

000 001 BENCHMARKING DIVERSITY IN IMAGE GENERATION 002 VIA ATTRIBUTE-CONDITIONAL HUMAN EVALUATION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Despite advances in generation quality, current text-to-image (T2I) models often
012 lack diversity, generating homogeneous outputs. This work introduces a framework
013 to address the need for robust diversity evaluation in T2I models. Our framework
014 systematically assesses diversity by evaluating individual concepts and their relevant
015 factors of variation. Key contributions include: (1) a novel human evaluation
016 template for nuanced diversity assessment; (2) a curated prompt set covering diverse
017 concepts with their identified factors of variation (e.g. prompt: *An image of an apple*, factor of variation: color); and (3) a methodology for comparing models
018 in terms of human annotations via binomial tests. Furthermore, we rigorously compare
019 various image embeddings for diversity measurement. Notably, our principled
020 approach enables ranking of T2I models by diversity, identifying categories where
021 they particularly struggle. This research offers a robust methodology and insights,
022 paving the way for improvements in T2I model diversity and metric development.

024 1 MEASURING DIVERSITY IN TEXT-TO-IMAGE MODELS

054 inconclusive (see Fig. 1). To address this challenge, we propose a framework to measure diversity
 055 without conflating constructs (Zhao et al., 2024a;b; Mironov & Prokhorenko, 2024; Jalali et al.,
 056 2024; Vrijenhoek et al., 2024): we operate under the premise that systematically evaluating diversity
 057 requires specifying both the concept being assessed and the attribute of interest, as illustrated in
 058 Fig.1. We empirically validate this by demonstrating that human accuracy in evaluating diversity
 059 is at chance level when the attribute is not defined. Building on this observation, we introduce a
 060 novel evaluation framework designed to measure the per-attribute intrinsic diversity of T2I models.
 061 This framework includes a synthetically generated prompt set spanning common concepts and their
 062 variations, as well as a human evaluation template. The template, informed by empirical findings on
 063 a golden set, improves human accuracy by dividing the evaluation into two subtasks: counting and
 064 counts comparison.

065 Considering the high cost of human evaluations for model ranking, developing automated metrics
 066 that accurately reflect human judgment is crucial for advancing T2I models. While various diversity
 067 metrics have been proposed (Friedman & Dieng, 2022; Jalali et al., 2024), their alignment with human
 068 perceptions of diversity often remains unevaluated. To address this, we use our proposed human
 069 evaluation template and prompt set to examine the reliability of autoevaluation metrics. Specifically,
 070 we investigate the Vendi Score (Friedman & Dieng, 2022), a widely adopted diversity metric (Kannen
 071 et al., 2024b; Hemmat et al., 2024) whose correlation with human-perceived diversity has not yet
 072 been thoroughly established. Our analysis reveals that the Vendi Score, when optimized for the
 073 appropriate representation space, can achieve approximately 65% accuracy in capturing human
 074 diversity judgments. We also find that the accuracy improves to 80% when the model pairs are more
 075 different, highlighting the need for more discriminant representations. Furthermore, we apply our
 076 framework to compare five recent generative models: Imagen 3 (Baldrige et al., 2024), Imagen 2.5
 077 (Vasconcelos et al., 2024), Muse 2.2 (Chang et al., 2023), DALLE3 (Betker et al., 2023), and Flux
 078 1.1 (Labs, 2024). This comparison identifies Imagen 3 and Flux 1.1 as the top-performing models
 079 regarding attribute diversity. We believe our framework provides a robust foundation for future work
 080 in developing more human-aligned evaluation metrics and improving T2I model diversity. This
 081 research makes three key contributions:
 082

- We formalize the problem of quantifying diversity in T2I models and introduce a practical evaluation framework based on pre-defined factors of variation.
- We introduce an evaluation framework consisting of the first human evaluation template tailored for diversity, a prompt set covering 86 concept-factor variation pairs, and statistical hypothesis test to compare models.
- We use the proposed framework to collect a comprehensive dataset of 24591 human annotations comparing 5 prominent T2I models and use this data to rank automatic evaluation metrics. Prompts are available in the Supplementary Material and the full benchmark (annotations, images, and prompts) will be released upon publication.

090 2 THE THREE INGREDIENTS FOR DIVERSITY EVALUATION

092 To evaluate diversity, our framework is based on three components: a definition of what specific
 093 diversity is being measured, a prompt set to elicit relevant outputs, and a human evaluation template
 094 for reliably comparing models. These are described below.

096 2.1 A CLEARLY SPECIFIED PROBLEM: DIVERSITY PER ATTRIBUTE

098 **Prelude: formalizing diversity.** Consider a set of images $X = \{x_1, x_2, \dots, x_n\}$, where each image
 099 x_i belongs to a space $\mathcal{X} \subseteq \mathbb{R}^D$. We posit that the visual appearance of each image x_i is primarily
 100 determined by a set of K underlying independent generative factors $f_i = \{f_i^1, \dots, f_i^K\}$. A potential
 101 generative model could be formulated as:

$$102 \quad p(x_i) = \prod_{k=1}^K p(x_i|f_i^k)p(f_i^k). \quad (1)$$

105 We focus on scenarios where images represent scenes containing instances from well-defined concepts
 106 (e.g., bottle, forest). Given a concept, we can often map these abstract generative factors to concrete,
 107 observable attributes. For instance, an image x_i depicting a bottle can be described by attributes such
 as: $f^{\text{material}} \in \{\text{glass, plastic, metal}\}$, $f^{\text{shape}} \in \{\text{cylindrical, square}\}$, and $f^{\text{state}} \in \{\text{open, closed}\}$.

Let $C = \{c^1, \dots, c^J\}$ be the set of concepts, $A^j = \{a^{j,1}, \dots, a^{j,K}\}$ the relevant attributes for a given concept c^j , and $V^{j,k}$ the finite set of possible values for attribute $a^{j,k}$. Each image x_i depicting a concept is associated with a specific value $v_i^{j,k} \in V^{j,k}$ for each attribute $a^{j,k}$. We define a sample of images X^j (for the same concept c^j) as *perfectly diverse* if it comprehensively covers all attribute variations. More precisely, for every attribute $a^{j,k} \in A^j$ and every possible value $v \in V^{j,k}$ there must exist at least one image $x_i^j \in X^j$ such that the attribute $a^{j,k}$ for image x_i^j takes the value v .

A tractable notion of diversity. Measuring diversity across the complete set of generative factors underlying natural data is significantly challenging. Firstly, the sheer number of potential factors (K) is often immense. Secondly, as highlighted by Tsirigotis et al. (2024), the combination of their possible values grows exponentially, leading to a ‘curse of generative dimensionality’ where no realistic finite sample can cover all possible combinations. Thirdly, many factors may inherently possess continuous value ranges, making exhaustive coverage impossible even for a single factor.

Given these challenges, and since achieving the *perfect diversity* (as defined earlier) is intractable with a finite sample, we instead propose to measure *tractable diversity*. This approach focuses on a carefully selected subset of the most salient and practically relevant generative factors (K') for a specific concept. Identifying which factors are practically relevant is non-trivial and must be tailored for a given use case. In this work, to identify these factors, we focus on commonly observed concepts reflective of T2I model training data. To effectively sample from the distribution of generative factors within these concepts, we leverage the knowledge encoded by Large Language Models (LLMs) (Rassin et al., 2024). Specifically, we prompt an LLM (Gemini 1.5 M (Team et al., 2024)) to identify relevant aspects of variation for evaluating the diversity of a given concept. The full system instruction is given in the Appendix.

2.2 A SYSTEMATICALLY GENERATED PROMPT SET

Our goal is to rigorously evaluate generative models and diversity metrics, specifically focusing on their ability to represent variation within distinct attributes of concepts. To effectively rank these models and metrics, our framework must accommodate both precisely controlled scenarios and complex, real-world use cases. We deliberately select concepts that are ubiquitous in everyday life and common image datasets, such as ImageNet (Deng et al., 2009) (e.g., ‘fruit’, ‘car’, ‘snake’), thereby anchoring our evaluation in practical utility. However, simple concepts alone are insufficient. They must also possess inherent complexity and variability, presenting a genuine challenge to the models and metrics. The chosen concepts and their attributes need to be sufficiently nuanced to allow our methodology to clearly reveal performance differences and track improvements over time or across different systems.

To structure this process, we classify concepts into three widely applicable categories: *Food and Drink* (e.g. *coffee cup, cake*), *Nature* (elements e.g. *river, butterfly*), and *Human-made Objects* (e.g. *bridge, laptop*). We leverage the generative capabilities of Large Language Models (LLMs) to systematically produce a wide range of concepts within these categories, producing concrete, “ImageNet-like” concepts, which are typically visualizable nouns, similar in scope to those in large-scale image datasets. For each generated concept, the LLM is used to identify a semantically relevant aspect of variation (attribute) that is intrinsic or commonly associated with that concept. This yields concept-attribute pairs $(c^j, a^{j,k})$ such as: $(apple, color)$, $(tree, species)$.

