022 0.917£0.010 0.842+0.017 0.844+0.018 0.506£0.097 0.256+0.007

AdaLSTM 0.516£0.047 0.814+0.019 0.367£0.099 0.478+0.075 0.740£0.075 0.552+0.036
HyperGPA 0.068+0.002 0.971£0.001 0.933£0.003 0.933+0.004 0.118+0.004 0.141+0.002

Vanilla 0.130£0.003 0.933£0.002 0.807£0.006 0.813£0.006 0.275£0.006 0.250£0.003
HyperGRU 0.207+0.016 0.863+0.010 0.585£0.035 0.601+0.035 0.520+0.033 0.361+0.011
GRU RevIN 0.199+£0.015 0.938+0.004 0.880+0.007 0.881+0.008 0.379+0.039 0.226+0.007

AdaGRU 0.405£0.031 0.849+0.009 0.542+0.048 0.613£0.056 0.616+0.035 0.510+0.018
HyperGPA 0.066+0.002 0.971£0.001 0.938+0.003 0.939+0.003 0.116+0.004 0.140+0.003

Vanilla 0.151£0.003 0.914£0.002 0.733£0.004 0.747£0.004 0.353£0.005 0.290£0.004

SeqToSeq(LSTM) HyperLSTM | 0.211£0.015 0.855+0.007 0.502+0.035 0.527£0.032 0.559+0.021 0.372+0.007
RevIN 0.193£0.007 0.944+0.004 0.888+0.006 0.890+0.006 0.345+0.021 0.219+0.005

HyperGPA 0.070£0.004 0.969+0.001 0.932+0.006 0.932+0.006 0.128+0.006 0.143+0.004

Vanilla 0.114£0.004 0.939£0.001 0.828+0.006 0.834£0.005 0.250£0.005 0.237£0.004

SeqToSeq (GRU) HyperGRU 0.191+0.008 0.872+0.007 0.574£0.028 0.592+0.028 0.502+0.023 0.347+0.009
RevIN 0.189+0.010 0.954+0.003 0.905£0.006 0.908+0.006 0.291£0.032 0.204+0.005

HyperGPA 0.066+£0.002 0.968+0.003 0.926+0.012 0.926+0.012 0.130+0.014 0.142+0.004

Vanilla 0.163£0.011 0.907£0.010 0.761£0.030 0.767£0.027 0.361£0.039 0.301£0.017

ODERNN ANODEV2 0.1394£0.003 0.926+0.004 0.790£0.007 0.796+0.007 0.298+0.014 0.256+0.009
RevIN 0.2724£0.004 0.905£0.008 0.817+£0.011 0.820£0.011 0.549+0.226 0.266+0.014

HyperGPA 0.075£0.003 0.967£0.004 0.931£0.007 0.932+0.007 0.134£0.016 0.145+0.004

Vanilla 0.137£0.019 0.900£0.011 0.775£0.015 0.781£0.016 0.387£0.042 0.296+0.011

NCDE ANODEV2 0.457£0.002 0.778+0.004 0.041£0.017 0.077£0.018 0.821x0.011 0.480£0.005
RevIN 0.259+0.012 0.919+0.003 0.843£0.005 0.848+0.005 0.439+0.022 0.251£0.004

HyperGPA 0.071£0.003 0.959+0.004 0.913£0.009 0.914£0.009 0.167£0.020 0.164+0.008

Visualization. Fig. [8| shows all train, test (ground-truth) and forecast lines by various baselines
and HyperGPA, and Fig. 0] shows MSE values over time. In almost all cases, HyperGPA follows
the ground truth line more accurately than others and achieves the lowest MSE across all times. In
predicted and MSE lines, lines related to HyperGPA are solid, lines related to baseline are dashed,
and lines related to ground truth are dotted. We do not include the case of ARIMA because ARIMA
has the worst performance in Flu, Stock-US, and Stock-China.

