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Abstract

In this study, we aim to reduce generation la-001
tency for Named Entity Recognition (NER)002
with Large Language Models (LLMs). The003
main cause of high latency in LLMs is the004
sequential decoding process, which autore-005
gressively generates all labels and mentions006
for NER, significantly increase the sequence007
length. To this end, we introduce Parallel008
Decoding in LLM for NER (PaDeLLM-NER),009
a approach that integrates seamlessly into ex-010
isting generative model frameworks without011
necessitating additional modules or architec-012
tural modifications. PaDeLLM-NER acceler-013
ates decoding by simultaneously generating all014
mentions at once, i.e., a label-mention pair per015
sequence. This results in shorter sequences016
and faster inference. Experiments reveal that017
PaDeLLM-NER significantly increases infer-018
ence speed that is 1.76 to 10.22 times faster019
than the autoregressive approach for both En-020
glish and Chinese. Concurrently, it maintains021
the prediction quality as evidenced by the micro022
F-score that is on par with the state-of-the-art023
across various datasets.024

1 Introduction025

Named Entity Recognition (NER), a fundamental026

task in Natural Language Processing (NLP), aims027

to extract structured information from unstructured028

text data. This includes identifying and categoriz-029

ing key elements such as Organization, Geopolit-030

ical Entity and so on (referred to as “labels”) in031

inputs, and pairing them with relevant text spans032

extracted from the text (termed “mentions”). Con-033

ventionally, NER tasks are carried out through an034

extractive paradigm that entails token-level classifi-035

cation and the subsequent extraction of identified036

tokens (Ma et al., 2020; Liu et al., 2021).037

Recent advancements in Large Language Mod-038

els (LLMs) (Raffel et al., 2020a; Muennighoff039

et al., 2022; Touvron et al., 2023a,b; Bai et al.,040

2023; Yang et al., 2023a) have revolutionized nu- 041

merous foundational tasks in NLP, including NER 042

tasks (Paolini et al., 2020; Lu et al., 2022; Das et al., 043

2023; Lu et al., 2023; Wang et al., 2023c), through 044

the adoption of a generative paradigm. This 045

paradigm involves instruction-tuning a sequence- 046

to-sequence (seq2seq) model. The model takes 047

a sequence of unstructured text as input and pro- 048

duces a sequence of structured label-mention pairs 049

as output. Generally, the output structured string 050

should be formatted to meet two criteria: (1) it 051

should have a clear and straightforward structure 052

that facilitates post-processing for label and men- 053

tion extraction, and (2) it needs to be generated 054

fluidly and efficiently from the perspective of lan- 055

guage models (Wang et al., 2023b). 056

In Table 1, we list two typically used autoregres- 057

sive output formats found in the literature : (1) 058

accommodate original input text to contain label 059

information, which is referred to as “augmented 060

language” (Paolini et al., 2020; Das et al., 2023); 061

(2) directly using a customized, easily-parsed struc- 062

tured format to output all labels and mentions, 063

which is called “structured annotation” (Lu et al., 064

2022, 2023; Wang et al., 2023c). These formats 065

present certain challenges. For example, aug- 066

mented language necessitates duplicating all origi- 067

nal input text, thereby increasing output length and 068

resulting in inference inefficiency. While structure 069

annotation avoids replicating the entire input, it 070

produces all labels and mentions in an autoregres- 071

sive manner. This implies that each subsequently 072

generated pair depends on its preceding pairs, and 073

when the number of label-mention pairs is large, 074

it will lead to longer sequences. As demonstrated 075

in Chen et al. (2023c); Ning et al. (2023), high 076

latency in LLMs mainly stems from lengthy se- 077

quence generation, we believe that by reducing 078

the length of sequence, a more efficient inference 079

scheme can be provided for NER tasks. 080

In light of this, we propose Parallel Decoding 081
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Variant Input Unstructured Text Output Structured Label-mention String

Augmented Language (Paolini et al.,
2020; Das et al., 2023)

Japan, co-hosts of the World Cup in 2002 and
ranked 20th in the world by FIFA, are favourites to
regain their title here.

[Japan | LOC], co-hosts of the [World Cup | MISC]
in 2002 and ranked 20th in the world by [FIFA |
ORG], are favourites to regain their title here.

Structured Annotation (Lu et al., 2022,
2023; Wang et al., 2023c)

Cuttitta announced his retirement after the 1995
World Cup , where he took issue with being dropped
from the Italy side that faced England in the pool
stages.

((PER): (Cuttitta), (MISC): (1995 World Cup),
(LOC): (Italy), (LOC): (England), (ORG): (NULL))

Table 1: Structured output string format used in the literature. The examples come from CoNLL2003 dataset.

