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ABSTRACT

Existing diffusion-based time series forecasting methods often target on mixed
temporal patterns or undifferentiated residuals, limiting the potential of distinct tem-
poral components. In this paper, we propose the Fourier Adaptive Lite Diffusion
Architecture (FALDA), a novel probabilistic framework for time series forecast-
ing. FALDA leverages Fourier-based decomposition to incorporate a component-
specific architecture, enabling tailored modeling of individual temporal components.
A conditional diffusion model is utilized to estimate the future noise term, while our
proposed lightweight denoiser, DEMA (Decomposition MLP with AdaLN), con-
ditions on the historical noise term to enhance denoising performance. Grounded
in rigorous mathematical proof, we introduce the Diffusion Model for Residual
Regression (DMRR), a framework which methodologically unifies diffusion-based
probabilistic regression method and theoretically demonstrate that FALDA effec-
tively reduces epistemic uncertainty, allowing probabilistic learning to primarily
focus on aleatoric uncertainty through further probabilistic analysis. Experiments
on six real-world benchmarks demonstrate that FALDA consistently outperforms
existing probabilistic forecasting approaches across most datasets for long-term
time series forecasting while achieving enhanced computational efficiency without
compromising accuracy. Notably, FALDA also achieves superior overall perfor-
mance compared to state-of-the-art (SOTA) point forecasting approaches, with
improvements of up to 9%. The code will be made publicly available.

1 INTRODUCTION

Time series forecasting (TSF) is crucial for decision-making systems in domains like finance (Li
et al.,|2020), healthcare (Festag & Spreckelsen, |2023)), and transportation (Lv et al.l 2014; Dai et al.,
2020). Recent developments in deep learning have yielded various effective approaches for TSF (Wu
et al.| 2021} [Zeng et al., 2023} |Liu et al., [2024). These deterministic models process historical time
series data to generate future predictions and exhibit strong capabilities in point forecasting tasks.

Diffusion models have demonstrated significant success across various generative tasks, including
image generation (Esser et al.||2024; Rombach et al.| 2022 |Peebles & Xie}, |2023; |Chu et al.| 2024}
Liu et al.l 2023} [Lan et al., 2025 Ramesh et al.| 2021} [Labs, [2024; |(Chu et al.l [2025)) and video
generation (Zhang et al.} 2024} 2025} [Zheng et al.| 2024; Bar-Tal et al., [2024; |Hul 2024; Blattmann
et al} 2023; [Yang et al., 2024b; [Lin et al., |2024). However, when applied to probabilistic time
series forecasting, the progressive noise injection mechanism of diffusion models tends to disrupt
the inherent temporal structures. Consequently, many previous works (Fan et al., |2024; [Tashiro
et al.| [2021}; |Shen et al.,|2024])) that attempt to reconstruct complete temporal patterns (encompassing
seasonality, trend, and noise) from pure noise often achieve inferior point estimation accuracy
compared to deterministic models. This challenge becomes especially pronounced when handling
non-stationary time series, as their statistical properties (e.g., mean, variance, autocorrelation, etc.)
evolve over time (Yang et al., 2024a; |Yuan & Qiao, [2024; |Liu et al., [2022b; |Ye et al.| 2024).

Recent studies have explored hybrid approaches combining point estimation with diffusion models.
TMDM (Li et al.| 2024b) incorporates predictions from point estimation models into both forward
and backward diffusion processes to enhance future predictions. D3U (Li et al.l[2025) attempts to
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Figure 1: Performance of FALDA in point estimation (MAE, left) and probabilistic prediction (CRPS,
right). All three plug-and-play methods (TMDM, D3U, and FALDA) utilize NSformer as the same
backbone network for fair comparison.

decouple deterministic and uncertainty learning by leveraging embedded representations from point
estimation to guide the diffusion model in capturing residual patterns, thereby avoiding the need
to reconstruct complete temporal components through diffusion. Although demonstrating superior
point estimation capability compared to previous diffusion-based approaches (Tashiro et al., 2021}
Rasul et al., 2021), these approaches (1) are limited by their generic architecture designs, lacking
explicit inductive biases to capture distinctive temporal structures, such as non-stationary patterns,
and (2) employ diffusion to model an undifferentiated residual, which inevitably entangles epistemic
uncertainty (from the limited capability of the guide model) with aleatoric uncertainty (inherent
data noise) (Hiillermeier & Waegeman) 2021)). As a result, these architectures fail to fully exploit
the potential of different temporal components, undermining their capacity to contribute to further
accuracy gains, particularly when integrated with strong backbone models.

In this paper, we first analyze the decoupling mechanisms for deterministic and uncertain components
in L1 et al.| (2024b; 2025)); [Ho et al.| (2020); |[Han et al.| (2022)), and introduce a unified generalized
diffusion learning framework called DMRR (Diffusion Model for Residual Regression). Building on
DMRR, we develop FALDA, a novel diffusion-based time series forecasting framework that employs
Fourier decomposition to decouple time series into three distinct components: non-stationary trends,
stationary patterns, and noise patterns. Through tailored modeling of each component, FALDA
effectively separates epistemic uncertainty and aleatoric uncertainty (Gawlikowski et al.| [2023]),
allowing the probabilistic modeling component to focus exclusively on aleatoric uncertainty. A
lightweight denoiser DEMA is designed to handle multi-scale residuals. As a non-autoregressive
diffusion model, FALDA avoids the common issue of error accumulation and demonstrates superior
performance in long-range prediction tasks. Unlike conventional approaches that predict diffusion
noise (Li et al.,|2024b; [Tashiro et al.|[2021])), our denoiser directly constructs the target series, thereby
reducing the learning complexity for temporal patterns (Shen & Kwok, 2023). By integrating
DDIM (Song et al., 2021) and DEMA, FALDA achieves both training and sampling efficiency.
As illustrated in Figure [[, FALDA outperforms existing methods in both point estimation and
probabilistic forecasting.

In summary, our main contributions are:

* We propose the Fourier Adaptive Lite Diffusion Architecture (FALDA), a diffusion-based
probabilistic time series forecasting framework that leverages Fourier decomposition to
decouple and model different time-series components. We design DEMA (Decomposition
MLP with AdaLLN), a lightweight denoiser that integrates adaptive layer normalization and
trend-seasonality decomposition to handle multi-scale residuals. Combined with DDIM,
DEMA improves computational efficiency while maintaining performance.

* We introduce the Diffusion Model for Residual Regression (DMRR), a theoretical framework
that methodologically unifies diffusion-based probabilistic regression methods. DMRR not
only establishes the equivalence of their underlying mechanisms, but also provides a solid
theoretical foundation for FALDA’s uncertainty modeling capabilities.

* FALDA supports plug-and-play deployment through a phase-adaptive training schedule,
enabling seamless integration (e.g., processing the stationary term with SOTA deterministic
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models). We evaluate our model on six real-world datasets, and the results demonstrate that
FALDA achieves superior overall performance on both point forecasting and probabilistic

forecasting.
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Figure 2: Comparison of three diffusion frameworks: DDPM, CARD, and DMRR, where 3pppm,
Ycarp, and Ypmrr represent their respective final estimates.

2 DIFFUSION MODEL FOR RESIDUAL REGRESSION (DMRR)

Diffusion models are increasingly applied to probabilistic regression, including TSF. While some
recent probabilistic regression methods have demonstrated strong performances (Han et al.| 2022
Li et al.,[2024b; 2025)), they inherently conform to a unified framework that refines residual errors
through Denoising Diffusion Probabilistic Models (DDPM) (Ho et al.l 2020)). In this work, we term
this framework Diffusion Model for Residual Regression (DMRR). This section begins with a formal
review of the Classification and Regression Diffusion (CARD) (Han et al.| [2022), which establishes
a generalized framework extending DDPM, where DDPM can be viewed as a special case with
zero prior knowledge. Through the lens of the DMRR framework, we subsequently demonstrate
that CARD essentially applies standard DDPM to perform residual fitting, establishing a conceptual
unification across these seemingly disparate approaches (Li et al., 2024b; 2025).

CARD CARD extends Denoising Diffusion Probabilistic Models (DDPM) by incorporating prior
knowledge into both forward and reverse diffusion processes (see Appendix [A.I]for DDPM fun-
damentals). Formally, given a target variable yo ~ ¢(y) with covariate 2, CARD utilizes prior
knowledge f4(x) to guide the generation, where f, can be a pretrained network as demonstrated in
Han et al.|(2022). This yields the following forward diffusion process:

Ui = Varyr—1 + (1= /1= ) fo(x) + /Brzk, 2k ~N(0,1), (one-step)

(1)
Uk = Varyo + (1 — Vag) fo(x) + V1 — anZi, Zr ~N(0,1), (multi-step)

where a, = 1 — B € (0,1) and oy, = Hf::l as denote the noise schedule parameters for k =
1,2,..., K. This process converges to a Gaussian limit distribution: N'( f(z), I'). The corresponding
reverse process posterior distribution is given by:

q(Yk—1lYk, Yo) = N (y—1; ., BT ), where

- 5k\/5¥k—1y n (1*54k—1)\/07kyk+(1+ (Vag — 1)(Vax + V- 1)) £ol2)

= Py o e

> 1—0%1

Br = T ﬁk

The residual I, = yi — fg(z) exhibits the same convergence behavior as DDPM, with a standard
Gaussian distribution as its limit distribution. This equivalence underpins our DMRR framework,
which systematically formalizes this residual learning paradigm within a unified diffusion framework.
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The unified framework As illustrated in Figure 2] our proposed DMRR framework introduces
a residual learning paradigm that decouples prior knowledge from the limit distribution in CARD
diffusion process. Given the target y, the framework first generates a preliminary estimate ¢ (for
CARD § = fy(x)). Unlike CARD, which learns the full data distribution y guided by 3§, DMRR
focuses on learning the residual distribution ¢(r), where r = y — §j. This is implemented through a
DDPM process, where the forward diffusion follows the Markov chain {rq = r,71,..., 7k, ...} with
1, denoting the noise sample at step k. The reverse process generates residual predictions: Fpygrgr via
the denoising network. The final output, which can be considered as a refinement of the preliminary
estimate ¢, combines both components:

UDMRR = ¥ + TDMRR- 3)

Mathematically, we prove that [;, = yi — ¢ in CARD and 7, in DMRR possess identical conditional
and posterior distributions (see Appendix [A]for rigorous proofs). And it should be noted that when
the preliminary estimate §j = 0, CARD and DMRR degenerate to the standard DDPM.