11

Table 10: Experimental results for Stock-US

Target Model Generation Way | Val.MSE PCC R? Exp. MSE MAE
Linear 0.041 0.967 0.928 0.928 0.056 0.173
ARIMA 0.205+0.000 0.548+0.000 -0.781+0.000 -0.748+0.000 0.620+0.000 0.609+0.000
Vanilla 0.051+0.001 0.902+0.005 0.569+0.029 0.641+0.022 0.213+0.010 0.307+0.006
HyperLSTM | 0.089+0.005 0.605+£0.071 -1.045+0.340 -0.491+0.248 0.751+0.103 0.586+0.038
LSTM RevIN 0.045+0.000 0.966+0.000 0.930+0.000 0.933+0.000 0.063+0.001 0.183+0.001
AdaLSTM 0.257+0.017 0.787+0.068 0.400+0.231 0.475+0.209 0.379+0.102 0.483+0.062
HyperGPA 0.034+0.000 0.973+0.000 0.930+0.005 0.933+£0.004 0.050+0.002 0.161+0.004
Vanilla 0.043+0.001 0.952+0.002 0.830+0.007 0.848+0.006 0.102+0.003 0.226+0.004
HyperGRU | 0.07320.007 0.772+0.030 -0.167+0.113 0.103+0.086 0.462+0.046 0.453+0.015
GRU RevIN 0.044£0.000 0.967+0.000 0.933+0.001 0.935+0.000 0.060+0.001 0.178+0.000
AdaGRU 0.176+0.021 0.875+0.028 0.645+0.073 0.693+0.073 0.233+£0.043 0.377+0.045
HyperGPA 0.034+0.000 0.972+0.001 0.927+0.005 0.930+0.004 0.052+0.002 0.164+0.004
Vanilla 0.042+0.001 0.926+0.003 0.688+0.014 0.744+0.011 0.167+0.005 0.274+0.004
SeqToSeq(LSTH) HyperLSTM | 0.077£0.004 0.674+0.052 -0.604+0.181 -0.173+0.120 0.643+0.084 0.528+0.030
RevIN 0.046+0.001 0.967+0.000 0.932+0.002 0.935+0.001 0.061+0.001 0.180+0.002
HyperGPA 0.034+0.000 0.973+0.001 0.936+0.002 0.938+0.002 0.048+0.001 0.157+0.002
Vanilla 0.039+0.000 0.948+0.003 0.811+0.012 0.835+0.010 0.112+0.006 0.229+0.003
SeqToSeq(GRU) HyperGRU | 0.067+0.002 0.769+0.057 -0.121+0.235 0.141+0.175 0.464+0.092 0.444+0.036
RevIN 0.044+0.001 0.967+0.001 0.933+0.002 0.935+0.002 0.060+0.002 0.177+0.002
HyperGPA 0.034+0.000 0.973+0.001 0.935+0.007 0.938+0.005 0.049+0.003 0.159+0.006
Vanilla 0.053+0.002 0.894+0.014 0.659+0.028 0.697+0.023 0.200+0.015 0.300+0.008
ODERNN ANODEV2 0.043+0.001 0.940+0.009 0.801+0.024 0.822+0.023 0.120+0.013 0.236+0.008
RevIN 0.048+0.001 0.964+0.000 0.926+0.001 0.929+0.001 0.068+0.001 0.188+0.001
HyperGPA 0.034+0.000 0.972+0.000 0.931+0.001 0.933+0.001 0.050+0.001 0.162+0.002
Vanilla 0.045+0.001 0.929+0.007 0.805+0.029 0.822+0.024 0.130+0.015 0.247+0.010
NCDE ANODEV2 0.152+0.000 0.850+0.001 0.551+0.003 0.555+0.003 0.244+0.002 0.376+0.002
RevIN 0.044+0.001 0.967+0.000 0.934+0.001 0.935+0.000 0.060+0.001 0.177+0.001
HyperGPA 0.034+0.000 0.973+0.001 0.934+0.004 0.936+0.003 0.049+0.002 0.159+0.003