in LLM for NER (PaDeLLM-NER), a novel ap-082

proach to accelerate the inference of NER tasks for083

LLMs. PaDeLLM-NER empowers the model with084

the capability to predict a single label-mention pair085

within a single sequence, subsequently aggregating086

all sequences to generate the final NER outcome.087

Specifically, in the training phase, we reconstruct088

the instruction tuning tasks, enabling LLMs to pre-089

dict the count of mentions for a specific label and090

to identify the nth mention within the entire input091

for that label (Figure 1). In the inference phase,092

LLMs first predict the number of mentions for all093

labels, then predict all label-mention pairs in paral-094

lel (Figure 2). Finally, results from all sequences095

are aggregated and duplicate mentions across la-096

bels are eliminated based on prediction probability.097

This approach results in a more efficient inference098

method, producing shorter sequences and enabling099

parallel decoding label-mention pairs in batches.100

Comprehensive experiments have been con-101

ducted, demonstrating that PaDeLLM-NER effec-102

tively reduces the number of tokens produced in103

each sequence, thereby decreasing inference la-104

tency. Additionally, it maintains or even enhances105

prediction quality in both flat and nested NER for106

English and Chinese languages, compared to ex-107

isting methods in the literature. To conclude, our108

contributions are as follows:109

• We present PaDeLLM-NER, a novel approach110

tailored for NER using LLMs. This approach111

can predict all label-mention pairs in parallel,112

effectively reducing inference latency.113

• Extensive experiments have been conducted,114

revealing that PaDeLLM-NER significantly115

improves inference efficiency. By completely116

decoupling the generation of label-mention117

pairs, the average sequence length is reduced118

to around 13% of that produced by conven-119

tional autoregressive methods. Correspond-120

ingly, the inference speed is 1.76 to 10.22121

times faster than these previous approaches.122

• Comprehensive experiments demonstrate that, 123

in addition to its enhanced prediction speed, 124

PaDeLLM-NER also maintains or surpasses 125

the prediction quality of conventional autore- 126

gressive methods, on par with state-of-the-art 127

performance on many NER datasets. 128

To the best of our knowledge, our technique 129

stands as a pioneering approach in accelerating 130

NER inference in LLMs by parallel decoding all 131

label-mention pairs. This unique characteristic 132

makes it complementary to other inference acceler- 133

ation methods such as LLM.int8() (Dettmers et al., 134

2022) and speculative sampling (Chen et al., 2023a; 135

Leviathan et al., 2023). Thus, it can be efficiently 136

integrated with these methods.1 137

2 Related Work 138

2.1 Generative Models for NER 139

Before the era of LLMs, most research approached 140

NER as a sequence labeling task, where each token 141

is assigned a pre-defined tag (e.g., BIO scheme). In 142

this line of work, usually pre-trained transformer- 143

based language models (Ma et al., 2020; Liu et al., 144

2021) is combined with a tailored prediction head 145

to perform a token-level classification, followed by 146

the extraction of identified tokens. 147

Encouraged by the success of unifying multiple 148

NLP tasks into a single seq2seq paradigm (Brown 149

et al., 2020; Lester et al., 2021), especially with the 150

evolution of LLMs (Raffel et al., 2020b; Achiam 151

et al., 2023; Touvron et al., 2023a; Yang et al., 152

2023a), the trend of applying seq2seq models to 153

NER tasks is gaining momentum (Xu et al., 2023), 154

with both inputs and outputs being represented as 155

sequences of text (Paolini et al., 2020; Lu et al., 156

2022; Das et al., 2023; Lu et al., 2023; Wang 157

et al., 2023c). Recently, the focus of work on NER 158

using LLMs has shifted towards zero-shot (Xie 159

et al., 2023; Sainz et al., 2023) or few-shot learn- 160

ing (Ashok and Lipton, 2023; Chen et al., 2023b; 161

1Code is available at URL masked for anonymous review.
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Das et al., 2023; Wang et al., 2023b), utilizing in-162