Figure 2: Each slice represents a concept, grouped and color-coded by its overall category.

(coffee cup, material), (chair, style). This LLM-driven process allows us to systematically build a prompt set specifically designed to probe and evaluate diversity along meaningful, contextually relevant dimensions for a broad range of common concepts. Finally, the authors manually verified all concept-attribute pairs and removed 5 where the attribute was potentially difficult / ambiguous to categorize (e.g. (food, cuisine)). The specific prompt used can be found in Appendix D.1. Additionally, in Appendix D.2 we discuss the sufficiency of our prompt set to discriminate models.

2.3 A VALIDATED, BESPOKE HUMAN EVALUATION TEMPLATE

Prior work has shown that developing an appropriate human evaluation template is an essential component in the process of measuring a desired capability of a generative model (Wiles et al., 2024; Clark et al., 2021). To that end, we develop a human evaluation template that: (a) allows annotators to understand the task well, (b) captures their judgment faithfully, and (c) yields meaningful ground truth annotations for per-attribute diversity, subsequently used to validate automated evaluation metrics. The annotators are provided with 4 options for the side-by-side comparison: (i) Left more diverse, (ii) Right more diverse, (iii) Equally diverse, (iv) Unable to answer. Visualizations of the template can be seen in Appendix B.2.

A template to measure per-attribute diversity. Our template for measuring per-attribute diversity employs a comparative, side-by-side approach due to the difficulty of evaluating diversity within a single set. Many existing diversity metrics also require a reference set. We considered the following design choices for our human evaluation template to ensure meaningful assessment (1) *Set size*: Balancing the perception of diversity with minimizing annotation fatigue and enabling robust computation for metrics requiring larger sets (e.g., Vendi score). (2) *Attribute specification*: Explicitly stating the attribute for evaluation versus allowing open-ended diversity assessment. (3) *Anchoring task*: Incorporating an intermediate task to guide annotators to focus on the intended attribute.

Validating the template with a golden set. To evaluate the quality of the evaluation template, we curate a golden set of 10 <concept, aspect> pairs, where `concept` corresponds to a concept that should be considered common across images in a set and `aspect` describes the associated aspect of variation that we want to measure diversity against. The full list of concepts and aspects of variation can be found in Appendix B.1. We validate the evaluation template by comparing cases where (i) the concept *remains constant* across images in the set while the aspect *varies* (ii) the concept *varies* across images while the aspect *remains the same*, and (iii) *both* the concept and the aspect *vary* across images within the set. We expect images in set (i) to be considered more diverse than images in set (ii), and similarly images in set (iii) to be considered more diverse than images in set (ii). Finally, we expect that images in sets (ii) and (iii) are considered equally diverse as we want to focus on the aspect as axis of variation. In Fig. 3, we present the annotation accuracy of human experts using our template under various conditions, considering the aforementioned definitions as ground truth. The different templates are shown in Fig. 9. The accuracy for the *w/o aspect* task is 30.0% for comparisons of sets of size 4 and 26.7% for sets of size 8. In contrast, the template that includes the aspect shows a significant increase in accuracy (82.5% for set size 4 and 53.3% for set size 8), indicating that explicitly mentioning the desired aspect of variation improves accuracy. This improvement likely stems from preventing annotators from unintentionally conflating the `concept` and the `aspect` when not guided to focus on a specific axis. Furthermore, we observe that adding the `count` anchoring question enhances accuracy, especially for the set size of 8, reaching 77.9%.

For the `count` task, we found a strong ($\rho = 0.88$) and statistically significant ($p < .001$) correlation between the annotators' final diversity comparison and the comparison inferred from their individual subset counts (where a higher count on one side implies a more diverse final response for that side, and equal counts imply equal diversity). This confirms that the anchoring count question effectively guides annotators. To further validate our setup, we analyzed instances where annotators' responses deviated from the ground truth in our golden set. We examined the distributions of attribute

Figure 3: Match with the golden set depending on different set sizes.

(a) The “diverse” golden set.

(b) The “non-diverse” golden set.

227
228
229
Figure 4: The distribution of counts for sets of images labelled as “diverse” or “non-diverse” in the
230 golden set for the pilot study.

231 counts for two image subsets: (1) those labelled “diverse” in the ground truth, where we expected
232 a count mode of “8” and (2) those labelled “non-diverse”, where we expected a mode of “1”. The
233 results of this analysis are presented in Fig. 4. While generally, annotator responses aligned with the
234 golden set labels, we observed a few exceptions. For instance, in one case labelled as a diverse set of
235 chairs, all annotators counted only 3 or 4 distinct chair types, indicating lower diversity than expected.
236 Upon closer inspection, these chairs appeared visually similar despite potentially different underlying
237 material prompts (e.g., metal, iron, aluminum).

3 OUR FRAMEWORK IN PRACTICE

240 We demonstrate our framework’s practical application by: (i) collecting comprehensive human
241 annotations with our template to compare models, (ii) using these annotations as ground truth
242 to evaluate diversity metrics, and (iii) comparing model rankings from human versus automatic
243 evaluations to highlight the gap between human-perceived diversity and current metric capabilities.

3.1 RANKING MODELS VIA HUMAN EVALUATION

244 With the proposed prompt set from Sec. 2.2 and the human evaluation template introduced in Sec.
245 2.3, we evaluate the attribute-based diversity of five generative models, namely: Muse 2.2 (Chang
246 et al., 2023), Imagen 2.5 (Vasconcelos et al., 2024), Imagen 3 (Baldridge et al., 2024), DALLE3
247 (Betker et al., 2023), and Flux 1.1 (Labs, 2024). For each model, we generate 20 distinct samples
248 for each prompt, randomly combine them in 10 different sets of 8 images, and run side-by-side
249 evaluations for all 10 combinations of 2 models. For each side-by-side comparison, evaluations from
250 5 different raters were collected. Raters had access to a slide deck with instructions to perform the
251 task and were compensated for the time invested in the data collection. In total, 24591 annotations
252 were collected in our study from 20 different annotators, including the pilot runs. The average time to
253 complete the task with the final template was 32 seconds More details can be found in the Appendix
254 (Sec.A). Before comparing each model pair in terms of diversity, we evaluate the overall annotations
255 quality by computing the inter-annotator agreement via Krippendorff’s alpha reliability (α) (Hayes &
256 Krippendorff, 2007). In Fig. 5a, we observe that for all cases $\alpha > 0.8$, indicating a high-degree of
257 agreement across annotators (Marzi et al., 2024).

258 **Ratings aggregation.** Given the high levels of inter-annotator agreement for all runs of the human
259 evaluation, we aggregate annotations for each side-by-side comparison across raters by *taking the
260 mode* of the ratings. We then follow this step with a second aggregation, this time at the level of
261 all side-by-side comparisons for each concept. For instance, when comparing a given model pair,
262 there are 10 side-by-side comparisons for the concept *apple* (each side-by-side comparison here
263 corresponds to the evaluation of two sets of 8 images). At the end of this process, for the considered
264 models pair, we obtain a single human evaluation result for each concept in the prompt set.

265 **Model ranking.** Using the results from the ratings aggregation, we propose to use Binomial tests to
266 verify the following hypothesis: *there is a significant difference between the outcomes of a given pair
267 of models*. To do so, we count the number of categories for which each model was deemed best and
268 perform a two-sided Binomial test under the null-hypothesis that the rate for which each model is

(a) Krippendorff's α -reliability.

Flux 1.1 Imagen 3 DALLE3 Muse 2.2 Imagen 2.5

Flux 1.1	\times	$=$	$>$	$>$	$>$
Imagen 3	$=$	\times	$=$	$>$	$>$
DALLE3	$<$	$=$	\times	$=$	$>$
Muse 2.2	$<$	$<$	$=$	\times	$=$
Imagen 2.5	$<$	$<$	$<$	$=$	\times

(b) Binomial test results at 95% confidence.

282
283
284
285
286
287

Figure 5: **Human evaluation results.** (a) Inter-annotator agreement results in terms of Krippendorff's α -reliability. (b) We compare model rankings in terms of significance in the number of wins with two-sided Binomial tests under a 95% confidence level. Each entry in the grid represents a comparison between two models. The sign indicates the model in the row is better ($>$), worse ($<$), or not significantly different ($=$) than the model in the column.

290 the best for a concept is equal to 50% (i.e. both models have equal win rates). Results considering
291 a 95% confidence level for all tests are shown in Fig. 5b. Imagen 3 and Flux 1.1 are significantly
292 better or not worse than all other models. Imagen 2.5 and Muse 2.2 are not significantly better than
293 any contender, showing that our benchmark is able to capture an overall progress in diversity when
294 comparing newer and older models. DALLE3 is significantly better than Imagen 2.5, but does not
295 significantly surpass the performance of the other models considered for comparison.