In Section[3.3] we comprehensively discuss the diffusion framework underlying state-of-the-art TSF
models. We further analyze how different framework designs affect the performance of time series
prediction tasks and illustrate the advantages of DMRR framework in TSF tasks.
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Figure 3: An illustration of the proposed FALDA framework. By leveraging Fourier decomposition,
NS-Adapter and TS-Backbone generate the preliminary estimation, Y. The prediction residual

R=Y —Y is then input into the denoiser for subsequent probabilistic learning and refinement of
the preliminary estimation.

3  FOURIER ADAPTIVE LITE DIFFUSION ARCHITECTURE (FALDA)

From a methodological perspective, probabilistic time series forecasting is a specialized form of
probabilistic regression applied to temporal data, necessitating explicit modeling of sequential
dependencies. Within the DMRR framework, we propose the Fourier Adaptive Lite Diffusion
Architecture (FALDA), which leverages point-guided diffusion models for TSF while reducing the
influence of non-stationarity and noise on probabilistic learning. We further analyze the underlying
mechanism through a comparative discussion of diffusion-based TSF models.

3.1 PROBLEM STATEMENT

In the time series forecasting task, let X = {X*}7_; € RT*P represent an observed multivariate
time series with 7" historical time steps, where each X* € R” denotes the D-dimensional observation
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vector at time ¢. Given this lookback window X, the objective is to forecast the subsequent .S time
steps, denoted as Y = {Y*}7 | € R9*D,

3.2 MAIN FRAMEWORK

FALDA As shown in Figure [3] the time series is first decomposed into three components: a
non-stationary term, Y,,, representing temporal components that exhibit time-varying statistical
properties; a stationary term, Y, comprising components whose statistical properties remain
invariant over time; and a noise term, Y., reflecting inherent stochastic disturbances within the
time series. Following |Yuan & Qiao|(2024);|Ye et al.|(2024)), this decomposition is performed using
the Fourier transform. Specifically, the non-stationary component is extracted by reconstructing
the time series from the frequencies corresponding to the K largest amplitudes, while the noise
component is obtained by reconstructing the time series from the frequencies associated with the K5
smallest amplitudes:

Yoon = F H(Top(F(Y), K1), Yaeise = F ' (Bottom(F(Y), K3)). 4)

Here, F denotes the Fourier transform and F ! denotes the inverse Fourier transform. The operators
Top(-, K1) and Bottom(-, K5) select the frequency components with the K largest and the K
smallest amplitudes, respectively. Details on the adaptive selection of the frequency hyperparameters
K and K across different datasets is provided in Appendix [E.5] The stationary term is defined as:

}/stat =Y - Klon - }/noise- (5)

Similarly, the decomposition for X is given by X = Xjon + Xstat + Xnoise- Based on this decom-
position, FALDA integrates three key components: (1) a non-stationary adapter (NS-Adapter) f,,,
which models the non-stationary term Y,o, by addressing evolving temporal patterns and mitigating
epistemic uncertainty; (2) a time series backbone (TS-Backbone) g4, which captures temporally
invariant patterns to model the stationary component Yi.; (3) a conditional diffusion process with

a lightweight denoiser Réo), which specializes in handling aleatoric uncertainty by modeling the
inherent noise component Y, in the data. The predictions for the non-stationary and stationary
components are given by:

Y;lon = fw(Xnon)> }/stat = g¢(Xstat)- (6)
Here f,, is implemented as a multi-layer perceptron (MLP) to effectively capture non-stationary
patterns, while g4 serves as a flexible backbone that can be substituted by conventional point
forecasting models. For further details on the implementation of f,,, please refer to Appendix [E.3]

Eq. EI gives a preliminary estimation Y = }A/;OHJer. We use DDPM to model the residual component,
which is defined as R = Y — Y. During the reverse process, the posterior mean is parameterized as:

fio(R™) k) = %ﬁ“ﬁiéo)(l%(k), k,c)+ ‘/(T"il_%@i’“’l)]%(k), k=K, K—1,.. 1. R® represents

the noise sample at step &, and condition c is set to the noise term of the lookback window, X ise. The
denoiser Réo) (R™) |k, ¢) directly reconstructs the target R = R(®) instead of learning the diffusion
noise at each step. This approach alleviates the learning difficulty of time series data (Shen & Kwokl
2023 |[Yuan & Qiaol [2024). An estimate of the residuals is generated through reverse sampling:
RE) 5 RE=1) ... 5 R(O) = R The final output is the sum of the three component outputs in
FALDA: . A . .

YraLpa = Yoon + Y + R. (7N
In alignment with the multi-component decomposition framework of FALDA, we propose a tailored
loss function designed to facilitate multi-task optimization. To effectively capture non-stationary
patterns, we define the non-stationary term loss L, to provide prior guidance. Simultaneously, to
ensure the overall accuracy of the preliminary point estimations, we define the overall point estimation
loss Lpoin. These two loss functions can be expressed as:

lcnon - é(Y;ona Ynon)7 Epoint = Z(K Y), (8)

where / is the L loss. The alternative loss L,y simultaneously optimizes the denoiser and fine-tunes
the point estimate model through two terms:

Laer = As |[sg(R) = RV (R® k)| +n, | R — sg(RY (R*D K, e))[|? . )

L dgiffusion Lfinetune
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Here, R = Y — Y. The first term Lagitfusion targets the optimization of the denoiser, where the
stop-gradient operation sg(-) ensures no interference with the point estimate model’s training. The
second term Lepeune fine-tunes the point estimate models, improving them alongside the denoiser.
Here, k' is a hyperparameter that enables flexible selection of the diffusion step during the fine-tuning
process. Additionally, two scheduling hyperparameters, As and 7, are introduced to control the
alternating optimization of the two losses in L. These parameters depend on the current training
epoch s, and are governed by a threshold § and a period A:

{1, s> dand s mod A # 0 {
)\s: O bl s —

otherwise

1
0, otherwise

> p—
, s>dand smod A O7 (10)

where the hyperparameter § determines the pretraining duration (in epochs) for the point forecasting
models, while A controls the alternating intervals between denoiser training and fine-tuning. The
final loss function is given by:

L= Lnon + Lpoint + Ealtep (1D

For complete training and inference algorithm of FALDA, please refer to Appendix

DEMA We design DEMA (Decomposition MLP with AdalLN), a lightweight denoiser denoted as
Réo), to effectively predict the future time series noise term Yjoise. As a conditional denoiser, Réo) ()
takes the k-step noise sample R*) € RS> P the diffusion step k, and condition ¢ = Xoie € RT*P

as input. The input R*) and condition ¢ are projected into a latent space with dimension Hy through
the following embedding process:

hg)} = Linear(R®)) € RHa*D ¢, = Linear(PE(k)) + Linear(c) € Rf¢*P (12)

where PE(+) is sinusoidal embedding (Vaswani et al.| 2017} [Li et al., 2024a). The embedding hy,
and ey, are then processed by an L-layer encoder. At each layer ! € {0,1, ..., L — 1}, the encoder
performs the following computations:

i) = [~ ML) AL 1) @
117,80, 0l"] = Linear(SiLU(ex)), (14)
%i[l] = (%m +1)0o LayerNorm(Tim) + ﬁy], (15)

where %[l], Bl[l] and oy] represent the scale factor, shift factor, and gating factor, respectively, with

i € {season, trend}. MA,, denotes the moving average operation with kernel size a. The output of an
encoder layer is computed as:

hEcH_l} = hg] + (Oye]ason + Ot[flnd) © Linear(fs[fl:lson + 7_—L[rle]nd)' (16)

After processing through an adaptive layer normalization decoder, the denoiser generates its final

output Réo) (R®) k, c) € R¥*P where 0 represents all trainable parameters in the network.

3.3 ANALYSIS OF DIFFERENT DIFFUSION-BASED TIME SERIES MODELS WITH RESIDUAL
LEARNING

TMDM and D3U are representative diffusion-based time series forecasting models that incorporate
residual learning. Specifically, TMDM employs CARD as its underlying diffusion mechanism,
while D3U and FALDA utilize DMRR (see Appendix [B|for detailed mathematical formulations).
As discussed in Section[2] DMRR and CARD share identical transition probabilities and posterior
distributions, indicating that their stochastic dynamics are mathematically equivalent. Despite
theoretical equivalence, DMRR offers crucial modeling advantages and is inherently more suitable
for TSF tasks compared to CARD. Real-world time series typically consist of multiple components
(trend, seasonality, and inherent noise) that are often corrupted during the diffusion process due to
gradual noise addition. This corruption makes it challenging to recover the time series distribution
from the noise data (Yuan & Qiaoj [2024). Although the preliminary estimate partially captures
temporal patterns, it remains difficult for CARD framework to learn the residual distribution from the
noisy full time series Y(k), which also represents a limitation of TMDM.
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In contrast, D3U and FALDA, which are based on DMRR, alleviate this limitation through their
residual learning paradigm. This paradigm explicitly decouples the preliminary estimation from
the limiting distribution in CARD and focuses exclusively on modeling the residual between the
preliminary estimate and the ground truth. The residual components encompass both epistemic and
aleatoric uncertainties (Gawlikowski et al.,2023). While DU demonstrates promising performance
by utilizing latent representations from the encoder as the condition in the reverse process, its
generalized modeling approach primarily captures epistemic uncertainty due to the lack of explicit
consideration for distinct temporal components. This architectural characteristic limits its ability
to explicitly model the pure underlying probability distribution, especially the aleatoric uncertainty
component. Furthermore, this limitation may result in diminishing returns when applied to backbone
models that already exhibit strong predictive capabilities. An elaborate analysis of this phenomenon
is provided in Appendix [C} Our framework extends this approach by introducing dedicated network
architectures designed to capture three key temporal components. This enhanced modeling capability
enables more balanced learning of both epistemic and aleatoric uncertainties, thereby contributing to
improved point estimation accuracy.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Six widely recognized real-world datasets are utilized for evaluation: ILI, Exchange-Rate, ETTm?2,
Electricity, Traffic, and Weather. More details are provided in Appendix[E.I] 13 state-of-the-art TSF
models are included in our baselines including both point forecasting and probabilistic forecasting
methods: Informer (Zhou et al.,[2021), Autoformer (Wu et al., 2021}, FEDformer (Zhou et al., 2022)),
DLinear (Zeng et al., [2023)), TimesNet (Wu et al.,2023), PatchTST (Nie et al.,|2023), iTransformer
(Liu et al., 2024}, TimeGrad (Rasul et al., 2021}, CSDI (Tashiro et al., |2021)), SSSD (Alcaraz &
Strodthoff, 2023)), TimeDiff (Shen & Kwok|2023), TMDM (Li et al., 2024b), D3U (Li et al., 2025).

