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ABSTRACT

Despite advances in generation quality, current text-to-image (T2I) models often
lack diversity, generating homogeneous outputs. This work introduces a framework
to address the need for robust diversity evaluation in T2I models. Our framework
systematically assesses diversity by evaluating individual concepts and their rele-
vant factors of variation. Key contributions include: (1) a novel human evaluation
template for nuanced diversity assessment; (2) a curated prompt set covering di-
verse concepts with their identified factors of variation (e.g. prompt: An image of
an apple, factor of variation: color); and (3) a methodology for comparing models
in terms of human annotations via binomial tests. Furthermore, we rigorously com-
pare various image embeddings for diversity measurement. Notably, our principled
approach enables ranking of T2I models by diversity, identifying categories where
they particularly struggle. This research offers a robust methodology and insights,
paving the way for improvements in T2I model diversity and metric development.

1 MEASURING DIVERSITY IN TEXT-TO-IMAGE MODELS

Underspecified task
Which set of images is more 

diverse?

Model BModel A

Per-attribute task
Which set is more diverse with 

respect to flower species?

Per-attribute task
Which set is more diverse with 

respect to color?

Single flower species
Multiple colors

Multiple flower species
Single color

🚨Underspecified tasks are inconclusive. 🚨

With respect to colour, flower 
species, background? ��

Model A is more diverse than 
Model B ✅ ��

Model B is more diverse than 
Model A  ✅ ��

Conclusive results. Model ranking flips depending on the attribute!

Figure 1: Evaluating diversity requires specifying both the concept being assessed and the factor of
variation to reduce ambiguity in the annotation process.

Output diversity is widely considered desirable for text-to-image (T2I) generation models aiming
to accurately represent the natural variability of entities in the real world. This is crucial not only
technically, for serving as faithful world models, but also for downstream applications like supporting
creative processes and ensuring broad conceptual representation across contexts. For example, a
diverse model generating “an image of a house” should produce variations in architectural style and
background. However, current diversity metrics often conflate it with other properties like fidelity
(e.g., Fréchet Inception Distance (FID) (Heusel et al., 2017)). While progress has been made by
developing dedicated metrics (e.g., Vendi Score (Friedman & Dieng, 2022)), the conditions for
measuring diversity remain poorly defined and lack standardization, highlighting the need for a
principled framework.

In particular, previous work often measures the variability of generated images in scenarios that do
not explicitly account for diversity. For instance, images may be generated using a prompt set that
neither requires nor controls for output variations (e.g., Sadat et al., 2024; Astolfi et al., 2024), or
models may be compared using a generic human evaluation template that does not specifically probe
for diversity (e.g., Betker et al., 2023). This can result in measures of diversity that are ambiguous or
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inconclusive (see Fig. 1). To address this challenge, we propose a framework to measure diversity
without conflating constructs (Zhao et al., 2024a;b; Mironov & Prokhorenkova, 2024; Jalali et al.,
2024; Vrijenhoek et al., 2024): we operate under the premise that systematically evaluating diversity
requires specifying both the concept being assessed and the attribute of interest, as illustrated in
Fig.1. We empirically validate this by demonstrating that human accuracy in evaluating diversity
is at chance level when the attribute is not defined. Building on this observation, we introduce a
novel evaluation framework designed to measure the per-attribute intrinsic diversity of T2I models.
This framework includes a synthetically generated prompt set spanning common concepts and their
variations, as well as a human evaluation template. The template, informed by empirical findings on
a golden set, improves human accuracy by dividing the evaluation into two subtasks: counting and
counts comparison.

Considering the high cost of human evaluations for model ranking, developing automated metrics
that accurately reflect human judgment is crucial for advancing T2I models. While various diversity
metrics have been proposed (Friedman & Dieng, 2022; Jalali et al., 2024), their alignment with human
perceptions of diversity often remains unevaluated. To address this, we use our proposed human
evaluation template and prompt set to examine the reliability of autoevaluation metrics. Specifically,
we investigate the Vendi Score (Friedman & Dieng, 2022), a widely adopted diversity metric (Kannen
et al., 2024b; Hemmat et al., 2024) whose correlation with human-perceived diversity has not yet
been thoroughly established. Our analysis reveals that the Vendi Score, when optimized for the
appropriate representation space, can achieve approximately 65% accuracy in capturing human
diversity judgments. We also find that the accuracy improves to 80% when the model pairs are more
different, highlighting the need for more discriminant representations. Furthermore, we apply our
framework to compare five recent generative models: Imagen 3 (Baldridge et al., 2024), Imagen 2.5
(Vasconcelos et al., 2024), Muse 2.2 (Chang et al., 2023), DALLE3 (Betker et al., 2023), and Flux
1.1 (Labs, 2024). This comparison identifies Imagen 3 and Flux 1.1 as the top-performing models
regarding attribute diversity. We believe our framework provides a robust foundation for future work
in developing more human-aligned evaluation metrics and improving T2I model diversity. This
research makes three key contributions:

• We formalize the problem of quantifying diversity in T2I models and introduce a practical
evaluation framework based on pre-defined factors of variation.

• We introduces an evaluation framework consisting of the first human evaluation template
tailored for diversity, a prompt set covering 86 concept-factor variation pairs, and statistical
hypothesis test to compare models.

• We use the proposed framework to collect a comprehensive dataset of 24591 human anno-
tations comparing 5 prominent T2I models and use this data to rank automatic evaluation
metrics. Prompts are available in the Supplementary Material and the full benchmark
(annotations, images, and prompts) will be released upon publication.

2 THE THREE INGREDIENTS FOR DIVERSITY EVALUATION

To evaluate diversity, our framework is based on three components: a definition of what specific
diversity is being measured, a prompt set to elicit relevant outputs, and a human evaluation template
for reliably comparing models. These are described below.

2.1 A CLEARLY SPECIFIED PROBLEM: DIVERSITY PER ATTRIBUTE

Prelude: formalizing diversity. Consider a set of images X = {x1, x2, . . . , xn}, where each image
xi belongs to a space X ⊆ RD. We posit that the visual appearance of each image xi is primarily
determined by a set of K underlying independent generative factors fi = {f1

i , . . . , f
K
i }. A potential

generative model could be formulated as:

p(xi) =

K∏
k=1

p(xi|fk
i )p(f

k
i ). (1)

We focus on scenarios where images represent scenes containing instances from well-defined concepts
(e.g., bottle, forest). Given a concept, we can often map these abstract generative factors to concrete,
observable attributes. For instance, an image xi depicting a bottle can be described by attributes such
as: fmaterial ∈ {glass, plastic,metal}, f shape ∈ {cylindrical, square}, and f state ∈ {open, closed}.
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Let C = {c1, . . . , cJ} be the set of concepts, Aj = {aj,1, . . . , aj,K} the relevant attributes for a
given concept cj , and V j,k the finite set of possible values for attribute aj,k. Each image xi depicting
a concept is associated with a specific value vj,ki ∈ V j,k for each attribute aj,k. We define a sample
of images Xj (for the same concept cj) as perfectly diverse if it comprehensively covers all attribute
variations. More precisely, for every attribute aj,k ∈ Aj and every possible value v ∈ V j,k there
must exist at least one image xj

i ∈ Xj such that the attribute aj,k for image xj
i takes the value v.