3.2 COMPARING AUTOEVALUATION METRICS

298 While human evaluation is often considered gold standard, it can be impractical to rely solely on
299 human annotation. We then leverage the collected human annotations to perform an extensive study
300 of the role of embeddings for the Vendi Score¹.

301 **Autoraters based on the Vendi Score.** Given a set of images $X^{j,k} = \{x_i^{j,k}\}$ (corresponding
302 to a given model, concept c^j and attribute $a^{j,k} \in A^j$), we extract embeddings $h_{\Xi}(x_i^{j,k})$ for each
303 image. h_{Ξ} is a pretrained feature extractor that can be dependent on a set of conditions $\Xi = \{\xi_l\} \subset$
304 $(C \times A) \cup \{\xi^0\}$ where ξ^0 is a condition unrelated to the considered categories and attributes that can
305 be added to test the impact of conditioning. The different feature extractors and conditions we used
306 are detailed in the following paragraph, but here are a few generic examples to clarify the notation:
307 (i) h_{Ξ} takes only images as input. In this case, $\Xi = \emptyset$. (ii) h_{Ξ} is a vision and language model. In this
308 case, embeddings can be conditioned on text data that depends on the concept only (i.e., $\Xi = \{c^j\}$),
309 attribute only (i.e., $\Xi = \{a^{j,k}\}$), or both concept and attribute (i.e., $\Xi = \{c^j, a^{j,k}\}$). To test the
310 impact of conditioning on text, we can instead choose an unrelated prompt (i.e., using $\Xi = \{\xi^0\}$).
311 Finally, we aggregate the embeddings using a diversity metric to obtain a score for the set. As we do
312 not have access to a reliable reference in our setting, we use the Vendi Score (Friedman & Dieng,
313 2022), a reference-free and widely adopted metric (Pasarkar & Dieng, 2023; Jalali et al., 2024;
314 Hemmat et al., 2024; Kannen et al., 2024a). The Vendi Score is defined as follows:

315 **Definition 1** (Adapted from (Friedman & Dieng, 2022), Definition 3.1). *Given a concept c^j , an
316 attribute $a^{j,k}$ and a set of conditions Ξ , let $\{x_1^{j,k}, \dots, x_n^{j,k}\}$ denote a set of images representing a
317 given concept and attribute. Let $k : X \times X \rightarrow \mathbb{R}$ be the cosine similarity between the embeddings of
318 two images, $K^{\Xi} \in \mathbb{R}^{n \times n}$ be the kernel matrix, with $K_{lm}^{\Xi} = k^{\Xi}(x_l^{j,k}, x_m^{j,k})$, and let $\lambda_1^{\Xi}, \dots, \lambda_n^{\Xi}$ be
319 the eigenvalues of K^{Ξ}/n . The Vendi Score for the set $\{x_1^{j,k}, \dots, x_n^{j,k}\}$ is defined as:*

320

$$s_{\Xi}(x_1^{j,k}, \dots, x_n^{j,k}) = \exp\left(-\sum_{i=1}^n \lambda_i^{\Xi} \log \lambda_i^{\Xi}\right). \quad (2)$$

321
322
323

¹Results with other autoraters can be found in the Appendix Sec.E.

324

(a) The “diverse” golden set.

(b) Side-by-side model comparisons.

(c) Side-by-side model comparisons with diversity gap > 4.

Figure 6: **Autoevaluation results:** the performance of the Vendi Score given different embeddings across three settings: (a) the golden set; (b) all the annotations gathered; (c) the “easy” subset of the annotations where raters identified a diversity gap of > 4 for a pair. On the golden set, ViT performs best but this does not transfer to side-by-side comparisons. The performance is generally better on the “easy” split of the data, showing that the embeddings perform considerably worse when the difference between the generated sets of images is more subtle—models are more similar.

Experimental setup. We compare three different types of embeddings. First, we compare embeddings obtained *using only* the image input. Here we consider two models trained for IMAGENET classification – the IMAGENET INCEPTION model introduced in Szegedy et al. (2015) and an IMAGENET ViT-B/16 model trained on IMAGENET21K as described in Steiner et al. (2022). We also consider one self-supervised model, DINOv2 (Oquab et al., 2023). Second, we consider embeddings conditioned on both the image and textual attribute. We use PALI embeddings Beyer et al. (2024) at various points after fusing the text and visual input, and CLIP (Radford et al., 2021) combined text and image embedding. We use these embedding models to obtain an embedding for each image in a set the Vendi Score in order to aggregate embeddings and obtain a diversity prediction for the set. Finally, we consider the first word output by the PALI model as a discrete token. We aggregate these outputs by counting the number of unique words generated for a set to get an estimate for diversity. For each pair of image sets, we analyze the agreement between a diversity assessment based on our autoraters, and the assessment resulting from the human annotations, not taking into account pairs where the annotators found the sets to be equally diverse. If the autoraters and the human evaluations both indicate the same set as being the most diverse (i.e., $s_{\Xi}(X_1^{j,k}) > s_{\Xi}(X_2^{j,k})$ and annotators rated the set $X_1^{j,k}$ generated with model 1 based on concept c^j and attribute $a^{j,k}$ as more diverse than $X_2^{j,k}$ generated with model 2 based on the same concept and attribute), we say that for that pair of sets, the autorater is correct, else it is incorrect. We then report accuracy by aggregating the number of pairs for which the autoraters are correct.

Results. Results are reported in Figs. 6a-6c. We can see that, on the “diverse” golden set, the ViT model does the best, and then the tokens of PALI. This is perhaps surprising, as the ViT model is not specifically trained to focus on the aspects we are considering for diversity but to be able to discriminate between broad classes. However, we see minimal difference in results if we consider the model data. All approaches perform similarly and lead to accuracies that are not significantly different. We hypothesize that the reason for the observed small difference in results was that the models were similar to each other. As a result, we looked at ratings where the annotators perceived a larger gap between models by using the counts as a proxy. We consider a subset of the data where the difference in counts between the two sets is greater than 4, keeping about 24% of the data. We find that now, on the model data we see a bigger difference in results. First, all autoraters are more accurate. Second, we can see that again the image based approaches (e.g., the INCEPTION model, the DINO model and ViT model) perform best. In Sec. E.3, we provide qualitative results showing which sets different embeddings deem as high or low diversity.

3.3 EVALUATING DIVERSITY USING FOUNDATION MODELS

We leverage the power of multimodal LLMs such as the Gemini model family (Team et al., 2024) to assess whether they can be a competitive alternative to automatic metrics that rely on embeddings. We design a system instruction aiming to prompt the model to perform a two-step evaluation akin to the human evaluation task. The full instruction can be found in Sec. E.6. We evaluate these evaluators on the golden set and present the results on Fig. 7a. Gemini v2.5 Flash achieves the best

378 performance, surpassing human accuracy in the task. A closer look at the results reveals that both
 379 human and auto raters perform similarly in almost all the cases, with the mismatches corresponding
 380 to the evaluating of diversity for the pair `<building, style>`. We hypothesize judging diversity of
 381 architectural styles is a complex task that heavily depends on the cultural background of annotators,
 382 thereby being more accurately performed by a powerful vision-language models. We also evaluate
 383 how the best evaluator performs on predicting human annotations. In Fig.7b, we see that for Imagen 3
 384 comparisons, the foundation model-based evaluator presents competitive performance in comparison
 385 to embedding-based automatic metrics, without relying on embeddings, although currently more
 386 costly as evaluating each pair requires a query from the foundation model.

397 (a) Accuracy of autoraters based on the
 398 Gemini model family on the golden set.

399 (b) Gemini v2.5 Flash human evaluation pre-
 400 diction accuracy for Imagen 3 comparisons.
 401

Figure 7: **Evaluating diversity with Gemini.** Gemini v2.5 Flash achieves the highest accuracy on the golden set and is competitive with embedding-based metrics when predicting human annotations.

402 3.4 RANKING MODELS WITH AUTOEVALUATION APPROACHES

404 Ranking is achieved by counting the frequency at which the left model (model 1) achieves a higher
 405 score than the model on the top (model 2), i.e. we count how many times $s_{\Xi}(X_1^{j,k}) > s_{\Xi}(X_2^{j,k})$,
 406 with $X_1^{j,k}$ generated with model 1, and $X_2^{j,k}$ generated with model 2, and subtracting 0.5. More
 407 results can be found in Sec. E.5. In order to test the significance, we aggregate the scores per concept
 408 and perform a Wilcoxon signed-rank test under a 95% confidence level. In Fig.8a, we consider
 409 the ImageNet Inception embeddings, as they yielded the highest accuracy on the model data. In
 410 Figs.8b and 8c, we consider text-conditioned embeddings, as they are closest to our human evaluation
 411 procedure. We show the results using PALI(EMB1), as they show a marginal advantage on model
 412 data. On the middle panel, we show the results corresponding to conditioning the embedding model
 413 on the attribute only, while on the right panel, conditioning takes into account both attribute and
 414 object. Results with other embeddings can be found in (Sec. E.5). Through the autoevaluation model
 415 ranking, we find that independently of the chosen embedding, Imagen 3 is not worse than all other
 416 models, and Flux 1.1, Imagen 3 and DALLE3 are better than Imagen 2.5 and Muse 2.2. We also
 417 observe that using ImageNet Inception embeddings and PALI(EMB1) with a conditioning on object
 418 and attribute captures more differences across the 3 top models, and that using both types of the
 419 PALI(EMB1) embeddings captures more differences between Imagen 2.5 and Muse 2.2. By adopting
 420 the model comparison results obtained with the human annotations as shown Fig. 5b as ground-truth,
 421 we find that all used embeddings are of similar quality in terms of closeness to human perception of
 422 diversity. They all did not flip conclusions, but the autoevaluation approach seems more sensitive to
 423 certain variations depending on the choice of embedding model and conditioning. Text conditioning,
 424 while closest to the human evaluation procedure, did not show a significant advantage with the current
 425 choice of embedding models and conditioning.