Table 11: Experimental results for Stock-China
Target Model Generation Way | Val. MSE PCC R? Exp. MSE MAE
Linear 0.068 0.984 0.966 0.967 0.032 0.130
ARIMA 0.478+0.000 0.840+0.000 0.570+0.000 0.682+0.000 0.439+0.000 0.503+0.000
Vanilla 0.084+0.002 0.975+0.000 0.945+0.001 0.946+0.001 0.050+0.001 0.160+0.002
HyperLSTM | 0.188+0.019 0.949+0.003 0.879+0.009 0.881+0.008 0.103+0.007 0.226+0.004
LSTM RevIN 0.081+0.001 0.977+0.001 0.954+0.002 0.955+0.002 0.049+0.002 0.152+0.002
AdaLSTM 0.359+0.068 0.834+0.037 0.565£0.183 0.571+0.180 0.321+0.064 0.460+0.039
HyperGPA 0.059+0.001 0.987+0.000 0.972+0.001 0.972+0.001 0.026+0.001 0.113+0.002
Vanilla 0.089+0.003 0.982+0.001 0.959+0.002 0.960+0.002 0.037+0.002 0.138+0.003
HyperGRU | 0.156£0.021 0.963+0.002 0.915+0.003 0.917£0.003 0.075+0.002 0.194+0.004
GRU RevIN 0.081+0.000 0.981+0.000 0.962+0.000 0.962+0.000 0.040+0.000 0.143+0.001
AdaGRU 0.199+0.015 0.913+0.009 0.783+0.032 0.786+0.032 0.170+0.017 0.327+0.023
HyperGPA 0.058+0.002 0.987+0.000 0.972+0.001 0.972+0.001 0.026+0.001 0.114+0.003
Vanilla 0.084+0.002 0.978+0.001 0.951+0.002 0.952+0.002 0.045+0.001 0.151+0.002
SeqToSeq(LSTM) HyperLSTM | 0.163£0.017 0.952+0.023 0.889+0.054 0.892+0.051 0.097+0.045 0.205+0.022
RevIN 0.079+0.001 0.979+0.001 0.958+0.002 0.959+0.002 0.044+0.002 0.144+0.002
HyperGPA 0.058+0.001 0.987+0.000 0.973+0.001 0.973+0.001 0.026+0.001 0.112+0.001
Vanilla 0.072+0.002 0.983+0.000 0.963+0.001 0.964+0.001 0.035+0.001 0.131+0.002
SeqToSeq (GRU) HyperGRU | 0.150+0.018 0.964+0.004 0.920+0.009 0.922+0.008 0.073+0.008 0.187+0.007
RevIN 0.078+0.001 0.981+0.001 0.962+0.002 0.963+0.002 0.039+0.003 0.138+0.003
HyperGPA 0.058+0.001 0.988+0.000 0.973+0.001 0.973+0.001 0.025+0.000 0.112+0.001
Vanilla 0.092+0.013 0.972+0.004 0.938+0.009 0.939+0.009 0.056+0.007 0.171+0.013
ODERNN ANODEV?2 0.079+£0.002 0.982+0.001 0.961+0.001 0.962+0.001 0.037+0.001 0.139+0.002
RevIN 0.086+0.001 0.978+0.001 0.955£0.002 0.956+0.002 0.048+0.002 0.154+0.002
HyperGPA 0.058+0.001 0.987+0.000 0.972+0.001 0.972+0.001 0.026+0.001 0.115+0.003
Vanilla 0.081+0.004 0.980+0.001 0.959+0.002 0.960+0.002 0.040+0.001 0.142+0.001
NCDE ANODEV?2 0.335+0.001 0.929+0.001 0.832+0.003 0.838+0.003 0.141+0.001 0.292+0.002
RevIN 0.088+0.001 0.981+0.000 0.962+0.000 0.962+0.000 0.040+0.001 0.142+0.001
HyperGPA 0.060+0.003 0.987+0.001 0.971£0.001 0.971+0.001 0.027+0.001 0.116+0.003