A tractable notion of diversity. Measuring diversity across the complete set of generative factors
underlying natural data is significantly challenging. Firstly, the sheer number of potential factors
(K) is often immense. Secondly, as highlighted by Tsirigotis et al. (2024), the combination of their
possible values grows exponentially, leading to a ‘curse of generative dimensionality’ where no
realistic finite sample can cover all possible combinations. Thirdly, many factors may inherently
possess continuous value ranges, making exhaustive coverage impossible even for a single factor.

Given these challenges, and since achieving the perfect diversity (as defined earlier) is intractable
with a finite sample, we instead propose to measure tractable diversity. This approach focuses on
a carefully selected subset of the most salient and practically relevant generative factors (K ′) for a
specific concept. Identifying which factors are practically relevant is non-trivial and must be tailored
for a given use case. In this work, to identify these factors, we focus on commonly observed concepts
reflective of T2I model training data. To effectively sample from the distribution of generative factors
within these concepts, we leverage the knowledge encoded by Large Language Models (LLMs)
(Rassin et al., 2024). Specifically, we prompt an LLM (Gemini 1.5 M (Team et al., 2024)) to identify
relevant aspects of variation for evaluating the diversity of a given concept. The full system instruction
is given in the Appendix.

2.2 A SYSTEMATICALLY GENERATED PROMPT SET
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Figure 2: Each slice represents a concept, grouped and
color-coded by its overall category.

Our goal is to rigorously evaluate genera-
tive models and diversity metrics, specifi-
cally focusing on their ability to represent
variation within distinct attributes of con-
cepts. To effectively rank these models
and metrics, our framework must accom-
modate both precisely controlled scenarios
and complex, real-world use cases. We
deliberately select concepts that are ubiq-
uitous in everyday life and common image
datasets, such as ImageNet (Deng et al.,
2009) (e.g., ‘fruit’, ‘car’, ‘snake’), thereby
anchoring our evaluation in practical utility.
However, simple concepts alone are insuffi-
cient. They must also possess inherent com-
plexity and variability, presenting a gen-
uine challenge to the models and metrics.
The chosen concepts and their attributes
need to be sufficiently nuanced to allow
our methodology to clearly reveal perfor-
mance differences and track improvements
over time or across different systems.

To structure this process, we classify con-
cepts into three widely applicable cate-
gories: Food and Drink (e.g.coffee cup,
cake), Nature (elements e.g.river, butter-
fly), and Human-made Objects (e.g.bridge, laptop). We leverage the generative capabilities of Large
Language Models (LLMs) to systematically produce a wide range of concepts within these categories,
producing concrete, “ImageNet-like” concepts, which are typically visualizable nouns, similar in
scope to those in large-scale image datasets. For each generated concept, the LLM is used to identify
a semantically relevant aspect of variation (attribute) that is intrinsic or commonly associated with
that concept. This yields concept-attribute pairs (cj , aj,k) such as: (apple, color), (tree, species),
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(coffee cup, material), (chair, style). This LLM-driven process allows us to systematically build
a prompt set specifically designed to probe and evaluate diversity along meaningful, contextually
relevant dimensions for a broad range of common concepts. Finally, the authors manually verified
all concept-attribute pairs and removed 5 where the attribute was potentially difficult / ambiguous
to categorize (e.g. (food, cuisine)). The specific prompt used can be found in Appendix D.1.
Additionally, in Appendix D.2 we discuss the sufficiency of our prompt set to discriminate models.

2.3 A VALIDATED, BESPOKE HUMAN EVALUATION TEMPLATE

Prior work has shown that developing an appropriate human evaluation template is an essential
component in the process of measuring a desired capability of a generative model (Wiles et al., 2024;
Clark et al., 2021). To that end, we develop a human evaluation template that: (a) allows annotators to
understand the task well, (b) captures their judgment faithfully, and (c) yields meaningful ground truth
annotations for per-attribute diversity, subsequently used to validate automated evaluation metrics.
The annotators are provided with 4 options for the side-by-side comparison: (i) Left more diverse, (ii)
Right more diverse, (iii) Equally diverse, (iv) Unable to answer. Visualizations of the template can be
seen in Appendix B.2.

A template to measure per-attribute diversity. Our template for measuring per-attribute diversity
employs a comparative, side-by-side approach due to the difficulty of evaluating diversity within
a single set. Many existing diversity metrics also require a reference set. We considered the
following design choices for our human evaluation template to ensure meaningful assessment (1) Set
size: Balancing the perception of diversity with minimizing annotation fatigue and enabling robust
computation for metrics requiring larger sets (e.g., Vendi score). (2) Attribute specification: Explicitly
stating the attribute for evaluation versus allowing open-ended diversity assessment. (3) Anchoring
task: Incorporating an intermediate task to guide annotators to focus on the intended attribute.

Validating the template with a golden set. To evaluate the quality of the evaluation template,
we curate a golden set of 10 <concept, aspect> pairs, where concept corresponds to a
concept that should be considered common across images in a set and aspect describes the
associated aspect of variation that we want to measure diversity against. The full list of con-
cepts and aspects of variation can be found in Appendix B.1. We validate the evaluation tem-
plate by comparing cases where (i) the concept remains constant across images in the set while
the aspect varies (ii) the concept varies across images while the aspect remains the same, and
(iii) both the concept and the aspect vary across images within the set. We expect images in
set (i) to be considered more diverse than images in set (ii), and similarly images in set (iii) to
be considered more diverse than images in set (ii). Finally, we expect that images in sets (ii)
and (iii) are considered equally diverse as we want to focus on the aspect as axis of variation.
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Figure 3: Match with the golden set de-
pending on different set sizes.

In Fig. 3, we present the annotation accuracy of human
experts using our template under various conditions,
considering the aforementioned definitions as ground
truth. The different templates are shown in Fig. 9. The
accuracy for the w/o aspect task is 30.0% for com-
parisons of sets of size 4 and 26.7% for sets of size 8. In
contrast, the template that includes the aspect shows a
significant increase in accuracy (82.5% for set size 4 and
53.3% for set size 8), indicating that explicitly mention-
ing the desired aspect of variation improves accuracy.
This improvement likely stems from preventing annota-
tors from unintentionally conflating the concept and
the aspect when not guided to focus on a specific
axis. Furthermore, we observe that adding the count
anchoring question enhances accuracy, especially for the set size of 8, reaching 77.9%.

For the count task, we found a strong (ρ = 0.88) and statistically significant (p < .001) correlation
between the annotators’ final diversity comparison and the comparison inferred from their individual
subset counts (where a higher count on one side implies a more diverse final response for that
side, and equal counts imply equal diversity). This confirms that the anchoring count question
effectively guides annotators. To further validate our setup, we analyzed instances where annotators’
responses deviated from the ground truth in our golden set. We examined the distributions of attribute
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(a) The “diverse” golden set.
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(b) The “non-diverse” golden set.

Figure 4: The distribution of counts for sets of images labelled as “diverse” or “non-diverse” in the
golden set for the pilot study.

counts for two image subsets: (1) those labelled “diverse” in the ground truth, where we expected
a count mode of “8” and (2) those labelled “non-diverse”, where we expected a mode of “1”. The
results of this analysis are presented in Fig. 4. While generally, annotator responses aligned with the
golden set labels, we observed a few exceptions. For instance, in one case labelled as a diverse set of
chairs, all annotators counted only 3 or 4 distinct chair types, indicating lower diversity than expected.
Upon closer inspection, these chairs appeared visually similar despite potentially different underlying
material prompts (e.g., metal, iron, aluminum).