context learning (Chen et al., 2023b; Wang et al.,163

2023b), self-consistency (Wang et al., 2022b; Xie164

et al., 2023) or learning programming (Friedman165

et al., 2023; Sainz et al., 2023).166

Unlike previous studies emphasizing few-shot167

performance with training-free prompt learning,168

our work focus on a fully supervised setting. More169

importantly, our primary objective is to speed up170

NER inference.171

2.2 Inference Speedup in LLMs172

Modern LLMs employ a sequential decoding strat-173

egy for token generation, which poses a significant174

challenge in terms of parallelization, especially as175

model size and sequence length increase (Ning176

et al., 2023). There is plenty of work in the litera-177

ture to address this challenge (Wang et al., 2021;178

Frantar et al., 2023; Santilli et al., 2023; Xiao et al.,179

2023). One line of work falls into training-free cat-180

egory such as introducing extra modules for spec-181

ulative sampling (Chen et al., 2023a; Leviathan182

et al., 2023). Another approaches explore mod-183

ifying model architecture to accelerate inference,184

such as exiting at earlier layer (Elbayad et al., 2019;185

Schuster et al., 2022), or designing entirely differ-186

ent training and inference mechanisms (Lan et al.,187

2023; Yang et al., 2023b; Zhang et al., 2023). Dif-188

ferent from previous works, we focus on exploring189

the inference speedup in LLMs with a focus on the190

NER task without the change of model architecture191

or introducing extra modules.192

3 Method193

In this section, we delve into the details of194

PaDeLLM-NER. First, we focus on reframing the195

instruction tuning tasks as outlined in Section 3.1.196

Second, we explore the two-step inference process,197

detailed in Section 3.2. Finally, we discuss the198

aggregation of results and the technique for elim-199

inating duplicate mentions across labels, which200

is elaborated in Section 3.3. An illustration of201

PaDeLLM-NER is shown in Figure 1 and Figure 2.202

3.1 Reframing of Instruction Tuning203

Illustration of the reframing is presented in Fig-204

ure 1. As an example, we use a case from the205

CoNLL2003 dataset including four labels: person206

(PER), miscellaneous (MISC), location (LOC), and207

organization (ORG). The specifics of the input text208

and the corresponding ground truth are provided in209

the second row of Table 1.210

During reformulation, a single unstructured text 211

containing all label-mention pairs is split into sev- 212

eral sequences. Each new sequence’s output in- 213

cludes the count of mentions for a specified label 214

(denoted as “entity type”), followed by the nth 215

mention of that label (denoted as “<mention n>”). 216

Note that the count of mentions and their respective 217

indices are represented using corresponding digit 218

tokens from the LLM’s vocabulary. Specifically, 219

if there are no mentions, the model is trained to 220

immediately predict the “<eos>” token, bypassing 221

the need to predict mentions. 222

Therefore, in this example, one original train- 223

ing data is transformed into five new training 224

data entries. These include two for predicting 225

“LOC” (with 2 mentions), one for predicting “MISC” 226

(with 1 mention), one for predicting “PER” (with 227

1 mention), and one for predicting “ORG” (with 0 228

mentions, directly predicting “<eos>”). Moreover, 229

the number of mentions for each label and the text 230

corresponding to each mention index can be easily 231

obtained from the original ground truth, meaning 232

that the number of new examples depends on the 233

ground truth of that particular example. 234

With the newly reformulated training exam- 235

ples, we then apply the standard instruction tun- 236

ing procedure. The model takes a sequence of text 237

t1, t2, . . . , tT consisting of input unstructured text 238

and output structured label-mention pair. The op- 239

timization objective is cross-entropy loss L which 240

can be defined as follows: 241

L = − 1

T

T∑
i=1

logP (ti | t1, t2, . . . , ti−1) (1) 242

where P (ti | t1, t2, . . . , ti−1) represents the prob- 243

ability of ith token ti given the sequence of pre- 244

ceding tokens t1, t2, . . . , ti−1, as predicted by the 245

model. Note that loss calculation begins from the 246

number of mention tokens (i.e., texts enclosed by 247

dashed-line frames). Theoretically, loss from text 248

spans such as “<mention n>” could be ignored dur- 249

ing this calculation, since they simply prompt the 250

mention’s order, which does not necessarily need to 251

be generated by the model. However, our ablation 252

studies show that ignoring these texts has negligi- 253

ble impact on model performance, a point further 254

discussed in Section 4.3. Therefore, we adhere to 255

the standard instruction tuning procedure. 256

This reformulation allows the model to focus 257

one label-mention pair at a time, shortening the 258
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entity type:\nPER\n\n<num> 1\n<mention 1>Cuttitta<eos>

entity type:\nMISC\n\n<num> 1\n<mention 1>1995 World Cup<eos>

entity type:\nLOC\n\n<num> 2\n<mention 1>Italy<eos>

entity type:\nLOC\n\n<num> 2\n<mention 2>England<eos>

entity type:\nORG\n\n<num> 0<eos>

text:\n

Cuttitta 

announced his 

retirement after 

the 1995 World 

Cup , where he 

took issue with 

being dropped 

from the Italy 

side that faced 

England in the 

pool stages.\n

Input: unstructured text and a target label Output: count of mentions and the nth mention

An training example

Figure 1: PaDeLLM-NER training paradigm: texts within frames of the same color represents one training example,
where texts inside the solid-line frame are the input, and those inside the dashed-line frame are the output. Italic
texts are prompt templates. The “entity type” signifies the label being predicted. The “<num>” indicates count of
mentions for that label, and “<mention n>” refers to the nth mention of a label in the input.

entity type:\nMISC\n\n<num>

entity type:\nLOC\n\n<num>

entity type:\nORG\n\n<num>

text:\n
Cuttitta 
announced his 
retirement after 
the 1995 World 
Cup , where he 
took issue with 
being dropped 
from the Italy 
side that faced 
England in the 
pool stages.\n

PaDeLLM
NER

2\n

2\n

0<eos>

<mention 1>

<mention 2>
PaDeLLM

NER

<mention 1>

<mention 2>

1995 World Cup<eos>

Italy<eos> 

Italy<eos> 

England<eos> 

Prob: 0.99

Prob: 0.98

Prob: 0.61

Prob: 0.99

De-dup

Step 1: predict the count of mentions Step 2: predict the nth mention and deduplicate

entity type:\nPER\n\n<num>

1\n <mention 1> Cuttitta<eos> Prob: 0.90

Figure 2: PaDeLLM-NER inference paradigm: texts enclosed in frames with identical colors indicate sequences of
the same label. Specifically, the texts within solid-lined frames represent the added templates, while those within
dashed-lined frames denote the prediction. In Step 1, the model predicts the number of mentions for all labels while
in Step 2, it predicts the mentions. By aggregating mentions and labels from all sequences, the final NER results are
obtained. Duplicate mentions appearing in different labels are resolved using prediction probabilities.

generated length per sequence. More details are259

shown in Appendix B.260

3.2 Inference of Label-Mention Pairs261

Given a trained LLM, we propose a two-step in-262

ference approach: firstly, to predict the number of263

mentions for a specific label based on the prompt;264

and secondly, given the label and provided index265

to precisely identify the corresponding mention.266

Figure 2 shows the overview of PaDeLLM-NER267

inference. In Step 1, the model predicts the total268

number of mentions for each label in the input,269

based on the label prompt. A separate token “\n”270

signals the completion of this count prediction. If 271

no mentions of the given label exist, the model 272

generates an “<eos>” token, skipping Step 2 for 273

that label. In Step 2, following adding the pre- 274

dicted mention count to the input, mention indexes 275

templates are appended. Formally, if the predicted 276

number of mention is m, then “<mention n>”, in- 277

dicating the nth mention of the specified label, is 278

appended for each n within the set {1, 2, 3, . . . ,m} 279

and n is an integer. Subsequently, the correspond- 280

ing mention is generated by the model conditioned 281

on preceding tokens. Note that the decoding of all 282

label-mention pairs occurs in parallel, allowing for 283
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their simultaneous generation.284