We set the lookback window T' = 96 and prediction length S = 192, except for ILI where T' = S =
36. Following Ho et al.|(2020), we use K = 1000 diffusion timesteps with a linear noise schedule.
FALDA employs iTransformer as its default backbone if not stated otherwise, with DDIM (Song
et al| [2021) for inference acceleration. Implementation details are fully provided in Appendix [E.4}

Table 1: Comparison of MAE and MSE across six real-world datasets. Bold denotes the best-
performing method for each metric-dataset combination, while underlined indicates the second-best.

Methods | ILI Exchange Electricity Traffic ETTm2 Weather

Metric | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

Informer | 4.620 1.456 | 1.092 0.853 | 0319 0.399 | 0.696 0.379 | 0.494 0.525 | 0.598 0.544

Autoformer | 3366 1.210 | 0.537 0526 | 0227 0.332| 0.616 0382|0269 0.327 | 0.276 0336

FEDformer | 2.679 1.163 | 0.276 0384 | 0.198 0.312|0.606 0377 | 0.269 0.325 | 0.276 0.336

DLinear | 2.235 1.059 | 0.167 0301 | 0.196 0.285 | 0.598 0370 | 0.284 0.362 | 0.218 0.278

TimesNet | 2.671 0.986 | 0.224 0.343 | 0.184 0.289 | 0.617 0.336 | 0.249 0309 | 0.219 0.261

PatchTST | 2.374 0.918 | 0.181 0.303 | 0.205 0.307 | 0.463 0311 | 0.251 0312|0223 0.258

iTransformerl 1.833 0.828|0.193 0.315 | 0.164 0.248 | 0.413 0.251 | 0.246 0.300|0.217 0.247

TimeGrad | 2.644 1.142 | 2429 0.902 | 0.645 0.723 | 0.932 0.807 | 1.385 0.732 | 0.885 0.551

CSDI | 2538 1208 | 1.662 0.748 | 0.553 0.795 | 0.921 0.678 | 1.291 0576 | 0.842 0.523

SSSD | 2521 1.079 | 0.897 0.861 | 0.481 0.607 | 0.794 0.498 | 0.973 0.559 | 0.693 0.501

TimeDiff | 2458 1.085 | 0475 0.429 | 0.730 0.690 | 1.465 0.851 | 0.284 0342 | 0.277 0.331

TMDM | 1.985 0.846 | 0260 0.365 | 0.222 0329 | 0.721 0411 ]0.524 0493 | 0244 0.286

D3U | 2103 0935|0254 0358]0.179 0.267 | 0.468 0299 | 0.241 0.302 | 0.222 0.264

Ous | 1666 0.821|0.165 0.296 | 0.163 0.248 | 0.412 0.251 | 0.246 0.301 | 0.215 0255
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4.2 MAIN RESULT

Forecasting performance and computational efficiency We conduct a comprehensive evaluation
of the proposed model against state-of-the-art baselines for four metrics: CRPS, CRPSy;,, MAE,
and MSE. CRPS and CRPSy,, assess the probabilistic forecasting performance, while MAE and
MSE evaluate the point forecasting accuracy. See Appendix [E.2]for detailed metric descriptions.
Table [T]summarizes MAE and MSE results across six real-world datasets. Our method outperforms
all baselines in four out of six datasets (ILI, Exchange, Electricity, and Traffic) for both MAE and
MSE. On the remaining two datasets, our method consistently ranks among the top two performers.
The most significant improvement is observed on the ILI dataset, where our model achieves a notable
9% reduction in MSE compared to iTransformer, the second-best model, demonstrating FALDA’s
powerful ability in point forecasting. FALDA also presents superior or comparable probabilistic
forecasting performance compared to previous diffusion-based models. Table 2] shows the CRPS and
CRPSg,im metrics across 6 datasets. On Exchange, FALDA promotes an average of 9% on CRPS and
39% on CRPSyy. In terms of efficiency, FALDA achieves an inference speed-up of up to 26.3x and
a training speed-up of up to 13.7x compared to TMDM, as detailed in Appendix [F.6]

Table 2: Comparison of CRPS and CRPSg,,, across six real-world datasets. Bold denotes the best-
performing method for each metric-dataset combination, while underlined indicates the second-best.

Methods | ILI Exchange ETTm2 Weather Electricity Traffic

Metric | CRPS  CRPSqum | CRPS  CRPSgum | CRPS  CRPSgum | CRPS  CRPSqum | CRPS  CRPSgum | CRPS  CRPSgum

TimeGrad | 0.924 0527 |0.661 0437 |0785 1.051 |0482 0503 |0503 1452 |0.657 1.683

CSDI | 1.104  0.607 |0448 0469 |0.625 0.782 |0508 0465 |0465 0823 |0.612 1275

SSSD | 0.945 0548 | 0564 0370 |0.571 0275 | 0445 0442 | 0466 0580 | 0414  0.949

TimeDiff | 1.083  0.610 | 0376 0275 |0.316 0.180 | 0293 0400 |0475 059 |0.671  0.823

TMDM | 0921 0524 |0316 0209 |0380 0226 |0226 0292 |0446 0.137 |0552 0179

D3U |0951 0566 |0318 0210 |0.243 0.141 |0.207 0283 |0202 0.60 |0.232 0.186

Ours | 0721 0387 |0.289 0.126 |0244 0141 |0.207 0298 |0.231 0.160 |0245 0.163

Plug-and-play performance To evaluate the generality of our framework, we integrate four well-
known point forecasting models into the FALDA framework: Autoformer (Wu et al.,2021)), Informer
(Zhou et all,[2021)), Transformer (Vaswani et al., 2017), and iTransformer (Liu et al.|[2024). Table 3]
shows their performance improvements with FALDA. Results show consistent improvements in both
MSE and MAE metrics across the majority of evaluated datasets. The most significant improvements
are observed for Informer, which achieves maximum reductions of 66.4% in MSE and 46.2% in
MAE on the same dataset. For iTransformer, which serves as a strong baseline model, FALDA still
provides measurable improvements (e.g., 14.6% MSE reduction on Exchange) while maintaining
competitive performance across other datasets. Notably, DU exhibits performance degradation when
using iTransformer as the backbone, as evidenced in Tables 1 and 6 of [Li et al.| (2025). These results
validate FALDA’s effectiveness in enhancing forecasting performance for both relatively weaker
backbones and state-of-the-art backbones, demonstrating its general applicability in TSF tasks.

4.3 ABLATION STUDY

To further validate that our architecture enables the diffusion model to focus on aleatoric uncertainty
learning, we investigate the model’s performance under different conditioning strategies. Table 4]
compares the results when using X,oise, X as conditioning inputs, along with an unconditional case.
The experiments show that the X,,,;s.-conditioned version achieves optimal performance across all
evaluated datasets, while the unconditional case performs comparably to the X, qis-conditioned
scenario. In contrast, the X -conditioned approach shows the worst performance among the three
conditioning types. These results indicate that epistemic uncertainty does not dominate the com-
ponents of diffusion learning, thereby the residual estimation through X-conditioning provides
limited benefits. In conclusion, the FALDA framework successfully achieves enhanced learning
of aleatoric uncertainty while simultaneously improving point estimation capability. Additionally,
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Table 3: Plug-and-play performance improvement of FALDA on existing point forecasting methods.
Better values are highlighted in bold.

Model | Exchange ILI ETTm2 Electricity

Metric | MSE MAE MSE MAE MSE MAE | MSE MAE

Autoformer | 0.537  0.526 | 3.366  1.210 | 0.269  0.327 | 0.227 0.332
+ ours 0.232  0.351 | 2.655 1.118 | 0.247 0.313 | 0.209 0.316
Promotion | 56.7% 33.3% |21.1% 7.5% | 82% 4.2% |7.6% 4.7%

Informer 1.092  0.853 | 4.620 1.456 | 0.494 0.525 [ 0.319 0.399
+ ours 0.367 0.460 | 3.122 1.178 | 0.293  0.363 | 0.305 0.388
Promotion | 66.4% 46.2% | 324% 19.1% | 40.8% 30.9% |4.5% 2.8%

Transformer | 0.975  0.765 | 4.044 1327 | 0427 0.472 | 0.256 0.347
+ ours 0403 0488 | 3.226 1.254 | 0.390 0.423 | 0.251 0.344
Promotion | 58.7% 36.3% | 202% 5.5% | 8.7% 10.2% | 1.8% 0.9%

iTransformer | 0.193 0315 | 1.833 0.828 | 0.246  0.300 | 0.164 0.248
+ ours 0.165 0.296 | 1.666 0.821 | 0.246 0.301 | 0.163 0.248
Promotion | 14.6% 6.0% | 91% 08% | 01% -0.5% |11% 0.0%

Table 4: Ablation study on different condition strategies. The best results are boldfaced.

Conditi |  Exchange ILI ETTm2 Weather
ondition type
| MSE MAE | MSE MAE | MSE MAE | MSE MAE
Xnoise 0.165 0.296 | 1.666 0.821 | 0.246 0.301 | 0.215 0.255
uncond 0.184 0311 | 1.675 0.785 | 0.251 0.307 | 0.217 0.260
X 0.178 0312 | 1.994 0.966 | 0.258 0.313 | 0.216 0.261

Appendix [T presents an ablation study comparing DEMA with its variants, systematically validating
the effectiveness of its time-decomposition operation. Appendix [F.5]shows the impact of different
fine-tuning strategies during training. Appendix demonstrates the effectiveness of the DMRR
component and the NS-Adapter module. Figure [I|shows the advantage of our framework when using
the same NSformer (Liu et al.| [2022b)) backbone. The complete experimental results are provided in

Appendix

5 RELATED WORKS

Rasul et al.|(2021) integrates RNN with a diffusion model for autoregressive forecasting, using
hidden states to condition the diffusion process. Its autoregressive nature causes error accumulation
and inefficiency in long-term forecasting. [Tashiro et al.|(2021) adopts a non-autoregressive fashion
which uses self-supervised masking to guide the denoising process, with historical information and
observation as conditions. [Shen & Kwok] (2023)) introduces inductive bias to the outputs of the
conditioning network through two mechanisms (future mixup and autoregressive initialization) to
facilitate the denoising process. [Li et al.|(2024b)) and [L1 et al.|(2025) guide the diffusion process with
strong point forecasting models, enhancing point forecasting and probabilistic forecasting capability.

