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ABSTRACT

Existing diffusion-based time series forecasting methods often target on mixed
temporal patterns or undifferentiated residuals, limiting the potential of distinct tem-
poral components. In this paper, we propose the Fourier Adaptive Lite Diffusion
Architecture (FALDA), a novel probabilistic framework for time series forecast-
ing. FALDA leverages Fourier-based decomposition to incorporate a component-
specific architecture, enabling tailored modeling of individual temporal components.
A conditional diffusion model is utilized to estimate the future noise term, while our
proposed lightweight denoiser, DEMA (Decomposition MLP with AdaLN), con-
ditions on the historical noise term to enhance denoising performance. Grounded
in rigorous mathematical proof, we introduce the Diffusion Model for Residual
Regression (DMRR), a framework which methodologically unifies diffusion-based
probabilistic regression method and theoretically demonstrate that FALDA effec-
tively reduces epistemic uncertainty, allowing probabilistic learning to primarily
focus on aleatoric uncertainty through further probabilistic analysis. Experiments
on six real-world benchmarks demonstrate that FALDA consistently outperforms
existing probabilistic forecasting approaches across most datasets for long-term
time series forecasting while achieving enhanced computational efficiency without
compromising accuracy. Notably, FALDA also achieves superior overall perfor-
mance compared to state-of-the-art (SOTA) point forecasting approaches, with
improvements of up to 9%. The code will be made publicly available.

1 INTRODUCTION

Time series forecasting (TSF) is crucial for decision-making systems in domains like finance (Li
et al., 2020), healthcare (Festag & Spreckelsen, 2023), and transportation (Lv et al., 2014; Dai et al.,
2020). Recent developments in deep learning have yielded various effective approaches for TSF (Wu
et al., 2021; Zeng et al., 2023; Liu et al., 2024). These deterministic models process historical time
series data to generate future predictions and exhibit strong capabilities in point forecasting tasks.

Diffusion models have demonstrated significant success across various generative tasks, including
image generation (Esser et al., 2024; Rombach et al., 2022; Peebles & Xie, 2023; Chu et al., 2024;
Liu et al., 2023; Lan et al., 2025; Ramesh et al., 2021; Labs, 2024; Chu et al., 2025) and video
generation (Zhang et al., 2024; 2025; Zheng et al., 2024; Bar-Tal et al., 2024; Hu, 2024; Blattmann
et al., 2023; Yang et al., 2024b; Lin et al., 2024). However, when applied to probabilistic time
series forecasting, the progressive noise injection mechanism of diffusion models tends to disrupt
the inherent temporal structures. Consequently, many previous works (Fan et al., 2024; Tashiro
et al., 2021; Shen et al., 2024) that attempt to reconstruct complete temporal patterns (encompassing
seasonality, trend, and noise) from pure noise often achieve inferior point estimation accuracy
compared to deterministic models. This challenge becomes especially pronounced when handling
non-stationary time series, as their statistical properties (e.g., mean, variance, autocorrelation, etc.)
evolve over time (Yang et al., 2024a; Yuan & Qiao, 2024; Liu et al., 2022b; Ye et al., 2024).

Recent studies have explored hybrid approaches combining point estimation with diffusion models.
TMDM (Li et al., 2024b) incorporates predictions from point estimation models into both forward
and backward diffusion processes to enhance future predictions. D3U (Li et al., 2025) attempts to
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Figure 1: Performance of FALDA in point estimation (MAE, left) and probabilistic prediction (CRPS,
right). All three plug-and-play methods (TMDM, D3U, and FALDA) utilize NSformer as the same
backbone network for fair comparison.

decouple deterministic and uncertainty learning by leveraging embedded representations from point
estimation to guide the diffusion model in capturing residual patterns, thereby avoiding the need
to reconstruct complete temporal components through diffusion. Although demonstrating superior
point estimation capability compared to previous diffusion-based approaches (Tashiro et al., 2021;
Rasul et al., 2021), these approaches (1) are limited by their generic architecture designs, lacking
explicit inductive biases to capture distinctive temporal structures, such as non-stationary patterns,
and (2) employ diffusion to model an undifferentiated residual, which inevitably entangles epistemic
uncertainty (from the limited capability of the guide model) with aleatoric uncertainty (inherent
data noise) (Hüllermeier & Waegeman, 2021). As a result, these architectures fail to fully exploit
the potential of different temporal components, undermining their capacity to contribute to further
accuracy gains, particularly when integrated with strong backbone models.

In this paper, we first analyze the decoupling mechanisms for deterministic and uncertain components
in Li et al. (2024b; 2025); Ho et al. (2020); Han et al. (2022), and introduce a unified generalized
diffusion learning framework called DMRR (Diffusion Model for Residual Regression). Building on
DMRR, we develop FALDA, a novel diffusion-based time series forecasting framework that employs
Fourier decomposition to decouple time series into three distinct components: non-stationary trends,
stationary patterns, and noise patterns. Through tailored modeling of each component, FALDA
effectively separates epistemic uncertainty and aleatoric uncertainty (Gawlikowski et al., 2023),
allowing the probabilistic modeling component to focus exclusively on aleatoric uncertainty. A
lightweight denoiser DEMA is designed to handle multi-scale residuals. As a non-autoregressive
diffusion model, FALDA avoids the common issue of error accumulation and demonstrates superior
performance in long-range prediction tasks. Unlike conventional approaches that predict diffusion
noise (Li et al., 2024b; Tashiro et al., 2021), our denoiser directly constructs the target series, thereby
reducing the learning complexity for temporal patterns (Shen & Kwok, 2023). By integrating
DDIM (Song et al., 2021) and DEMA, FALDA achieves both training and sampling efficiency.
As illustrated in Figure 1, FALDA outperforms existing methods in both point estimation and
probabilistic forecasting.

In summary, our main contributions are:

• We propose the Fourier Adaptive Lite Diffusion Architecture (FALDA), a diffusion-based
probabilistic time series forecasting framework that leverages Fourier decomposition to
decouple and model different time-series components. We design DEMA (Decomposition
MLP with AdaLN), a lightweight denoiser that integrates adaptive layer normalization and
trend-seasonality decomposition to handle multi-scale residuals. Combined with DDIM,
DEMA improves computational efficiency while maintaining performance.

• We introduce the Diffusion Model for Residual Regression (DMRR), a theoretical framework
that methodologically unifies diffusion-based probabilistic regression methods. DMRR not
only establishes the equivalence of their underlying mechanisms, but also provides a solid
theoretical foundation for FALDA’s uncertainty modeling capabilities.

• FALDA supports plug-and-play deployment through a phase-adaptive training schedule,
enabling seamless integration (e.g., processing the stationary term with SOTA deterministic
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models). We evaluate our model on six real-world datasets, and the results demonstrate that
FALDA achieves superior overall performance on both point forecasting and probabilistic
forecasting.
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Figure 2: Comparison of three diffusion frameworks: DDPM, CARD, and DMRR, where ŷDDPM,
ŷCARD, and ŷDMRR represent their respective final estimates.

2 DIFFUSION MODEL FOR RESIDUAL REGRESSION (DMRR)

Diffusion models are increasingly applied to probabilistic regression, including TSF. While some
recent probabilistic regression methods have demonstrated strong performances (Han et al., 2022;
Li et al., 2024b; 2025), they inherently conform to a unified framework that refines residual errors
through Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020). In this work, we term
this framework Diffusion Model for Residual Regression (DMRR). This section begins with a formal
review of the Classification and Regression Diffusion (CARD) (Han et al., 2022), which establishes
a generalized framework extending DDPM, where DDPM can be viewed as a special case with
zero prior knowledge. Through the lens of the DMRR framework, we subsequently demonstrate
that CARD essentially applies standard DDPM to perform residual fitting, establishing a conceptual
unification across these seemingly disparate approaches (Li et al., 2024b; 2025).

CARD CARD extends Denoising Diffusion Probabilistic Models (DDPM) by incorporating prior
knowledge into both forward and reverse diffusion processes (see Appendix A.1 for DDPM fun-
damentals). Formally, given a target variable y0 ∼ q(y) with covariate x, CARD utilizes prior
knowledge fϕ(x) to guide the generation, where fϕ can be a pretrained network as demonstrated in
Han et al. (2022). This yields the following forward diffusion process:

yk =
√
αkyk−1 + (1−

√
1− βk)fϕ(x) +

√
βkzk, zk ∼ N (0, 1), (one-step)

yk =
√
ᾱky0 + (1−

√
ᾱk)fϕ(x) +

√
1− ᾱkz̄k, z̄k ∼ N (0, 1), (multi-step)

(1)

where αk = 1 − βk ∈ (0, 1) and ᾱk =
∏k

s=1 αs denote the noise schedule parameters for k =
1, 2, . . . ,K. This process converges to a Gaussian limit distribution: N (fϕ(x), I). The corresponding
reverse process posterior distribution is given by:

q(yk−1|yk, y0) = N (yk−1; m̃k, β̃kI),where

m̃k =
βk
√
ᾱk−1

1− ᾱk
y0 +

(1− ᾱk−1)
√
αk

1− ᾱk
yk + (1 +

(
√
ᾱk − 1)(

√
αk +

√
ᾱk−1)

1− ᾱk
)fϕ(x),

β̃k =
1− ᾱk−1

1− ᾱk
βk.

(2)

The residual lk = yk − fϕ(x) exhibits the same convergence behavior as DDPM, with a standard
Gaussian distribution as its limit distribution. This equivalence underpins our DMRR framework,
which systematically formalizes this residual learning paradigm within a unified diffusion framework.
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The unified framework As illustrated in Figure 2, our proposed DMRR framework introduces
a residual learning paradigm that decouples prior knowledge from the limit distribution in CARD
diffusion process. Given the target y, the framework first generates a preliminary estimate ŷ (for
CARD ŷ = fϕ(x)). Unlike CARD, which learns the full data distribution y guided by ŷ, DMRR
focuses on learning the residual distribution q(r), where r = y − ŷ. This is implemented through a
DDPM process, where the forward diffusion follows the Markov chain {r0 = r, r1, . . . , rk, . . . } with
rk denoting the noise sample at step k. The reverse process generates residual predictions: r̂DMRR via
the denoising network. The final output, which can be considered as a refinement of the preliminary
estimate ŷ, combines both components:

ŷDMRR = ŷ + r̂DMRR. (3)

Mathematically, we prove that lk = yk − ŷ in CARD and rk in DMRR possess identical conditional
and posterior distributions (see Appendix A for rigorous proofs). And it should be noted that when
the preliminary estimate ŷ = 0, CARD and DMRR degenerate to the standard DDPM.

In Section 3.3, we comprehensively discuss the diffusion framework underlying state-of-the-art TSF
models. We further analyze how different framework designs affect the performance of time series
prediction tasks and illustrate the advantages of DMRR framework in TSF tasks.
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Figure 3: An illustration of the proposed FALDA framework. By leveraging Fourier decomposition,
NS-Adapter and TS-Backbone generate the preliminary estimation, Ŷ . The prediction residual
R = Y − Ŷ is then input into the denoiser for subsequent probabilistic learning and refinement of
the preliminary estimation.