In practice, if there are sufficient GPU resources,285

the inference for the number of mentions for each286

label, as well as the subsequent inference for the287

mention text spans, can be allocating on separate288

GPUs. If GPU resources are limited, the inference289

can also be deployed on a single GPU using batch290

inference, facilitating parallel decoding. Using Fig-291

ure 2 as an example, in Step 1, the batch size is four,292

as there are four labels in the dataset. In Step 2, the293

batch size is five, reflecting the five label-mention294

pairs determined in Step 1 (i.e., 1 in “PER”, 2295

in “MISC”, 2 in “LOC”). This parallel decoding296

strategy is effective in reducing inference latency,297

especially in scenarios where inputs are received in298

a streaming manner.299

3.3 Removal of Duplicate Mentions300

Unlike autoregressive decoding, where subsequent301

label-mention pairs can attend preceding ones,302

PaDeLLM-NER generates each label-mention pair303

independently. This inference strategy means that304

the model might generate mentions erroneously305

repeated in multiple labels. As exemplified in Fig-306

ure 2, the model correctly predicts the first mention307

of “LOC” as “Italy”, but it also incorrectly pre-308

dicts the second mention of “MISC” as “Italy”.309

To address the issue of duplicate mentions, we310

suggest employing prediction probability to re-311

move repeated mentions. Specifically, we calcu-312

late the prediction probability for each instance313

of the mention. This is done using the formula:314

P =
∏e

i=b P (ti|t1, t2, . . . , ti−1) where b repre-315

sents the starting token index of the mention text,316

and e denotes the ending token index. Then, for a317

mention that appears in multiple labels, the men-318

tion instance with the highest probability will be319

preserved. As illustrated in Figure2, “Italy” is cat-320

egorized as “MISC” with only a 0.61 probability,321

which is lower than that for “LOC”, resulting in322

its removal. In practice, the probability of each323

token can be calculated concurrently with token324

generation. Consequently, this method enables an325

efficient and accurate identification of duplicate326

mentions without incurring additional costs. The327

effectiveness of this de-duplication approach is fur-328

ther explored in Section 4.3.329

4 Experiments330

In this section, we showcase the effectiveness of331

PaDeLLM-NER in terms of prediction quality and332

inference acceleration through experiments. 333

4.1 Setup 334

Datasets We evaluate our method on English and 335

Chinese NER datasets. English datasets include 336

the general domain flat NER CoNLL2003 (Tjong 337

Kim Sang and De Meulder, 2003), the nested NER 338

ACE2005 (Kirkpatrick, 2010), and the biomedi- 339

cal nested NER GENIA (Ohta et al., 2002). Chi- 340

nese datasets include four commonly used gen- 341

eral domain flat NER benchmarks Resume (Zhang 342

and Yang, 2018), Weibo (Peng and Dredze, 2015), 343

MSRA (Levow, 2006) and Ontonotes 4.0 (Prad- 344

han et al., 2013) and two vertical industrial do- 345

main flat NER datasets YouKu (Jie et al., 2019) and 346

Ecommerce (Ding et al., 2019). The statistics of all 347

datasets are shown in Appendix A. 348

Training setup We employ pre-trained ver- 349

sion of Llama2-7b (Touvron et al., 2023b)2 and 350

Baichuan2-7b (Yang et al., 2023a)3 as base models 351

for English and Chinese study respectively. Addi- 352

tional implementation details are in Appendix C. 353

Inference setup For all generative models, we 354

use greedy search with a beam size of 1, a maxi- 355

mum of 512 new tokens, and a temperature of 1.0. 356

As described in Section 3.2, for PaDeLLM-NER, 357

we adopt two inference settings: (1) each example 358

is inferred on multiple GPUs to implement paral- 359

lel decoding (i.e., each sequence is assigned on 360

one GPU), termed as PaDeLLMMulti; and (2) each 361

example is inferred on a single GPU, employing 362

batch decoding for parallel decoding, termed as 363

PaDeLLMBatch. Note that for PaDeLLMMulti, we 364

sequentially predict each sequence of one example 365

to simulate parallel decoding on multiple GPUs. 366

Baselines As the primary focus of this work is 367

on reducing inference latency in NER tasks using 368

LLMs, we compare our method, PaDeLLM-NER, 369

with traditional autoregressive approaches. As men- 370

tioned in Section 1, the main points of comparison 371

are autoregressive structured output formats used 372

in Paolini et al. (2020); Das et al. (2023) and Lu 373

et al. (2022, 2023); Wang et al. (2023c), referred 374

to respectively as AutoRegAug and AutoRegStruct, 375

as these are the approaches very close to our sys- 376

tem. We reimplemented these methods for both 377

English and Chinese datasets, utilizing the same 378

2https://huggingface.co/meta-llama/Llama-2-7b
3https://huggingface.co/baichuan-inc/

Baichuan2-7B-Base
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pre-trained LLMs as in PaDeLLM-NER. More379