426 4 RELATED WORK

428 The primary method for evaluating text-to-image models involves gathering human judgments on a
 429 specific benchmark (i.e., a set of prompts). Previous research highlights that the composition of this
 430 benchmark significantly influences the resulting model rankings. This has led to the development of
 431 benchmarks with broader skill coverage, e.g., text rendering and spatial reasoning (Cho et al., 2023; Li
 et al., 2024; Wiles et al., 2024), as well as benchmarks targeting specific skills like numerical reasoning

	Flux 1.1	Imagen 3	DALLE3	Muse 2.2	Imagen 2.5		Flux 1.1	Imagen 3	DALLE3	Muse 2.2	Imagen 2.5		Flux 1.1	Imagen 3	DALLE3	Muse 2.2	Imagen 2.5											
Flux 1.1	<	<	=	>	>	Imagen 3	>	<	=	>	>	DALLE3	=	<	<	>	Muse 2.2	<	<	<	<	>	Imagen 2.5	<	<	<	=	<
Imagen 3	>	<	>	>	>	DALLE3	=	<	<	>	>	Muse 2.2	<	<	<	<	>	Imagen 2.5	<	<	<	<	<					
DALLE3	=	<	<	>	>	Muse 2.2	<	<	<	<	>	Imagen 2.5	<	<	<	<	<		<	<	<	<	<					
Muse 2.2	<	<	<	<	=	Imagen 2.5	<	<	<	<	<		<	<	<	<	<		<	<	<	<	<					
Imagen 2.5	<	<	<	=	<		<	<	<	<	<		<	<	<	<	<		<	<	<	<	<					

(a) Inception embeddings.

(b) PALI(emb1) embeddings - conditioned on attribute.

(c) PALI(emb1) embeddings - conditioned on object and attribute.

Figure 8: **Ranking by autoevaluation.** Model comparisons with the Vendi Score based on (a)Inception, (b)PALI(emb1) conditioned on the attribute, and (c)PALI(emb1) conditioned on object and attribute. Each entry represents a comparison between two models. The sign indicates the model in the row is better (>), worse (<), or not significantly different (=) than the model in the column.

(Kajić et al., 2024). Although human evaluation remains the gold standard, numerous automatic metrics have been proposed to potentially replace human judgments, at least for certain applications (e.g., Hessel et al., 2021; Wiles et al., 2024; Huang et al., 2023; Lin et al., 2024; Senthilkumar et al., 2024). Rigorous validation of these metrics is crucial across diverse conditions, including different prompt sets, human evaluation templates, and models (Wiles et al., 2024). An important facet of evaluating text-to-image models involves measuring the diversity of their output (Dombrowski et al., 2024; Vice et al., 2024). This has resulted in different metrics, both reference-based (Sajjadi et al., 2018; Heusel et al., 2017; Salimans et al., 2016) and reference-free (Friedman & Dieng, 2022; Rassin et al., 2024; Mironov & Prokhorenkova, 2024; Ospanov et al., 2025; Limbeck et al., 2024). The advantage of reference-free metrics is their independence from a ground-truth set, which permits the evaluation of diversity in broader contexts. One such recent metric, the Vendi score (Friedman & Dieng, 2022), has influenced subsequent research (Kannen et al., 2024a; Hemmat et al., 2024; Jalali et al., 2024). Despite these developments, none of the proposed metrics have undergone thorough evaluation, frequently being tested only on generic prompts or in simplified settings. Moreover, surprisingly, the majority of previous studies lack human evaluation to demonstrate the validity of these metrics. To address this gap, we introduce a prompt set designed for evaluating diversity across particular attributes and propose and validate a human evaluation template to gather ground-truth diversity judgments. Finally, we compare existing metrics and models under various conditions.

5 DISCUSSION

Ensuring diversity in text-to-image (T2I) model outputs is essential, serving as a measure of their ability to express real-world variety. However, rigorous evaluation of this diversity, particularly for specific attributes, remains challenging. This paper introduces a novel framework for attribute-specific T2I diversity evaluation. It comprises a systematic prompt set and a human evaluation template, which has been validated to significantly improve the accuracy of human judgments by explicitly defining the attribute of interest. This framework provides a crucial ground truth for understanding and measuring diversity beyond general impressions. Applying this framework, we ranked prominent T2I models based on their attribute-specific diversity, identifying Imagen 3 and Flux 1.1 as strong performers. Furthermore, we leveraged our human data to evaluate automated evaluation approaches based on the Vendi Score. Our results demonstrate that the choice of embedding space, upon which autoevaluation metrics operate, is crucial for achieving results that broadly align with human judgments. Notably, our findings indicate that Vendi Score-based autoevaluation approaches can capture human-perceived diversity with approximately 80% accuracy and correctly yield similar results for pairwise model comparisons when a comparable statistical analysis methodology is employed. The broad impact of this work lies in its potential to improve T2I model quality in terms of diversity by providing an evaluation framework grounded in human perception. Moreover, unlike the previous work that often relies on attribute classifiers (e.g., gender), our evaluation methodology can be employed to measure demographic diversity in a classification-free manner in future research.

486 6 ETHICS STATEMENT
487488 This work involved data collection from human annotators. Each one of the 20 different participants
489 has been compensated for the time invested in the experiment according to the minimum wage in their
490 geographical location. Before completing the annotation task, annotators were given a comprehensive
491 set of instructions and could take as much time as necessary to complete the task.
492493 REFERENCES
494495 Pietro Astolfi, Marlene Careil, Melissa Hall, Oscar Mañas, Matthew Muckley, Jakob Verbeek,
496 Adriana Romero Soriano, and Michal Drozdzal. Consistency-diversity-realism pareto fronts of
497 conditional image generative models. *arXiv preprint arXiv:2406.10429*, 2024.498 Jason Baldridge, Jakob Bauer, Mukul Bhutani, Nicole Brichtova, Andrew Bunner, Lluis Castrejon,
499 Kelvin Chan, Yichang Chen, Sander Dieleman, Yuqing Du, et al. Imagen 3. *arXiv preprint
500 arXiv:2408.07009*, 2024.
501502 James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
503 Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer
504 Science*. <https://cdn.openai.com/papers/dall-e-3.pdf>, 2(3):8, 2023.505 Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel
506 Salz, Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, et al.
507 Paligemma: A versatile 3b vlm for transfer. *arXiv preprint arXiv:2407.07726*, 2024.
508509 Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang,
510 Kevin Murphy, William T Freeman, Michael Rubinstein, et al. Muse: Text-to-image generation
511 via masked generative transformers. *arXiv preprint arXiv:2301.00704*, 2023.512 Jaemin Cho, Yushi Hu, Roopal Garg, Peter Anderson, Ranjay Krishna, Jason Baldridge, Mohit Bansal,
513 Jordi Pont-Tuset, and Su Wang. Davidsonian scene graph: Improving reliability in fine-grained
514 evaluation for text-image generation. *arXiv preprint arXiv:2310.18235*, 2023.
515516 Elizabeth Clark, Tal August, Sofia Serrano, Nikita Haduong, Suchin Gururangan, and Noah A. Smith.
517 All that's 'human' is not gold: Evaluating human evaluation of generated text. In Chengqing Zong,
518 Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th Annual Meeting of the
519 Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers)*, 2021.
520521 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
522 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
523 pp. 248–255. Ieee, 2009.524 Mischa Dombrowski, Weitong Zhang, Sarah Cechnicka, Hadrien Reynaud, and Bernhard Kainz.
525 Image generation diversity issues and how to tame them. *arXiv preprint arXiv:2411.16171*, 2024.
526527 Dan Friedman and Adji Bousoo Dieng. The vendi score: A diversity evaluation metric for machine
528 learning. *arXiv preprint arXiv:2210.02410*, 2022.529 Andrew F Hayes and Klaus Krippendorff. Answering the call for a standard reliability measure for
530 coding data. *Communication methods and measures*, 1(1):77–89, 2007.
531532 Reyhane Askari Hemmat, Melissa Hall, Alicia Sun, Candace Ross, Michal Drozdzal, and Adriana
533 Romero-Soriano. Improving geo-diversity of generated images with contextualized vendi score
534 guidance. *arXiv preprint arXiv:2406.04551*, 2024.535 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: a
536 reference-free evaluation metric for image captioning. In *EMNLP*, 2021.
537538 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
539 trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in neural
information processing systems*, 30, 2017.