3 FOURIER ADAPTIVE LITE DIFFUSION ARCHITECTURE (FALDA)

From a methodological perspective, probabilistic time series forecasting is a specialized form of
probabilistic regression applied to temporal data, necessitating explicit modeling of sequential
dependencies. Within the DMRR framework, we propose the Fourier Adaptive Lite Diffusion
Architecture (FALDA), which leverages point-guided diffusion models for TSF while reducing the
influence of non-stationarity and noise on probabilistic learning. We further analyze the underlying
mechanism through a comparative discussion of diffusion-based TSF models.

3.1 PROBLEM STATEMENT

In the time series forecasting task, let X = {Xt}Tt=1 ∈ RT×D represent an observed multivariate
time series with T historical time steps, where each Xt ∈ RD denotes the D-dimensional observation
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vector at time t. Given this lookback window X , the objective is to forecast the subsequent S time
steps, denoted as Y = {Y t}St=1 ∈ RS×D.

3.2 MAIN FRAMEWORK

FALDA As shown in Figure 3, the time series is first decomposed into three components: a
non-stationary term, Ynon, representing temporal components that exhibit time-varying statistical
properties; a stationary term, Ystat, comprising components whose statistical properties remain
invariant over time; and a noise term, Ynoise, reflecting inherent stochastic disturbances within the
time series. Following Yuan & Qiao (2024); Ye et al. (2024), this decomposition is performed using
the Fourier transform. Specifically, the non-stationary component is extracted by reconstructing
the time series from the frequencies corresponding to the K1 largest amplitudes, while the noise
component is obtained by reconstructing the time series from the frequencies associated with the K2

smallest amplitudes:

Ynon = F−1(Top(F(Y ),K1)), Ynoise = F−1(Bottom(F(Y ),K2)). (4)

Here, F denotes the Fourier transform and F−1 denotes the inverse Fourier transform. The operators
Top(·,K1) and Bottom(·,K2) select the frequency components with the K1 largest and the K2

smallest amplitudes, respectively. Details on the adaptive selection of the frequency hyperparameters
K1 and K2 across different datasets is provided in Appendix E.5. The stationary term is defined as:

Ystat = Y − Ynon − Ynoise. (5)

Similarly, the decomposition for X is given by X = Xnon +Xstat +Xnoise. Based on this decom-
position, FALDA integrates three key components: (1) a non-stationary adapter (NS-Adapter) fw,
which models the non-stationary term Ynon by addressing evolving temporal patterns and mitigating
epistemic uncertainty; (2) a time series backbone (TS-Backbone) gϕ, which captures temporally
invariant patterns to model the stationary component Ystat; (3) a conditional diffusion process with
a lightweight denoiser R̂(0)

θ , which specializes in handling aleatoric uncertainty by modeling the
inherent noise component Ynoise in the data. The predictions for the non-stationary and stationary
components are given by:

Ŷnon = fw(Xnon), Ŷstat = gϕ(Xstat). (6)
Here fw is implemented as a multi-layer perceptron (MLP) to effectively capture non-stationary
patterns, while gϕ serves as a flexible backbone that can be substituted by conventional point
forecasting models. For further details on the implementation of fw, please refer to Appendix E.3.

Eq. 6 gives a preliminary estimation Ŷ = Ŷnon+Ŷstat. We use DDPM to model the residual component,
which is defined as R = Y − Ŷ . During the reverse process, the posterior mean is parameterized as:
µ̃θ(R

(k), k) =
√
ᾱk−1βk

1−ᾱk
R̂

(0)
θ (R(k), k, c) +

√
αk(1−ᾱk−1)

1−ᾱk
R(k), k = K,K − 1, ..., 1. R(k) represents

the noise sample at step k, and condition c is set to the noise term of the lookback window, Xnoise. The
denoiser R̂(0)

θ (R(k), k, c) directly reconstructs the target R = R(0) instead of learning the diffusion
noise at each step. This approach alleviates the learning difficulty of time series data (Shen & Kwok,
2023; Yuan & Qiao, 2024). An estimate of the residuals is generated through reverse sampling:
R̂(K) → R̂(K−1) → · · · → R̂(0) = R̂. The final output is the sum of the three component outputs in
FALDA:

ŶFALDA = Ŷnon + Ŷstat + R̂. (7)
In alignment with the multi-component decomposition framework of FALDA, we propose a tailored
loss function designed to facilitate multi-task optimization. To effectively capture non-stationary
patterns, we define the non-stationary term loss Lnon to provide prior guidance. Simultaneously, to
ensure the overall accuracy of the preliminary point estimations, we define the overall point estimation
loss Lpoint. These two loss functions can be expressed as:

Lnon = ℓ(Ynon, Ŷnon), Lpoint = ℓ(Y, Ŷ ), (8)

where ℓ is the L1 loss. The alternative loss Lalter simultaneously optimizes the denoiser and fine-tunes
the point estimate model through two terms:

Lalter = λs ∥sg(R)− R̂
(0)
θ (R(k), k, c)∥2︸ ︷︷ ︸

Ldiffusion

+ηs ∥R− sg(R̂(0)
θ (R(k′), k′, c))∥2︸ ︷︷ ︸
Lfinetune

. (9)
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Here, R = Y − Ŷ . The first term Ldiffusion targets the optimization of the denoiser, where the
stop-gradient operation sg(·) ensures no interference with the point estimate model’s training. The
second term Lfinetune fine-tunes the point estimate models, improving them alongside the denoiser.
Here, k′ is a hyperparameter that enables flexible selection of the diffusion step during the fine-tuning
process. Additionally, two scheduling hyperparameters, λs and ηs, are introduced to control the
alternating optimization of the two losses in Lalter. These parameters depend on the current training
epoch s, and are governed by a threshold δ and a period ∆:

λs =

{
1, s ≥ δ and s mod ∆ ̸= 0

0, otherwise
, ηs =

{
1, s ≥ δ and s mod ∆ = 0

0, otherwise
, (10)

where the hyperparameter δ determines the pretraining duration (in epochs) for the point forecasting
models, while ∆ controls the alternating intervals between denoiser training and fine-tuning. The
final loss function is given by:

L = Lnon + Lpoint + Lalter. (11)
For complete training and inference algorithm of FALDA, please refer to Appendix D.

DEMA We design DEMA (Decomposition MLP with AdaLN), a lightweight denoiser denoted as
R̂

(0)
θ , to effectively predict the future time series noise term Ynoise. As a conditional denoiser, R̂(0)

θ (·)
takes the k-step noise sample R(k) ∈ RS×D, the diffusion step k, and condition c = Xnoise ∈ RT×D

as input. The input R(k) and condition c are projected into a latent space with dimension Hd through
the following embedding process:

h
[0]
k = Linear(R(k)) ∈ RHd×D, ek = Linear(PE(k)) + Linear(c) ∈ RHd×D, (12)

where PE(·) is sinusoidal embedding (Vaswani et al., 2017; Li et al., 2024a). The embedding hk

and ek are then processed by an L-layer encoder. At each layer l ∈ {0, 1, ..., L − 1}, the encoder
performs the following computations:[

τ [l]season, τ
[l]
trend

]
=

[
h
[l]
k −MAa(h

[l]
k ),MAa(h

[l]
k )

]
, (13)[

γ
[l]
i , β

[l]
i , o

[l]
i

]
= Linear(SiLU(ek)), (14)

τ̄
[l]
i = (γ

[l]
i + 1)⊙ LayerNorm(τ

[l]
i ) + β

[l]
i , (15)

where γ
[l]
i , β[l]

i and o
[l]
i represent the scale factor, shift factor, and gating factor, respectively, with

i ∈ {season, trend}. MAa denotes the moving average operation with kernel size a. The output of an
encoder layer is computed as:

h
[l+1]
k = h

[l]
k + (o[l]season + o

[l]
trend)⊙ Linear(τ̄ [l]season + τ̄

[l]
trend). (16)

After processing through an adaptive layer normalization decoder, the denoiser generates its final
output R̂(0)

θ (R(k), k, c) ∈ RS×D, where θ represents all trainable parameters in the network.

3.3 ANALYSIS OF DIFFERENT DIFFUSION-BASED TIME SERIES MODELS WITH RESIDUAL
LEARNING

TMDM and D3U are representative diffusion-based time series forecasting models that incorporate
residual learning. Specifically, TMDM employs CARD as its underlying diffusion mechanism,
while D3U and FALDA utilize DMRR (see Appendix B for detailed mathematical formulations).
As discussed in Section 2, DMRR and CARD share identical transition probabilities and posterior
distributions, indicating that their stochastic dynamics are mathematically equivalent. Despite
theoretical equivalence, DMRR offers crucial modeling advantages and is inherently more suitable
for TSF tasks compared to CARD. Real-world time series typically consist of multiple components
(trend, seasonality, and inherent noise) that are often corrupted during the diffusion process due to
gradual noise addition. This corruption makes it challenging to recover the time series distribution
from the noise data (Yuan & Qiao, 2024). Although the preliminary estimate partially captures
temporal patterns, it remains difficult for CARD framework to learn the residual distribution from the
noisy full time series Y (k), which also represents a limitation of TMDM.
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In contrast, D3U and FALDA, which are based on DMRR, alleviate this limitation through their
residual learning paradigm. This paradigm explicitly decouples the preliminary estimation from
the limiting distribution in CARD and focuses exclusively on modeling the residual between the
preliminary estimate and the ground truth. The residual components encompass both epistemic and
aleatoric uncertainties (Gawlikowski et al., 2023). While D3U demonstrates promising performance
by utilizing latent representations from the encoder as the condition in the reverse process, its
generalized modeling approach primarily captures epistemic uncertainty due to the lack of explicit
consideration for distinct temporal components. This architectural characteristic limits its ability
to explicitly model the pure underlying probability distribution, especially the aleatoric uncertainty
component. Furthermore, this limitation may result in diminishing returns when applied to backbone
models that already exhibit strong predictive capabilities. An elaborate analysis of this phenomenon
is provided in Appendix C. Our framework extends this approach by introducing dedicated network
architectures designed to capture three key temporal components. This enhanced modeling capability
enables more balanced learning of both epistemic and aleatoric uncertainties, thereby contributing to
improved point estimation accuracy.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Six widely recognized real-world datasets are utilized for evaluation: ILI, Exchange-Rate, ETTm2,
Electricity, Traffic, and Weather. More details are provided in Appendix E.1. 13 state-of-the-art TSF
models are included in our baselines including both point forecasting and probabilistic forecasting
methods: Informer (Zhou et al., 2021), Autoformer (Wu et al., 2021), FEDformer (Zhou et al., 2022),
DLinear (Zeng et al., 2023), TimesNet (Wu et al., 2023), PatchTST (Nie et al., 2023), iTransformer
(Liu et al., 2024), TimeGrad (Rasul et al., 2021), CSDI (Tashiro et al., 2021), SSSD (Alcaraz &
Strodthoff, 2023), TimeDiff (Shen & Kwok, 2023), TMDM (Li et al., 2024b), D3U (Li et al., 2025).

We set the lookback window T = 96 and prediction length S = 192, except for ILI where T = S =
36. Following Ho et al. (2020), we use K = 1000 diffusion timesteps with a linear noise schedule.
FALDA employs iTransformer as its default backbone if not stated otherwise, with DDIM (Song
et al., 2021) for inference acceleration. Implementation details are fully provided in Appendix E.4.

Table 1: Comparison of MAE and MSE across six real-world datasets. Bold denotes the best-
performing method for each metric-dataset combination, while underlined indicates the second-best.