details on the re-implementation are provided in380

Appendix C. Besides, we compare our approach381

with other recent state-of-the-art methods, includ-382

ing BINDER (Zhang et al., 2022a), Gollie (Sainz383

et al., 2023), and DeepStruct (Wang et al., 2022a)384

for English benchmarks, as well as W2NER (Li385

et al., 2022), NEZHA-BC (Zhang et al., 2022b),386

and SSCNN (Zhang and Lu, 2023) for Chinese387

benchmarks, to show PaDeLLM-NER’s efficacy in388

prediction quality.389

Evaluation Our evaluation encompasses two di-390

mensions: prediction quality and acceleration of391

NER inference. For assessing prediction quality, in392

line with Lu et al. (2022); Wang et al. (2023c), we393

employ the micro F-score.394

Regarding inference acceleration, as per Ning395

et al. (2023), we evaluate using latency (in mil-396

liseconds). We record the latency with the code:397

start = time.time(); model.generate(); latency =398

time.time() - start. In PaDeLLM-NER, we add399

the latency of mention counting and label-mention400

pair generation as the latency of each sequence.401

The final latency for the example is determined by402

the highest latency across sequences, as the user403

can only obtain the result of an example when the404

slowest sequence is generated. We conduct exper-405

iments three times and use the average result to406

alleviate the effect of randomness. We also report407

the average sequence length (tokenized) to clearly408

demonstrate the extent of sequence length reduc-409

tion in Appendix D. Evaluations of all models were410

performed on the same NVIDIA A100 GPU.411

4.2 Main Results412

Latency evaluation We investigate how413

PaDeLLM-NER reduces the end-to-end latency414

compared to baseline methods. Table 2 presents415

the average latency for each method across all416

datasets. First, it’s clear that both PaDeLLMMulti417

and PaDeLLMBatch significantly reduce inference418

latency when compared to baseline methods,419

as highlighted by the substantial reduction in420

mean latency. For example, the mean latency421

reduction achieved between PaDeLLMMulti and422

AutoRegStruct stands at an impressive 791.55 ms,423

underscoring the significant improvement.424

To more intuitively quantify the latency reduc-425

tion of PaDeLLM-NER, we break down its speedup426

across different datasets in comparison to base-427

line methods in Figure 3. The speedup is com-428

puted by dividing the latency of baselines by the 429

latency of PaDeLLM-NER. We can observe that 430

PaDeLLM-NER consistently show a speedup over 431

baseline methods across all datasets. The high- 432

est speedup is observed in the Weibo dataset when 433

comparing AutoRegStruct vs. PaDeLLMMulti, with 434

a speedup of 10.22x. When we narrow our focus 435

to the comparison between PaDeLLMBatch and the 436

baseline methods, considering these methods uti- 437

lize a single GPU for inference, we can still observe 438

substantial speedup ranging from 1.76x to 4.73x. 439

The speedup factor varies across different datasets, 440

suggesting that the efficiency gains of PaDeLLM- 441

NER may be influenced by the characteristics of 442

each dataset. Interestingly, we can observe that 443

the PaDeLLMBatch is slower than PaDeLLMMulti 444

(378.40 ms vs. 223.57 ms), more analysis about 445

this is shown in Section 5. 446

Overall, the Table 2 and Figure 3 suggest that 447

PaDeLLM-NER significantly reduces latency com- 448

pared to autoregressive methods, though the extent 449

of this reduction varies by dataset and the specific 450

baseline method it’s compared to. 451

Prediction quality evaluation Table 3 shows the 452

micro F-score of PaDeLLM-NER and other base- 453

line methods. It’s noteworthy that the micro F- 454

scores for PaDeLLMMulti and PaDeLLMBatch are 455

identical. Overall, PaDeLLM-NER outperforms 456

baselines with the highest mean F-score of 84.79 457

and emerging as the best-performing method in 4 458

out of the 9 datasets. It excels particularly in the 459

Weibo, Youku and ACE2005 datasets and is com- 460

petitive in others. We believe that the improved 461

prediction could be attributed to shorter sequences, 462

which lessen the challenge of long-range dependen- 463

cies and enhance prediction quality. More analysis 464

is discussed in Appendix E. 465

In summary, the results presented in Tables 2 466

and 3, demonstrate that our approach not only main- 467

tains superior prediction quality but also signifi- 468

cantly reduces inference latency. 469

Comparison to state-of-the-art methods In Ta- 470

bles 4 and 5, we compare the micro F-scores of 471

PaDeLLM-NER with other recent state-of-the-art 472

methods. Our findings indicate that PaDeLLM- 473

NER performs comparably to these methods across 474

most datasets except for Weibo. Notably, in the 475

Youku dataset, PaDeLLM-NER outperforms the 476

previously best-performing method by an improve- 477

ment of 1.81%. Note that the primary focus of our 478

work is on accelerating prediction latency using 479
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English Dataset Chinese Dataset

AutoReg CoNLL03 ACE05 GENIA Weibo MSRA Onto4 Resume Youku Ecom Mean

AutoRegAug 992.70 944.90 1,515.35 1,276.32 812.78 1,009.68 982.39 579.99 845.42 995.50
AutoRegStruct 753.36 1,293.87 1,266.31 1,630.62 609.34 783.28 1,462.56 598.59 738.20 1,015.12

Ours

PaDeLLMMulti 229.74 255.53 316.90 159.57 143.47 171.67 238.27 203.63 293.40 223.57
PaDeLLMBatch 333.89 498.50 616.01 344.75 204.24 288.43 459.20 241.25 419.40 378.40

Table 2: Comparison of inference latency (in milliseconds) between PaDeLLM-NER and baseline methods.
Underscored font is the second-best method, while a bold font is the best method, also applied to subsequent tables.
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Figure 3: Speedup of PaDeLLM-NER compared to Autoregressive methods.

English Dataset Chinese Dataset

AutoReg CoNLL03 ACE05 GENIA Weibo MSRA Onto4 Resume Youku Ecom Mean

AutoRegAug 93.08 83.04 70.16 59.04 95.56 79.20 95.80 86.07 76.02 81.99
AutoRegStruct 91.87 82.99 77.90 56.07 90.92 80.97 95.74 86.85 81.57 82.76

Ours

PaDeLLM-NER 92.52 85.02 77.66 67.36 95.03 80.81 94.98 87.91 81.85 84.79

Table 3: Comparison of prediction quality between PaDeLLM-NER and baseline methods.