3 OUR FRAMEWORK IN PRACTICE

We demonstrate our framework’s practical application by: (i) collecting comprehensive human
annotations with our template to compare models, (ii) using these annotations as ground truth
to evaluate diversity metrics, and (iii) comparing model rankings from human versus automatic
evaluations to highlight the gap between human-perceived diversity and current metric capabilities.

3.1 RANKING MODELS VIA HUMAN EVALUATION

With the proposed prompt set from Sec. 2.2 and the human evaluation template introduced in Sec.
2.3, we evaluate the attribute-based diversity of five generative models, namely: Muse 2.2 (Chang
et al., 2023), Imagen 2.5 (Vasconcelos et al., 2024), Imagen 3 (Baldridge et al., 2024), DALLE3
(Betker et al., 2023), and Flux 1.1 (Labs, 2024). For each model, we generate 20 distinct samples
for each prompt, randomly combine them in 10 different sets of 8 images, and run side-by-side
evaluations for all 10 combinations of 2 models. For each side-by-side comparison, evaluations from
5 different raters were collected. Raters had access to a slide deck with instructions to perform the
task and were compensated for the time invested in the data collection. In total, 24591 annotations
were collected in our study from 20 different annotators, including the pilot runs. The average time to
complete the task with the final template was 32 seconds More details can be found in the Appendix
(Sec.A). Before comparing each model pair in terms of diversity, we evaluate the overall annotations
quality by computing the inter-annotator agreement via Krippendorff’s alpha reliability (α) (Hayes &
Krippendorff, 2007). In Fig. 5a, we observe that for all cases α > 0.8, indicating a high-degree of
agreement across annotators (Marzi et al., 2024).

Ratings aggregation. Given the high levels of inter-annotator agreement for all runs of the human
evaluation, we aggregate annotations for each side-by-side comparison across raters by taking the
mode of the ratings. We then follow this step with a second aggregation, this time at the level of
all side-by-side comparisons for each concept. For instance, when comparing a given model pair,
there are 10 side-by-side comparisons for the concept apple (each side-by-side comparison here
corresponds to the evaluation of two sets of 8 images). At the end of this process, for the considered
models pair, we obtain a single human evaluation result for each concept in the prompt set.

Model ranking. Using the results from the ratings aggregation, we propose to use Binomial tests to
verify the following hypothesis: there is a significant difference between the outcomes of a given pair
of models. To do so, we count the number of categories for which each model was deemed best and
perform a two-sided Binomial test under the null-hypothesis that the rate for which each model is

5
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(a) Krippendorff’s α-reliability.
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(b) Binomial test results at 95% confidence.

Figure 5: Human evaluation results. (a) Inter-annotator agreement results in terms of Krippendorff’s
α-reliability. (b) We compare model rankings in terms of significance in the number of wins with two-
sided Binomial tests under a 95% confidence level. Each entry in the grid represents a comparison
between two models. The sign indicates the model in the row is better (>), worse (<), or not
significantly different (=) than the model in the column.

the best for a concept is equal to 50% (i.e. both models have equal win rates). Results considering
a 95% confidence level for all tests are shown is Fig. 5b. Imagen 3 and Flux 1.1 are significantly
better or not worse than all other models. Imagen 2.5 and Muse 2.2 are not significantly better than
any contender, showing that our benchmark is able to capture an overall progress in diversity when
comparing newer and older models. DALLE3 is significantly better than Imagen 2.5, but does not
significantly surpass the performance of the other models considered for comparison.

3.2 COMPARING AUTOEVALUATION METRICS

While human evaluation is often considered gold standard, it can be impractical to rely solely on
human annotation. We then leverage the collected human annotations to perform an extensive study
of the role of embeddings for the Vendi Score 1.

Autoraters based on the Vendi Score. Given a set of images Xj,k = {xj,k
i } (corresponding

to a given model, concept cj and attribute aj,k ∈ Aj), we extract embeddings hΞ(x
j,k
i ) for each

image. hΞ is a pretrained feature extractor that can be dependent on a set of conditions Ξ = {ξl} ⊂
(C ×A) ∪ {ξ0} where ξ0 is a condition unrelated to the considered categories and attributes that can
be added to test the impact of conditioning. The different feature extractors and conditions we used
are detailed in the following paragraph, but here are a few generic examples to clarify the notation:
(i) hΞ takes only images as input. In this case, Ξ = ∅. (ii) hΞ is a vision and language model. In this
case, embeddings can be conditioned on text data that depends on the concept only (i.e., Ξ = {cj}),
attribute only (i.e., Ξ = {aj,k}), or both concept and attribute (i.e., Ξ = {cj , aj,k}). To test the
impact of conditioning on text, we can instead choose an unrelated prompt (i.e., using Ξ = {ξ0}).
Finally, we aggregate the embeddings using a diversity metric to obtain a score for the set. As we do
not have access to a reliable reference in our setting, we use the Vendi Score (Friedman & Dieng,
2022), a reference-free and widely adopted metric (Pasarkar & Dieng, 2023; Jalali et al., 2024;
Hemmat et al., 2024; Kannen et al., 2024a). The Vendi Score is defined as follows:

Definition 1 (Adapted from (Friedman & Dieng, 2022), Definition 3.1). Given a concept cj , an
attribute aj,k and a set of conditions Ξ, let {xj,k

1 , . . . , xj,k
n } denote a set of images representing a

given concept and attribute. Let k : X ×X → R be the cosine similarity between the embeddings of
two images, KΞ ∈ Rn×n be the kernel matrix, with KΞ

lm = kΞ(xj,k
l , xj,k

m ), and let λΞ
1 , . . . , λ

Ξ
n be

the eigenvalues of KΞ/n. The Vendi Score for the set {xj,k
1 , . . . , xj,k

n } is defined as:

sΞ(x
j,k
1 , . . . , xj,k

n ) = exp(−
n∑

i=1

λΞ
i log λΞ

i ). (2)

1Results with other autoraters can be found in the Appendix Sec.E.
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(a) The “diverse” golden set. (b) Side-by-side model compar-
isons.

(c) Side-by-side model compar-
isons with diversity gap > 4.

Figure 6: Autoevaluation results: the performance of the Vendi Score given different embeddings
across three settings: (a) the golden set; (b) all the annotations gathered; (c) the “easy” subset of the
annotations where raters identified a diversity gap of > 4 for a pair. On the golden set, VIT performs
best but this does not transfer to side-by-side comparisons. The performance is generally better on the
“easy” split of the data, showing that the embeddings perform considerably worse when the difference
between the generated sets of images is more subtle—models are more similar.