Methods
ILI Exchange Electricity Traffic ETTm2 Weather

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Informer 4.620 1.456 1.092 0.853 0.319 0.399 0.696 0.379 0.494 0.525 0.598 0.544

Autoformer 3.366 1.210 0.537 0.526 0.227 0.332 0.616 0.382 0.269 0.327 0.276 0.336

FEDformer 2.679 1.163 0.276 0.384 0.198 0.312 0.606 0.377 0.269 0.325 0.276 0.336

DLinear 2.235 1.059 0.167 0.301 0.196 0.285 0.598 0.370 0.284 0.362 0.218 0.278

TimesNet 2.671 0.986 0.224 0.343 0.184 0.289 0.617 0.336 0.249 0.309 0.219 0.261

PatchTST 2.374 0.918 0.181 0.303 0.205 0.307 0.463 0.311 0.251 0.312 0.223 0.258

iTransformer 1.833 0.828 0.193 0.315 0.164 0.248 0.413 0.251 0.246 0.300 0.217 0.247

TimeGrad 2.644 1.142 2.429 0.902 0.645 0.723 0.932 0.807 1.385 0.732 0.885 0.551

CSDI 2.538 1.208 1.662 0.748 0.553 0.795 0.921 0.678 1.291 0.576 0.842 0.523

SSSD 2.521 1.079 0.897 0.861 0.481 0.607 0.794 0.498 0.973 0.559 0.693 0.501

TimeDiff 2.458 1.085 0.475 0.429 0.730 0.690 1.465 0.851 0.284 0.342 0.277 0.331

TMDM 1.985 0.846 0.260 0.365 0.222 0.329 0.721 0.411 0.524 0.493 0.244 0.286

D3U 2.103 0.935 0.254 0.358 0.179 0.267 0.468 0.299 0.241 0.302 0.222 0.264

Ours 1.666 0.821 0.165 0.296 0.163 0.248 0.412 0.251 0.246 0.301 0.215 0.255
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4.2 MAIN RESULT

Forecasting performance and computational efficiency We conduct a comprehensive evaluation
of the proposed model against state-of-the-art baselines for four metrics: CRPS, CRPSsum, MAE,
and MSE. CRPS and CRPSsum assess the probabilistic forecasting performance, while MAE and
MSE evaluate the point forecasting accuracy. See Appendix E.2 for detailed metric descriptions.
Table 1 summarizes MAE and MSE results across six real-world datasets. Our method outperforms
all baselines in four out of six datasets (ILI, Exchange, Electricity, and Traffic) for both MAE and
MSE. On the remaining two datasets, our method consistently ranks among the top two performers.
The most significant improvement is observed on the ILI dataset, where our model achieves a notable
9% reduction in MSE compared to iTransformer, the second-best model, demonstrating FALDA’s
powerful ability in point forecasting. FALDA also presents superior or comparable probabilistic
forecasting performance compared to previous diffusion-based models. Table 2 shows the CRPS and
CRPSsum metrics across 6 datasets. On Exchange, FALDA promotes an average of 9% on CRPS and
39% on CRPSsum. In terms of efficiency, FALDA achieves an inference speed-up of up to 26.3× and
a training speed-up of up to 13.7× compared to TMDM, as detailed in Appendix F.6.

Table 2: Comparison of CRPS and CRPSsum across six real-world datasets. Bold denotes the best-
performing method for each metric-dataset combination, while underlined indicates the second-best.

Methods
ILI Exchange ETTm2 Weather Electricity Traffic

Metric CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum

TimeGrad 0.924 0.527 0.661 0.437 0.785 1.051 0.482 0.503 0.503 1.452 0.657 1.683

CSDI 1.104 0.607 0.448 0.469 0.625 0.782 0.508 0.465 0.465 0.823 0.612 1.275

SSSD 0.945 0.548 0.564 0.370 0.571 0.275 0.445 0.442 0.466 0.580 0.414 0.949

TimeDiff 1.083 0.610 0.376 0.275 0.316 0.180 0.293 0.400 0.475 0.594 0.671 0.823

TMDM 0.921 0.524 0.316 0.209 0.380 0.226 0.226 0.292 0.446 0.137 0.552 0.179

D3U 0.951 0.566 0.318 0.210 0.243 0.141 0.207 0.283 0.202 0.160 0.232 0.186

Ours 0.721 0.387 0.289 0.126 0.244 0.141 0.207 0.298 0.231 0.160 0.245 0.163

Plug-and-play performance To evaluate the generality of our framework, we integrate four well-
known point forecasting models into the FALDA framework: Autoformer (Wu et al., 2021), Informer
(Zhou et al., 2021), Transformer (Vaswani et al., 2017), and iTransformer (Liu et al., 2024). Table 3
shows their performance improvements with FALDA. Results show consistent improvements in both
MSE and MAE metrics across the majority of evaluated datasets. The most significant improvements
are observed for Informer, which achieves maximum reductions of 66.4% in MSE and 46.2% in
MAE on the same dataset. For iTransformer, which serves as a strong baseline model, FALDA still
provides measurable improvements (e.g., 14.6% MSE reduction on Exchange) while maintaining
competitive performance across other datasets. Notably, D3U exhibits performance degradation when
using iTransformer as the backbone, as evidenced in Tables 1 and 6 of Li et al. (2025). These results
validate FALDA’s effectiveness in enhancing forecasting performance for both relatively weaker
backbones and state-of-the-art backbones, demonstrating its general applicability in TSF tasks.

4.3 ABLATION STUDY

To further validate that our architecture enables the diffusion model to focus on aleatoric uncertainty
learning, we investigate the model’s performance under different conditioning strategies. Table 4
compares the results when using Xnoise, X as conditioning inputs, along with an unconditional case.
The experiments show that the Xnoise-conditioned version achieves optimal performance across all
evaluated datasets, while the unconditional case performs comparably to the Xnoise-conditioned
scenario. In contrast, the X-conditioned approach shows the worst performance among the three
conditioning types. These results indicate that epistemic uncertainty does not dominate the com-
ponents of diffusion learning, thereby the residual estimation through X-conditioning provides
limited benefits. In conclusion, the FALDA framework successfully achieves enhanced learning
of aleatoric uncertainty while simultaneously improving point estimation capability. Additionally,
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Table 3: Plug-and-play performance improvement of FALDA on existing point forecasting methods.
Better values are highlighted in bold.

Model
Exchange ILI ETTm2 Electricity

Metric MSE MAE MSE MAE MSE MAE MSE MAE

Autoformer 0.537 0.526 3.366 1.210 0.269 0.327 0.227 0.332
+ ours 0.232 0.351 2.655 1.118 0.247 0.313 0.209 0.316

Promotion 56.7% 33.3% 21.1% 7.5% 8.2% 4.2% 7.6% 4.7%

Informer 1.092 0.853 4.620 1.456 0.494 0.525 0.319 0.399
+ ours 0.367 0.460 3.122 1.178 0.293 0.363 0.305 0.388

Promotion 66.4% 46.2% 32.4% 19.1% 40.8% 30.9% 4.5% 2.8%

Transformer 0.975 0.765 4.044 1.327 0.427 0.472 0.256 0.347
+ ours 0.403 0.488 3.226 1.254 0.390 0.423 0.251 0.344

Promotion 58.7% 36.3% 20.2% 5.5% 8.7% 10.2% 1.8% 0.9%

iTransformer 0.193 0.315 1.833 0.828 0.246 0.300 0.164 0.248
+ ours 0.165 0.296 1.666 0.821 0.246 0.301 0.163 0.248

Promotion 14.6% 6.0% 9.1% 0.8% 0.1% -0.5% 1.1% 0.0%

Table 4: Ablation study on different condition strategies. The best results are boldfaced.

Condition type Exchange ILI ETTm2 Weather

MSE MAE MSE MAE MSE MAE MSE MAE

Xnoise 0.165 0.296 1.666 0.821 0.246 0.301 0.215 0.255
uncond 0.184 0.311 1.675 0.785 0.251 0.307 0.217 0.260

X 0.178 0.312 1.994 0.966 0.258 0.313 0.216 0.261

Appendix F.1 presents an ablation study comparing DEMA with its variants, systematically validating
the effectiveness of its time-decomposition operation. Appendix F.5 shows the impact of different
fine-tuning strategies during training. Appendix F.2 demonstrates the effectiveness of the DMRR
component and the NS-Adapter module. Figure 1 shows the advantage of our framework when using
the same NSformer (Liu et al., 2022b) backbone. The complete experimental results are provided in
Appendix F.3.

5 RELATED WORKS

Rasul et al. (2021) integrates RNN with a diffusion model for autoregressive forecasting, using
hidden states to condition the diffusion process. Its autoregressive nature causes error accumulation
and inefficiency in long-term forecasting. Tashiro et al. (2021) adopts a non-autoregressive fashion
which uses self-supervised masking to guide the denoising process, with historical information and
observation as conditions. Shen & Kwok (2023) introduces inductive bias to the outputs of the
conditioning network through two mechanisms (future mixup and autoregressive initialization) to
facilitate the denoising process. Li et al. (2024b) and Li et al. (2025) guide the diffusion process with
strong point forecasting models, enhancing point forecasting and probabilistic forecasting capability.

6 CONCLUSION

In this paper, we present FALDA, a Fourier-based diffusion framework for time series forecasting
that systematically addresses both deterministic patterns and stochastic uncertainties. Our Fourier
decomposition and component-specific modeling approach enable FALDA to decouple complex time
series into interpretable components while clearly separating epistemic and aleatoric uncertainty. The
integration of a conditional diffusion model with historical noise conditioning significantly improves
stochastic component prediction, achieving enhanced computational efficiency. Our methodological
DMRR framework and theoretical analysis provide formal guarantees for the mathematical founda-
tions of FALDA. Extensive empirical evaluations across six diverse real-world datasets consistently
demonstrate FALDA’s strong performance on both point forecasting and probabilistic forecasting.
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integrity, adhering to established research ethics guidelines.

Reproducibility Statement We have taken comprehensive measures to ensure the reproducibility
of our results. Full implementation details are provided in Appendix E.4. The complete algorithmic
descriptions are included in Appendix D. All mathematical derivations and proofs are furnished in
Appendix A. We will release all source code pending release approval.

REFERENCES

Juan Lopez Alcaraz and Nils Strodthoff. Diffusion-based time series imputation and forecasting with
structured state space models. Transactions on Machine Learning Research, 2023.

Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel Ephrat,
Junhwa Hur, Guanghui Liu, Amit Raj, et al. Lumiere: A space-time diffusion model for video
generation. In SIGGRAPH Asia 2024 Conference Papers, pp. 1–11, 2024.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Xiangxiang Chu, Jianlin Su, Bo Zhang, and Chunhua Shen. Visionllama: A unified llama backbone
for vision tasks. In European Conference on Computer Vision, pp. 1–18. Springer, 2024.

Xiangxiang Chu, Renda Li, and Yong Wang. Usp: Unified self-supervised pretraining for image
generation and understanding. arXiv preprint arXiv:2503.06132, 2025.

Rui Dai, Shenkun Xu, Qian Gu, Chenguang Ji, and Kaikui Liu. Hybrid spatio-temporal graph
convolutional network: Improving traffic prediction with navigation data. In Proceedings of the
26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2020.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. In Forty-first international conference on machine learning, 2024.