6 CONCLUSION

In this paper, we present FALDA, a Fourier-based diffusion framework for time series forecasting
that systematically addresses both deterministic patterns and stochastic uncertainties. Our Fourier
decomposition and component-specific modeling approach enable FALDA to decouple complex time
series into interpretable components while clearly separating epistemic and aleatoric uncertainty. The
integration of a conditional diffusion model with historical noise conditioning significantly improves
stochastic component prediction, achieving enhanced computational efficiency. Our methodological
DMRR framework and theoretical analysis provide formal guarantees for the mathematical founda-
tions of FALDA. Extensive empirical evaluations across six diverse real-world datasets consistently
demonstrate FALDA’s strong performance on both point forecasting and probabilistic forecasting.
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A  MATHEMATICAL DERIVATIONS

A.1 PRELIMINARY: DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising Diffusion Probabilistic Models (DDPM) (Ho et al.,2020) is a canonical diffusion model
consisting of the forward and reverse processes. Let ¢(yo) be the data distribution, the forward process
is a Markov chain {yo, ¥1, -.., Y, -..  that gradually transforms the data distribution into a standard

Gaussian distribution: yy, 4N (0,I),k — oo. Here "Ly denotes convergence in distribution.
The transition probability is ¢(yx|yx—1) = N (Yr; /arYr—1, BkI). where a =1 — 3 € (0,1)
represents the noise schedule. The single-step transition formulation at step k£ can be demonstrated as
below using the reparameterization trick (Kingma & Welling| 2014):

Yr = Vary—1 +VBezk, 2~ N(0,1). (17)

Iterating the single-step formulation leads to the multi-step transition formulation at step k:
Yr = Varyo + V1 — arzZr, Zx NN(O7I) (18)

Here o, = H’;:l o, B = Hle Bs. The reverse process starts from a standard Gaussian noise ¥y,
and has the following posterior distribution at step k:

a(Yk—1lyr, Yo) = N (yr—1; fir, B,

N N Vo (l —ag— ~ 1—aqy_ (19)
i = Y Eﬁkyo + ( - l)ym By = ——21p,.
1—ay 1—ay 1—ay

By substituting o with 1o = \/%yk — V\l/;ff’“ Zx, we have ji(yx, k) = \/%Tk (yk — \/%Zk). The

mean iy, is typically parameterized using two different strategies: (1) modeling the diffusion noise zj,
with ég(yx, k), or (2) directly parameterizing the target yo in Eq. [[9|with g (ys, k).
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A.2 EQUIVALENCE BETWEEN CARD AND DMRR

Proposition 1. Let y;, be the Markov chain defined in Eq. |1} Let ly, = y, — fo(x), we have:

q(|l—1) = N (ly; Vagle—1, BrI) (20
and B
q(lk—1llk, lo) = N(yi—1; fur, BrI),
_ Q10K Vol —ag-1) > l—ap e2y)
k= — 1y + - le, Brx=—"—>0
1—ag 1—ag 1—ag

Thus, the residual process l; exhibits identical Markovian dynamics to the standard DDPM framework
in both forward and reverse processes as shown in Eq. [[8and Eq. [I9

Proof. Proof of Equation 20}
Starting from the result in Eq. [I]

Ik =yr — folx)
= Vauyo + (1 = vag) fo(x) + V1 — awzi — fo(2)
= Var(yo — fo(x)) + VI — ez + fo(z) = fo(x)
= Vagly + V1 — agz.
This demonstrates that [, satisfies the standard DDPM forward process formulation.

Proof of Equation 21} )
since I, = yi — fo(x) and q(yr—1|yk, yo) = N (yk—1; M, Br1), we have:

a1l lo) = N (lg—1, 7, — fo(x), Bi).

We now analyze the mean 7y, — fo (). With the definition of 7, in Eq. [2| we have:
ik — fo(z) = Akyo + Bryr + (Ck — 1) fo (),
where the coefficients are:

. Brr/Ck—1 B, - (1 —ag—1)ax
k= ————— s,

= s =

1—ag 1—ag
Cn e 1 (vVar — 1) (Vor + Var—1)
k=14 1—a .

Substituting y, = I, + fy(z) yields:
my — fo(r) = Aplo + Birlp + (Ag + B + Cr — 1) fo(2).

In the following step, the coefficients of f4(x) can be expanded as:

Aot Bt Cp— 1= DoV@m1 (- a) V@ | (Vo — D3k + VEi1)

1—ay 1—ay
V-1 T Qpy Qg1 — /QpQg—1 TV OROE + VOROG g — (/01
B 1—ay
/A1 — Qg1+ agpag + /a1
o 1— ay '

Using the identity &y, = a1y, we have:
A+ B+ Cr —1=0.

Therefore, the posterior mean 7y, — f, () satisfies:

T, — fo(a) = 5’;{?}:% e 1ai_;imlk
= fir.
We have thus established that the reverse distribution of the residual process satisfies: q(lx—1|lx,lo) =
N (lg—1; fog, BkI), This completes the proof of Eq. [
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B METHODOLOGY OF TMDM AND DU

In this section, we present the details of two previously developed diffusion-based time series
forecasting methods: Transformer-Modulated Diffusion Model (TMDM) (Li et al.l [2024b) and
Diffusion-based Decoupled Deterministic and Uncertain framework (D3U) (Li et al.| [2025). The
notation employed below is consistent with the notation used in Section [3.1]

B.1 TMDM

TMDM employs CARD as its underlying diffusion framework. Given a conditional information Y,
the end point of TMDM'’s diffusion process is:

Jim qYPY) =N, ). (22)

Here Y (%) represents the noise sample of Y at step k. With a noise schedule a; and 3; defined in
Section 2] the forward process at step k can be defined as:

q (Y(k)|Y(k‘1), Y) ~N (wﬁakY(k_l) F(1-1o ﬁk)f/,ﬁkf) . 23)
The posterior distribution in the reverse diffusion process is:

q (Y<’f—1)|y<k>,y<0>,?) ~N (Y(k‘l);mk, B,J) : 24)

where 772, and 3, are consistent with Eq. [2l Specifically, my, satisfies:

iy = POy ) (7 @)V ) (Var — D (Vox + \/m))y. 05)

1
1—ag 1—ag +(1+ 1—ag

B.2 D3U

The D3U framework builds upon the DMRR diffusion architecture. It employs a pretrained network

fpsyu to generate preliminary estimates Y, where the encoder embedding fe,.(X) serves as the
condition for the reverse diffusion process.

Defining the residual term R =Y — Y, the forward diffusion process follows:

q (R<k>|R(’f—1>, R) ~N (\ﬁakR(k_l), 5k1) . (26)
The posterior process is:
q (R(k*1)|R(k),R(O), fenc(X)> ~ N (R(kfl); [k, BkI) ] (27)
Here [iy, is consistent with Eq.
i = \/dk—_lﬁk RO 4 Vag(l __dk—l)R(k’). (28)
1-— AL 1-— Qe

C PROBABILITY VIEW OF RESIDUAL COMPONENT MODELING

As discussed in Section D3U models epistemic uncertainty by conditioning on encoder outputs
without intentionally decoupling it from temporal aleatoric uncertainty. This limits optimal perfor-
mance scaling on more capable backbone models, which already exhibit low epistemic uncertainty.
In this section, we provide a probabilistic analysis of different modeling approaches for time series
forecasting. Specifically, Appendix [C.I] summarizes the general case, while Appendices[C.2]and
respectively analyze the probabilistic modeling of D®U and FALDA, highlighting their distinct
learning objectives. We demonstrate how FALDA models both types of uncertainty through time-
series components decomposition, allowing both deterministic and probabilistic models to focus on
learning their respective components.
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C.1 GENERAL SITUATION

In general, a time series X can be decomposed into two components:
X = Xur tex, (29)

where X is the ideal noise-free part (incorporating trend, seasonality, and other structured patterns),
and e x denotes the inherent zero-mean noise in the time series data. Notably, in real-world scenarios,
ex often follows complex non-Gaussian distributions. This canonical decomposition naturally extends
to the forecasting target: Y = Y, ¢ + ey. To simplify the notation, in the following paragraphs, the
subscripts for the noises only indicate which components they are associated with. The goal of the
time series forecasting task is then to learn the conditional distribution: P(Y|X). Conventionally, a
deterministic function f is employed to estimate the posterior expectation:

E(Y|X) = E(Yar|X) +E (ey[f4(X)) = E(Yns|X) = f(Xar + €x). (30)
This yields the following regression form for the prediction:
Y =f(Xu+ex)+texy. 31)

In Equation[C.1} ex y comprises two distinct uncertainty components: aleatoric uncertainty stemming
from inherent data randomness (specifically, the time series noise), and epistemic uncertainty arising
from model estimation errors (Kendall & Gal, 2017).

Under ideal conditions where the point-estimation model perfectly captures E(Y'|X), ex,y would
reduce to purely aleatoric uncertainty and become uncorrelated with f(X), satisfying:

E (ex,y[fs(X)) = 0. (32)

This implies the lookback window X contains no additional information to improve point forecasts,
resulting in ex y = €y. However, in practice, point-estimation models rarely achieve this theoretical
optimum, typically retaining some epistemic uncertainty. The subsequent discussion will examine
how different time series forecasting models handle these distinct uncertainty components.