540 Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A comprehensive
 541 benchmark for open-world compositional text-to-image generation. *Advances in Neural*
 542 *Information Processing Systems*, 36:78723–78747, 2023.

543

544 Mohammad Jalali, Azim Ospanov, Amin Gohari, and Farzan Farnia. Conditional vendi score: An
 545 information-theoretic approach to diversity evaluation of prompt-based generative models. *arXiv*
 546 *preprint arXiv:2411.02817*, 2024.

547

548 Ivana Kajić, Olivia Wiles, Isabela Albuquerque, Matthias Bauer, Su Wang, Jordi Pont-Tuset, and
 549 Aida Nematzadeh. Evaluating numerical reasoning in text-to-image models. *Advances in Neural*
 550 *Information Processing Systems*, 37:42211–42224, 2024.

551

552 Nithish Kannen, Arif Ahmad, Marco Andreetto, Vinodkumar Prabhakaran, Utsav Prabhu,
 553 Adji Bousso Dieng, Pushpak Bhattacharyya, and Shachi Dave. Beyond aesthetics: Cultural
 554 competence in text-to-image models. *arXiv preprint arXiv:2407.06863*, 2024a.

555

556 Nithish Kannen, Arif Ahmad, Vinodkumar Prabhakaran, Utsav Prabhu, Adji Bousso Dieng, Pushpak
 557 Bhattacharyya, Shachi Dave, et al. Beyond aesthetics: Cultural competence in text-to-image
 558 models. In *The Thirty-eight Conference on Neural Information Processing Systems Datasets and*
 559 *Benchmarks Track*, 2024b.

560

561 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

562

563 Baiqi Li, Zhiqiu Lin, Deepak Pathak, Jiayao Li, Yixin Fei, Kewen Wu, Tiffany Ling, Xide Xia,
 564 Pengchuan Zhang, Graham Neubig, and Deva Ramanan. Genai-bench: Evaluating and improv-
 565 ing compositional text-to-visual generation, 2024. URL <https://arxiv.org/abs/2406.13743>.

566

567 Katharina Limbeck, Rayna Andreeva, Rik Sarkar, and Bastian Rieck. Metric space magnitude for
 568 evaluating the diversity of latent representations. *Advances in Neural Information Processing*
 569 *Systems*, 37:123911–123953, 2024.

570

571 Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and
 572 Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. In *European*
 573 *Conference on Computer Vision*, pp. 366–384. Springer, 2024.

574

575 Giacomo Marzi, Marco Balzano, and Davide Marchiori. K-alpha calculator–krippendorff’s alpha
 576 calculator: a user-friendly tool for computing krippendorff’s alpha inter-rater reliability coefficient.
 577 *MethodsX*, 12:102545, 2024.

578

579 Mikhail Mironov and Liudmila Prokhorenkova. Measuring diversity: Axioms and challenges. *arXiv*
 580 *preprint arXiv:2410.14556*, 2024.

581

582 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 583 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 584 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

585

586 Azim Ospanov, Jingwei Zhang, Mohammad Jalali, Xuenan Cao, Andrej Bogdanov, and Farzan
 587 Farnia. Towards a scalable reference-free evaluation of generative models. *Advances in Neural*
 588 *Information Processing Systems*, 37:120892–120927, 2025.

589

590 Amey P Pasarkar and Adji Bousso Dieng. Cousins of the vendi score: A family of similarity-based
 591 diversity metrics for science and machine learning. *arXiv preprint arXiv:2310.12952*, 2023.

592

593 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 594 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 595 models from natural language supervision. In *International conference on machine learning*, pp.
 596 8748–8763. PMLR, 2021.

597

598 Royi Rassin, Aviv Slobodkin, Shauli Ravfogel, Yanai Elazar, and Yoav Goldberg. Grade: Quantifying
 599 sample diversity in text-to-image models. *arXiv preprint arXiv:2410.22592*, 2024.

594 Seyedmorteza Sadat, Jakob Buhmann, Derek Bradley, Otmar Hilliges, and Romann M Weber. Cads:
 595 Unleashing the diversity of diffusion models through condition-annealed sampling. In *The Twelfth*
 596 *International Conference on Learning Representations*, 2024.

597

598 Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly. Assessing
 599 generative models via precision and recall, 2018. URL <https://arxiv.org/abs/1806.00035>.

600

601

602 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 603 Improved techniques for training gans. *Advances in neural information processing systems*, 29,
 604 2016.

605

606 Nithish Kannen Senthilkumar, Arif Ahmad, Marco Andreetto, Vinodkumar Prabhakaran, Utsav
 607 Prabhu, Adji Bousso Dieng, Pushpak Bhattacharyya, and Shachi Dave. Beyond aesthetics: Cultural
 608 competence in text-to-image models. *Advances in Neural Information Processing Systems*, 37:
 609 13716–13747, 2024.

610

611 Andreas Peter Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and
 612 Lucas Beyer. How to train your vit? data, augmentation, and regularization in vision transformers.
 613 *Transactions on Machine Learning Research*, 2022.

614

615 Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
 616 mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
 617 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1–9, 2015.

618

619 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
 620 Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
 621 understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.

622

623 Christos Tsirigotis, Joao Monteiro, Pau Rodriguez, David Vazquez, and Aaron C Courville. Group
 624 robust classification without any group information. *Advances in Neural Information Processing
 625 Systems*, 36, 2024.

626

627 Cristina Nader Vasconcelos, Abdullah Rashwan, Austin Waters, Trevor Walker, Keyang Xu, Jimmy
 628 Yan, Rui Qian, Yeqing Li, SHIXIN LUO, Yasumasa Onoe, et al. Greedy growing enables high-
 629 resolution pixel-based diffusion models. *Transactions on Machine Learning Research*, 2024.

630

631 Jordan Vice, Naveed Akhtar, Richard Hartley, and Ajmal Mian. On the fairness, diversity and
 632 reliability of text-to-image generative models. *arXiv preprint arXiv:2411.13981*, 2024.

633

634 Sanne Vrijenhoek, Savvina Daniil, Jorden Sandel, and Laura Hollink. Diversity of what? on the
 635 different conceptualizations of diversity in recommender systems. In *The 2024 ACM Conference
 636 on Fairness, Accountability, and Transparency*, pp. 573–584, 2024.

637

638 Olivia Wiles, Chuhan Zhang, Isabela Albuquerque, Ivana Kajić, Su Wang, Emanuele Bugliarello,
 639 Yasumasa Onoe, Chris Knutsen, Cyrus Rashtchian, Jordi Pont-Tuset, et al. Revisiting text-to-image
 640 evaluation with gecko: On metrics, prompts, and human ratings. *arXiv preprint arXiv:2404.16820*,
 2024.

641

642 Dora Zhao, Jerone TA Andrews, Orestis Papakyriakopoulos, and Alice Xiang. Position: Measure
 643 dataset diversity, don't just claim it. *arXiv preprint arXiv:2407.08188*, 2024a.

644

645 Dorothy Zhao, Jerone TA Andrews, AI Sony, Tokyo Orestis Papakyriakopoulos, and Alice Xi-
 646 ang. Measuring diversity in datasets. In *International Conference on Learning Representations*,
 647 volume 1, pp. 36, 2024b.

648
649

APPENDIX

650
651

A HUMAN EVALUATION TASK DETAILS

652
653

A.1 INSTRUCTIONS

654
655

Before completing the annotation task, annotators were given a comprehensive set of instructions including the following guidelines:

656
657
658
659
660
661
662
663
664
665
666
667
668

- The goal of the task is to compare the how diverse two sets of images are with respect to a given attribute;
- For the given two sets of images, answer the question about how diverse the concept is with respect to the specific attribute highlighted in the prompt;
- You should count how many different instances of a particular attribute they observe on the left and right sets of images, separately;
- For example, if the attribute is “background” and the prompt is “animal”, raters should count how many different backgrounds appear in each set of images and finally judge how diversity of the two sets compares to each other with respect to this attribute;
- Finally, based on the counts, pick one of the following options: (1) Left is more diverse; (2) Right is more diverse; (3) Equally diverse; (4) Unable to answer.

669
670
671

Along with the written instructions, annotators were also given examples corresponding to options 1, 2, and 3.

672
673

A.2 ADDITIONAL INFORMATION

674
675
676

In total, 24591 annotations were collected in our study, including the pilot runs. The average time to complete the task with the final template was 32 seconds.