Xinyao Fan, Yueying Wu, Chang Xu, Yuhao Huang, Weiqing Liu, and Jiang Bian. MG-TSD: multi-
granularity time series diffusion models with guided learning process. In International Conference
on Learning Representations, 2024.

Sven Festag and C. Spreckelsen. Medical multivariate time series imputation and forecasting based
on a recurrent conditional wasserstein gan and attention. Journal of Biomedical Informatics, 2023.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt,
Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, et al. A survey of
uncertainty in deep neural networks. Artificial Intelligence Review, 2023.

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American statistical Association, 2007.

Xizewen Han, Huangjie Zheng, and Mingyuan Zhou. CARD: classification and regression diffusion
models. In Conference on Neural Information Processing Systems, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Conference
on Neural Information Processing Systems, 2020.

Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character animation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
8153–8163, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning:
An introduction to concepts and methods. Machine learning, pp. 457–506, 2021.

Rob J Hyndman, George Athanasopoulos, Azul Garza, Cristian Challu, Max Mergenthaler, and Kin G
Olivares. Forecasting: Principles and practice, the pythonic way. otexts, melbourne, australia,
2024.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? In Advances in Neural Information Processing Systems, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In International Conference
on Learning Representations, 2014.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term
temporal patterns with deep neural networks. In The 41st International ACM SIGIR Conference on
Research &amp; Development in Information Retrieval, 2018.

Rui Lan, Yancheng Bai, Xu Duan, Mingxing Li, Lei Sun, and Xiangxiang Chu. Flux-text: A
simple and advanced diffusion transformer baseline for scene text editing. arXiv preprint
arXiv:2505.03329, 2025.

Hui Li, Yunpeng Cui, Shuo Wang, Juan Liu, and Yilin Yang. Multivariate financial time-series
prediction with certified robustness. IEEE Access, 2020.

Qi Li, Zhenyu Zhang, Lei Yao, Zhaoxia Li, Tianyi Zhong, and Yong Zhang. Diffusion-based decou-
pled deterministic and uncertain framework for probabilistic multivariate time series forecasting.
In International Conference on Learning Representations, 2025.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. In Conference on Neural Information Processing Systems, 2019.

Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image
generation without vector quantization. Advances in Neural Information Processing Systems,
2024a.

Yuxin Li, Wenchao Chen, Xinyue Hu, Bo Chen, Baolin Sun, and Mingyuan Zhou. Transformer-
modulated diffusion models for probabilistic multivariate time series forecasting. In International
Conference on Learning Representations, 2024b.

Bin Lin, Yunyang Ge, Xinhua Cheng, Zongjian Li, Bin Zhu, Shaodong Wang, Xianyi He, Yang Ye,
Shenghai Yuan, Liuhan Chen, et al. Open-sora plan: Open-source large video generation model.
arXiv preprint arXiv:2412.00131, 2024.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction. Advances in Neural
Information Processing Systems, 2022a.

Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
with rectified flow. In The Eleventh International Conference on Learning Representations, 2023.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting. In Conference on Neural Information Processing Systems,
2022b.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In The Twelfth
International Conference on Learning Representations, 2024.

11

https://github.com/black-forest-labs/flux


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue Wang. Traffic flow prediction
with big data: A deep learning approach. IEEE Transactions on Intelligent Transportation Systems,
2014.

James E. Matheson and Robert L. Winkler. Scoring rules for continuous probability distributions.
Management Science, 1976.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In International Conference on Learning
Representations, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Conference on Neural Information Processing Systems,
2019.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821–8831. Pmlr, 2021.

Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising
diffusion models for multivariate probabilistic time series forecasting. In International Conference
on Machine Learning, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Lifeng Shen and James Kwok. Non-autoregressive conditional diffusion models for time series
prediction. In International Conference on Machine Learning, 2023.

Lifeng Shen, Weiyu Chen, and James T. Kwok. Multi-resolution diffusion models for time series
forecasting. In International Conference on Learning Representations, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based diffu-
sion models for probabilistic time series imputation. Advances in neural information processing
systems, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, 2017.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yunzhong Qiu, Jianmin
Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting with
exogenous variables. Advances in Neural Information Processing Systems, 2024.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting. In Conference on Neural Information
Processing Systems, 2021.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In International Conference on
Learning Representations, 2023.

Hao Yang, Zhanbo Feng, Feng Zhou, Robert C Qiu, and Zenan Ling. Series-to-series diffusion bridge
model. arXiv preprint arXiv:2411.04491, 2024a.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
with an expert transformer. arXiv preprint arXiv:2408.06072, 2024b.

Jiayu Yao, Weiwei Pan, Soumya Ghosh, and Finale Doshi-Velez. Quality of uncertainty quantification
for bayesian neural network inference. arXiv preprint arXiv:1906.09686, 2019.

Weiwei Ye, Songgaojun Deng, Qiaosha Zou, and Ning Gui. Frequency adaptive normalization for
non-stationary time series forecasting. In Conference on Neural Information Processing Systems,
2024.

Xinyu Yuan and Yan Qiao. Diffusion-ts: Interpretable diffusion for general time series generation. In
International Conference on Learning Representations, 2024.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, 2023.

Zhongwei Zhang, Fuchen Long, Yingwei Pan, Zhaofan Qiu, Ting Yao, Yang Cao, and Tao Mei.
TRIP: Temporal Residual Learning with Image Noise Prior for Image-to-Video Diffusion Models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024.

Zhongwei Zhang, Fuchen Long, Zhaofan Qiu, Yingwei Pan, Wu Liu, Ting Yao, and Tao Mei.
MotionPro: A Precise Motion Controller for Image-to-Video Generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2025.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou,
Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all. arXiv
preprint arXiv:2412.20404, 2024.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, 2022.

A MATHEMATICAL DERIVATIONS

A.1 PRELIMINARY: DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) is a canonical diffusion model
consisting of the forward and reverse processes. Let q(y0) be the data distribution, the forward process
is a Markov chain {y0, y1, ..., yk, ...} that gradually transforms the data distribution into a standard
Gaussian distribution: yk

d−→ N (0, I), k → ∞. Here " d−→" denotes convergence in distribution.
The transition probability is q(yk|yk−1) = N (yk;

√
αkyk−1, βkI). where αk = 1 − βk ∈ (0, 1)

represents the noise schedule. The single-step transition formulation at step k can be demonstrated as
below using the reparameterization trick (Kingma & Welling, 2014):

yk =
√
αkyk−1 +

√
βkzk, zk ∼ N (0, I). (17)

Iterating the single-step formulation leads to the multi-step transition formulation at step k:
yk =

√
ᾱky0 +

√
1− ᾱkz̄k, z̄k ∼ N (0, I). (18)

Here ᾱk =
∏k

s=1 αs, β̄k =
∏k

s=1 βs. The reverse process starts from a standard Gaussian noise yK ,
and has the following posterior distribution at step k:

q(yk−1|yk, y0) = N (yk−1; µ̃k, β̃kI),

µ̃k =

√
ᾱk−1βk

1− ᾱk
y0 +

√
αk(1− ᾱk−1)

1− ᾱk
yk, β̃k =

1− ᾱk−1

1− ᾱk
βk.

(19)

By substituting y0 with y0 = 1√
ᾱk

yk −
√
1−ᾱk√
ᾱk

z̄k, we have µ̃(yk, k) =
1√
αk

(
yk − βk√

1−ᾱk
z̄k

)
. The

mean µ̃k is typically parameterized using two different strategies: (1) modeling the diffusion noise z̃k
with ϵ̂θ(yk, k), or (2) directly parameterizing the target y0 in Eq. 19 with ŷθ(yk, k).

13
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A.2 EQUIVALENCE BETWEEN CARD AND DMRR

Proposition 1. Let yk be the Markov chain defined in Eq. 1. Let lk = yk − fϕ(x), we have:

q(lk|lk−1) = N (lk;
√
αklk−1, βkI) (20)

and
q(lk−1|lk, l0) = N (yl−1; µ̃k, β̃kI),

µ̃k =

√
ᾱk−1βk

1− ᾱk
l0 +

√
αk(1− ᾱk−1)

1− ᾱk
lk, β̃k =

1− ᾱk−1

1− ᾱk
βk.

(21)

Thus, the residual process lt exhibits identical Markovian dynamics to the standard DDPM framework
in both forward and reverse processes as shown in Eq. 18 and Eq. 19.

Proof. Proof of Equation 20:
Starting from the result in Eq. 1,

lk = yk − fϕ(x)

=
√
ᾱky0 + (1−

√
ᾱk)fϕ(x) +

√
1− ᾱkz̄k − fϕ(x)

=
√
ᾱk(y0 − fϕ(x)) +

√
1− ᾱkz̄k + fϕ(x)− fϕ(x)

=
√
αkl0 +

√
1− ᾱkz̄k.

This demonstrates that lt satisfies the standard DDPM forward process formulation.

Proof of Equation 21:
since lk = yk − fϕ(x) and q(yk−1|yk, y0) = N (yk−1; m̃k, β̃kI), we have:

q(lk−1|lk, l0) = N (lk−1, m̃k − fϕ(x), β̃kI).

We now analyze the mean m̃k − fϕ(x). With the definition of m̃k in Eq. 2, we have:

m̃k − fϕ(x) = Aky0 +Bkyk + (Ck − 1)fϕ(x),

where the coefficients are:

Ak :=
βk
√
ᾱk−1

1− ᾱk
, Bk :=

(1− ᾱk−1)
√
αk

1− ᾱk
,

Ck := 1 +
(
√
ᾱk − 1)(

√
αk +

√
ᾱk−1)

1− ᾱk
.

Substituting yk = lk + fϕ(x) yields:

m̃k − fϕ(x) = Akl0 +Bklk + (Ak +Bk + Ck − 1)fϕ(x).

In the following step, the coefficients of fϕ(x) can be expanded as:

Ak +Bk + Ck − 1 =
βk
√
ᾱk−1 + (1− ᾱk−1)

√
αk

1− ᾱk
+

(
√
ᾱk − 1)(

√
αk +

√
ᾱk−1)

1− ᾱk

=

√
ᾱk−1 − αk

√
ᾱk−1 −

√
αkᾱk−1 +

√
αkᾱk +

√
ᾱkᾱk−1 −

√
ᾱk−1

1− ᾱk

=
−αk
√
ᾱk−1 −

√
αkᾱk−1 +

√
αkᾱk +

√
ᾱkᾱk−1

1− ᾱk
.

Using the identity ᾱk = ᾱk−1αk, we have:

Ak +Bk + Ck − 1 = 0.

Therefore, the posterior mean m̃k − fϕ(x) satisfies:

m̃k − fϕ(x) =
βk
√
ᾱk−1

1− ᾱk
l0 +

(1− ᾱk−1)
√
αk

1− ᾱk
lk

= µ̃k.

We have thus established that the reverse distribution of the residual process satisfies: q(lk−1|lk, l0) =
N (lk−1; µ̃k, β̃kI), This completes the proof of Eq. 21.

14
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B METHODOLOGY OF TMDM AND D3U

In this section, we present the details of two previously developed diffusion-based time series
forecasting methods: Transformer-Modulated Diffusion Model (TMDM) (Li et al., 2024b) and
Diffusion-based Decoupled Deterministic and Uncertain framework (D3U) (Li et al., 2025). The
notation employed below is consistent with the notation used in Section 3.1.