State-of-the-art Method CoNLL03 ACE05 GENIA

BINDER (Zhang et al., 2022a) 93.33 89.50 80.50
Gollie (Sainz et al., 2023) 93.10 89.60 -
DeepStruct (Wang et al., 2022a) 93.00 86.90 80.80

Our Method

PaDeLLM-NER 92.52 85.02 77.66

Table 4: Comparing PaDeLLM-NER Performance with
recent state-of-the-art methods on English datasets.

LLMs compared to baseline autoregressive meth-480

ods, rather than achieving state-of-the-art results.481

4.3 Ablation study482

In this section, we set out to investigate the effects483

of the different aspects of PaDeLLM-NER.484

Ignoring text spans in loss As discussed in Sec-485

tion 3.1, during training, it is permissible to over-486

look the loss of text span “<mention n>”, as the487

model does not need to generate this specific text,488

which is appended during inference. However, as 489

shown in Table 6 illustrate, omitting these texts has 490

minimal impact on prediction quality. 491

One possible explanation is that during training, 492

the more significant challenge for LLMs lies in pre- 493

dicting the appropriate mention texts, rather than 494

their format. As the model can readily learns to 495

correctly position the format “<mention n>”, this 496

aspect contributes minimally to the loss computa- 497

tion in training. In this case, computing the loss 498

for all text is almost equivalent to “neglecting” the 499

computation of loss for “<mention n>”. 500

De-duplication To demonstrate the effective- 501

ness of the de-duplication technique, we estab- 502

lished two configurations as detailed in Table 6. 503

The -De-duplication denotes the pipeline operat- 504

ing without the de-duplication technique; +De- 505

duplicationReverse indicates the pipeline that re- 506

moves mentions with the highest probability, oppo- 507
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State-of-the-art Method Weibo MSRA Onto4 Resume Youku Ecom

NEZHA-BC (Zhang et al., 2022b) - - - - - 82.98
SSCNN (Zhang and Lu, 2023) 71.81 - 82.99 96.40 86.10 81.80
W2NER (Li et al., 2022) 72.32 96.10 83.08 96.65 - -

Our Method

PaDeLLM-NER 67.36 95.03* 80.81 94.98 87.91 81.85

Table 5: Comparing PaDeLLM-NER Performance with recent state-of-the-art methods on Chinese datasets. “*”
indicates that results are not directly comparable.

Variant CoNLL03 ACE05 GENIA Mean

PaDeLLM-NER 92.52 85.02 77.66 85.06
+ Loss ignoring 92.01 85.18 73.47 83.55
- De-duplication 92.44 84.80 77.54 84.92
+ De-duplicationReverse 92.38 84.44 77.38 84.73

Table 6: Ablations on ignoring loss and de-duplication.

site to the original de-duplication technique.508

Theoretically, PaDeLLM-NER should be the top-509

performing method, as its de-duplication eliminates510

noisy mentions, enhancing precision. Following511

closely is the -De-duplication, allows duplicate512

mentions to persist. +De-duplicationReverse ranks513

lowest since it removes correct mentions and re-514

tains incorrect ones, lowering recall and precision515

simultaneously. As shown in Table 6, the results516

consistently align with our expectations, thereby517

verifying the effectiveness of the de-duplication518

process. Moreover, the difference among these519

variants is subtle, which can be attributed to the520

rare cases where duplicate mentions exist. This fur-521

ther highlights the robustness of proposed method.522

5 Speedup Analysis523

One concern noted is that batch inference does not524

speed up as much as inference distributed across525

multiple GPUs. This observation is consistent526

with our expectations and supported by Chen et al.527

(2023c) who found that batch inference in LLMs528

tends to be slower than single sequence inference529

under identical conditions, likely due to limitations530

in GPU memory bandwidth (Cai et al., 2024).531

Transitioning from these performance consid-532

erations, it’s noteworthy that PaDeLLM-NER is533

self-contained and can be seamlessly integrated534

with various generative architectures, including535

well-established decoder-only models (Raffel et al.,536

2020a; Muennighoff et al., 2022; Touvron et al.,537

2023a,b; Bai et al., 2023; Yang et al., 2023a)538

and recent innovations like RWKV (Peng et al.,539

2023), as well as multi-modal LLMs (Liu et al.,540

2023b,a) for tasks like Key Information Extrac- 541

tion tasks (Huang et al., 2019), all without needing 542

architectural changes or additional data/modules. 543

Also, it could be incorporated with off-the-shelf 544

LLMs such as ChatGPT (Achiam et al., 2023) and 545

Claude-24 through prompt engineering without the 546

need for further training, an aspect we plan to ex- 547

plore in future research. 548

6 Data Contamination Concerns 549

Since we are using LLMs as our foundational mod- 550

els, trained on extensive datasets from various on- 551

line sources (Touvron et al., 2023b; Yang et al., 552

2023a), there is a chance that the models may have 553

encountered parts of our evaluation sets during their 554

pre-training phase, albeit unintentionally. This 555

could potentially affect our experimental results. 556

However, the primary focus of our experiments is 557

the comparison of our proposed method with base- 558

line methods. Given that these methods employ the 559

same LLM as the base model, data contamination 560

is unlikely to significantly impact the results. 561

7 Conclusion 562

In this work, we introduce Parallel Decoding in 563

LLM for NER (PaDeLLM-NER), a parallel de- 564

coding framework in LLMs for efficient NER. To 565

achieve this, we recast autoregressive prediction of 566

all label-mention pairs of traditional NER tasks into 567

a two-step prediction: (1) predicting the number of 568

mentions for a specific label, and (2) identifying the 569

nth mention for that label. This recast allows the 570

model to parallel decode all label-mention pairs in 571

batches. Extensive experimental results show that 572

the proposed method can dramatically reduces in- 573

ference time, achieving inference speedup ranging 574

from 1.76 to 10.22 times, without compromising 575

prediction quality. Lastly, extensive ablation stud- 576

ies are performed to clarify the design choices of 577

PaDeLLM-NER. 578

4https://www.anthropic.com/news/claude-2
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8 Limitations579