677
678

B HUMAN EVALUATION TEMPLATE

679
680

B.1 GOLDEN SET CONCEPT-ATTRIBUTE PAIRS

681
682
683
684
685
686
687
688
689
690
691

We considered the following categories and aspects of variation for the golden set: <color, flower>, <material, container>, <color, language>, <background, animal>, <material, chair>, <side dish, cookie shape>, <pattern, clothing>, <style, building>, <weather, biome>, <color, vehicle>. We validate the evaluation template by comparing cases where (i) the concept remains constant across images in the set while the aspect varies: images of the same flower (rose) in all considered colors (8 images per concept); (ii) the concept varies across images while the aspect remains the same: images of all considered flowers types in the red color (8 images per concept); and (iii) both the concept and the aspect vary across images within the set: images of all flowers, each one in one of the different colors (8 images per concept). For each concept we then generate 24 different images, yielding a total of 240 images for the full golden set. In the table below we present all considered concepts and aspects of variations values. The specific values for each concept and attribute are presented in Table 1.

692
693
694
695
696
697

For each case, images were generated using Imagen 3 with the following prompt: A photorealistic image of a aspect of variation value concept value. For example, “A photorealistic image of a yellow begonia”. As images were synthetically generated following a carefully crafted protocol, we could compare the performance of human annotators as well as autoraters based on multimodal language models such as Gemini in the task of evaluating for specific aspects of variation.

698
699
700
701

702 703 704 705 706 707	708 709 710 711	712 713 714 715 716 717 718	719 720 721 722	723 724 725 726	727 728 729 730	731 732 733 734	735 736 737	738 739 740 741
Concept	Concept values	Aspect of variation	Aspect of variation values					
Flower	Begonia, Carnation Geranium, Hibiscus Lily, Poppy Rose, Tulip	Color	Yellow, light purple white, blue green, orange red, purple					
Container	Beer, champagne cognac, cup doublewalled, mug shot glass, water	Material	Porcelain, metal stainless steel, ceramic glass, gold copper, plastic					
Neon sign language	Bonjour, hello hei, oi sawubona, hola buna, ciao	Color	Blue, green orange, pink purple, red white, yellow					
Animal	Capybara, monkey dog, snake cat, lion tree, elephant	Background	Beach, jungle park, rock room, savannah tree, water					
Chair	Dinning, armchair office, rocking lounge, folding barstool, recliner	Material	Wood, upholstered mesh, wicker leather, metal plastic, microfiber					
Cookie shape	Round, square crescent, star heart, diamond ghost, bat	Side dish	Milk, coffee tea, hot chocolate soda, fruits ice cream, walnuts					
Clothing	Tshirt, dress pants, skirt jacket, gloves sweater, scarf	Pattern	Solid color blue, striped polka dot, floral plaid, checkered animal print, camouflage					
Building	Skyscraper, residential industrial, commercial church, theater train station, school	Style	Modern, gothic victorian, art deco baroque, romanesque brutalist, traditional japanese					
Biome	Desert, rainforest grassland, tundra swamp, coastal jungle, mountain	Weather	Sunny, cloudy rainy, snowy foggy, stormy sunset, overcast					
Vehicle	Car, truck motorcycle, bus airplane, boat train, helicopter	Color	Red, blue green, yellow white, black orange, gray					

Table 1: Golden set generation: concepts and respective aspects of variation.

Figure 9: Examples of human evaluation templates used in the pilot study. In the template variant w/o aspect, only the category is provided. In the variant with count, an additional question is included for each set, prompting annotators to specify the number of distinct values observed for the target attribute within the corresponding image set. For exact examples see Figs. 10-12.

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771

772 Figure 10: A screenshot of the user interface for one annotation example for the condition "No
773 aspect".

774
775
776
777
778
779
780
781
782
783
784
785
786
787

788 Figure 11: A screenshot of the user interface for one annotation example for the condition "Aspect".
789

790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

805 Figure 12: A screenshot of the user interface for one annotation example for the condition "Count".
806

810
811
C ADDITIONAL HUMAN EVALUATION RESULTS812
813 In Fig. 13 we show the histogram of counts averaged across the 5 raters each set in all side-by-side
814 comparisons.829
830 Figure 13: Distribution of all counts annotated by human raters.
831
832833
834 **C.1 SENSITIVITY ANALYSIS ON RATER COUNT**835 We performed a sensitivity analysis taking into account the impact of the rater counter on α . We
836 subsample the annotators, obtaining sets of $K = 2, 3, 4, 5$ raters and compute α . This process is
837 repeated 100 times for each K (except 5, the full annotators set) and report the average and 95%
838 confidence intervals in the following table. Overall, the results show that we have high robustness
839 in the agreement. Even with only $k = 2$ raters, the lower bound of the 95% CI rarely drops below
840 0.80 (the standard threshold for high reliability), and for most pairs, it stays above 0.90. The gain in
841 mean inter-annotator agreement from $k = 3$ to $k = 5$ is marginal. This confirms that our protocol
842 (using 5 raters) is statistically overpowered and rigorous. Moreover, the mean α is stable across all k .
843 This indicates that our high agreement scores are not driven by a few good raters but are a consistent
844 property of the evaluation template itself.

845
846
847
848
849
850
851
852
853
854

Model Pair	$k = 2$ Raters	$k = 3$ Raters	$k = 4$ Raters	$k = 5$ (Full)
Imagen 2.5 vs Muse 2.2	0.954 [0.902, 0.995]	0.947 [0.917, 0.981]	0.948 [0.936, 0.967]	0.948
Imagen 2.5 vs Imagen 3	0.946 [0.921, 0.973]	0.946 [0.928, 0.962]	0.947 [0.939, 0.954]	0.947
Imagen 2.5 vs DALLE3	0.968 [0.941, 0.990]	0.969 [0.954, 0.990]	0.969 [0.962, 0.980]	0.969
Imagen 2.5 vs Flux 1.1	0.969 [0.957, 0.986]	0.969 [0.959, 0.976]	0.969 [0.962, 0.972]	0.969
Muse 2.2 vs Imagen 3	0.956 [0.925, 0.990]	0.954 [0.938, 0.972]	0.954 [0.946, 0.962]	0.954
Muse 2.2 vs DALLE3	0.968 [0.946, 0.998]	0.966 [0.952, 0.995]	0.967 [0.960, 0.980]	0.967
Muse 2.2 vs Flux 1.1	0.971 [0.948, 1.000]	0.971 [0.953, 0.989]	0.971 [0.964, 0.978]	0.971
Imagen 3 vs DALLE3	0.826 [0.780, 0.887]	0.824 [0.794, 0.851]	0.825 [0.810, 0.836]	0.826
Imagen 3 vs Flux 1.1	0.870 [0.844, 0.890]	0.867 [0.853, 0.883]	0.868 [0.862, 0.877]	0.867
DALLE3 vs Flux 1.1	0.915 [0.869, 0.944]	0.912 [0.887, 0.931]	0.911 [0.901, 0.925]	0.911

855
856 Table 2: Sensitivity analysis of inter-annotator agreement (α) with varying number of raters (k). We
857 report the mean α and the 95% confidence interval (bootstrapped over 100 iterations for subsampled
858 sets).859
860 **C.2 RANKING STABILITY**861 We performed a bootstrap analysis by resampling concepts with replacement 1000 times and found
862 that regardless of whether we include or not the ties, all the rankings are stable (i.e. the confidence
863 interval does not cross 0) for the 95% confidence interval.

864
 865 Table 3: Bootstrap stability analysis of model rankings (1000 resamples). We report the difference in
 866 win rates (Δ_{winrate}) and 95% Confidence Intervals (CI). A ranking is considered **Stable** if the CI does
 867 not cross zero.

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917	886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917			886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917		
	886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917	886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917	886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917	886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917		
Imagen 2.5 vs Muse 2.2	-0.056085	[-0.10, -0.02]	True	-0.165975	[-0.28, -0.05]	True
Imagen 2.5 vs Imagen 3	-0.261750	[-0.31, -0.22]	True	-0.563230	[-0.65, -0.48]	True
Imagen 2.5 vs DALLE3	-0.200514	[-0.24, -0.16]	True	-0.583720	[-0.68, -0.49]	True
Imagen 2.5 vs Flux 1.1	-0.270049	[-0.31, -0.23]	True	-0.716413	[-0.79, -0.64]	True
Muse 2.2 vs Imagen 3	-0.194932	[-0.24, -0.15]	True	-0.392261	[-0.48, -0.30]	True
Muse 2.2 vs DALLE3	-0.115269	[-0.16, -0.08]	True	-0.324438	[-0.43, -0.22]	True
Muse 2.2 vs Flux 1.1	-0.222187	[-0.26, -0.18]	True	-0.608733	[-0.69, -0.52]	True
Imagen 3 vs DALLE3	0.095448	[0.05, 0.14]	True	0.213689	[0.12, 0.31]	True
Imagen 3 vs Flux 1.1	-0.088937	[-0.13, -0.04]	True	-0.201318	[-0.30, -0.10]	True
DALLE3 vs Flux 1.1	-0.141041	[-0.18, -0.11]	True	-0.454561	[-0.56, -0.35]	True

D A DEEP DIVE ON OUR CURATED PROMPT SET GENERATION DETAILS

D.1 PROMPT SET GENERATION

We used the following prompt to generate the concept-factor pairs:

Your task is to generate a dataset with prompts for evaluating text-to-image models. These prompts will be used to generate realistic images and assess the diversity of the corresponding generative model with respect to a specific aspect. All prompts should correspond to realistic images. Write on the side the main object of the prompt and the aspect diversity will be measured with respect to. Here are a few examples:

Apple. An image of an apple. Color.
 Book. A photograph of a book. Thickness.
 Bowl of soup. An image of a bowl of soup. Ingredients.
 Bridge. A photograph of a bridge. Shape.
 Building. An image of a building. Style.
 Cake. A photograph of a cake. Flavour.
 Car. A photograph of a car. Type.