C.2 D3U SITUATION

As established in Appendix the D3U framework leverages the encoder-derived embedding
representation fenc(X) as a conditioning mechanism for probabilistic residual learning, subsequent
to the preliminary estimation f(X). Formulated within the regression expression in the previous
section, this approach specifically targets the conditional expectation E(ex v | fenc(X)), yielding:

Y:f(X)+g(fenc(X))+€X,Y~ (33)

In this context, éx y denotes the total uncertainty of D3U. Since the encoder of the point estimation
model f learns a good representation of the historical time series, g( fenc(X)) can further model the
epistemic uncertainty of f(X). Comparing to e X,Y» €x,y may contain less epistemic uncertainty.
However, due to the predominance of predictions with epistemic uncertainty, this facilitation may
diminish when the backbone model is sufficiently powerful. More importantly, since the true
probabilistic component, uncertainty, is not explicitly separated, diffusion models may focus on
epistemic uncertainty rather than uncertainty. This undifferentiated treatment ultimately constrains
their probabilistic learning capability.

C.3 OUR SITUATION

To mitigate the epistemic uncertainty, first, we decompose the history time series into three parts
X = Xion + Xstar + Xnoise- Three models are jointly trained to forecast the whole future time series.
Beyond the point-estimation model, we introduce an NS-adapter to improve modeling accuracy and
reduce epistemic uncertainty, thereby alleviating part of the computational burden on the diffusion
model. This architecture allows the diffusion model to concentrate solely on capturing aleatoric
uncertainty, with the noise component X, serving as the conditioning input for the diffusion
process. The corresponding mathematical formulation is as follows:

Y = fnon (Xnon) + fstat(Xstat) + Ynoise (Xnoise) + EX,Y- (34)
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Under this formulation, €x y contains more aleatoric uncertainty, since explicit component separation
effectively mitigates epistemic uncertainty. Compared to the expression g( fenc(X)) + €x,v in Eq.
our approach shows superior properties. First, the composite term gpoise (Xnoise) + € X,y 1s not
dominated by epistemic uncertainty, since fo, already takes into account most of the non-smooth
patterns. Second, this decomposition allows the diffusion model to focus more effectively on capturing
pure uncertainty without interference from the cognitive uncertainty component.

D ALGORITHMS

We formally present the complete algorithmic procedures of FALDA. Algorithm [T]details the end-
to-end training protocol with multi-task optimization. The corresponding inference procedure is
specified in Algorithm 2]

Algorithm 1 FALDA Training Procedure

1: Require: TS-backbone g4, NS-adapter f,,, denoiser R(go)

2: Hyperparameters: Threshold ¢, period A, &/, noise schedule: «, 3y, max diffusion step K

3: Input: Lookback window X € RT*P future ground truth Y € RS*D

4: Initialize the parameteres

5: repeat

6: Decomposition via Fourier Transform > Eq. equation 4] equation 5]
7. Xoon, Xstat, Xnoise < X

8: Y;mnv 1/stata Yooise < Y

9: Non-stationary & Stationary Components modeling:
10: Yion S (Xnon) > Eq. equation@
11: Yitat ¢ 9¢(Xstat)
12: Residual Learning:

13: R+ Y — Yaon — Y

14: kE~U{1,2,..,K})

15: e~ N(0,I)

16:  R® « JarR+ 1 —age, R*) < \Jap R+ /1 — ape,
17:  Predict residual: R\" (R® |k, Xpoise) RS (R®) K| Xpoise)
18: Loss Computation:

19: Compute the loss £ in Eq. equation [T1]

20: Take gradient descent step on: V.L

21: until converged

E EXPERIMENT DETAILS

E.1 DATASETS

Experiments are performed on seven widely-used real-world time series datasets: (1) influenza-like
illness (ILI) reports the weekly ratio of patients presenting influenza-like symptoms to total clinical
visits, obtained from U.S. CDC surveillance data from 2002 to 2021. [1_-] (2) Exchange-Rate (Lai et al.|
2018) provides daily currency exchange rates for eight countries from 1990 to 2016. E] (3) ETTm2 and
ETTml (Zhou et al., 2021) contains 7 factors of electricity transformer from July 2016 to July 2018,
which is recorded by 15 minutes. E] (4) Electricity (Li et al.,[2019) collects hourly power consumption
from 321 customers from 2012 through 2014. [*| (5) Traffic (Wu et al., [2023)) collates hourly road
occupancy rates measured by 862 sensors on San Francisco Bay Area freeways between January
2015 and December 2016. P| (6) Weather (Zhou et al.,|2021) includes meteorological time series

"ILI: ht tps://gis.cdc.gov/grasp/fluview/fluportaldashboard. html
2Exchange: https://github.com/laiguokun/multivariate-time-series-data
SETTm2: https://github.com/zhouhaoyi/ETDataset
*Electricity:https://archive.ics.uci.edu/dataset /321

Traffic: https://zenodo.org/record/4656132

17


https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://github.com/laiguokun/multivariate-time-series-data
https://github.com/zhouhaoyi/ETDataset
https://archive.ics.uci.edu/dataset/321
https://zenodo.org/record/4656132

Under review as a conference paper at ICLR 2026

Algorithm 2 FALDA Inference Procedure

Require: Pretrained TS-backbone g4, NS-adapter f,, and denoiser Réo)
Input: Lookback window X € RT*P
Decomposition via Fourier Transform: > Eq. equation 4] equation 3]
Xnom Xstata Xnoise — X
Predict Non-stationary & Stationary Terms:
}fnon — fw (Xnon)
Yiat ¢ 9o (Xstat)
Generate Residual Prediction via Reverse Diffusion:
Sample RUS) ~ N(0, 1)
for £ = K down to 1 do

Predict residual: R(©) R(go)(R(k)7 k, Xnoise)

Compute posterior mean

fig \/ﬁﬁk RO 4+ \/O‘ikil__@ik—l)R(k)

Sample R*~D ~ N (fig, BiI) > Eq. equation [19]
: end for
: R+ RO
: Final Prediction:
: Y<_K10p+§/;tat+R
: Return Y

A S ol e

—_— =
Mo ew

—_
w

e e

collected from the Weather Station of the Max Planck Biogeochemistry Institute in 2020, with 21
meteorological indicators collected every 10 minutes. E] (7) PEMS provides California traffic network
data recorded in 5-minute windows, from which we use four public subsets (PEMS03, PEMS04,
PEMSO07, and PEMSO08) following SCINet (Liu et al., [2022a)). ﬁ

We follow the data processing protocol and split configurations from [Wu et al.|(2021) and |Li et al.
(2024b). The lookback length is fixed to 96, and the prediction length is fixed to 192, with the
exception of the ILI dataset, where the lookback length and prediction length are both set to 36. For
short-term forecasting tasks, the prediction lengths are set to 12, 24, 48, and 96 following [Liu et al.
(2024). The details of all the datasets are provided in TableE}

Table 5: Detailed dataset descriptions, including dimension, context length, label length, prediction
length, and frequency.

Dataset Dim Context length  Label length ~ Prediction length  Frequency
ILI 7 36 16 36 1 week
Exchange 8 96 48 192 1 day
Electricity 321 96 48 192 1 hour
Traffic 862 96 48 192 1 hour
ETTm2, ETTml1 7 96 48 192 15 mins
Weather 21 96 48 192 10 mins
PEMS03 358 96 48 {12, 24, 48, 96} 5 mins
PEMS04 307 96 48 {12, 24, 48, 96} 5 mins
PEMSO07 883 96 48 {12, 24, 48, 96} 5 mins
PEMSO08 170 96 48 {12, 24, 48, 96} 5 mins

E.2 EVALUATION METRICS

We employ two categories of evaluation metrics: deterministic metrics for point forecasts and
probabilistic metrics for uncertainty estimation. Let 2 € R? denote the ground truth values and
# € R? represent the predicted values.

SWeather: https://www.bgc-jena.mpg.de/wetter/
"PEMS: http://pems.dot.ca.gov

18


https://www.bgc-jena.mpg.de/wetter/
http://pems.dot.ca.gov

Under review as a conference paper at ICLR 2026

¢ Mean Squared Error (MSE):
1 1 &
MSE(z, ) = Sllo — &3 = 5 > (@i — 4)*, (35)

where || - ||2 denotes the /5 norm.
¢ Mean Absolute Error (MAE):

d
. 1 . 1 R
MAE(z, %) = g”l’ — 2l = P E |z — &), (36)

where || - ||; denotes the £; norm.
For assessing probabilistic forecasts and uncertainty estimation, we utilize:

¢ Continuous Ranked Probability Score (CRPS) (Matheson & Winkler, |1976; |Gneiting &
Raftery}, 2007):

o0

CRPS(Fa) = [ (Fy) ~ 1 < v *dy, 37

where F'(y) is the predicted cumulative distribution function.
¢ Summed CRPS (CRPSgum):

CRPS,,, = F, {CRPS( Fal st 13«2)} : (38)

where F.

"o is obtained through dimension-wise summation of samples.

To specifically evaluate prediction intervals, we employ:

* Prediction Interval Coverage Probability (PICP) (Yao et al., 2019)):

PICP = — Z]I{xl [low ghigh)y (39)

’L I K3

where N represents the total number of observations, z; € R? denotes the true value for
the i-th observation, and z,>% and e correspond to the 2.5 and 97.5!" percentiles of the
predicted distribution respectlvely, with I being the indicator function. This metric quantifies
the empirical coverage probability by measuring the proportion of true observations falling
within the predicted interval bounds. When the predicted distribution matches the true data
distribution perfectly, the PICP should theoretically equal the nominal coverage level of
95% for the specified 2.5 — 97.5t" percentile range.

* Quantile Interval Coverage Error (QICE) (Han et al., [2022):

~low

M
]. 1 ~low,m  ~high,m
QICE= 2> |pm = 37+ Pm=7% Zﬂ{xz [ AL (40)
m=1

QICE can be viewed as PICP with finer granularity and without uncovered quantile ranges.
Under the optimal scenario where the predicted distribution perfectly matches the target
distribution, the QICE value should be equal to 0.

E.3 IMPLEMENTATION OF NON-STATIONARY ADAPTER IN FALDA

As discussed in Section [3| we propose a non-stationary adapter f,, to capture the non-stationary
patterns in time series data. While a linear projection from X, to Ymn offers a straightforward
approach, we enhance this design by additionally incorporating the complete lookback window X
as auxiliary input following the approach outlined in|Ye et al.|(2024). This extension enables richer
temporal context utilization, improving prediction accuracy for Y;o,. The output of the adapter is
computed as follows:
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Yoon = S (Xnon, X) = W3 ReLU (W5 Concat (ReLU (W1 Xyon), X)) , 41

where Wy, W, and W3 are learnable weight matrices. The concatenation operation explicitly
combines the processed non-stationary features with the original input, allowing the network to
leverage both representations.