One clear disadvantage of PaDeLLM-NER is the580

multiplication of training examples from one to581

m ∗ n, where m is the label count and n the men-582

tion count. Despite this, given that low latency is583

a major bottleneck in LLMs, trading longer train-584

ing for lower latency is justifiable. Also, given585

the impressive generalization ability of LLMs, we586

believe that this method can be smoothly adapted587

to few-shot scenarios requiring less computation588

resources, which will be explored in future work.589

Additionally, accurately counting the number590

of mentions remains a challenge for LLMs as dis-591

cussed in Appendix E. This issue could be allevi-592

ated by implementing a specialized counting model593

dedicated to this task (Liu and Low, 2023).594

Finally, there are several instances of re-595

computation within the pipeline that can be op-596

timized. Specifically, input texts are encoded multi-597

ple times throughout the process. During batch598

decoding, certain sequences may encounter the599

“<eos>” token earlier, but due to the nature of batch600

inference, these sequences continue to predict. We601

plan to improve this in the future by implementing602

enhancements like KV cache reuse and batch infer-603

ence with an early quit mechanism, among other604

strategies.605
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Variant CoNLL03 ACE05 GENIA Mean

PaDeLLM-NER 92.52 85.02 77.66 85.06
+ Model scale up to 13B 93.02 84.37 78.84 85.45

Table 7: Ablations on model scaling up.

56.8%

23.9%

19.3%

Count Mismatch
Index Inaccuracy
Ground Truth Error

Figure 4: Percentage of different error types.

A Dataset Statistics928

We evaluate our framework on 3 English and 6929

Chinese flat/nested NER datasets. In Table 9, we930

present the detailed statistics. Note that while the 931

statistics of the development set are reported, our 932

training process does not involve the development 933

set. 934

For the MSRA dataset, we excluded four outlier 935

instances from the test set due to their excessively 936

high number of names, significantly deviating from 937

typical examples. These outliers not only posed 938

challenges for model inference but also risked dis- 939

torting the evaluation metrics, potentially leading 940

to an inaccurate assessment of the model’s perfor- 941

mance on representative data. 942

Also, we perform label mapping to convert 943

ground truth from special tokens to Chinese words 944

following (Lu et al., 2023). Further details are pro- 945

vided in Table 10. 946

B Reformulation Examples 947

Two compete reformulated examples are presented 948

in Table 11 for English and Chinese, respectively. 949

C Implementation Details 950

We train our model on all datasets for 4 epochs, 951

using a batch size of 128 and a learning rate of 952

1e−5, with the AdamW optimizer (Loshchilov and 953

Hutter, 2018) and a cosine scheduler (Loshchilov 954

and Hutter, 2017). The maximum input and out- 955

put sequence lengths are set to 2048 and 512, re- 956

spectively. Training is conducted on 8 NVIDIA 957

A100 GPUs. This configuration is applied across 958

all PaDeLLM-NER models, as well as two baseline 959

models: AutoRegAug and AutoRegStruct. 960

D Sequence Length Reduction 961

Results of average sequence length produced by 962

different approaches are presented in Table 8. Most 963

notably, PaDeLLM-NER generates much shorter 964

sequences than the other models across all datasets. 965

The lengths range from 6.54 on CoNLL20023 to 966

10.05 on GENIA for English datasets, and from 967

2.19 on Weibo to 4.87 on Resume for Chinese 968

datasets. The mean length for PaDeLLM-NER 969

is 4.86, which is significantly lower than the means 970

of the other approaches: 35.54 for AutoRegAug and 971

36.48 for AutoRegStruct. 972

In summary, the result shows that PaDeLLM- 973

NER produces much shorter generated sequences 974

compared to the other methods, which is around 975

13.19% to 13.67% of the original length, respec- 976

tively, indicating higher efficiency in its inference. 977
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English Dataset Chinese Dataset

AutoReg CoNLL03 ACE05 GENIA Weibo MSRA Onto4 Resume Youku Ecom Mean

AutoRegAug 33.85 37.10 60.50 45.02 27.42 35.90 30.39 18.21 31.50 35.54
AutoRegStruct 28.36 49.95 49.03 62.45 18.97 25.53 53.02 18.56 22.51 36.48

Ours

PaDeLLM-NER 6.54 8.29 10.05 2.19 2.23 2.68 4.87 3.66 3.27 4.86

Table 8: Comparison of the number of generated tokens per sequence by PaDeLLM-NER with baseline methods.

Dataset Sentence Mention
#All #Train #Dev #Test #All #Train #Dev #Test

CoNLL2003 20,744 14,041 3,250 3,453 35,089 23,499 5,942 5,648
ACE2005 9,210 7,194 969 1,047 30,634 24,441 3,200 2,993
GENIA 18,546 15,023 1,669 1,854 56,015 46,142 4,367 5,506

Weibo 1,890 1,350 270 270 2,701 1,894 389 418
MSRA* 50,725 44,364 - 4,361 80,214 74,703 - 5,511
OntoNotes 4.0 24,371 15,724 4,301 4,346 28,006 13,372 6,950 7,684
Resume 4,759 3,819 463 477 16,565 13,438 1,497 1,630
Youku 10,002 8,001 1,000 1,001 15,905 12,754 1,581 1,570
Ecommerce 4,987 3,989 500 498 15,216 12,109 1,540 1,567

Table 9: Dataset Statistics. “#” denotes the amount. For MSRA, we remove four outlier examples in test set.