B.1 TMDM

TMDM employs CARD as its underlying diffusion framework. Given a conditional information Ŷ ,
the end point of TMDM’s diffusion process is:

lim
k→∞

q(Y (k)|Ŷ ) = N (Ŷ , I). (22)

Here Y (k) represents the noise sample of Y at step k. With a noise schedule αt and βt defined in
Section 2, the forward process at step k can be defined as:

q
(
Y (k)|Y (k−1), Ŷ

)
∼ N

(√
αkY

(k−1) + (1−
√
1− βk)Ŷ , βkI

)
. (23)

The posterior distribution in the reverse diffusion process is:

q
(
Y (k−1)|Y (k), Y (0), Ŷ

)
∼ N

(
Y (k−1); m̃k, β̃kI

)
, (24)

where m̃k and β̃k are consistent with Eq. 2. Specifically, m̃k satisfies:

m̃k =
βk
√
ᾱk−1

1− ᾱk
Y (0) +

(1− ᾱk−1)
√
αk

1− ᾱk
Y (k) + (1 +

(
√
ᾱk − 1)(

√
αk +

√
ᾱk−1)

1− ᾱk
)Ŷ . (25)

B.2 D3U

The D3U framework builds upon the DMRR diffusion architecture. It employs a pretrained network
fD3U to generate preliminary estimates Ŷ , where the encoder embedding fenc(X) serves as the
condition for the reverse diffusion process.

Defining the residual term R = Y − Ŷ , the forward diffusion process follows:

q
(
R(k)|R(k−1), R̂

)
∼ N

(√
αkR

(k−1), βkI
)
. (26)

The posterior process is:

q
(
R(k−1)|R(k), R(0), fenc(X)

)
∼ N

(
R(k−1); µ̃k, β̃kI

)
. (27)

Here µ̃k is consistent with Eq. 19:

µ̃k =

√
ᾱk−1βk

1− ᾱk
R(0) +

√
αk(1− ᾱk−1)

1− ᾱk
R(k). (28)

C PROBABILITY VIEW OF RESIDUAL COMPONENT MODELING

As discussed in Section 3, D3U models epistemic uncertainty by conditioning on encoder outputs
without intentionally decoupling it from temporal aleatoric uncertainty. This limits optimal perfor-
mance scaling on more capable backbone models, which already exhibit low epistemic uncertainty.
In this section, we provide a probabilistic analysis of different modeling approaches for time series
forecasting. Specifically, Appendix C.1 summarizes the general case, while Appendices C.2 and
C.3 respectively analyze the probabilistic modeling of D3U and FALDA, highlighting their distinct
learning objectives. We demonstrate how FALDA models both types of uncertainty through time-
series components decomposition, allowing both deterministic and probabilistic models to focus on
learning their respective components.
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C.1 GENERAL SITUATION

In general, a time series X can be decomposed into two components:

X = Xnf + ϵX , (29)

where Xnf is the ideal noise-free part (incorporating trend, seasonality, and other structured patterns),
and ϵX denotes the inherent zero-mean noise in the time series data. Notably, in real-world scenarios,
ϵX often follows complex non-Gaussian distributions. This canonical decomposition naturally extends
to the forecasting target: Y = Ynf + ϵY . To simplify the notation, in the following paragraphs, the
subscripts for the noises only indicate which components they are associated with. The goal of the
time series forecasting task is then to learn the conditional distribution: P (Y |X). Conventionally, a
deterministic function f is employed to estimate the posterior expectation:

E(Y |X) = E(Ynf |X) + E (ϵY |fϕ(X)) = E(Ynf |X) ≈ f(Xnf + ϵX). (30)

This yields the following regression form for the prediction:

Y = f(Xnf + ϵX) + ϵX,Y . (31)

In Equation C.1, ϵX,Y comprises two distinct uncertainty components: aleatoric uncertainty stemming
from inherent data randomness (specifically, the time series noise), and epistemic uncertainty arising
from model estimation errors (Kendall & Gal, 2017).

Under ideal conditions where the point-estimation model perfectly captures E(Y |X), ϵX,Y would
reduce to purely aleatoric uncertainty and become uncorrelated with f(X), satisfying:

E (ϵX,Y |fϕ(X)) = 0. (32)

This implies the lookback window X contains no additional information to improve point forecasts,
resulting in ϵX,Y = ϵY . However, in practice, point-estimation models rarely achieve this theoretical
optimum, typically retaining some epistemic uncertainty. The subsequent discussion will examine
how different time series forecasting models handle these distinct uncertainty components.

C.2 D3U SITUATION

As established in Appendix B.2, the D3U framework leverages the encoder-derived embedding
representation fenc(X) as a conditioning mechanism for probabilistic residual learning, subsequent
to the preliminary estimation f(X). Formulated within the regression expression in the previous
section, this approach specifically targets the conditional expectation E(ϵX,Y |fenc(X)), yielding:

Y = f(X) + g(fenc(X)) + ϵ̃X,Y . (33)

In this context, ϵ̃X,Y denotes the total uncertainty of D3U. Since the encoder of the point estimation
model f learns a good representation of the historical time series, g(fenc(X)) can further model the
epistemic uncertainty of f(X). Comparing to ϵX,Y , ϵ̃X,Y may contain less epistemic uncertainty.
However, due to the predominance of predictions with epistemic uncertainty, this facilitation may
diminish when the backbone model is sufficiently powerful. More importantly, since the true
probabilistic component, uncertainty, is not explicitly separated, diffusion models may focus on
epistemic uncertainty rather than uncertainty. This undifferentiated treatment ultimately constrains
their probabilistic learning capability.

C.3 OUR SITUATION

To mitigate the epistemic uncertainty, first, we decompose the history time series into three parts
X = Xnon +Xstat +Xnoise. Three models are jointly trained to forecast the whole future time series.
Beyond the point-estimation model, we introduce an NS-adapter to improve modeling accuracy and
reduce epistemic uncertainty, thereby alleviating part of the computational burden on the diffusion
model. This architecture allows the diffusion model to concentrate solely on capturing aleatoric
uncertainty, with the noise component Xnoise serving as the conditioning input for the diffusion
process. The corresponding mathematical formulation is as follows:

Y = fnon(Xnon) + fstat(Xstat) + gnoise(Xnoise) + ϵ̄X,Y . (34)
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Under this formulation, ϵ̄X,Y contains more aleatoric uncertainty, since explicit component separation
effectively mitigates epistemic uncertainty. Compared to the expression g(fenc(X)) + ϵ̃X,Y in Eq.
33, our approach shows superior properties. First, the composite term gnoise(Xnoise) + ϵ̄X,Y is not
dominated by epistemic uncertainty, since fnon already takes into account most of the non-smooth
patterns. Second, this decomposition allows the diffusion model to focus more effectively on capturing
pure uncertainty without interference from the cognitive uncertainty component.

D ALGORITHMS

We formally present the complete algorithmic procedures of FALDA. Algorithm 1 details the end-
to-end training protocol with multi-task optimization. The corresponding inference procedure is
specified in Algorithm 2.

Algorithm 1 FALDA Training Procedure

1: Require: TS-backbone gϕ, NS-adapter fw, denoiser R̂(0)
θ

2: Hyperparameters: Threshold δ, period ∆, k′, noise schedule: αt, βt, max diffusion step K
3: Input: Lookback window X ∈ RT×D, future ground truth Y ∈ RS×D

4: Initialize the parameteres
5: repeat
6: Decomposition via Fourier Transform ▷ Eq. equation 4, equation 5
7: Xnon, Xstat, Xnoise ← X
8: Ynon, Ystat, Ynoise ← Y
9: Non-stationary & Stationary Components modeling:

10: Ŷnon ← fw(Xnon) ▷ Eq. equation 6
11: Ŷstat ← gϕ(Xstat)
12: Residual Learning:
13: R← Y − Ŷnon − Ŷstat
14: k ∼ U({1, 2, ...,K})
15: ϵ ∼ N (0, I)

16: R(k) ←
√
ᾱkR+

√
1− ᾱkϵ, R(k′) ←

√
ᾱk′R+

√
1− ᾱk′ϵ,

17: Predict residual: R̂(0)
θ (R(k), k,Xnoise), R̂

(0)
θ (R(k′), k′, Xnoise)

18: Loss Computation:
19: Compute the loss L in Eq. equation 11
20: Take gradient descent step on: ∇L
21: until converged

E EXPERIMENT DETAILS

E.1 DATASETS

Experiments are performed on seven widely-used real-world time series datasets: (1) influenza-like
illness (ILI) reports the weekly ratio of patients presenting influenza-like symptoms to total clinical
visits, obtained from U.S. CDC surveillance data from 2002 to 2021. 1 (2) Exchange-Rate (Lai et al.,
2018) provides daily currency exchange rates for eight countries from 1990 to 2016. 2 (3) ETTm2 and
ETTm1 (Zhou et al., 2021) contains 7 factors of electricity transformer from July 2016 to July 2018,
which is recorded by 15 minutes. 3 (4) Electricity (Li et al., 2019) collects hourly power consumption
from 321 customers from 2012 through 2014. 4 (5) Traffic (Wu et al., 2023) collates hourly road
occupancy rates measured by 862 sensors on San Francisco Bay Area freeways between January
2015 and December 2016. 5 (6) Weather (Zhou et al., 2021) includes meteorological time series

1ILI: https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
2Exchange: https://github.com/laiguokun/multivariate-time-series-data
3ETTm2: https://github.com/zhouhaoyi/ETDataset
4Electricity:https://archive.ics.uci.edu/dataset/321
5Traffic: https://zenodo.org/record/4656132
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Algorithm 2 FALDA Inference Procedure

1: Require: Pretrained TS-backbone gϕ, NS-adapter fw and denoiser R̂(0)
θ

2: Input: Lookback window X ∈ RT×D

3: Decomposition via Fourier Transform: ▷ Eq. equation 4, equation 5
4: Xnon, Xstat, Xnoise ← X
5: Predict Non-stationary & Stationary Terms:
6: Ŷnon ← fw(Xnon)

7: Ŷstat ← gϕ(Xstat)
8: Generate Residual Prediction via Reverse Diffusion:
9: Sample R(K) ∼ N (0, I)

10: for k = K down to 1 do
11: Predict residual: R̂(0) ← R̂

(0)
θ (R(k), k,Xnoise)

12: Compute posterior mean
13: µ̃θ ←

√
ᾱk−1βk

1−ᾱk
R̂(0) +

√
αk(1−ᾱk−1)

1−ᾱk
R(k)

14: Sample R(k−1) ∼ N (µ̃θ, β̃kI) ▷ Eq. equation 19
15: end for
16: R̂← R(0)

17: Final Prediction:
18: Ŷ ← Ŷnon + Ŷstat + R̂
19: Return Ŷ

collected from the Weather Station of the Max Planck Biogeochemistry Institute in 2020, with 21
meteorological indicators collected every 10 minutes. 6 (7) PEMS provides California traffic network
data recorded in 5-minute windows, from which we use four public subsets (PEMS03, PEMS04,
PEMS07, and PEMS08) following SCINet (Liu et al., 2022a). 7

We follow the data processing protocol and split configurations from Wu et al. (2021) and Li et al.
(2024b). The lookback length is fixed to 96, and the prediction length is fixed to 192, with the
exception of the ILI dataset, where the lookback length and prediction length are both set to 36. For
short-term forecasting tasks, the prediction lengths are set to 12, 24, 48, and 96 following Liu et al.
(2024). The details of all the datasets are provided in Table 5.