E.4 IMPLEMENTATION DETAILS

All the experiments are conducted on a single NVIDIA L20 48GB GPU, utilizing PyTorch (Paszke
et al.,[2019). We set the number of diffusion steps to K = 1000, adopting a linear noise schedule
following the configuration in|Li et al.[|(2024b)). Following DDIM (Song et al.| [2021), we accelerate
the sampling procedure by selecting a 10-point subsequence (with a stride of 100 steps) from the
original 1000 diffusion steps, effectively skipping intermediate computations while maintaining
generation quality. Correspondingly, we adjust the fine-tuning diffusion step &’ to align with the
subsampling stride, setting k¥’ = 100 to match the first sampling interval. The parameter 7 controls
the determinism level in DDIM sampling, where 7 = 0 yields a fully deterministic generation process.
We utilize the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 10~* and L1 loss. Early
stopping is applied after {5, 10, 15} epochs without improvement, with a maximum of 200 epochs.
The batch size is set to 32 during training and 8 for testing. The context length, label length, and
prediction length are detailed in Table[5] To ensure robust statistical evaluation, we generate 100
prediction instances for each test sample to reliably compute the evaluation metrics. We show the point
estimate performance and probabilistic forecasting performance in Table[T]and Table [2] respectively.
The hidden dimension Hj is selected from the set {64, 128, 256, 512}. Hyperparameters K; and
K5 are chosen from {0,1,2,...,|T/2]| + 1}. The kernel size for the moving average operation in
DEMA is fixed at @ = 25. For reference, we provide a detailed hyperparameter configuration for
FALDA with iTransformer as the backbone architecture in Table[f] Furthermore, as discussed in
Section[4.2] we extend our framework to integrate with alternative backbone models (Autoformer,
Transformer, and Informer), with their corresponding configurations detailed in Table[/] All relevant
hyperparameters referenced in Section [3]are explicitly documented in these configuration tables.

Table 6: Hyperparameter settings for FALDA with
iTransformer backbone.

Exchange ILI ETTm?2 Electricity Traffic Weather
n 1.0 05 1.0 1.0 1.0 1.0

0 0 0 1 2 1 0
A 3 3 10 10 20 3
K, 0 0 0 0 0 2
K> 32 2 5 20 3 25

Table 7: Hyperparameter settings for FALDA with
other backbones.

Exchange ILI ETTm?2 Electricity Traffic Weather

n 1.0 05 1.0 1.0 1.0 1.0
0 0 0 1 2 1 0
A 3 3 10 10 20 3
K, 2 2 5 0 30 2
K> 32 2 5 10 2 25

E.5 SELECTION OF FREQUENCY HYPERPARAMETERS

FALDA incorporates two key hyperparameters for frequency component selection: K; and Ko.
Beyond the conventional grid search, we also explore an adaptive selection strategy to accommodate
diverse datasets. Specifically, the selection of K is guided by the dominant frequency ratio p;, with
a recommended range of 10 % to 20 %. The selection of K5 is determined by the noise frequency
ratio py, with a recommended range of 0.1 % to 1%. We select the values of K; and K5 based on the
average number of frequencies with amplitudes above p; and below py of the maximum amplitude in
the training set, respectively. Table [§]shows the values of K7 under different dominant frequency
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ratios p;. Table[9]shows the values of K, under different noise frequency ratios po. The sensitivity
analyses of K1 and K are presented in Figure 4]

Table 8: Values of K under different dominant frequency ratios pj.

Dataset

P (%) ILI Exchange Electricity Traffic ETTm2 Weather
30 3 1 3 4 2 3
20 3 2 4 8 3 4
17 4 2 5 9 4 4
15 4 2 5 10 5 5
13 5 2 6 12 5 5
10 6 2 8 16 7 7
7 8 3 12 21 10 9
5 10 5 16 27 13 11

Table 9: Values of K5 under different noise frequency ratios ps.

% Dataset
p2 (%) ILI Exchange Electricity Traffic ETTm2 Weather
2.0 3 39 17 9 25 29
1.5 2 36 12 6 22 26
1.0 1 32 7 4 17 22
0.7 1 28 5 2 13 18
0.5 0 23 3 1 11 15
0.3 0 17 1 1 8 11
0.1 0 7 1 0 5 5
0.05 0 4 0 0 4 4

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 ABLATION STUDY ON DENOISER ARCHITECTURE

As described in Section [3.2] we introduce DEMA (Denoising MLP with Adaptive Layer Normal-
ization), an MLP-based denoising module that utilizes Adaptive Layer Normalization (AdaLLN) for
feature transformation. The encoder layer employs a Moving Average (MA) operation to separate
the latent variable into two components: seasonal and trend features. These components are then
processed through independent AdaLN transformations, each governed by three trainable parameters:
scale, shift, and gating coefficients, as specified in Eq.[I3] To evaluate the architectural decisions in
DEMA, we compare against two baseline variants in Table [T0}

* AD-MA: This baseline removes the Moving Average decomposition in Eq.[I3] applying
AdaLN only to the undivided latent variable. While this configuration helps assess the
importance of MA decomposition, it reduces the parameter count compared to DEMA. To
address this confounding factor, we introduce a second controlled variant.

e AD+LV: This baseline maintains DEMA’s parameter count while removing the feature
decomposition step. Specifically, it implements two parallel AdaLN operations on the
original latent variable (rather than on decomposed features). This design enables direct
comparison of architectural contributions by isolating the effect of feature decomposition
from pure parameter increases.

Experimental results demonstrate that DEMA consistently outperforms both variants in most datasets.

F.2 DOES DIFFUSION HELP? FREQUENCY DECOMPOSITION ABLATION STUDY

As analyzed in Appendix [C.3] we introduce a temporal decomposition operation to strengthen the
point forecasting capability of the backbone model, while the diffusion process primarily handles
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Figure 4: Sensitivity Analysis of Frequency Hyperparameters. (a) Dominant frequency ratio py; (b)
Noise frequency ratio ps.
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Table 10: Ablation study on denoiser architecture: comparison of DEMA and its variants. All
experiments are repeated 10 times to compute the Means and Standard Deviation.

Dataset | DEMA \ AD-MA \ AD+LV

| MSE | MAE | MSE | MAE | MSE | MAE
Exchange | 0.180 +0.011 | 0.308 £ 0.009 | 0.197 £0.018 | 0.319£0.014 | 0.183£0.014 | 0.311£0.010
ILI 16524 0.062 | 0.793 +0.026 | 1.735+0.156 | 0.810 +0.058 | 1.666 =+ 0.091 | 0.783 = 0.031

ETTm2 0.250 £ 0.003 | 0.307 £ 0.003 | 0.250 + 0.005 | 0.307 +0.004 | 0.252 4+0.004 | 0.308 £ 0.002
‘Weather 0.217 £ 0.003 | 0.261 £ 0.004 | 0.220 +0.002 | 0.264 £0.004 | 0.219 £ 0.005 | 0.262 % 0.005

aleatoric uncertainty learning. To investigate whether probabilistic learning provides additional
benefits to point forecasting, we conduct a comparative study with two deterministic models that
exclude the diffusion component:

* NDB (Non-decomposed Backbone): The baseline backbone model without temporal
decomposition operation.

* DB (Decomposed Backbone): An enhanced architecture that incorporates (1) input decom-
position that separates low-frequency noise components, and (2) an NS-adapter module for
non-stationary feature learning.

As shown in Table[TT] the complete FALDA framework demonstrates superior performance compared
to both deterministic variants (NDB and DB). These results suggest that: this decomposition operation
effectively improves forecasting accuracy. Additionally, the diffusion component in FALDA provides
additional performance gains beyond what can be achieved through decomposition alone. This empir-
ical evidence confirms that probabilistic learning through diffusion modeling contributes positively to
point forecasting performance when combined with our proposed decomposition architecture.

Table 11: Ablation study on the benefits of probabilistic residual learning in forecasting performance.

Method |  Exchange | ILI | Electricity | Traffic

| MAE MSE | MAE MSE | MAE MSE | MAE MSE
Ours 0.165 0.296 | 1.666 0.821 | 0.163 0.248 | 0412 0.251
NDB 0.194  0.315 1.786  0.826 | 0.165 0.249 | 0.439 0.276
DB 0.194 0316 | 1.791 0.828 | 0.165 0.250 | 0439 0.276

In addition to the plug-and-play experiments presented in the main text (shown in Table[3)), we also
conducted further plug-and-play experiments using TimeXer (Wang et al.l 2024)) as the backbone to
evaluate the integration performance of FALDA with the latest TSF models (see Table[12).

Table 12: Plug-and-play performance with TimeXer.

Method \ ETTml1 ETTm2 Weather Electricity Traffic ILI Exchange

| MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

0.373 0.389|0.243 0.303|0.213 0.254|0.179 0.283|0.507 0.352|2.711 1.063|0.181 0.302
0.367 0.374|0.241 0.294 | 0.204 0.248 | 0.188 0.293 | 0.495 0.323|1.889 0.855|0.199 0.322

TimeXer
FALDA

However, under some specific parameter configurations, it has been observed that integrating prob-
abilistic residual learning frameworks with iTransformer may lead to a marginal decline in point
estimation performance. To demonstrate this observation, experiments are conducted on D3U,
FALDA, and iTransformer under unified parameter settings (see Table [I7), with the results presented
in Table[I3] Although FALDA achieved 6 first-place rankings, surpassing iTransformer’s 4 first-place
rankings, a performance decline was observed on the Electricity dataset. Furthermore, DU consis-
tently exhibits inferior point estimation performance compared to iTransformer across the majority of
datasets.
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Table 13: Residual probabilistic learning frameworks vs. their backbone models: point forecasting
performance comparison.

| iTransformer | D3U | FALDA
| MSE MAE | MSE MAE | MSE MAE

ETTm1 0.377 0.390 | 0.387 0.399 | 0.378 0.380
ETTm?2 0.251 0.311 | 0.256 0.316 | 0.255 0.310
Weather | 0.237 0.268 | 0.232 0.279 | 0.220  0.258
Electricity | 0.162 0.253 | 0.168 0.261 | 0.167 0.253
Traffic 0460 0.312 | 0421 0.290 | 0.420 0.265

1st Count | 4 | 0 | 6

Dataset

The phenomenon is now analyzed. During the inference process, 100 prediction instances are

generated from the learned residual distribution, denoted as {r; }gq, and the mean of these 100

samples is calculated as m = 155 312 7;. The final prediction {r; + Y'}1% is then obtained by

adding the preliminary estimation Y from the deterministic model to the residual samples, with the
mean of the final predictions being: m + Y. In an ideal scenario, where the residuals only contain
random uncertainty, the mean of the residual distribution should be zero. However, in practice,

m # 0, which may stem from two factors: first, the point estimate model always involves estimation
error and second, the limited number of samples introduces a bias in the mean.