Experimental setup. We compare three different types of embeddings. First, we compare embed-
dings obtained using only the image input. Here we consider two models trained for IMAGENET
classification – the IMAGENET INCEPTION model introduced in Szegedy et al. (2015) and an IMA-
GENET VIT-B/16 model trained on IMAGENET21K as described in Steiner et al. (2022). We also
consider one self-supervised model, DINOV2 (Oquab et al., 2023). Second, we consider embeddings
conditioned on both the image and textual attribute. We use PALI embeddings Beyer et al. (2024) at
various points after fusing the text and visual input, and CLIP (Radford et al., 2021) combined text
and image embedding. We use these embedding models to obtain an embedding for each image in a
set the Vendi Score in order to aggregate embeddings and obtain a diversity prediction for the set.
Finally, we consider the first word output by the PALI model as a discrete token. We aggregate these
outputs by counting the number of unique words generated for a set to get an estimate for diversity.
For each pair of image sets, we analyze the agreement between a diversity assessment based on our
autoraters, and the assessment resulting from the human annotations, not taking into account pairs
where the annotators found the sets to be equally diverse. If the autoraters and the human evaluations
both indicate the same set as being the most diverse (i.e., sΞ(X

j,k
1 ) > sΞ(X

j,k
2 ) and annotators rated

the set Xj,k
1 generated with model 1 based on concept cj and attribute aj,k as more diverse than Xj,k

2
generated with model 2 based on the same concept and attribute), we say that for that pair of sets, the
autorater is correct, else it is incorrect. We then report accuracy by aggregating the number of pairs
for which the autoraters are correct.

Results. Results are reported in Figs. 6a-6c. We can see that, on the “diverse” golden set, the VIT
model does the best, and then the tokens of PALI. This is perhaps surprising, as the VIT model
is not specifically trained to focus on the aspects we are considering for diversity but to be able to
discriminate between broad classes. However, we see minimal difference in results if we consider
the model data. All approaches perform similarly and lead to accuracies that are not significantly
different. We hypothesize that the reason for the observed small difference in results was that the
models were similar to each other. As a result, we looked at ratings where the annotators perceived a
larger gap between models by using the counts as a proxy. We consider a subset of the data where
the difference in counts between the two sets is greater than 4, keeping about 24% of the data. We
find that now, on the model data we see a bigger difference in results. First, all autoraters are more
accurate. Second, we can see that again the image based approaches (e.g., the INCEPTION model,
the DINO model and VIT model) perform best. In Sec. E.3, we provide qualitative results showing
which sets different embeddings deem as high or low diversity.

3.3 EVALUATING DIVERSITY USING FOUNDATION MODELS

We leverage the power of multimodal LLMs such as the Gemini model family (Team et al., 2024) to
assess whether they can be a competitive alternative to automatic metrics that rely on embeddings.
We design a system instruction aiming to prompt the model to perform a two-step evaluation akin
to the human evaluation task. The full instruction can be found in Sec. E.6. We evaluate these
evaluators on the golden set and present the results on Fig. 7a. Gemini v2.5 Flash achieves the best
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performance, surpassing human accuracy in the task. A closer look at the results reveals that both
human and auto raters perform similarly in almost all the cases, with the mismatches corresponding
to the evaluating of diversity for the pair <building, style>. We hypothesize judging diversity of
architectural styles is a complex task that heavily depends on the cultural background of annotators,
thereby being more accurately performed by a powerful vision-language models. We also evaluate
how the best evaluator performs on predicting human annotations. In Fig.7b, we see that for Imagen 3
comparisons, the foundation model-based evaluator presents competitive performance in comparison
to embedding-based automatic metrics, without relying on embeddings, although currently more
costly as evaluating each pair requires a query from the foundation model.

(a) Accuracy of autoraters based on the
Gemini model family on the golden set.

(b) Gemini v2.5 Flash human evaluation pre-
diction accuracy for Imagen 3 comparisons.

Figure 7: Evaluating diversity with Gemini. Gemini v2.5 Flash achieves the highest accuracy on the
golden set and is competitive with embedding-based metrics when predicting human annotations.

3.4 RANKING MODELS WITH AUTOEVALUATION APPROACHES

Ranking is achieved by counting the frequency at which the left model (model 1) achieves a higher
score than the model on the top (model 2), i.e. we count how many times sΞ(X

j,k
1 ) > sΞ(X

j,k
2 ),

with Xj,k
1 generated with model 1, and Xj,k

2 generated with model 2, and subtracting 0.5. More
results can be found in Sec. E.5. In order to test the significance, we aggregate the scores per concept
and perform a Wilcoxon signed-rank test under a 95% confidence level. In Fig.8a, we consider
the ImageNet Inception embeddings, as they yielded the highest accuracy on the model data. In
Figs.8b and 8c, we consider text-conditioned embeddings, as they are closest to our human evaluation
procedure. We show the results using PALI(EMB1), as they show a marginal advantage on model
data. On the middle panel, we show the results corresponding to conditioning the embedding model
on the attribute only, while on the right panel, conditioning takes into account both attribute and
object. Results with other embeddings can be found in (Sec. E.5). Through the autoevaluation model
ranking, we find that independently of the chosen embedding, Imagen 3 is not worse than all other
models, and Flux 1.1, Imagen 3 and DALLE3 are better than Imagen 2.5 and Muse 2.2. We also
observe that using ImageNet Inception embeddings and PALI(EMB1) with a conditioning on object
and attribute captures more differences across the 3 top models, and that using both types of the
PALI(EMB1) embeddings captures more differences between Imagen 2.5 and Muse 2.2. By adopting
the model comparison results obtained with the human annotations as shown Fig. 5b as ground-truth,
we find that all used embeddings are of similar quality in terms of closeness to human perception of
diversity. They all did not flip conclusions, but the autoevaluation approach seems more sensitive to
certain variations depending on the choice of embedding model and conditioning. Text conditioning,
while closest to the human evaluation procedure, did not show a significant advantage with the current
choice of embedding models and conditioning.

4 RELATED WORK

The primary method for evaluating text-to-image models involves gathering human judgments on a
specific benchmark (i.e., a set of prompts). Previous research highlights that the composition of this
benchmark significantly influences the resulting model rankings. This has led to the development of
benchmarks with broader skill coverage, e.g., text rendering and spatial reasoning (Cho et al., 2023; Li
et al., 2024; Wiles et al., 2024), as well as benchmarks targeting specific skills like numerical reasoning
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(a) Inception embeddings.
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(b) PALI(emb1) embeddings - con-
ditioned on attribute.
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(c) PALI(emb1) embeddings - con-
ditioned on object and attribute.

Figure 8: Ranking by autoevaluation. Model comparisons with the Vendi Score based on
(a)Inception, (b)PALI(emb1) conditioned on the attribute, and (c)PALI(emb1) conditioned on object
and attribute. Each entry represents a comparison between two models. The sign indicates the model
in the row is better (>), worse (<), or not significantly different (=) than the model in the column.

(Kajić et al., 2024). Although human evaluation remains the gold standard, numerous automatic
metrics have been proposed to potentially replace human judgments, at least for certain applications
(e.g., Hessel et al., 2021; Wiles et al., 2024; Huang et al., 2023; Lin et al., 2024; Senthilkumar et al.,
2024). Rigorous validation of these metrics is crucial across diverse conditions, including different
prompt sets, human evaluation templates, and models (Wiles et al., 2024). An important facet of
evaluating text-to-image models involves measuring the diversity of their output (Dombrowski et al.,
2024; Vice et al., 2024). This has resulted in different metrics, both reference-based (Sajjadi et al.,
2018; Heusel et al., 2017; Salimans et al., 2016) and reference-free (Friedman & Dieng, 2022; Rassin
et al., 2024; Mironov & Prokhorenkova, 2024; Ospanov et al., 2025; Limbeck et al., 2024). The
advantage of reference-free metrics is their independence from a ground-truth set, which permits the
evaluation of diversity in broader contexts. One such recent metric, the Vendi score (Friedman &
Dieng, 2022), has influenced subsequent research (Kannen et al., 2024a; Hemmat et al., 2024; Jalali
et al., 2024). Despite these developments, none of the proposed metrics have undergone thorough
evaluation, frequently being tested only on generic prompts or in simplified settings. Moreover,
surprisingly, the majority of previous studies lack human evaluation to demonstrate the validity of
these metrics. To address this gap, we introduce a prompt set designed for evaluating diversity across
particular attributes and propose and validate a human evaluation template to gather ground-truth
diversity judgments. Finally, we compare existing metrics and models under various conditions.