12

Table 12: Experimental results for USHCN

Target Model Generation Way | Val.MSE PCC R? Exp. MSE MAE
Linear 0.322 0.824 0.071 0.174 0.244 0.347
ARIMA 0.27740.000 0.838+0.000 0.284+0.001 0.394+0.001 0.232+0.000 0.313+0.000

Vanilla 0.298+0.001 0.84120.001 0.152+0.026 0.270£0.021 0.239+0.003 0.345:+0.004
HyperLSTM | 0.320+0.003 0.82420.003 0.075£0.009 0.191+0.009 0.249+0.004 0.350+0.003
LSTM RevIN 0.779£0.029 0.693£0.009 -0.019+0.054 0.225+0.035 0.589+0.015 0.610+0.010
AdaLSTM | 0.679£0.013 0.594£0.015 -0.533+0.259 -0.327£0.222 0.595+0.026 0.613+0.012
HyperGPA | 0.299£0.003 0.844+0.002 0.127+0.040 0.245+0.040 0.22120.003 0.313+0.009
Vanilla 0.298+0.001 0.840£0.001 0.15620.014 0.264+0.012 0.232+0.001 0.334+0.001
HyperGRU | 0.313+0.002 0.832+0.002 0.12420.028 0.239+0.022 0.244+0.004 0.3460.005
GRU RevIN 0.599+0.016 0.699+0.008 0.057+0.070 0.178+0.050 0.465+0.007 0.522+0.006
AdaGRU 0.545£0.017 0.676x0.018 -0.171£0.310 -0.035+0.269 0.472+0.026 0.532+0.014
HyperGPA | 0.299+0.003 0.841+0.003 0.142+0.025 0.266+0.009 0.229+0.004 0.323+0.003
Vanilla 0.299+0.001 0.835+0.002 0.157+0.015 0.261£0.011 0.236+0.003 0.335:0.004
HyperLSTM | 0.316+0.002 0.82620.003 0.141£0.013 0.244+0.014 0.243+0.004 0.343+0.004
SeqToSeq(LSTM)
RevIN 0.730£0.023 0.682+0.016 -0.059+0.075 0.143£0.052 0.585+0.014 0.600+0.009
HyperGPA | 0.296+0.005 0.843+0.002 0.242+0.043 0.34420.043 0.220+0.007 0.307+0.006
Vanilla 0.294+0.001 0.839+0.001 0.149+0.016 0.256+0.013 0.232+0.001 0.335+0.002
SeqToSeq (GRU) HyperGRU | 0.308+0.003 0.831£0.001 0.169+0.013 0.265+0.014 0.236+0.003 0.336+0.003
RevIN 0.650£0.007 0.678+0.003 -0.087+0.056 0.090+0.047 0.519£0.006 0.563+0.001
HyperGPA 0.3024£0.002 0.844+0.005 0.182+0.083 0.287+0.083 0.222+0.004 0.315+0.006
Vanilla 0.300+0.001 0.840£0.001 0.192+0.023 0.297+0.018 0.235+0.004 0.339+0.008
ODERNN ANODEV2 | 0.296+0.001 0.842+0.001 0.181+0.029 0.291+0.023 0.233+0.004 0.3370.006
RevIN 1.162£0.066 0.529+0.021 -0.784£0.248 -0.327+0.180 0.855+0.046 0.757+0.019
HyperGPA 0.291£0.001 0.840+0.004 0.182+0.077 0.286+0.078 0.226+0.007 0.319+0.011
Vanilla 0.304+0.002 0.829+0.002 0.188+0.038 0.294+0.031 0.234+0.004 0.322:+0.002
NCDE ANODEV2 | 0.754+0.001 0.61620.001 -2.257+0.065 -1.924+0.056 0.483+0.002 0.554+0.001
RevIN 1.052£0.014 0.467+0.015 -0.920£0.086 -0.724+0.087 0.713+0.008 0.687+0.006
HyperGPA | 0.305£0.008 0.837+0.003 0.134+0.062 0.246£0.073 0.227+0.004 0.316+0.006
Table 13: Experimental results in complex scenarios with large s;,,
Dataset Generation Way Val. MSE PCC R? Exp. MSE MAE
Vanilla 0.126 0.933 0.803 0.811 0.277 0.253
Flu RevIN 0.389 0.863 0.733 0.746 0.759 0.358
HyperGPA 0.066 0.971 0.934 0.934 0.118 0.141
Vanilla 0.045 0.952 0.822 0.841 0.104 0.231
Stock-US RevIN 0.066 0.952 0.900 0.905 0.092 0.227
HyperGPA 0.035 0.972 0.921 0.926 0.054 0.170
Vanilla 0.091 0.981 0.956 0.957 0.040 0.142
Stock-China RevIN 0.140 0.968 0.934 0.937 0.070 0.182
HyperGPA 0.060 0.987 0.971 0.972 0.026 0.115