Table 5: Detailed dataset descriptions, including dimension, context length, label length, prediction
length, and frequency.

Dataset Dim Context length Label length Prediction length Frequency
ILI 7 36 16 36 1 week
Exchange 8 96 48 192 1 day
Electricity 321 96 48 192 1 hour
Traffic 862 96 48 192 1 hour
ETTm2, ETTm1 7 96 48 192 15 mins
Weather 21 96 48 192 10 mins
PEMS03 358 96 48 {12, 24, 48, 96} 5 mins
PEMS04 307 96 48 {12, 24, 48, 96} 5 mins
PEMS07 883 96 48 {12, 24, 48, 96} 5 mins
PEMS08 170 96 48 {12, 24, 48, 96} 5 mins

E.2 EVALUATION METRICS

We employ two categories of evaluation metrics: deterministic metrics for point forecasts and
probabilistic metrics for uncertainty estimation. Let x ∈ Rd denote the ground truth values and
x̂ ∈ Rd represent the predicted values.

6Weather: https://www.bgc-jena.mpg.de/wetter/
7PEMS: http://pems.dot.ca.gov
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• Mean Squared Error (MSE):

MSE(x, x̂) =
1

d
∥x− x̂∥22 =

1

d

d∑
i=1

(xi − x̂i)
2, (35)

where ∥ · ∥2 denotes the ℓ2 norm.
• Mean Absolute Error (MAE):

MAE(x, x̂) =
1

d
∥x− x̂∥1 =

1

d

d∑
i=1

|xi − x̂i|, (36)

where ∥ · ∥1 denotes the ℓ1 norm.

For assessing probabilistic forecasts and uncertainty estimation, we utilize:

• Continuous Ranked Probability Score (CRPS) (Matheson & Winkler, 1976; Gneiting &
Raftery, 2007):

CRPS(F, x) =
∫ ∞

−∞
(F (y)− I{x ≤ y})2dy, (37)

where F (y) is the predicted cumulative distribution function.
• Summed CRPS (CRPSsum):

CRPSsum = Et

[
CRPS(F−1

sum,
∑d

i=1 xi)
]
, (38)

where F−1
sum is obtained through dimension-wise summation of samples.

To specifically evaluate prediction intervals, we employ:

• Prediction Interval Coverage Probability (PICP) (Yao et al., 2019):

PICP =
1

N

N∑
i=1

I{xi ∈ [x̂low
i , x̂high

i ]}, (39)

where N represents the total number of observations, xi ∈ Rd denotes the true value for
the i-th observation, and x̂low

n and x̂high
n correspond to the 2.5th and 97.5th percentiles of the

predicted distribution respectively, with I being the indicator function. This metric quantifies
the empirical coverage probability by measuring the proportion of true observations falling
within the predicted interval bounds. When the predicted distribution matches the true data
distribution perfectly, the PICP should theoretically equal the nominal coverage level of
95% for the specified 2.5th − 97.5th percentile range.

• Quantile Interval Coverage Error (QICE) (Han et al., 2022):

QICE =
1

M

M∑
m=1

∣∣∣∣ρm − 1

M

∣∣∣∣ , ρm =
1

N

N∑
i=1

I{xi ∈ [x̂low,m
i , x̂high,m

i ]}. (40)

QICE can be viewed as PICP with finer granularity and without uncovered quantile ranges.
Under the optimal scenario where the predicted distribution perfectly matches the target
distribution, the QICE value should be equal to 0.

E.3 IMPLEMENTATION OF NON-STATIONARY ADAPTER IN FALDA

As discussed in Section 3, we propose a non-stationary adapter fw to capture the non-stationary
patterns in time series data. While a linear projection from Xnon to Ŷnon offers a straightforward
approach, we enhance this design by additionally incorporating the complete lookback window X
as auxiliary input following the approach outlined in Ye et al. (2024). This extension enables richer
temporal context utilization, improving prediction accuracy for Ynon. The output of the adapter is
computed as follows:
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Ŷnon = fw(Xnon, X) = W3 ReLU (W2 Concat (ReLU(W1Xnon), X)) , (41)

where W1, W2, and W3 are learnable weight matrices. The concatenation operation explicitly
combines the processed non-stationary features with the original input, allowing the network to
leverage both representations.

E.4 IMPLEMENTATION DETAILS

All the experiments are conducted on a single NVIDIA L20 48GB GPU, utilizing PyTorch (Paszke
et al., 2019). We set the number of diffusion steps to K = 1000, adopting a linear noise schedule
following the configuration in Li et al. (2024b). Following DDIM (Song et al., 2021), we accelerate
the sampling procedure by selecting a 10-point subsequence (with a stride of 100 steps) from the
original 1000 diffusion steps, effectively skipping intermediate computations while maintaining
generation quality. Correspondingly, we adjust the fine-tuning diffusion step k′ to align with the
subsampling stride, setting k′ = 100 to match the first sampling interval. The parameter η controls
the determinism level in DDIM sampling, where η = 0 yields a fully deterministic generation process.
We utilize the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 10−4 and L1 loss. Early
stopping is applied after {5, 10, 15} epochs without improvement, with a maximum of 200 epochs.
The batch size is set to 32 during training and 8 for testing. The context length, label length, and
prediction length are detailed in Table 5. To ensure robust statistical evaluation, we generate 100
prediction instances for each test sample to reliably compute the evaluation metrics. We show the point
estimate performance and probabilistic forecasting performance in Table 1 and Table 2, respectively.
The hidden dimension Hd is selected from the set {64, 128, 256, 512}. Hyperparameters K1 and
K2 are chosen from {0, 1, 2, . . . , ⌊T/2⌋+ 1}. The kernel size for the moving average operation in
DEMA is fixed at a = 25. For reference, we provide a detailed hyperparameter configuration for
FALDA with iTransformer as the backbone architecture in Table 6. Furthermore, as discussed in
Section 4.2, we extend our framework to integrate with alternative backbone models (Autoformer,
Transformer, and Informer), with their corresponding configurations detailed in Table 7. All relevant
hyperparameters referenced in Section 3 are explicitly documented in these configuration tables.

Table 6: Hyperparameter settings for FALDA with
iTransformer backbone.

Exchange ILI ETTm2 Electricity Traffic Weather

η 1.0 0.5 1.0 1.0 1.0 1.0
δ 0 0 1 2 1 0
∆ 3 3 10 10 20 3
K1 0 0 0 0 0 2
K2 32 2 5 20 3 25

Table 7: Hyperparameter settings for FALDA with
other backbones.

Exchange ILI ETTm2 Electricity Traffic Weather

η 1.0 0.5 1.0 1.0 1.0 1.0
δ 0 0 1 2 1 0
∆ 3 3 10 10 20 3
K1 2 2 5 0 30 2
K2 32 2 5 10 2 25

E.5 SELECTION OF FREQUENCY HYPERPARAMETERS

FALDA incorporates two key hyperparameters for frequency component selection: K1 and K2.
Beyond the conventional grid search, we also explore an adaptive selection strategy to accommodate
diverse datasets. Specifically, the selection of K1 is guided by the dominant frequency ratio p1, with
a recommended range of 10 % to 20 %. The selection of K2 is determined by the noise frequency
ratio p2, with a recommended range of 0.1 % to 1%. We select the values of K1 and K2 based on the
average number of frequencies with amplitudes above p1 and below p2 of the maximum amplitude in
the training set, respectively. Table 8 shows the values of K1 under different dominant frequency
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ratios p1. Table 9 shows the values of K2 under different noise frequency ratios p2. The sensitivity
analyses of K1 and K2 are presented in Figure 4.

Table 8: Values of K1 under different dominant frequency ratios p1.

p1 (%) Dataset
ILI Exchange Electricity Traffic ETTm2 Weather

30 3 1 3 4 2 3
20 3 2 4 8 3 4
17 4 2 5 9 4 4
15 4 2 5 10 5 5
13 5 2 6 12 5 5
10 6 2 8 16 7 7
7 8 3 12 21 10 9
5 10 5 16 27 13 11

Table 9: Values of K2 under different noise frequency ratios p2.

p2 (%) Dataset
ILI Exchange Electricity Traffic ETTm2 Weather

2.0 3 39 17 9 25 29
1.5 2 36 12 6 22 26
1.0 1 32 7 4 17 22
0.7 1 28 5 2 13 18
0.5 0 23 3 1 11 15
0.3 0 17 1 1 8 11
0.1 0 7 1 0 5 5
0.05 0 4 0 0 4 4

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 ABLATION STUDY ON DENOISER ARCHITECTURE

As described in Section 3.2, we introduce DEMA (Denoising MLP with Adaptive Layer Normal-
ization), an MLP-based denoising module that utilizes Adaptive Layer Normalization (AdaLN) for
feature transformation. The encoder layer employs a Moving Average (MA) operation to separate
the latent variable into two components: seasonal and trend features. These components are then
processed through independent AdaLN transformations, each governed by three trainable parameters:
scale, shift, and gating coefficients, as specified in Eq. 15. To evaluate the architectural decisions in
DEMA, we compare against two baseline variants in Table 10:

• AD-MA: This baseline removes the Moving Average decomposition in Eq. 13, applying
AdaLN only to the undivided latent variable. While this configuration helps assess the
importance of MA decomposition, it reduces the parameter count compared to DEMA. To
address this confounding factor, we introduce a second controlled variant.

• AD+LV: This baseline maintains DEMA’s parameter count while removing the feature
decomposition step. Specifically, it implements two parallel AdaLN operations on the
original latent variable (rather than on decomposed features). This design enables direct
comparison of architectural contributions by isolating the effect of feature decomposition
from pure parameter increases.

Experimental results demonstrate that DEMA consistently outperforms both variants in most datasets.

F.2 DOES DIFFUSION HELP? FREQUENCY DECOMPOSITION ABLATION STUDY

As analyzed in Appendix C.3, we introduce a temporal decomposition operation to strengthen the
point forecasting capability of the backbone model, while the diffusion process primarily handles
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(a) Sensitivity analysis of dominant frequency ratio.

(b) Sensitivity analysis of noise frequency ratio.

Figure 4: Sensitivity Analysis of Frequency Hyperparameters. (a) Dominant frequency ratio p1; (b)
Noise frequency ratio p2.
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Table 10: Ablation study on denoiser architecture: comparison of DEMA and its variants. All
experiments are repeated 10 times to compute the Means and Standard Deviation.

Dataset DEMA AD-MA AD+LV

MSE MAE MSE MAE MSE MAE

Exchange 0.180 ± 0.011 0.308 ± 0.009 0.197 ± 0.018 0.319 ± 0.014 0.183 ± 0.014 0.311 ± 0.010
ILI 1.652 ± 0.062 0.793 ± 0.026 1.735 ± 0.156 0.810 ± 0.058 1.666 ± 0.091 0.783 ± 0.031
ETTm2 0.250 ± 0.003 0.307 ± 0.003 0.250 ± 0.005 0.307 ± 0.004 0.252 ± 0.004 0.308 ± 0.002
Weather 0.217 ± 0.003 0.261 ± 0.004 0.220 ± 0.002 0.264 ± 0.004 0.219 ± 0.005 0.262 ± 0.005

aleatoric uncertainty learning. To investigate whether probabilistic learning provides additional
benefits to point forecasting, we conduct a comparative study with two deterministic models that
exclude the diffusion component:

• NDB (Non-decomposed Backbone): The baseline backbone model without temporal
decomposition operation.