5 DISCUSSION

Ensuring diversity in text-to-image (T2I) model outputs is essential, serving as a measure of their
ability to express real-world variety. However, rigorous evaluation of this diversity, particularly for
specific attributes, remains challenging. This paper introduces a novel framework for attribute-specific
T2I diversity evaluation. It comprises a systematic prompt set and a human evaluation template, which
has been validated to significantly improve the accuracy of human judgments by explicitly defining the
attribute of interest. This framework provides a crucial ground truth for understanding and measuring
diversity beyond general impressions. Applying this framework, we ranked prominent T2I models
based on their attribute-specific diversity, identifying Imagen 3 and Flux 1.1 as strong performers.
Furthermore, we leveraged our human data to evaluate automated evaluation approaches based on the
Vendi Score. Our results demonstrate that the choice of embedding space, upon which autoevaluation
metrics operate, is crucial for achieving results that broadly align with human judgments. Notably,
our findings indicate that Vendi Score-based autoevaluation approaches can capture human-perceived
diversity with approximately 80% accuracy and correctly yield similar results for pairwise model
comparisons when a comparable statistical analysis methodology is employed. The broad impact
of this work lies in its potential to improve T2I model quality in terms of diversity by providing an
evaluation framework grounded in human perception. Moreover, unlike the previous work that often
relies on attribute classifiers (e.g., gender), our evaluation methodology can be employed to measure
demographic diversity in a classification-free manner in future research.
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6 ETHICS STATEMENT

This work involved data collection from human annotators. Each one of the 20 different participants
has been compensated for the time invested in the experiment according to the minimum wage in their
geographical location. Before completing the annotation task, annotators were given a comprehensive
set of instructions and could take as much time as necessary to complete the task.

REFERENCES

Pietro Astolfi, Marlene Careil, Melissa Hall, Oscar Mañas, Matthew Muckley, Jakob Verbeek,
Adriana Romero Soriano, and Michal Drozdzal. Consistency-diversity-realism pareto fronts of
conditional image generative models. arXiv preprint arXiv:2406.10429, 2024.

Jason Baldridge, Jakob Bauer, Mukul Bhutani, Nicole Brichtova, Andrew Bunner, Lluis Castrejon,
Kelvin Chan, Yichang Chen, Sander Dieleman, Yuqing Du, et al. Imagen 3. arXiv preprint
arXiv:2408.07009, 2024.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. Computer
Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel
Salz, Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al.
Paligemma: A versatile 3b vlm for transfer. arXiv preprint arXiv:2407.07726, 2024.

Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang,
Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image generation
via masked generative transformers. arXiv preprint arXiv:2301.00704, 2023.

Jaemin Cho, Yushi Hu, Roopal Garg, Peter Anderson, Ranjay Krishna, Jason Baldridge, Mohit Bansal,
Jordi Pont-Tuset, and Su Wang. Davidsonian scene graph: Improving reliability in fine-grained
evaluation for text-image generation. arXiv preprint arXiv:2310.18235, 2023.

Elizabeth Clark, Tal August, Sofia Serrano, Nikita Haduong, Suchin Gururangan, and Noah A. Smith.
All that’s ‘human’ is not gold: Evaluating human evaluation of generated text. In Chengqing Zong,
Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Mischa Dombrowski, Weitong Zhang, Sarah Cechnicka, Hadrien Reynaud, and Bernhard Kainz.
Image generation diversity issues and how to tame them. arXiv preprint arXiv:2411.16171, 2024.

Dan Friedman and Adji Bousso Dieng. The vendi score: A diversity evaluation metric for machine
learning. arXiv preprint arXiv:2210.02410, 2022.

Andrew F Hayes and Klaus Krippendorff. Answering the call for a standard reliability measure for
coding data. Communication methods and measures, 1(1):77–89, 2007.

Reyhane Askari Hemmat, Melissa Hall, Alicia Sun, Candace Ross, Michal Drozdzal, and Adriana
Romero-Soriano. Improving geo-diversity of generated images with contextualized vendi score
guidance. arXiv preprint arXiv:2406.04551, 2024.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: a
reference-free evaluation metric for image captioning. In EMNLP, 2021.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A compre-
hensive benchmark for open-world compositional text-to-image generation. Advances in Neural
Information Processing Systems, 36:78723–78747, 2023.

Mohammad Jalali, Azim Ospanov, Amin Gohari, and Farzan Farnia. Conditional vendi score: An
information-theoretic approach to diversity evaluation of prompt-based generative models. arXiv
preprint arXiv:2411.02817, 2024.
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APPENDIX

A HUMAN EVALUATION TASK DETAILS

A.1 INSTRUCTIONS

Before completing the annotation task, annotators were given a comprehensive set of instructions
including the following guidelines:

• The goal of the task is to compare the how diverse two sets of images are with respect to a
given attribute;

• For the given two sets of images, answer the question about how diverse the concept is with
respect to the specific attribute highlighted in the prompt;

• You should count how many different instances of a particular attribute they observe on the
left and right sets of images, separately;

• For example, if the attribute is “background” and the prompt is “animal”, raters should
count how many different backgrounds appear in each set of images and finally judge how
diversity of the two sets compares to each other with respect to this attribute;

• Finally, based on the counts, pick one of the following options: (1) Left is more diverse; (2)
Right is more diverse; (3) Equally diverse; (4) Unable to answer.

Along with the written instructions, annotators were also given examples corresponding to options 1,
2, and 3.

A.2 ADDITIONAL INFORMATION

In total, 24591 annotations were collected in our study, including the pilot runs. The average time to
complete the task with the final template was 32 seconds.

B HUMAN EVALUATION TEMPLATE

B.1 GOLDEN SET CONCEPT-ATTRIBUTE PAIRS

We considered the following categories and aspects of variation for the golden set: <color, flower>,
<material, container>, <color, language), <background, animal>, <material, chair>, <side dish, cookie
shape>, <pattern, clothing>, <style, building>, <weather, biome>, <color, vehicle>. We validate the
evaluation template by comparing cases where (i) the concept remains constant across images in
the set while the aspect varies: images of the same flower (rose) in all considered colors (8 images
per concept); (ii) the concept varies across images while the aspect remains the same: images of all
considered flowers types in the red color (8 images per concept); and (iii) both the concept and the
aspect vary across images within the set: images of all flowers, each one in one of the different colors
(8 images per concept). For each concept we then generate 24 different images, yielding a total of
240 images for the full golden set. In the table below we present all considered concepts and aspects
of variations values. The specific values for each concept and attribute are presented in Table 1.

For each case, images were generated using Imagen 3 with the following prompt: A photorealistic
image of a aspect of variation value concept value. For example, “A photorealistic image of a yellow
begonia”. As images were synthetically generated following a carefully crafted protocol, we could
compare the performance of human annotators as well as autoraters based on multimodal language
models such as Gemini in the task of evaluating for specific aspects of variation.