13

Flu Flu Flu

101 — Train 05— Train P 1] — Train
x 0.5 Test M x 0.0 Test s x Test
ol MV ' os| WM ° M\\ﬂ\ff\f\f\f
-05 - -1
[100 200 300 400 500 [100 200 300 400 500 0 100 200 300 400 500
Predicted Line(LSTM) Predicted Line(GRU) Predicted Line(SeqToSeq(LSTM))
1.00 Ground Truth 15 Ground Truth | Ground Truth i
0751 Vanilla ~--= Vanilla 31 - Vanilla i
0.50 HyperLSTM 10 HyperGRU HyperLSTM R
0.25{ - RevIN 0.5{ === RevIN 2] --= RevIN [N
X 0.00{ ----- AdaLSTM 0.0] “ AdaGRU X | — HyperGPA
~0.25] — HyperGPA %1 — Hypercpa 1
~0.50 W -05 o
-075 -1.0 i
-1.00 i
420 440 420 220 260 480 500 520 420 220 460 480 500 520
t t
Flu Stock-US Stock-US
0.0] — Train) 1] — Train . 1| — Train
X —05 Test x 2 Testw % 0 Test
-1
-1.0 -2
[100 200 300 400 500 [100 200 300 400 0 100 200 300 400
Predicted Line(SeqToSeq(GRU)) Predicted Line(SeqToSeq(LSTM)) Predicted Line(SeqToSeq(GRU))
0.6 Ground Truth A% 15 Ground Truth g 16 Ground Truth
0.4] -~ Vanilla I --- Vanilla < I Vanilla e
HyperGRU [X 1.0 HyperLSTM 1.4 HyperGRU AAVNIN
021 . ReviN ARG == RevIN 12l ReviN .
X 0.0 — HyperGPA X 0.5] — HyperGPA X 51— HyperGPA | <
~SA. o 1.0 -
-02 » v, rm‘“‘"’“ 0.0
—0.4 08
-0.6 -05 0.6
420 480 500 520 340 350 360 370 380 390 400 410 340 350 360 370 380 390 400 410
t t t
Stock-US Stock-US Stock-China
1| — Train - 1] — Train 1] — Train
x 0 Test X o Test X o Test
,; . o
0 100 200 300 400 [100 200 300 400 0 50 100 150 200 250 300 350 400
Predicted Line(ODERNN) Predicted Line(NCDE) Predicted Line(LSTM)
- 18 ;
14 Ground Truth i P Ground Truth 18 Ground Truth A
13 - Vanilla . Vanilla . N 1.6 Vanilla
12 ANODEV2 16 ANODEV2 A ”\ e 1.4 HyperLSTM
I ReviN - 151 . ReviN . g \, 12
X 11| HyperGPA X 141 HyperGPA X0
10 4 13 o 08
0.9 7, i 12 06
0.8 s 4 11 -
- v 10 0.4
340 350 360 370 380 350 400 4i0 330 350 360 370 380 390 460 410 330 340 350 360 370 380 390 400
t t t
Stock-China , Stock-China Stock-China
4l — Train 1 — Train 1] — Train
x 2 Test X 0 Test x 0 Test
0 -1 -1
-2
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Predicted Line(GRU) Predicted Line(ODERNN) Predicted Line(NCDE)
_06 Ground Truth -12 Ground Truth 1 Ground Truth
————— Vanilla N _14] o Vanila] - vanilla
HyperGRU ’ ANODEV2 A 4 10 ANODEV2
RevIN V -1.6] —- VI Y N A AN e A S N I RevIN
AdaGRU | b X 18 X 0.8] — HyperGPA
_1.2] — HyperPA ¥ A) i
J P -2.0 0.6
147 —22 oL
330 340 350 360 370 380 390 400 400 350 360 370 380 390 400
t t t

Figure 8: Forecasting visualizations of the baselines and HyperGPA

14

Flu / LSTM Flu / GRU Flu / SeqToSeq(LSTM)

51 - vanila || Vanilla N Vanilla
HyperLSTM H 2.5 HyperGRU ‘ 3.0 HyperLSTM
o RevIN N RevIN N I I RevIN
————— AdaLSTM i 2.0] - AdaGRU Vi 25| — HyperGPA
—— HyperGPA i —— HyperGPA i 20
w i w
%) %)
= s15
2
1.0
1
0.5
0 0.0
0 20 40 60 80 100 0 20 40 60 80 100
t t
Flu / SeqToSeq(GRU) Stock-US / SeqToSeq(LSTM) Stock-US / SeqToSeq(GRU)
30l Vanilla 1.01(—— Vanilla 081 Vanilla
: HyperGRU HyperLSTM 0.7 HyperGRU
25] RevIN 0.8] - RevIN - RevIN
—— HyperGPA —— HyperGPA 061 — HyperGPA
2.0]
w
L1s
1.0
0.5
0.0
0 20 40 60 80 100 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
t t t
Stock-US / ODERNN Stock-US / NCDE 07 Stock-China / LSTM
o030] vanilla 4 Vanilla | — Vanilla
: ANODEV2 0.4 ANODEV2 HyperLSTM
0.25] 7 ReviN v iAo [e RevIN RevIN
) —— HyperGPA —— HyperGPA AdalLST™M
—— HyperGPA
0.20 » .
w 0 041 Y
2} %] A
5015 =03
0.10 0.2
0.05 0.1
0.00 . 0.0
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
t t t
Stock-China / GRU Stock-China / ODERNN Stock-China / NCDE
0.40{ - vanita | Vanilla 0.8] Vanilla
0.35 HyperGRU 020 ANODEV2 . ANODEV2
————— RevIN - RevIN ----- RevIN
0.307 AdaGRU —— HyperGPA 0.6{ —— HyperGPA
—— HyperGPA
0.25 ks
@
Lo20
0.15
0.10
0.05
0.00

Figure 9: MSE over time

15

	Introduction
	Related works
	Methods
	Problem definition & notations
	Architecture of HyperGPA

	Experiments
	Experimental setup
	Experimental results

	Conclusion