• DB (Decomposed Backbone): An enhanced architecture that incorporates (1) input decom-
position that separates low-frequency noise components, and (2) an NS-adapter module for
non-stationary feature learning.

As shown in Table 11, the complete FALDA framework demonstrates superior performance compared
to both deterministic variants (NDB and DB). These results suggest that: this decomposition operation
effectively improves forecasting accuracy. Additionally, the diffusion component in FALDA provides
additional performance gains beyond what can be achieved through decomposition alone. This empir-
ical evidence confirms that probabilistic learning through diffusion modeling contributes positively to
point forecasting performance when combined with our proposed decomposition architecture.

Table 11: Ablation study on the benefits of probabilistic residual learning in forecasting performance.

Method Exchange ILI Electricity Traffic

MAE MSE MAE MSE MAE MSE MAE MSE

Ours 0.165 0.296 1.666 0.821 0.163 0.248 0.412 0.251
NDB 0.194 0.315 1.786 0.826 0.165 0.249 0.439 0.276
DB 0.194 0.316 1.791 0.828 0.165 0.250 0.439 0.276

In addition to the plug-and-play experiments presented in the main text (shown in Table 3), we also
conducted further plug-and-play experiments using TimeXer (Wang et al., 2024) as the backbone to
evaluate the integration performance of FALDA with the latest TSF models (see Table 12).

Table 12: Plug-and-play performance with TimeXer.

Method ETTm1 ETTm2 Weather Electricity Traffic ILI Exchange

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

TimeXer 0.373 0.389 0.243 0.303 0.213 0.254 0.179 0.283 0.507 0.352 2.711 1.063 0.181 0.302
FALDA 0.367 0.374 0.241 0.294 0.204 0.248 0.188 0.293 0.495 0.323 1.889 0.855 0.199 0.322

However, under some specific parameter configurations, it has been observed that integrating prob-
abilistic residual learning frameworks with iTransformer may lead to a marginal decline in point
estimation performance. To demonstrate this observation, experiments are conducted on D3U,
FALDA, and iTransformer under unified parameter settings (see Table 17), with the results presented
in Table 13. Although FALDA achieved 6 first-place rankings, surpassing iTransformer’s 4 first-place
rankings, a performance decline was observed on the Electricity dataset. Furthermore, D3U consis-
tently exhibits inferior point estimation performance compared to iTransformer across the majority of
datasets.
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Table 13: Residual probabilistic learning frameworks vs. their backbone models: point forecasting
performance comparison.

Dataset iTransformer D3U FALDA

MSE MAE MSE MAE MSE MAE

ETTm1 0.377 0.390 0.387 0.399 0.378 0.380
ETTm2 0.251 0.311 0.256 0.316 0.255 0.310
Weather 0.237 0.268 0.232 0.279 0.220 0.258

Electricity 0.162 0.253 0.168 0.261 0.167 0.253
Traffic 0.460 0.312 0.421 0.290 0.420 0.265

1st Count 4 0 6

The phenomenon is now analyzed. During the inference process, 100 prediction instances are
generated from the learned residual distribution, denoted as {ri}100i=1, and the mean of these 100
samples is calculated as m = 1

100

∑100
i=1 ri. The final prediction {ri + Ŷ }100i=1 is then obtained by

adding the preliminary estimation Ŷ from the deterministic model to the residual samples, with the
mean of the final predictions being: m+ Ŷ . In an ideal scenario, where the residuals only contain
random uncertainty, the mean of the residual distribution should be zero. However, in practice,
m ̸= 0, which may stem from two factors: first, the point estimate model always involves estimation
error and second, the limited number of samples introduces a bias in the mean.

A direct solution to this issue is to correct the final result by manually removing this bias, with the
final prediction becomes: {ri −m+ Ŷ }100i=1 with the mean: Ŷ . This correction ensures that point
estimation performance does not degrade when integrated with the backbone, while simultaneously
highlighting the flexibility of residual probabilistic learning, as it enables further adjustment of the
learned bias without any additional training cost.

F.3 RESIDUAL FRAMEWORK COMPARISON WITH IDENTICAL BACKBONE

In this section, we evaluate the performance of TMDM, D3U, and FALDA with the NSformer
backbone. The parameter configuration follows Li et al. (2024b), while the correlation results are
reported in accordance with Li et al. (2025). Our experimental setup maintains consistency between
the training and evaluation phases. Table 14 presents the point forecasting performance, measured by
MAE and MSE. Meanwhile, Table 15 summarizes the probabilistic forecasting performance using
CRPS and CRPSsum metrics. The experimental results demonstrate that FALDA achieves superior
performance in both point and probabilistic forecasting tasks, validating the effectiveness of our
proposed framework. By incorporating a time series decomposition mechanism to decouple distinct
temporal components, our method facilitates more balanced learning of both epistemic and aleatoric
uncertainties, thereby contributing to enhanced forecasting performance.

Table 14: Point forecasting performance comparison of different residual learning frameworks with
NSformer backbone.

Method Exchange ILI ETTm2 Electricity Traffic Weather

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

TMDM 0.260 0.365 1.985 0.846 0.524 0.493 0.222 0.329 0.721 0.411 0.244 0.286
D3U 0.268 0.378 2.220 0.920 0.317 0.399 0.216 0.328 0.678 0.402 0.215 0.267
Ours 0.238 0.342 1.918 0.803 0.324 0.356 0.180 0.278 0.625 0.317 0.244 0.278

We further assess the performance of D3U and FALDA with iTransformer as the backbone under
the unified hyperparameter settings (Table 17). The results in Table 16 show that FALDA achieved
13 first-place rankings across five datasets, while D3U secured 7 first-place rankings, indicating that
FALDA outperforms D3U overall.
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Table 15: Probabilistic forecasting performance comparison of different residual learning frameworks
with NSformer Backbone.

Method Exchange ILI ETTm2 Electricity Traffic Weather

CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum

TMDM 0.316 0.209 0.921 0.524 0.380 0.226 0.446 0.137 0.552 0.179 0.226 0.292
D3U 0.387 0.218 1.014 0.454 0.302 0.147 0.381 0.157 0.472 0.207 0.196 0.273
Ours 0.299 0.171 0.674 0.349 0.334 0.195 0.269 0.167 0.312 0.195 0.235 0.333

Table 16: Comparison between D3U and FALDA with iTransformer backbone.

Dataset D3U FALDA

MSE MAE CRPS CRPS_sum MSE MAE CRPS CRPS_sum

ETTm1 0.387 0.399 0.295 0.805 0.378 0.380 0.312 0.640
ETTm2 0.256 0.316 0.246 0.101 0.255 0.310 0.277 0.160
Weather 0.232 0.279 0.213 0.224 0.220 0.258 0.210 0.319

Electricity 0.168 0.261 0.195 0.151 0.167 0.253 0.238 0.157
Traffic 0.421 0.290 0.222 0.169 0.420 0.265 0.255 0.168

1st Count 7 13

F.4 COMPARISON WITH CLASSICAL TIME SERIES FORECASTING METHODS

To further strengthen the validity of FALDA, we include comparison to two classical statistical
TSF baselines: Naive and Seasonal Naive (Hyndman et al.). As shown in Table 18, we report the
point forecasting performance of Naive, Seasonal Naive, DLinear, and FALDA across six standard
benchmark datasets, where bold denotes the best performance, and underline denotes the second-best.
We include DLinear as a representative neural network-based TSF model with a linear architecture.
Among the four methods, FALDA achieves the best performance, significantly surpassing all baselines.
Specifically, compared with the Naive method, FALDA achieves a 77.7% improvement in MSE and a
55.6% improvement in MAE. When compared with the Seasonal Naive method, FALDA yields a
43.1% improvement in MSE and a 28.2% improvement in MAE. We also evaluate the probabilistic
performance of the Naive and Seasonal Naive models when combined with prediction intervals,
labeled as "Naive-I" and "Seasonal Naive-I" in Table 19. The results show that FALDA improves
by up to 71.3% in CRPSsum, demonstrating its significant advantage over traditional probabilistic
approaches. The point and probabilistic improvements show the effectiveness of FALDA in modeling
temporal patterns over classical TSF methods.

F.5 TRAINING STRATEGY EXPERIMENTS

As defined in Eq. 9, our loss function incorporates both a diffusion loss for denoiser optimization and a
fine-tuning lossLfinetune = ∥R−sg(R̂(0)

θ (R(k′), k′, c))∥2 to simultaneously enhance the point estimate
models. The hyperparameter k′ allows for flexible selection of diffusion steps during fine-tuning.
To validate this choice, we perform ablation studies comparing models trained with and without
fine-tuning, as well as models fine-tuned at different diffusion steps k′. The experimental results
presented in Figure 5 demonstrate that the fine-tuning operation provides consistent improvements

Table 17: Unified hyperparameter settings for D3U and FALDA in Table 16.

Setting ETTm1 ETTm2 Electricity Traffic Weather

Train batch_size 128 128 32 32 128
Test batch_size 64 64 8 2 16

Backbone d_model 512 512 256 512 256
Backbone d_ff 512 512 512 512 256

Backbone e_layer 2 2 3 3 2
Backbone d_layer 1 1 1 1 1
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Table 18: Point forecasting performance comparison with classical TSF methods.

Dataset Seasonal Naive Naive Dlinear FALDA

MSE MAE MSE MAE MSE MAE MSE MAE

ILI 2.266 0.957 7.714 1.906 2.235 1.059 1.666 0.821
Exchange 0.716 0.643 0.167 0.289 0.167 0.301 0.165 0.296
Electricity 0.304 0.324 1.596 0.951 0.196 0.285 0.163 0.248

Traffic 1.093 0.458 2.747 1.085 0.598 0.370 0.412 0.251
ETTm2 0.321 0.337 0.340 0.371 0.284 0.362 0.246 0.301
Weather 0.343 0.305 0.309 0.292 0.218 0.278 0.215 0.255

Average 0.841 0.504 2.146 0.816 0.616 0.443 0.478 0.362

Table 19: Probabilistic forecasting performance comparison with classical TSF methods.

Dataset Seasonal Naive-I Naive-I FALDA

CRPS CRPSsum CRPS CRPSsum CRPS CRPSsum

ILI 0.773 0.401 1.585 1.003 0.721 0.387
Exchange 0.513 0.376 0.216 0.137 0.289 0.126
Electricity 0.276 0.179 1.106 1.091 0.231 0.160

Traffic 0.465 0.410 1.428 1.218 0.245 0.163
ETTm2 0.273 0.162 0.428 0.184 0.244 0.141
Weather 0.271 0.338 0.729 0.824 0.207 0.298

Average 0.429 0.310 0.915 0.743 0.323 0.213
Promotion 24.7% 31.3% 64.7% 71.3% - -

over the no-fine-tuning setting. Additionally, our chosen configuration with k′ = 100 achieves
competitive MSE and MAE performance among different step selections, suggesting the validity of
our configuration as mentioned in Appendix E.4.

Figure 5: Evaluation of different training strategies on the ILI Dataset. The left subplot shows the
MSE performance, while the right subplot shows the MAE performance. k′-DS: fine-tuning with
diffusion step k′. No-FT: no fine-tuning.