B.2 USER INTERFACE SCREENSHOTS
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Concept Concept values Aspect of variation Aspect of variation values

Flower

Begonia, Carnation
Geranium, Hibiscus
Lily, Poppy
Rose, Tulip

Color

Yellow, light purple
white, blue
green, orange
red, purple

Container

Beer, champagne
cognac, cup
doublewalled, mug
shot glass, water

Material

Porcelain, metal
stainless steal, ceramic
glass, gold
copper, plastic

Neon sign language

Bonjour, hello
hei, oi
sawubona, hola
buna, ciao

Color

Blue, green
orange, pink
purple, red
white, yellow

Animal

Capybara, monkey
dog, snake
cat, lion
tree, elephant

Background

Beach, jungle
park, rock
room, savannah
tree, water

Chair

Dinning, armchair
office, rocking
lounge, folding
barstool, recliner

Material

Wood, upholstered
mesh, wicker
leather, metal
plastic, microfiber

Cookie shape

Round, square
crescent, start
heart, diamond
ghost, bat

Side dish

Milk, coffee
tea, hot chocolate
soda, fruits
ice cream, walnuts

Clothing

Tshirt, dress
pants, skirt
jacket, gloves
sweater, scarf

Pattern

Solid color blue, striped
polka dot, floral
plaid, checkered
animal print, camouflage

Building

Skyscraper, residential
industrial, commercial
church, theater
train station, school

Style

Modern, gothic
victorian, art deco
baroque, romanesque
brutalist, traditional japanese

Biome

Desert, rainforest
grassland, tundra
swamp, coastal
jungle, mountain

Weather

Sunny, cloudy
rainy, snowy
foggy, stormy
sunset, overcast

Vehicle

Car, truck
motorcycle, bus
airplane, boat
train, helicopter

Color

Red, blue
green, yellow
white, black
orange, gray

Table 1: Golden set generation: concepts and respective aspects of variation.

Q1: How many values of the 
attribute are present in the left set?
____________________________
Q2: How many values of the 
attribute are present in the right 
set?
____________________________
Q3: Which set of images is more 
diverse with respect to the 
attribute?
☐LEFT  ☐RIGHT ☐ EQUAL 
☐ UNABLE TO ANSWER 

BUS; attribute: Type

Q1: Which set of images is 
more diverse with respect to 
the attribute?
☐LEFT  ☐RIGHT ☐ EQUAL 
☐ UNABLE TO ANSWER 

Q2: How confident are you in 
your assessment:
☐SLIGHTLY  ☐VERY

ANIMAL

Q1: Which set of images is 
more diverse with respect to 
the attribute?
☐LEFT  ☐RIGHT ☐ EQUAL 
☐ UNABLE TO ANSWER 

Q2: How confident are you in 
your assessment:
☐SLIGHTLY  ☐VERY

LANGUAGE; attribute: color

Figure 9: Examples of human evaluation templates used in the pilot study. In the template variant
w/o aspect, only the category is provided. In the variant with count, an additional question
is included for each set, prompting annotators to specify the number of distinct values observed for
the target attribute within the corresponding image set. For exact examples see Figs. 10-12.
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Figure 10: A screenshot of the user interface for one annotation example for the condition "No
aspect".

Figure 11: A screenshot of the user interface for one annotation example for the condition "Aspect".

Figure 12: A screenshot of the user interface for one annotation example for the condition “Count”.
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C ADDITIONAL HUMAN EVALUATION RESULTS

In Fig. 13 we show the histogram of counts averaged across the 5 raters each set in all side-by-side
comparisons.

Figure 13: Distribution of all counts annotated by human raters.

C.1 SENSITIVITY ANALYSIS ON RATER COUNT

We performed a sensitivity analysis taking into account the impact of the rater counter on α. We
subsample the annotators, obtaining sets of K = 2, 3, 4, 5 raters and compute α. This process is
repeated 100 times for each K (except 5, the full annotators set) and report the average and 95%
confidence intervals in the following table. Overall, the results show that we have high robustness
in the agreement. Even with only k = 2 raters, the lower bound of the 95% CI rarely drops below
0.80 (the standard threshold for high reliability), and for most pairs, it stays above 0.90. The gain in
mean inter-annotator agreement from k = 3 to k = 5 is marginal. This confirms that our protocol
(using 5 raters) is statistically overpowered and rigorous. Moreover, the mean α is stable across all k.
This indicates that our high agreement scores are not driven by a few good raters but are a consistent
property of the evaluation template itself.

Model Pair k = 2 Raters k = 3 Raters k = 4 Raters k = 5 (Full)
Imagen 2.5 vs Muse 2.2 0.954 [0.902, 0.995] 0.947 [0.917, 0.981] 0.948 [0.936, 0.967] 0.948
Imagen 2.5 vs Imagen 3 0.946 [0.921, 0.973] 0.946 [0.928, 0.962] 0.947 [0.939, 0.954] 0.947
Imagen 2.5 vs DALLE3 0.968 [0.941, 0.990] 0.969 [0.954, 0.990] 0.969 [0.962, 0.980] 0.969
Imagen 2.5 vs Flux 1.1 0.969 [0.957, 0.986] 0.969 [0.959, 0.976] 0.969 [0.962, 0.972] 0.969
Muse 2.2 vs Imagen 3 0.956 [0.925, 0.990] 0.954 [0.938, 0.972] 0.954 [0.946, 0.962] 0.954
Muse 2.2 vs DALLE3 0.968 [0.946, 0.998] 0.966 [0.952, 0.995] 0.967 [0.960, 0.980] 0.967
Muse 2.2 vs Flux 1.1 0.971 [0.948, 1.000] 0.971 [0.953, 0.989] 0.971 [0.964, 0.978] 0.971
Imagen 3 vs DALLE3 0.826 [0.780, 0.887] 0.824 [0.794, 0.851] 0.825 [0.810, 0.836] 0.826
Imagen 3 vs Flux 1.1 0.870 [0.844, 0.890] 0.867 [0.853, 0.883] 0.868 [0.862, 0.877] 0.867
DALLE3 vs Flux 1.1 0.915 [0.869, 0.944] 0.912 [0.887, 0.931] 0.911 [0.901, 0.925] 0.911

Table 2: Sensitivity analysis of inter-annotator agreement (α) with varying number of raters (k). We
report the mean α and the 95% confidence interval (bootstrapped over 100 iterations for subsampled
sets).

C.2 RANKING STABILITY

We performed a bootstrap analysis by resampling concepts with replacement 1000 times and found
that regardless of whether we include or not the ties, all the rankings are stable (i.e. the confidence
interval does not cross 0) for the 95% confidence interval.
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Table 3: Bootstrap stability analysis of model rankings (1000 resamples). We report the difference in
win rates (∆winrate) and 95% Confidence Intervals (CI). A ranking is considered Stable if the CI does
not cross zero.