Dataset #Entity Entity

Weibo 8 {“PER.NAM(Specific Name)”:“名 称 特 指”, “PER.NOM(Generic
Name)”:“名称代称”, “GPE.NAM(Specific Geo-Political Entity)”:“行
政区特指”, “GPE.NOM(Generic Geo-Political Entity)”:“行政区代
称”, “LOC.NAM(Specific Location)”:“地点特指”, “LOC.NOM(Generic
Location)”:“地点代称”, “ORG.NAM(Specific Organization)”:“组织特指”,
“ORG.NOM(Generic Organization)”:“组织代称” }

MSRA 3 {“LOC”:“地点’, “PER”:“名称”, “ORG”:“组织”}

OntoNotes 4.0 4 {“GPE”:“地缘”, “LOC”:“地点”, “PER”:“名称”, “ORG”:“组织”}

Resume 8 {“NAME”:“名称”, “CONT(Nationality)”:“国籍”, “RACE”:“民族”, “TI-
TLE”:“职位”, “EDU”:“学历”, “ORG”:“公司”, “PRO(Profession)”:“专业”,
“LOC(Place of Birth)”:“籍贯”}

Youku 3 {“TELEVISION”:“电视剧”, “PER(Celebrity)”:“明星”, “MISC”:“其他”}

Ecommerce 2 {“HP(brand)”:“品牌”, “HC(commodity)”:“商品”}

Table 10: Entity tag of each dataset and the conversion from tag used in dataset to corresponding Chinese natural
language. For some tags that are hard to understand, we provide their meaning in brackets. “#” denotes the amount
of entity types.

E Error analysis978

PaDeLLM-NER error analysis For our error979

analysis, we utilize the ACE2005 dataset. We sam-980

ple and manually examine 50 erroneous examples981

for analysis. We seek to identify the root causes982

of errors, which we have categorized into three983

types: (1) incorrect mention count, referred to as984

Count Mismatch; (2) inaccuracies in the mention985

corresponding to a specific index, termed Index In-986

accuracy; and (3) errors in the ground truth data,987

known as Ground Truth Errors.988

The distribution of each error type is illustrated 989

in Figure 4. It is important to note that a significant 990

portion of the errors stem from inaccuracies in men- 991

tion counts (i.e., Count Mismatch, about 56.8%), 992

underscoring the necessity for enhancements in the 993

model’s counting capabilities. Accurate mention 994

counts are pivotal for the quality of predictions. 995

Overestimating the mention count often leads the 996

model to either repeat the last entity or, more prob- 997

lematically, fabricate an entity, thereby escalating 998

the rate of false positives. Conversely, underesti- 999

mating the mention count results in the model’s 1000
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Language Input Output

English text:
But Fischler agreed to review his proposal after the EU ’s standing veterinary
committee , mational animal health officials , questioned if such action was
justified as there was only a slight risk to human health .
entity type:
PER
<num>

1
<mention 1>Fischler

Chinese 文本(text):
公报最后说，墨西哥政府认为，贩毒以及洗钱等与毒品有关的活
动是威胁到国家主权和安全的一个全球性问题。(The communique
concluded by stating that the Mexican government considers drug trafficking
and related activities such as money laundering to be a global issue that
threatens national sovereignty and security.)
指定NER标签(entity type):
地点(LOC)
<数量>(<num>)

1
<第1文段>(<mention 1>)
墨西哥(Mexican)

Table 11: Reformulated examples for English and Chinese dataset, respectively. We provide translations to facilitate
understanding. The examples come from CoNLL2003 and MSRA dataset.

inability to identify some entities, thus increasing1001

the incidence of false negatives. Following closely1002

is the Index Inaccuracy error, indicating that the1003

model sometimes struggles to accurately pinpoint1004

the correct mention for a given index, further em-1005

phasizing areas for improvement.1006

Interestingly, our analysis reveal that a signifi-1007

cant portion of the model’s predictions, specifically1008

19.3%, are actually correct, challenging the accu-1009

racy of the ground truth data. This observation1010

suggests the presence of inaccuracies within the1011

ground truth, contributing to an elevated rate of1012

false positives. Prior research, as noted in studies1013

by Min et al. (2022); Wang et al. (2023a); Zhou1014

et al. (2023), has demonstrated that LLMs pre-1015

dominantly acquire their knowledge during the pre-1016

training phase. These models develop certain “core1017

beliefs” that tend to align more closely with human1018

judgment. In this context, it appears that the mod-1019

els possess an inherent capability to rectify errors1020

in the ground truth data, demonstrating their poten-1021

tial to improve data accuracy beyond initial human1022

annotation.1023

F Model Scaling Up1024

As we increase the model size to 13B, Table 71025

presents a mix of results. In datasets like1026

CoNLL2003 and GENIA, the model shows a sig-1027

nificant improvement in predictions. In contrast,1028

the results on ACE2005 are slightly worse. Note1029

that the improvement in GENIA is substantial, at1030

approximately 1.18%. Based on these findings,1031

it seems reasonable to suggest that continuously1032

scaling up the model size has the potential to main-1033

tain the performance that is at least on par, or even 1034

superior, especially in specific industrial domains. 1035

However, this hypothesis warrants further investi- 1036

gation, involving more families of models (Raffel 1037

et al., 2020a; Muennighoff et al., 2022; Touvron 1038

et al., 2023a,b; Bai et al., 2023; Yang et al., 2023a) 1039

and a broader range of datasets. We leave this ex- 1040

ploration for future work. 1041
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