F.6 TRAINING AND INFERENCE EFFICIENCY

As discussed in Section 3, FALDA reconstructs the sample directly, rather than learning the noise at
each diffusion step during the training phase, which reduces the learning complexity of the time series
component. Additionally, our denoiser DEMA, which is designed as a lightweight MLP architecture,
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alleviates the training burden. During the inference process, we employ DDIM to accelerate inference.
These design choices collectively contribute to the efficiency of FALDA, while maintaining its
effectiveness. We conduct experiments to demonstrate its efficiency. As depicted in Figure 6, FALDA
exhibits superior convergence properties compared to TMDM. While TMDM requires approximately
30 epochs to converge on the Exchange dataset, FALDA achieves competitive performance after
only 1 epoch. For fair comparison, we maintain identical training configurations with TMDM,
including the learning rate (1× 10−4) and optimization method (Adam optimizer). This accelerated
convergence further underscores FALDA’s computational advantages without compromising model
performance.

Figure 6: Training speed comparison between FALDA and TMDM on the Exchange dataset. The
curves depict the evolution of metrics: MSE (left) and MAE (right) across training epochs.

Building upon these convergence advantages, we implement a reduced early stopping patience
for FALDA compared to TMDM during the training process, as detailed in Appendix E.4. During
inference, we employ DDIM (Denoising Diffusion Implicit Models) to accelerate the reverse diffusion
process, thereby significantly reducing both inference time and memory requirements. Table 20
presents a comprehensive computational efficiency comparison between TMDM and FALDA across
six benchmark datasets. The results demonstrate FALDA’s consistent superiority in both training and
inference phases. Specifically, FALDA achieves an inference speed improvement of up to 26.3× on
the ETTm2 dataset, while attaining a training speed enhancement of up to 13.7× on the Exchange
dataset. Furthermore, FALDA delivers a 2.1× training speed-up on the Electricity dataset (from
122.9 minutes to 58.3 minutes) and a 2.9× inference speed-up on the Traffic dataset (from 472.3
minutes to 160.7 minutes). These substantial improvements in computational efficiency not only
validate FALDA’s practical utility for real-world applications but also highlight its capability for
processing high-dimensional datasets.

Table 20: Comparison of training and inference times (minutes) between TMDM and FALDA 1.

Dataset TMDM FALDA (Ours)

Training Inference 2 Training Inference

ILI 3.0 0.6 0.4 0.1
Exchange Rate 9.6 10.5 0.7 0.5
ETTm2 36.6 194.4 3.4 7.4
Weather 69.8 119.1 6.3 13.5
Electricity 122.9 272.9 58.3 88.3
Traffic 97.0 472.3 83.6 160.7

1 All experiments were conducted on an NVIDIA L20 GPU with 48GB memory.
2 Inference times were measured with 100 samples per test instance.

F.7 PREDICTIVE INTERVALS RESULT

We present the result of PICE and QICE in Tabel 21, which assesses the ability of the model to
accurately cover the true values within its prediction intervals and the precision of the estimates for
these intervals, respectively. See Appendix E.2 for specific definitions of PICE and QICE.
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Table 21: Comparison of PICP and QICE metrics.

Dataset Metric TimeGrad CSDI TimeDiff TMDM Ours

Exchange PICP 69.16 69.21 20.80 74.54 97.88
QICE 5.32 5.49 13.34 4.38 5.49

ILI PICP 74.29 76.18 3.69 87.83 77.49
QICE 7.86 7.75 15.50 6.74 4.42

ETTm2 PICP 71.62 71.78 13.16 73.20 84.08
QICE 5.37 5.07 14.22 3.75 2.71

Electricity PICP 75.93 78.94 32.37 82.35 93.48
QICE 5.34 4.74 12.74 3.81 2.90

Traffic PICP 82.28 83.51 9.11 86.83 92.36
QICE 3.80 3.50 13.53 2.36 1.90

Weather PICP 62.79 62.71 21.60 72.97 80.75
QICE 7.36 5.14 13.18 3.87 3.58

F.8 SHORT-TERM TSF EXPERIMENTS

In addition to long-term time series forecasting, we also investigate the capability of FALDA for
short-term TSF tasks. Experiments are conducted on four PEMS public subsets (PEMS03, PEMS04,
PEMS07, PEMS08). Following the experimental configuration in Liu et al. (2024), prediction lengths
of {12, 24, 48, 96} are tested. The results (see Table 22) show that FALDA achieves 21 best scores
out of 32 metrics, while iTransformer attains only 11, demonstrating that FALDA maintains strong
point estimation accuracy even with reduced prediction horizons. We attribute this advantage to our
use of Fourier decomposition to dynamically extract the top-K dominant frequencies and bottom-K
frequencies from each input instance. This temporal decomposition method is instance-specific (Ye
et al., 2024), thereby enabling adaptive capture of non-stationary patterns and noise in the data.

Table 22: Short-term TSF performance of FALDA.

Dataset iTransformer FALDA

MSE MAE MSE MAE

PEMS03

12 0.071 0.174 0.071 0.173
24 0.093 0.201 0.092 0.196
48 0.125 0.236 0.157 0.261
96 0.164 0.275 0.156 0.263

PEMS04

12 0.078 0.183 0.075 0.176
24 0.095 0.205 0.090 0.193
48 0.120 0.233 0.111 0.216
96 0.150 0.262 0.137 0.239

PEMS07

12 0.067 0.165 0.073 0.170
24 0.088 0.190 0.092 0.189
48 0.110 0.215 0.122 0.223
96 0.139 0.245 0.145 0.243

PEMS08

12 0.079 0.182 0.077 0.177
24 0.115 0.219 0.115 0.214
48 0.186 0.235 0.174 0.260
96 0.221 0.267 0.312 0.343

1st Count 11 21

G LIMITATIONS

Although FALDA demonstrates competitive forecasting performance, it inherits a common limitation
of diffusion-based probabilistic TSF models: the multi-step iterative denoising process leads to
significantly slower inference speed compared to deterministic point estimation methods. This
computational overhead becomes increasingly pronounced as the number of diffusion steps, and
also imposes higher GPU memory requirements. Such constraints could limit its applicability in
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scenarios demanding low-latency predictions or under limited computational resources. Future work
may investigate more efficient alternatives for probabilistic modeling, such as normalizing flow and
rectified flow, to achieve a more favorable balance between predictive performance and computational
efficiency.

H SHOWCASES

H.1 CASE STUDY OF FALDA AND TMDM

To demonstrate the superior probabilistic forecasting capability of FALDA, we present comparative
visualizations of ground truth values and prediction results between FALDA and TMDM across four
datasets in Figures 7, 8, 9, and 10. The figures display the predicted median along with 50% and 90%
distribution intervals, where the lower and upper percentiles are set at 2.5% and 97.5%, respectively.

Our experimental results demonstrate that FALDA achieves significantly better point forecasting
accuracy compared to TMDM. Moreover, the residual learning approach combined ensures partic-
ularly accurate predictions for the first future time step, as clearly evidenced in Figure 8. While
TMDM produces excessively wide prediction intervals for the initial future prediction, FALDA
generates precise first-step forecasts with narrow confidence bounds that gradually widen over time.
This behavior aligns well with real-world time series characteristics, where continuous variation is
typically observed. Given complete historical information, especially the most recent observations,
the immediate future time step should not deviate drastically from the last observed value. This
forecasting model is particularly well suited to financial data, whose volatility typically increases
over time, a phenomenon which corresponds well with our experimental results. The findings of this
study indicate that FALDA not only provides more accurate forecasts, but also produces results that
are more interpretable and better reflect the underlying data dynamics.

H.2 TIME SERIES DECOMPOSITION VISUALIZATION

To illustrate our time series decomposition approach, Figures 11 and 12 visualize the distinct
temporal components obtained through the decomposition method described in Eq. 4. Figures 11
and 12 demonstrate the distinct decomposition characteristics of iTransformer and other backbones,
respectively. The detailed implementation settings for these decomposition strategies are provided in
Appendix E.4.

H.3 VISUALIZATION OF KEY COMPONENTS IN FALDA

To further showcase the predictive capabilities of FALDA, we visualize the outputs of its three
key components across different datasets with the TS-Backbone set as Autoformer. Figures 13,
14, 15, and 16 display both the model’s overall predictions and the decomposed predictions for the
non-stationary term, the stationary term, and the noise term. For clarity, we sample 100 predictions to
represent the probabilistic learning outcomes, with the width of the prediction intervals indicating the
model’s quantified uncertainty.

Figure 14 shows the progressive widening of prediction intervals over time, a pattern that aligns
with the inherent characteristics typically observed in financial data. A comparative analysis of these
figures reveals an inverse correlation between prediction accuracy and the width of the prediction
intervals: more precise point estimates are associated with narrower uncertainty bounds, which
is consistent with our residual learning paradigm. These findings underscore FALDA’s capacity
to effectively model aleatoric uncertainty across diverse datasets, while simultaneously preserving
high predictive accuracy. This dual capability highlights the model’s strength in both uncertainty
quantification and forecasting precision.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, the large language models were employed solely to aid or polish
writing. Specifically, LLMs were used for the purpose of correcting grammatical errors. All research
ideas are entirely the work of the authors.
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(a) TMDM

(b) FALDA

Figure 7: Comparison of prediction intervals for the ILI dataset (T = 36, S = 36). The red line
indicates the ground truth, and the black line represents the predicted mean. Dark green shading
denotes the 50% prediction interval, and light green shading shows the 90% prediction interval.

(a) TMDM

(b) FALDA

Figure 8: Comparison of prediction intervals for the Exchange dataset (T = 96, S = 192). The red
line indicates the ground truth, and the black line represents the predicted mean. Dark green shading
denotes the 50% prediction interval, and light green shading shows the 90% prediction interval.
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(a) TMDM

(b) FALDA

Figure 9: Comparison of prediction intervals for the Weather dataset (T = 96, S = 192). The red
line indicates the ground truth, and the black line represents the predicted mean. Dark green shading
denotes the 50% prediction interval, and light green shading shows the 90% prediction interval.

(a) TMDM

(b) FALDA

Figure 10: Comparison of prediction intervals for the ETTm2 dataset (T = 96, S = 192). The red
line indicates the ground truth, and the black line represents the predicted mean. Dark green shading
denotes the 50% prediction interval, and light green shading shows the 90% prediction interval.
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Figure 11: Time series decomposition strategy for the iTransformer backbone. From left to right, the
subfigures present: (1) the non-stationary term, (2) the stationary term, (3) the noise term, and (4) the
frequency-domain representation obtained via Fourier transform.
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Figure 12: Time series decomposition strategy for other backbones. From left to right, the subfigures
present: (1) the non-stationary term, (2) the stationary term, (3) the noise term, and (4) the frequency-
domain representation obtained via the Fourier transform.
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(a) ILI 1th dimension (b) ILI 3th dimension (c) ILI 7th dimension

Figure 13: Visualization of the prediction results from the different components (NS-Adapter, TS-
Backbone, and DEMA) on the ILI dataset.
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Figure 14: Visualization of the prediction results from the different components (NS-Adapter, TS-
Backbone, and DEMA) on the Exchange dataset (6 th dimension).
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Figure 15: Visualization of the prediction results from the different components (NS-Adapter, TS-
Backbone, and DEMA) on the ETTm2 dataset (1 th dimension).
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Figure 16: Visualization of the prediction results from the different components (NS-Adapter, TS-
Backbone, and DEMA) on the Traffic dataset (800 th dimension).
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