Model Pair With Ties No Ties
∆winrate CI Stable ∆winrate CI Stable

Imagen 2.5 vs Muse 2.2 −0.056085 [−0.10,−0.02] True −0.165975 [−0.28,−0.05] True
Imagen 2.5 vs Imagen 3 −0.261750 [−0.31,−0.22] True −0.563230 [−0.65,−0.48] True
Imagen 2.5 vs DALLE3 −0.200514 [−0.24,−0.16] True −0.583720 [−0.68,−0.49] True
Imagen 2.5 vs Flux 1.1 −0.270049 [−0.31,−0.23] True −0.716413 [−0.79,−0.64] True
Muse 2.2 vs Imagen 3 −0.194932 [−0.24,−0.15] True −0.392261 [−0.48,−0.30] True
Muse 2.2 vs DALLE3 −0.115269 [−0.16,−0.08] True −0.324438 [−0.43,−0.22] True
Muse 2.2 vs Flux 1.1 −0.222187 [−0.26,−0.18] True −0.608733 [−0.69,−0.52] True
Imagen 3 vs DALLE3 0.095448 [0.05, 0.14] True 0.213689 [0.12, 0.31] True
Imagen 3 vs Flux 1.1 −0.088937 [−0.13,−0.04] True −0.201318 [−0.30,−0.10] True
DALLE3 vs Flux 1.1 −0.141041 [−0.18,−0.11] True −0.454561 [−0.56,−0.35] True

D A DEEP DIVE ON OUR CURATED PROMPT SET GENERATION DETAILS

D.1 PROMPT SET GENERATION

We used the following prompt to generate the concept-factor pairs:

Your task is to generate a dataset with prompts for evaluating text-to-image models. These prompts
will be used to generate realistic images and assess the diversity of the corresponding generative
model with respect to a specific aspect. All prompts should correspond to realistic images. Write on
the side the main object of the prompt and the aspect diversity will be measured with respect to. Here
are a few examples:

Apple. An image of an apple. Color.
Book. A photograph of a book. Thickness.
Bowl of soup. An image of a bowl of soup. Ingredients.
Bridge. A photograph of a bridge. Shape.
Building. An image of a building. Style.
Cake. A photograph of a cake. Flavour.
Car. A photograph of a car. Type.

Omit any other text.
Generate at least 95 cases.
Do not include categories that involve people.

D.2 ON THE SUFFICIENCY OF THE PROMPT SET FOR DISCRIMINATING MODELS

In order to further show that our results are significant with the current set, we ran new versions of
the model comparison with the human annotations presented in Sec. 3 with versions of our prompt
set that have a smaller number of concepts.

More specifically, we repeated the Binomial tests (at the same significance level) after randomly
removing an increasing amount of concepts, which resulted in prompt sets of size 74, 64, 54, and 24
concepts. Overall, we find that decreasing the prompt set size to 74 concepts doesn’t affect any of the
results. As the prompt set size further decreases, we start to see the results changing as the number of
significant pairwise comparisons decreases. We observe that drastically decreasing the prompt set
size makes the data no longer able to capture significant differences between models such as Imagen
3 and Imagen 2.5, as expected.

In the Table 4, we show the results of the Binomial tests for the 5 different sizes of prompt set,
including the full set, from left to right (i.e. the first symbol represents the result with the full set as in
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Fig. 5b, the second symbol the result with 74, then 64, 54, and 24 concepts). Notice that even with
the smallest set we don’t see a contradiction in the ordering.

Flux 1.1 Imagen 3 DALLE3 Muse 2.2 Imagen 2.5

Flux 1.1 — =, =, >, =, < >, >, =, =, = >, >, >, >, > >, >, >, =, >
Imagen 3 — =, =, <, =, > =, =, =, =, = >, >, >, >, =
DALLE3 — <, <, =, =, = =, =, =, =, =
Muse 2.2 — <, <, <, <, <
Imagen 2.5 —

Table 4: Repeating model comparisons across smaller versions of our prompt set. Decreasing the
prompt set size to 74 concepts doesn’t affect any of the results.

E ADDITIONAL AUTOEVALUATION RESULTS

E.1 COMPUTE USAGE

We used accelerators for running automatic evaluation metrics and generating the images. We run all
metrics on a TPU V3 hardware2. The image generation pipeline ran on 4 TPUs.

E.2 PERFORMANCE FOR DETECTING EQUALLY DIVERSE IMAGE SETS

We evaluate how good embeddings are at detecting equally diverse image sets. To not have a
threshold-dependent metric, we use the area-under-the-ROC curve (AUC). We construct the true
binary label as whether the image sets are labelled as equally diverse or not. We construct the scores
as the absolute difference between the metric scores. We then plot the AUC. A good metric would
have an AUC close to one, indicating that when the differences are small, the image sets are more
likely to have been labelled as the same by the human annotators. We plot results in Figure 14, and
find that no metric performs particularly well (AUC < 0.6 in all cases). However, the IMAGENET
INCEPTION one performs best, presumably as it is trained to be invariant to small differences and so,
as we can see in Figures 15-16, as a lack of diversity usually arises when images are very similar, the
embedding performs well. However, we hypothesise that in the face of confounders (e.g. we want to
measure diversity of the color of an object but not the type of object), we would not expect such an
embedding to do well.

Figure 14: AUC to measure metrics ability to identify sets of equal diversity. It is clear that no metric
is particularly effective at differentiating visually similar versus not sets of images.

E.3 ADDITIONAL QUALITATIVE RESULTS

In Figs. 15 and 16 we visualize examples for four side-by-side comparisons where the corresponding
autoraters indicate that a group of images have highest or lowest diversity. We can see that results
are reasonable and that in general, images with low diversity arise due to mode collapse, i.e. the
model generates a very similar image for the same concept. This could explain why the INCEPTION
model performs poorly on the pilot data but well on the model comparison data. INCEPTION features
are effective for identifying these issues but no effective for identifying diversity in the case of
confounding aspects (e.g., the background is changing while the animal is staying the same).

2https://cloud.google.com/tpu/docs/v3
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Model 2 diverse sets 2 non-diverse sets

VIT
Clothes (Mat/Type/Style/Tex) Zebra (Pose) Mountain (Height) Moon (Phase)

Figure 15: Qualitative results for different autoraters on the T2I annotated dataset, showing two very
diverse and two non diverse sets as determined by the ViT-based autorater.

Model 2 diverse sets 2 non-diverse sets

CLIP
Train (Type) Bridge (Shape) Tiger (Age) Sun (Time of day)

PALI (TOKENS)
Animal (Species) Necklace (Material) Tree (Species) Whale (Species)

Figure 16: Qualitative results for different models, showing two very diverse and two non diverse
sets.

E.4 IMPACT OF THE PROMPT FOR THE MULTIMODAL EMBEDDINGS

We explore how the choice of prompt impacts results for the multimodal embeddings. We explore
four different prompts which differ in their specificity and relatedness to the attributes under question.
[attribute] and [object] are placeholders and filled in based on the object / attribute under
test. The templates we consider are as follows:
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(a) Results on the “diverse” golden set. (b) Results on the annotation set, where annotators
see count differences > 4.

Figure 17: Additional auto-eval results that show how results vary based on the textual prompt
for the multimodal embeddings. We can see that we do not see consistently better results
with more related prompts (What is the [attribute] of the [object]?, What is
the [attribute]?), implying the textual input is being ignored.

1. OBJECT_ATTRIBUTE: What is the [attribute] of the [object]?

2. ATTRIBUTE: What is the [attribute]?

3. OBJECT: What is the [object]?

4. EIFFEL: Where is the Eiffel Tower?

We would expect the first two questions to be most effective as they directly ask about the property
for which we are measuring diversity. The object may be related but can be a confounder and the
“Eiffel Tower” question is unrelated.