A direct solution to this issue is to correct the final result by manually removing this bias, with the
final prediction becomes: {r; — m 4+ Y }1%0 with the mean: Y. This correction ensures that point
estimation performance does not degrade when integrated with the backbone, while simultaneously
highlighting the flexibility of residual probabilistic learning, as it enables further adjustment of the
learned bias without any additional training cost.

F.3 RESIDUAL FRAMEWORK COMPARISON WITH IDENTICAL BACKBONE

In this section, we evaluate the performance of TMDM, D3U, and FALDA with the NSformer
backbone. The parameter configuration follows [Li et al.| (2024b), while the correlation results are
reported in accordance with [Li et al.| (2025). Our experimental setup maintains consistency between
the training and evaluation phases. Table [I4] presents the point forecasting performance, measured by
MAE and MSE. Meanwhile, Table [I5|summarizes the probabilistic forecasting performance using
CRPS and CRPSg,, metrics. The experimental results demonstrate that FALDA achieves superior
performance in both point and probabilistic forecasting tasks, validating the effectiveness of our
proposed framework. By incorporating a time series decomposition mechanism to decouple distinct
temporal components, our method facilitates more balanced learning of both epistemic and aleatoric
uncertainties, thereby contributing to enhanced forecasting performance.

Table 14: Point forecasting performance comparison of different residual learning frameworks with
NSformer backbone.

Method | _EXchange ILI ETTm2 Electricity Traffic Weather
| MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE

0.260 0.365|1.985 0.846|0.524 0.493|0.222 0.329 | 0.721 0.411]0.244 0.286
0.268 0.378 {2.220 0.920 | 0.317 0.399|0.216 0.328 |0.678 0.402 | 0.215 0.267
0.238 0.342|1.918 0.803 | 0.324 0.356 | 0.180 0.278 | 0.625 0.317 | 0.244 0.278

TMDM
D3U
Ours

We further assess the performance of D3U and FALDA with iTransformer as the backbone under
the unified hyperparameter settings (Table[I7). The results in Table[I6]show that FALDA achieved
13 first-place rankings across five datasets, while D3U secured 7 first-place rankings, indicating that
FALDA outperforms D3U overall.
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Table 15: Probabilistic forecasting performance comparison of different residual learning frameworks
with NSformer Backbone.

Method \ Exchange ILI ETTm2 Electricity Traffic Weather
| CRPS CRPSqm | CRPS CRPSqm | CRPS CRPSqm | CRPS CRPSqm | CRPS CRPSgp, | CRPS CRPSqn
TMDM | 0316 0.209 |0.921 0524 |0.380 0.226 |0.446 0.137 |0.552 0.179 |0226 0.292
D3U |0.387 0218 |1.014 0454 |0.302 0.147 |0.381 0.157 |0472 0.207 |0.196 0.273
Ours | 0299 0.171 |0.674 0.349 | 0334 0.195 |0.269 0.167 |0312 0.195 |0.235 0.333

Table 16: Comparison between D3U and FALDA with iTransformer backbone.

Dataset ‘ D3U ‘ FALDA
| MSE MAE CRPS CRPS_sum| MSE MAE CRPS CRPS_sum

ETTm1 |0.387 0.399 0.295 0.805 0.378 0.380 0.312 0.640
ETTm2 |0.256 0.316 0.246 0.101 0.255 0.310 0.277 0.160
Weather |0.232 0.279 0.213 0.224 0.220 0.258 0.210 0.319
Electricity | 0.168 0.261 0.195 0.151 0.167 0.253 0.238 0.157
Traffic |0.421 0.290 0.222 0.169 0.420 0.265 0.255 0.168

1st Count | 7 | 13

F.4 COMPARISON WITH CLASSICAL TIME SERIES FORECASTING METHODS

To further strengthen the validity of FALDA, we include comparison to two classical statistical
TSF baselines: Naive and Seasonal Naive (Hyndman et al.). As shown in Table we report the
point forecasting performance of Naive, Seasonal Naive, DLinear, and FALDA across six standard
benchmark datasets, where bold denotes the best performance, and underline denotes the second-best.
We include DLinear as a representative neural network-based TSF model with a linear architecture.
Among the four methods, FALDA achieves the best performance, significantly surpassing all baselines.
Specifically, compared with the Naive method, FALDA achieves a 77.7% improvement in MSE and a
55.6% improvement in MAE. When compared with the Seasonal Naive method, FALDA yields a
43.1% improvement in MSE and a 28.2% improvement in MAE. We also evaluate the probabilistic
performance of the Naive and Seasonal Naive models when combined with prediction intervals,
labeled as "Naive-I" and "Seasonal Naive-I" in Table[I9] The results show that FALDA improves
by up to 71.3% in CRPSy,,, demonstrating its significant advantage over traditional probabilistic
approaches. The point and probabilistic improvements show the effectiveness of FALDA in modeling
temporal patterns over classical TSF methods.

F.5 TRAINING STRATEGY EXPERIMENTS

As defined in Eq.[9] our loss function incorporates both a diffusion loss for denoiser optimization and a
fine-tuning 10ss Lenetune = ||R—sg(f%é0) (R®) K, ¢))||? to simultaneously enhance the point estimate
models. The hyperparameter k' allows for flexible selection of diffusion steps during fine-tuning.
To validate this choice, we perform ablation studies comparing models trained with and without
fine-tuning, as well as models fine-tuned at different diffusion steps k’. The experimental results

presented in Figure [5]demonstrate that the fine-tuning operation provides consistent improvements

Table 17: Unified hyperparameter settings for D3U and FALDA in Table

Setting \ ETTml ETTm2 Electricity Traffic Weather
Train batch_size 128 128 32 32 128
Test batch_size 64 64 8 2 16
Backbone d_model 512 512 256 512 256
Backbone d_ff 512 512 512 512 256
Backbone e_layer 2 2 3 3 2
Backbone d_layer 1 1 1 1 1
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Table 18: Point forecasting performance comparison with classical TSF methods.

‘ Seasonal Naive Naive Dlinear FALDA
Dataset
\ MSE MAE \ MSE MAE \ MSE MAE \ MSE MAE
ILI 2266 0957 | 7.714 1906 | 2.235 1.059 | 1.666 0.821

Exchange | 0.716  0.643 | 0.167 0.289 | 0.167 0.301 | 0.165 0.296
Electricity | 0.304  0.324 | 1.596 0951 | 0.196 0.285 | 0.163 0.248
Traffic 1.093 0458 | 2.747 1.085 | 0.598 0.370 | 0.412 0.251
ETTm2 0.321  0.337 | 0.340 0.371 | 0.284 0.362 | 0.246 0.301
Weather | 0.343  0.305 | 0.309 0.292 | 0.218 0.278 | 0.215 0.255

Average | 0.841  0.504 | 2.146 0.816 | 0.616 0.443 | 0.478 0.362

Table 19: Probabilistic forecasting performance comparison with classical TSF methods.

| Seasonal Naive-I Naive-I FALDA
| CRPS CRPSsum | CRPS CRPSsum | CRPS CRPSsum

ILI 0.773 0.401 1.585 1.003 | 0.721 0.387
Exchange | 0.513 0.376 0.216 0.137 | 0.289  0.126
Electricity | 0.276 0.179 1.106 1.091 0.231 0.160

Traffic | 0.465 0.410 1.428 1.218 | 0.245 0.163
ETTm2 | 0.273 0.162 0.428 0.184 | 0.244  0.141
Weather | 0.271 0.338 0.729 0.824 | 0.207  0.298

Average | 0.429 0.310 0.915 0.743 0.323 0.213
Promotion | 24.7% 31.3% |64.7% 71.3% - -

Dataset

over the no-fine-tuning setting. Additionally, our chosen configuration with ¥’ = 100 achieves
competitive MSE and MAE performance among different step selections, suggesting the validity of
our configuration as mentioned in Appendix [E-4]
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Figure 5: Evaluation of different training strategies on the ILI Dataset. The left subplot shows the
MSE performance, while the right subplot shows the MAE performance. k’-DS: fine-tuning with
diffusion step k’. No-FT: no fine-tuning.

F.6 TRAINING AND INFERENCE EFFICIENCY
As discussed in Section [3] FALDA reconstructs the sample directly, rather than learning the noise at

each diffusion step during the training phase, which reduces the learning complexity of the time series
component. Additionally, our denoiser DEMA, which is designed as a lightweight MLP architecture,
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alleviates the training burden. During the inference process, we employ DDIM to accelerate inference.
These design choices collectively contribute to the efficiency of FALDA, while maintaining its
effectiveness. We conduct experiments to demonstrate its efficiency. As depicted in Figure [6| FALDA
exhibits superior convergence properties compared to TMDM. While TMDM requires approximately
30 epochs to converge on the Exchange dataset, FALDA achieves competitive performance after
only 1 epoch. For fair comparison, we maintain identical training configurations with TMDM,
including the learning rate (1 x 10~*) and optimization method (Adam optimizer). This accelerated
convergence further underscores FALDA’s computational advantages without compromising model
performance.

—e— FALDA —e— FALDA
TMDM 10' TMDM

MSE (log scale)
=
Il

MAE (log scale)

0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

Figure 6: Training speed comparison between FALDA and TMDM on the Exchange dataset. The
curves depict the evolution of metrics: MSE (left) and MAE (right) across training epochs.