Omit any other text.
 Generate at least 95 cases.
 Do not include categories that involve people.

D.2 ON THE SUFFICIENCY OF THE PROMPT SET FOR DISCRIMINATING MODELS

In order to further show that our results are significant with the current set, we ran new versions of the model comparison with the human annotations presented in Sec. 3 with versions of our prompt set that have a smaller number of concepts.

More specifically, we repeated the Binomial tests (at the same significance level) after randomly removing an increasing amount of concepts, which resulted in prompt sets of size 74, 64, 54, and 24 concepts. Overall, we find that decreasing the prompt set size to 74 concepts doesn't affect any of the results. As the prompt set size further decreases, we start to see the results changing as the number of significant pairwise comparisons decreases. We observe that drastically decreasing the prompt set size makes the data no longer able to capture significant differences between models such as Imagen 3 and Imagen 2.5, as expected.

In the Table 4, we show the results of the Binomial tests for the 5 different sizes of prompt set, including the full set, from left to right (i.e. the first symbol represents the result with the full set as in

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
180100
180101
180102
180103
180104
180105
180106
180107
180108
180109
180110
180111
180112
180113
180114
180115
180116
180117
180118
180119
180120
180121
180122
180123
180124
180125
180126
180127
180128
180129
180130
180131
180132
180133
180134
180135
180136
180137
180138
180139
180140
180141
180142
180143
180144
180145
180146
180147
180148
180149
180150
180151
180152
180153
180154
180155
180156
180157
180158
180159
180160
180161
180162
180163
180164
180165
180166
180167
180168
180169
180170
180171
180172
180173
180174
180175
180176
180177
180178
180179
180180
180181
180182
180183
180184
180185
180186
180187
180188
180189
180190
180191
180192
180193
180194
180195
180196
180197
180198
180199
180200
180201
180202
180203
180204
180205
180206
180207
180208
180209
180210
180211
180212
180213
180214
180215
180216
180217
180218
180219
180220
180221
180222
180223
180224
180225
180226
180227
180228
180229
180230
180231
180232
180233
180234
180235
180236
180237
180238
180239
180240
180241
180242
180243
180244
180245
180246
180247
180248
180249
180250
180251
180252
180253
180254
180255
180256
180257
180258
180259
180260
180261
180262
180263
180264
180265
180266
180267
180268
180269
180270
180271
180272
180273
180274
180275
180276
180277
180278
180279
180280
180281
180282
180283
180284
180285
180286
180287
180288
180289
180290
180291
180292
180293
180294
180295
180296
180297
180298
180299
180300
180301
180302
180303
180304
180305
180306
180307
180308
180309
180310
180311
180312
180313
180314
180315
180316
180317
180318
180319
180320
180321
180322
180323
180324
180325
180326
180327
180328
180329
180330
180331
180332
180333
180334
180335
180336
180337
180338
180339
180340
180341
180342
180343
180344
180345
180346
180347
180348
180349
180350
180351
180352
180353
180354
180355
180356
180357
180358
180359
180360
180361
180362
180363
180364
180365
180366
180367
180368
180369
180370
180371
180372
180373
180374
180375
180376
180377
180378
180379
180380
180381
180382
180383
180384
180385
180386
180387
180388
180389
180390
180391
180392
180393
180394
180395
180396
180397
180398
180399
180400
180401
180402
180403
180404
180405
180406
180407
180408
180409
180410
180411
180412
180413
180414
180415
180416
180417
180418
180419
180420
180421
180422
180423
180424
180425
180426
180427
180428
180429
180430
180431
180432
180433
180434
180435
180436
180437
180438
180439
180440
180441
180442
180443
180444
180445
180446
180447
180448
180449
180450
180451
180452
180453
180454
180455
180456
180457
180458
180459
180460
180461
180462
180463
180464
180465
180466
180467
180468
180469
180470
180471
180472
180473
180474
180475
180476
180477
180478
180479
180480
180481
180482
180483
180484
180485
180486
180487
180488
180489
180490
180491
180492
180493
180494
180495
180496
180497
180498
180499
180500
180501
180502
180503
180504
180505
180506
180507
180508
180509
180510
180511
180512
180513
180514
180515
180516
180517
180518
180519
180520
180521
180522
180523
180524
180525
180526
180527
180528
180529
180530
180531
180532
180533
180534
180535
180536
180537
180538
180539
180540
180541
180542
180543
180544
180545
180546
180547
180548
180549
180550
180551
180552
180553
180554
180555
180556
180557
180558
180559
180560
180561
180562
180563
180564
180565
180566
180567
180568
180569
180570
180571
180572
180573
180574
180575
180576
180577
180578
180579
180580
180581
180582
180583
180584
180585
180586
180587
180588
180589
180590
180591
180592
180593
180594
180595
180596
180597
180598
180599
180600
180601
180602
180603
180604
180605
180606
180607
180608
180609
180610
180611
180612
180613
180614
180615
180616
180617
180618
180619
180620
180621
180622
180623
180624
180625
180626
180627
180628
180629
180630
180631
180632
180633
180634
180635
180636
180637
180638
180639
180640
180641
180642
180643
180644
180645
180646
180647
180648
180649
180650
180651
180652
180653
180654
180655
180656
180657
180658
180659
180660
180661
180662
180663
180664
180665
180666
180667
180668
180669
180670
180671
180672
180673
180674
180675
180676
180677
180678
180679
180680
180681
180682
180683
180684
180685
180686
180687
180688
180689
180690
180691
180692
180693
180694
180695
180696
180697
180698
180699
180700
180701
180702
180703
180704
180705
180706
180707
180708
180709
180710
180711
180712
180713
180714
180715
180716
180717
180718
180719
180720
180721
180722
180723
180724
180725
180726
180727
180728
180729
180730
180731
180732
180733
180734
180735
180736
180737
180738
180739
180740
180741
180742
180743
180744
180745
180746
180747
180748
180749
180750
180751
180752
180753
180754
180755
180756
180757
180758
180759
180760
180761
180762
180763
180764
180765
180766
180767
180768
180769
1

	Model	2 diverse sets	2 non-diverse sets		
972					
973					
974					
975					
976					
977					
978					
979					
980					
981					
982					
983					
984	ViT	Clothes (Mat/Type/Style/Tex)	Zebra (Pose)	Mountain (Height)	Moon (Phase)

Figure 15: Qualitative results for different autoraters on the T2I annotated dataset, showing two very diverse and two non diverse sets as determined by the ViT-based autorater.

	Model	2 diverse sets	2 non-diverse sets		
987					
988					
989					
990					
991					
992					
993					
994					
995					
996					
997					
998					
999					
1000	CLIP	Train (Type)	Bridge (Shape)	Tiger (Age)	Sun (Time of day)
1001					
1002					
1003					
1004					
1005					
1006					
1007					
1008					
1009					
1010					
1011					
1012					
1013					
1014					
1015	PALI (TOKENS)	Animal (Species)	Necklace (Material)	Tree (Species)	Whale (Species)
1016					

Figure 16: Qualitative results for different models, showing two very diverse and two non diverse sets.

E.4 IMPACT OF THE PROMPT FOR THE MULTIMODAL EMBEDDINGS

We explore how the choice of prompt impacts results for the multimodal embeddings. We explore four different prompts which differ in their specificity and relatedness to the attributes under question. [attribute] and [object] are placeholders and filled in based on the object / attribute under test. The templates we consider are as follows:

Figure 17: Additional auto-eval results that show how results vary based on the textual prompt for the multimodal embeddings. We can see that we *do not* see consistently better results with more related prompts (What is the [attribute] of the [object]?, What is the [attribute]?), implying the textual input is being ignored.

1. OBJECT_ATTRIBUTE: What is the [attribute] of the [object]?
2. ATTRIBUTE: What is the [attribute]?
3. OBJECT: What is the [object]?
4. EIFFEL: Where is the Eiffel Tower?