Results are shown in Figure 17. Surprisingly, we find that we do not see consistent benefit from the
two most related prompts (OBJECT_ATTRIBUTE, ATTRIBUTE), implying that the embeddings are
mostly vision based. A more controllable multimodal embedding we hypothesise would be more
effective in this setting.

E.5 MODEL RANKING WITH AUTOEVALUATION APPROACHES

In this section, we include more results for model ranking based on our auto-evaluation approaches:

• Figures 18, 19 and 20 show the results of compare model rankings in terms of significance
in the number of wins with Wilcoxon signed-rank tests under a 95% confidence level using
additional models to compute embeddings. This figure completes Figure 8 in Sec. 3.4. In
theses figures, we can see:

– Model ranking based on other embeddings. We observe that similarly to the observa-
tions in Sec. 3.4, for all embeddings except IMAGENET VIT, Imagen3 is not worse
than all other models. We also observe that independently of the choice of embedding,
Flux1.1, Imagen3 and DALLE3 are not worse than Muse2.2 and Imagen2.5. The
differences between the models in the top group and the bottom group are more or less
detected depending on the embeddings.

– As mentioned in the main text, we also see the differences between multimodal models.
These results highlight how the influence of the choice of embedding models and of
conditioning on the model ranking results.

• Figures 21, 22 and 23 show the win rates corresponding to the results shown in Figure 8
in Sec. 3.4 and the additional results described above on the left panels, and compare the
distributions of the two best and closest models in terms of behavior according to human
evaluation, Imagen3 and Flux1.1, on the right panels. These figures correspond respectively
to image models, multimodal model conditioned on attributes, and multimodal models
conditioned on objects and attributes.
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(a) ViT embeddings.
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(b) DINO embeddings.

Figure 18: Model ranking using auto evaluation approaches with additional image models. We
compare model rankings in terms of significance in the number of wins with Wilcoxon signed-rank
tests under a 95% confidence level. Each entry in the each of the grids represents a comparison
between two models. The > sign indicates the model in the row is better, worse (<), or not
significantly different (=) than the model in the column. The win rates in each of the grids are
computed using the scores based on (a) IMAGENET VIT embeddings and (b) DINO embeddings.
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(a) CLIP embeddings.
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(b) PALI(emb2) embeddings.

Fl
ux

1.
1

Im
ag

en
3

D
A

L
L

E
3

M
us

e
2.

2

Im
ag

en
2.

5
Flux 1.1 × < = > =

Imagen 3 > × > > >

DALLE3 = < × > >

Muse 2.2 < < < × =

Imagen 2.5 = < < = ×

(c) PALI(tokens) embeddings.

Figure 19: Model ranking using auto evaluation approaches with additional vision and language
models conditioned on attributes. We compare model rankings in terms of significance in the
number of wins with Wilcoxon signed-rank tests under a 95% confidence level. Each entry in the
each of the grids represents a comparison between two models. The > sign indicates the model in the
row is better, worse (<), or not significantly different (=) than the model in the column. The win rates
in each of the grids are computed using the scores based on (a) CLIP embeddings, (b) PALI(emb2)
embeddings, and (c) PALI(tokens) embeddings. All models are conditioned on attributes.
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(a) CLIP embeddings.

Fl
ux

1.
1

Im
ag

en
3

D
A

L
L

E
3

M
us

e
2.

2

Im
ag

en
2.

5

Flux 1.1 × < = > >

Imagen 3 > × > > >

DALLE3 = < × > >

Muse 2.2 < < < × >

Imagen 2.5 < < < < ×

(b) PALI(emb2) embeddings.
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(c) PALI(tokens) embeddings.

Figure 20: Model ranking using auto evaluation approaches with additional vision and language
models conditioned on objects and attributes. We compare model rankings in terms of significance
in the number of wins with Wilcoxon signed-rank tests under a 95% confidence level. Each entry in
the each of the grids represents a comparison between two models. The > sign indicates the model
in the row is better, worse (<), or not significantly different (=) than the model in the column. The
win rates in each of the grids are computed using the scores based on (a) CLIP embeddings, (b)
PALI(emb2) embeddings, and (c) PALI(tokens) embeddings. All models are conditioned on objects
and attributes.
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Figure 21: Model ranking using auto evaluation approaches. Win rate matrices and score
distributions for Flux1.1 and Imagen3 using image models to compute embeddings.
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Figure 22: Model ranking using auto evaluation approaches. Win rate matrices and score distribu-
tions for Flux1.1 and Imagen3 using text-conditioned multimodal models to compute embeddings,
conditioned on attributes.
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Figure 23: Model ranking using auto evaluation approaches. Win rate matrices and score distribu-
tions for Flux1.1 and Imagen3 using text-conditioned multimodal models to compute embeddings,
conditioned on objects and attributes.
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E.6 EVALUATING DIVERSITY USING FOUNDATION MODELS

We use the following instruction: “I am currently comparing two models with the prompt [prompt]
and I would like to know which model generates more diverse images with respect to the attribute
[attribute], while disregarding any other attribute in the images. In the following image I show
[number of images] images generated by one model in the left, which is [model in the left side]
and [number of images] images generated by another model in the right, which is [model in the
right side]. You must count the number of different instances of [attribute] in both sets and use this
information to decide which set is the most diverse. If there is a set of images which is more diverse
than the other with respect to [attribute], can you tell me which one is the most diverse set and
explain why? Any other aspects in the images besides [attribute] must not be taken into account. You
can also respond that both sets are equally diverse.."

In addition to the instruction, similarly to the human evaluation, two sets of images are given to the
model as input.

F ABSENCE OF A DIVERSITY-FIDELITY TRADE-OFF

Evaluating the diversity of generative models presents a unique challenge: a model can trivially
achieve high diversity by producing random noise–the generated noisy images are always different in
a high dimensional space. Therefore, any meaningful assessment of diversity must be predicated on
the assumption that the models in question are capable of generating images of sufficient quality. This
quality criterion implies that the generated images must not only be visually coherent and free from
significant artifacts but also effectively capture the salient aspects and core intent of the given prompt.
Without this foundational understanding of quality and adherence to prompt specifications, a high
diversity score would be misleading, indicating a lack of control and semantic understanding rather
than a beneficial range of outputs. To illustrate this for some of the strong models we considered in
our work, we compute the state-of-the-art text-to-image alignment metric Gecko (Wiles et al., 2024)
for the same images used in our study in Table 5. Results show that models achieve the same average
Gecko score (higher is better, 1 is the maximum) indicating they not only have strong performance in
terms of text-to-image alignment, but are not statistically different in terms of this evaluation aspect.
Notably, our diversity evaluation in Sec. 3 and E showed that Imagen 3 is significantly better than
both Imagen 2.5 and Muse 2.2.

Model Gecko 95% CI lowerbound 95% CI upperbound

Muse 2.2 0.9591 0.9530 0.9646
Imagen 3 0.9591 0.9527 0.9647

Imagen 2.5 0.9591 0.9527 0.9645

Table 5: Alignment results for models with different diversity.

G LLM USE DISCLOSURE

An LLM was used for polish writing of some paragraphs of the manuscript and improving the
phrasing of a few sentences. No LLM was used to write extended parts of the paper, or for writing
sentences from scratch, retrieval, discovery and research ideation.
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