Building upon these convergence advantages, we implement a reduced early stopping patience
for FALDA compared to TMDM during the training process, as detailed in Appendix During
inference, we employ DDIM (Denoising Diffusion Implicit Models) to accelerate the reverse diffusion
process, thereby significantly reducing both inference time and memory requirements. Table [20]
presents a comprehensive computational efficiency comparison between TMDM and FALDA across
six benchmark datasets. The results demonstrate FALDA’s consistent superiority in both training and
inference phases. Specifically, FALDA achieves an inference speed improvement of up to 26.3x on
the ETTm?2 dataset, while attaining a training speed enhancement of up to 13.7x on the Exchange
dataset. Furthermore, FALDA delivers a 2.1x training speed-up on the Electricity dataset (from
122.9 minutes to 58.3 minutes) and a 2.9x inference speed-up on the Traffic dataset (from 472.3
minutes to 160.7 minutes). These substantial improvements in computational efficiency not only
validate FALDA’s practical utility for real-world applications but also highlight its capability for
processing high-dimensional datasets.

Table 20: Comparison of training and inference times (minutes) between TMDM and FALDA .

D \ TMDM FALDA (Ours)
ataset

‘ Training  Inference > ‘ Training  Inference
ILI 3.0 0.6 04 0.1
Exchange Rate 9.6 10.5 0.7 0.5
ETTm2 36.6 194.4 34 74
Weather 69.8 119.1 6.3 13.5
Electricity 122.9 2729 58.3 88.3
Traffic 97.0 472.3 83.6 160.7

! All experiments were conducted on an NVIDIA L20 GPU with 48GB memory.
? Inference times were measured with 100 samples per test instance.

F.7 PREDICTIVE INTERVALS RESULT

We present the result of PICE and QICE in Tabel [21] which assesses the ability of the model to
accurately cover the true values within its prediction intervals and the precision of the estimates for
these intervals, respectively. See Appendix for specific definitions of PICE and QICE.
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Table 21: Comparison of PICP and QICE metrics.

Dataset Metric TimeGrad CSDI TimeDiff TMDM Ours
PICP 69.16 69.21 20.80 74.54  97.88

Exchange

QICE 5.32 5.49 13.34 4.38 5.49

LI PICP 74.29 76.18 3.69 8783 7749
QICE 7.86 7.75 15.50 6.74 4.42

ETTm?2 PICP 71.62 71.78 13.16 7320  84.08
QICE 5.37 5.07 14.22 3.75 2.71

Electricit PICP 75.93 78.94 32.37 8235 9348
y QICE 5.34 4.74 12.74 3.81 2.90

Traffic PICP 82.28 83.51 9.11 86.83  92.36
QICE 3.80 3.50 13.53 2.36 1.90

Weather PICP 62.79 62.71 21.60 7297  80.75
QICE 7.36 5.14 13.18 3.87 3.58

F.8 SHORT-TERM TSF EXPERIMENTS

In addition to long-term time series forecasting, we also investigate the capability of FALDA for
short-term TSF tasks. Experiments are conducted on four PEMS public subsets (PEMS03, PEMS04,
PEMSO07, PEMS08). Following the experimental configuration inLiu et al.[(2024]), prediction lengths
of {12, 24, 48,96} are tested. The results (see Table[22)) show that FALDA achieves 21 best scores
out of 32 metrics, while iTransformer attains only 11, demonstrating that FALDA maintains strong
point estimation accuracy even with reduced prediction horizons. We attribute this advantage to our
use of Fourier decomposition to dynamically extract the top-K dominant frequencies and bottom-K
frequencies from each input instance. This temporal decomposition method is instance-specific (Ye
et al.,[2024)), thereby enabling adaptive capture of non-stationary patterns and noise in the data.

Table 22: Short-term TSF performance of FALDA.

Dataset | iTransformer |  FALDA
| MSE MAE | MSE MAE

12 | 0.071 0.174 | 0.071 0.173
24 1 0.093 0.201 | 0.092 0.196
48 | 0.125 0.236 | 0.157 0.261
96 | 0.164 0.275 | 0.156 0.263

12 | 0.078 0.183 | 0.075 0.176
241 0.095 0.205 | 0.090 0.193
48 | 0.120 0.233 | 0.111 0.216
96 | 0.150 0.262 | 0.137 0.239

12 | 0.067 0.165 | 0.073 0.170
24 1 0.088 0.190 | 0.092 0.189
48 | 0.110 0.215 | 0.122 0.223
96 | 0.139 0.245 | 0.145 0.243

12 | 0.079 0.182 | 0.077 0.177
24 1 0.115 0.219 | 0.115 0.214
48 | 0.186 0.235 | 0.174 0.260
96 | 0.221 0.267 | 0.312 0.343

Ist Count | 11 | 21

PEMSO03

PEMS04

PEMSO07

PEMSO08

G LIMITATIONS

Although FALDA demonstrates competitive forecasting performance, it inherits a common limitation
of diffusion-based probabilistic TSF models: the multi-step iterative denoising process leads to
significantly slower inference speed compared to deterministic point estimation methods. This
computational overhead becomes increasingly pronounced as the number of diffusion steps, and
also imposes higher GPU memory requirements. Such constraints could limit its applicability in

28



Under review as a conference paper at ICLR 2026

scenarios demanding low-latency predictions or under limited computational resources. Future work
may investigate more efficient alternatives for probabilistic modeling, such as normalizing flow and
rectified flow, to achieve a more favorable balance between predictive performance and computational
efficiency.

H SHOWCASES

H.1 CASE StuDY OF FALDA AND TMDM

To demonstrate the superior probabilistic forecasting capability of FALDA, we present comparative
visualizations of ground truth values and prediction results between FALDA and TMDM across four
datasets in Figures[7,[8l 0] and[I0] The figures display the predicted median along with 50% and 90%
distribution intervals, where the lower and upper percentiles are set at 2.5% and 97.5%, respectively.

Our experimental results demonstrate that FALDA achieves significantly better point forecasting
accuracy compared to TMDM. Moreover, the residual learning approach combined ensures partic-
ularly accurate predictions for the first future time step, as clearly evidenced in Figure [§] While
TMDM produces excessively wide prediction intervals for the initial future prediction, FALDA
generates precise first-step forecasts with narrow confidence bounds that gradually widen over time.
This behavior aligns well with real-world time series characteristics, where continuous variation is
typically observed. Given complete historical information, especially the most recent observations,
the immediate future time step should not deviate drastically from the last observed value. This
forecasting model is particularly well suited to financial data, whose volatility typically increases
over time, a phenomenon which corresponds well with our experimental results. The findings of this
study indicate that FALDA not only provides more accurate forecasts, but also produces results that
are more interpretable and better reflect the underlying data dynamics.

H.2 TIME SERIES DECOMPOSITION VISUALIZATION

To illustrate our time series decomposition approach, Figures [IT] and [T2] visualize the distinct
temporal components obtained through the decomposition method described in Eq. 4] Figures[TT]
and [[2] demonstrate the distinct decomposition characteristics of iTransformer and other backbones,
respectively. The detailed implementation settings for these decomposition strategies are provided in

Appendix [E.4]
H.3 VISUALIZATION OF KEY COMPONENTS IN FALDA

To further showcase the predictive capabilities of FALDA, we visualize the outputs of its three
key components across different datasets with the TS-Backbone set as Autoformer. Figures [13]
[T4} [T5] and[T6|display both the model’s overall predictions and the decomposed predictions for the
non-stationary term, the stationary term, and the noise term. For clarity, we sample 100 predictions to
represent the probabilistic learning outcomes, with the width of the prediction intervals indicating the
model’s quantified uncertainty.

Figure [T4] shows the progressive widening of prediction intervals over time, a pattern that aligns
with the inherent characteristics typically observed in financial data. A comparative analysis of these
figures reveals an inverse correlation between prediction accuracy and the width of the prediction
intervals: more precise point estimates are associated with narrower uncertainty bounds, which
is consistent with our residual learning paradigm. These findings underscore FALDA’s capacity
to effectively model aleatoric uncertainty across diverse datasets, while simultaneously preserving
high predictive accuracy. This dual capability highlights the model’s strength in both uncertainty
quantification and forecasting precision.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, the large language models were employed solely to aid or polish
writing. Specifically, LLMs were used for the purpose of correcting grammatical errors. All research
ideas are entirely the work of the authors.
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(b) FALDA

Figure 7: Comparison of prediction intervals for the ILI dataset (1" = 36,5 = 36). The red line
indicates the ground truth, and the black line represents the predicted mean. Dark green shading
denotes the 50% prediction interval, and light green shading shows the 90% prediction interval.
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(b) FALDA

Figure 8: Comparison of prediction intervals for the Exchange dataset (I" = 96, S = 192). The red
line indicates the ground truth, and the black line represents the predicted mean. Dark green shading
denotes the 50% prediction interval, and light green shading shows the 90% prediction interval.
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(b) FALDA

Figure 9: Comparison of prediction intervals for the Weather dataset (I" = 96, 5 = 192). The red
line indicates the ground truth, and the black line represents the predicted mean. Dark green shading
denotes the 50% prediction interval, and light green shading shows the 90% prediction interval.
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(b) FALDA

Figure 10: Comparison of prediction intervals for the ETTm2 dataset (1" = 96, .S = 192). The red
line indicates the ground truth, and the black line represents the predicted mean. Dark green shading
denotes the 50% prediction interval, and light green shading shows the 90% prediction interval.

31



Under review as a conference paper at ICLR 2026

- WWW =iyl

Figure 11: Time series decomposition strategy for the iTransformer backbone. From left to right, the
subfigures present: (1) the non-stationary term, (2) the stationary term, (3) the noise term, and (4) the
frequency-domain representation obtained via Fourier transform.
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Figure 12: Time series decomposition strategy for other backbones. From left to right, the subfigures
present: (1) the non-stationary term, (2) the stationary term, (3) the noise term, and (4) the frequency-
domain representation obtained via the Fourier transform.
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Figure 13: Visualization of the prediction results from the different components (NS-Adapter, TS-
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Figure 14: Visualization of the prediction results from the different components (NS-Adapter, TS-
Backbone, and DEMA) on the Exchange dataset (6 th dimension).
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Figure 15: Visualization of the prediction results from the different components (NS-Adapter, TS-
Backbone, and DEMA) on the ETTm?2 dataset (1 ™ dimension).
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Figure 16: Visualization of the prediction results from the different components (NS-Adapter, TS-
Backbone, and DEMA) on the Traffic dataset (800 ™ dimension).
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