We would expect the first two questions to be most effective as they directly ask about the property for which we are measuring diversity. The object may be related but can be a confounder and the “Eiffel Tower” question is unrelated.

Results are shown in Figure 17. Surprisingly, we find that we do not see consistent benefit from the two most related prompts (OBJECT_ATTRIBUTE, ATTRIBUTE), implying that the embeddings are mostly vision based. A more controllable multimodal embedding we hypothesise would be more effective in this setting.

E.5 MODEL RANKING WITH AUTOEVALUATION APPROACHES

In this section, we include more results for model ranking based on our auto-evaluation approaches:

- Figures 18, 19 and 20 show the results of compare model rankings in terms of significance in the number of wins with Wilcoxon signed-rank tests under a 95% confidence level using additional models to compute embeddings. This figure completes Figure 8 in Sec. 3.4. In these figures, we can see:
 - Model ranking based on other embeddings. We observe that similarly to the observations in Sec. 3.4, for all embeddings except IMAGENET ViT, Imagen3 is not worse than all other models. We also observe that independently of the choice of embedding, Flux1.1, Imagen3 and DALLE3 are not worse than Muse2.2 and Imagen2.5. The differences between the models in the top group and the bottom group are more or less detected depending on the embeddings.
 - As mentioned in the main text, we also see the differences between multimodal models. These results highlight how the influence of the choice of embedding models and of conditioning on the model ranking results.
- Figures 21, 22 and 23 show the win rates corresponding to the results shown in Figure 8 in Sec. 3.4 and the additional results described above on the left panels, and compare the distributions of the two best and closest models in terms of behavior according to human evaluation, Imagen3 and Flux1.1, on the right panels. These figures correspond respectively to image models, multimodal model conditioned on attributes, and multimodal models conditioned on objects and attributes.

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096

Flux 1.1 Imagen 3 DALLE3 Muse 2.2 Imagen 2.5

Flux 1.1 Imagen 3 DALLE3 Muse 2.2 Imagen 2.5

(a) ViT embeddings. (b) DINO embeddings.

1097 **Figure 18: Model ranking using auto evaluation approaches with additional image models.** We
1098 compare model rankings in terms of significance in the number of wins with Wilcoxon signed-rank
1099 tests under a 95% confidence level. Each entry in the each of the grids represents a comparison
1100 between two models. The $>$ sign indicates the model in the row is better, worse ($<$), or not
1101 significantly different ($=$) than the model in the column. The win rates in each of the grids are
1102 computed using the scores based on (a) IMAGENET ViT embeddings and (b) DINO embeddings.

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123

Flux 1.1 Imagen 3 DALLE3 Muse 2.2 Imagen 2.5

Flux 1.1 Imagen 3 DALLE3 Muse 2.2 Imagen 2.5

Flux 1.1 Imagen 3 DALLE3 Muse 2.2 Imagen 2.5

(a) CLIP embeddings. (b) PALI(emb2) embeddings. (c) PALI(tokens) embeddings.

1124 **Figure 19: Model ranking using auto evaluation approaches with additional vision and language**
1125 **models conditioned on attributes.** We compare model rankings in terms of significance in the
1126 number of wins with Wilcoxon signed-rank tests under a 95% confidence level. Each entry in the
1127 each of the grids represents a comparison between two models. The $>$ sign indicates the model in the
1128 row is better, worse ($<$), or not significantly different ($=$) than the model in the column. The win rates
1129 in each of the grids are computed using the scores based on (a) CLIP embeddings, (b) PALI(emb2)
1130 embeddings, and (c) PALI(tokens) embeddings. All models are conditioned on attributes.

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163

	Flux 1.1	Imagen 3	DALLE3	Muse 2.2	Imagen 2.5
Flux 1.1	\times	\wedge	\vee	\vee	\vee
Imagen 3	$>$	\times	\vee	\vee	\vee
DALLE3	$<$	$<$	\times	$=$	$=$
Muse 2.2	$<$	$<$	$=$	\times	$=$
Imagen 2.5	$<$	$<$	$=$	$=$	\times

(a) CLIP embeddings.

	Flux 1.1	Imagen 3	DALLE3	Muse 2.2	Imagen 2.5
Flux 1.1	\times	\wedge	$=$	\vee	\vee
Imagen 3	\vee	\times	\vee	\vee	\vee
DALLE3	$=$	$<$	\times	$>$	$>$
Muse 2.2	$<$	$<$	$<$	\times	\vee
Imagen 2.5	$<$	$<$	$<$	$<$	\times

(b) PALI(emb2) embeddings.

	Flux 1.1	Imagen 3	DALLE3	Muse 2.2	Imagen 2.5
Flux 1.1	\times	$=$	$=$	\vee	\vee
Imagen 3	$=$	\times	$=$	$=$	$>$
DALLE3	$=$	$=$	\times	$=$	$>$
Muse 2.2	$<$	$=$	$=$	\times	$=$
Imagen 2.5	$<$	$<$	$<$	$=$	\times

(c) PALI(tokens) embeddings.

1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

Figure 20: Model ranking using auto evaluation approaches with additional vision and language models conditioned on objects and attributes. We compare model rankings in terms of significance in the number of wins with Wilcoxon signed-rank tests under a 95% confidence level. Each entry in the each of the grids represents a comparison between two models. The $>$ sign indicates the model in the row is better, worse ($<$), or not significantly different ($=$) than the model in the column. The win rates in each of the grids are computed using the scores based on (a) CLIP embeddings, (b) PALI(emb2) embeddings, and (c) PALI(tokens) embeddings. All models are conditioned on objects and attributes.

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Figure 21: **Model ranking using auto evaluation approaches.** Win rate matrices and score distributions for Flux1.1 and Imagen3 using image models to compute embeddings.

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

(a) CLIP

(b) PALI(emb1)

(c) PALI(emb2)

(d) PALI(tokens)

Figure 22: **Model ranking using auto evaluation approaches.** Win rate matrices and score distributions for Flux1.1 and Imagen3 using text-conditioned multimodal models to compute embeddings, conditioned on attributes.

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Figure 23: **Model ranking using auto evaluation approaches.** Win rate matrices and score distributions for Flux1.1 and Imagen3 using text-conditioned multimodal models to compute embeddings, conditioned on objects and attributes.

1350
1351

E.6 EVALUATING DIVERSITY USING FOUNDATION MODELS

1352
1353
1354
1355
1356
1357
1358
1359
1360
1361

We use the following instruction: *“I am currently comparing two models with the prompt [prompt] and I would like to know which model generates more diverse images with respect to the attribute [attribute], while disregarding any other attribute in the images. In the following image I show [number of images] images generated by one model in the left, which is [model in the left side] and [number of images] images generated by another model in the right, which is [model in the right side]. You must count the number of different instances of [attribute] in both sets and use this information to decide which set is the most diverse. If there is a set of images which is more diverse than the other with respect to [attribute], can you tell me which one is the most diverse set and explain why? Any other aspects in the images besides [attribute] must not be taken into account. You can also respond that both sets are equally diverse..”*

1362
1363

In addition to the instruction, similarly to the human evaluation, two sets of images are given to the model as input.

1364
1365

F ABSENCE OF A DIVERSITY-FIDELITY TRADE-OFF

1366

Evaluating the diversity of generative models presents a unique challenge: a model can trivially achieve high diversity by producing random noise—the generated noisy images are always different in a high dimensional space. Therefore, any meaningful assessment of diversity must be predicated on the assumption that the models in question are capable of generating images of sufficient quality. This quality criterion implies that the generated images must not only be visually coherent and free from significant artifacts but also effectively capture the salient aspects and core intent of the given prompt. Without this foundational understanding of quality and adherence to prompt specifications, a high diversity score would be misleading, indicating a lack of control and semantic understanding rather than a beneficial range of outputs. To illustrate this for some of the strong models we considered in our work, we compute the state-of-the-art text-to-image alignment metric Gecko (Wiles et al., 2024) for the same images used in our study in Table 5. Results show that models achieve the same average Gecko score (higher is better, 1 is the maximum) indicating they not only have strong performance in terms of text-to-image alignment, but are not statistically different in terms of this evaluation aspect. Notably, our diversity evaluation in Sec. 3 and E showed that Imagen 3 is significantly better than both Imagen 2.5 and Muse 2.2.

1381
1382
1383
1384
1385
1386

Model	Gecko	95% CI lowerbound	95% CI upperbound
Muse 2.2	0.9591	0.9530	0.9646
Imagen 3	0.9591	0.9527	0.9647
Imagen 2.5	0.9591	0.9527	0.9645

1387
1388

Table 5: Alignment results for models with different diversity.

1389

G LLM USE DISCLOSURE

1390
1391
1392
1393
1394
1395

An LLM was used for polish writing of some paragraphs of the manuscript and improving the phrasing of a few sentences. No LLM was used to write extended parts of the paper, or for writing sentences from scratch, retrieval, discovery and research ideation.

1396
1397
1398
1399
1400
1401
1402
1403