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Abstract

Human decisions are often suboptimal due to limited cognitive resources and time1

constraints. Prior work has shown that errors in human decision-making can in part2

be avoided by leveraging artificial intelligence to automatically discover efficient3

decision strategies and teach them to people. So far, this line of research has4

been limited to simplified decision problems that are not directly related to the5

problems people face in the real world. Current methods are mainly limited by6

the computational difficulties of deriving efficient decision strategies for complex7

real-world problems through metareasoning. To bridge this gap, we model a real-8

world decision problem in which people have to choose which project to pursue,9

and develop a metareasoning method that enables us to discover and teach efficient10

decision strategies in this setting. Our main contributions are: formulating the11

metareasoning problem of deciding how to select a project, developing a metar-12

easoning method that can automatically discover near-optimal project selection13

strategies, and developing an intelligent tutor that teaches people the discovered14

strategies. We test our strategy discovery method on a computational benchmark15

and experimentally evaluate its utility for improving human decision-making. In16

the benchmark, we demonstrate that our method outperforms PO-UCT while also17

being more computationally efficient. In the experiment, we taught the discovered18

planning strategies to people using an intelligent tutor. People who were trained by19

our tutor showed a significant improvement in their decision strategies compared20

to people who tried to discover good decision strategies on their own or practiced21

with an equivalent tutor that did not reveal the optimal strategy. Project selec-22

tion is a very consequential high-stakes decision regularly faced by organizations,23

companies, and individuals. Our results indicate that our method can successfully24

improve human decision-making in naturalistic settings similar to the project selec-25

tion decisions people face in the real-world. This is a first step towards applying26

strategy discovery methods to improve people’s decisions in the real-world.27

1 Introduction28

Corporations and individuals commonly have to select a project to pursue out of multiple alternatives.29

These project selection problems are usually high-stakes decisions that can be highly impactful for the30

future of an organization. For example, an organization looking for a sustainable investment project31

[17] could benefit both financially and by improving its public image by selecting an impactful and32

profitable project, or incur major losses by selecting an unsuitable project.33

Previous research on project selection recommends that candidate projects should be evaluated by34

multiple experts [9, 17, 21], and many structured approaches to integrate the experts’ opinions exist35

[11]. However, structured project selection techniques are not well utilized in the real-world [28, 21],36
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and decision-makers often rely on their intuition and much simpler techniques like brainstorming [18].37

This is concerning because the intuitive decisions of groups and individuals are highly susceptible38

to biases and unsystematic error [16]. However, people’s errors in decision-making can partly be39

prevented by teaching them better decision strategies. This approach is known as boosting [15].40

To identify appropriate decision strategies, we can score candidate strategies by their resource-41

rationality, that is the degree to which they make rational use of people’s limited time and bounded42

cognitive resources [19]. In the resource-rational framework, the decision operations people can43

perform to arrive at a decision are modeled explicitly and assigned a cost. The overall efficiency of44

a decision strategy h in an environment e can then be computed by subtracting the expected costs45

λ of the N used decision operations from the expected utility Rtotal of the resulting decision (see46

Equation 1) [10]. This measure is called resource-rationality score (RR-score) [10]. People are47

usually not fully resource-rational, and identifying decision strategies would enable people to perform48

as well as possible is an important open problem [6, 10, 14, 22].49

RR(h, e) = E[Rtotal|h, e]− λE[N |h, e] (1)

Recent work has demonstrated that the theory of resource rationality makes it possible to leverage AI50

to automatically discover and teach decision strategies that enable real people to make their decisions51

as well as possible [6, 10, 1, 32, 22]. This approach has been dubbed AI-powered boosting. The52

first step of AI-powered boosting is to compute resource-rational decision strategies. Automatic53

strategy discovery methods [6, 10, 14, 32, 22] can discover efficient decision strategies by solving54

the metareasoning problem of deciding which decision operations to perform. While recent work has55

extended automatic strategy discovery methods to larger [10] and partially observable environments56

[14], so far, they have not been applied to real-world decisions such as project selection.57

In this article, we extend AI-powered boosting to improve how people select projects. Project58

selection is challenging because many crucial attributes of the candidate projects, such as their59

expected profitability, cannot be observed directly. Instead, they have to be inferred from observations60

that are not fully reliable. We, therefore, formalize project selection strategies as policies for solving61

a particular class of partially observable Markov Decision Processes (POMDPs). This formulation62

allows us to develop the first algorithm for discovering resource-rational strategies for human project63

selection.To achieve this, we model a realistic project selection task as a metareasoning problem. The64

metareasoning consists in deciding which information one should request from which advisors when65

information is highly limited, uncertain, and costly. We develop an efficient algorithm for solving this66

problem and apply it to derive the optimal decision strategy for a project selection problem a financial67

institution faced in the real world [17]. Finally, we develop an intelligent tutor [6] that teaches the68

decision strategy discovered by our method to people. We evaluated our approach by letting our69

intelligent tutor teach the automatically discovered project selection strategy to about 100 people,70

and then evaluated the quality of their decisions in realistic project selection problems against two71

control groups. Our results indicate that our approach can successfully improve human decisions in72

real-world problems where people are reluctant to let machines decide for them.73

2 Background74

Project selection In the project selection problem, a decision-maker aims to select the best-fitting75

project out of several candidates [27]. Apart from a project’s profitability, the evaluation usually also76

considers other factors, such as the alignment with organizational goals [7]. This problem can be77

formalized as multi-criteria decision-making (MCDM) [11, 23]. Projects can be evaluated using a78

scoring technique, which evaluates relevant criteria and then combines them to a weighted sum [27].79

Common approaches to solving the project selection problem include techniques such as the analytic80

hierarchy process, the analytic network process, real options analysis, and TOPSIS (see [11] for a81

review). These methods are commonly combined with fuzzy sets to account for uncertainty [17].82

However, these methods are rarely used in real-world problems because implementing them would83

require gathering and integrating a lot of information through a time-consuming process, which is84

often incompatible with the organizational decision process [28, 21]. Instead, organizations often85

rely on simpler, less structured methods like brainstorming [18]. In addition, the detailed information86

required by these methods can be costly to acquire in real-world settings.87
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Judge-advisor systems In a Judge Advisor System (JAS) [2], typically, a single decision-maker has88

to make a decision, and multiple advisors support the decision-maker by offering advice. Variations of89

the task can include costly advice [33, 12] , or advisors with varying reliability [24]. This is a common90

situation when CEOs decide which project their company should launch next. Unfortunately, decision-91

makers are known to be highly susceptible to systematic errors, such as weighing one’s own opinion92

too strongly, overconfidence, egocentric advice discounting, and weighting the recommendations of93

advisors by their confidence rather than their competence [2, 25, 33].94

Strategy discovery methods Discovering resource-rational planning strategies can be achieved by95

solving a meta-level Markov decision process [13, 4, 5], which models the metareasoning process as96

a Markov Decision Process (MDP), which state represents the current belief about the environment97

and actions represent decision operations. Performing a decision operation results in a negative98

cost and results in an update to the belief state. A special termination action represents exiting the99

metareasoning process and making a real-world decision, guided by the current beliefs [13]. Multiple100

methods for solving meta-level MDPs exist (e.g. [26, 4, 13, 10]). We refer to these algorithms101

as strategy discovery methods [4, 6, 32, 10, 14, 22]. They learn or compute policies for selecting102

sequences of cognitive operations (i.e., computations) people can perform to reach good decisions.103

MGPO [14] is currently the only strategy discovery algorithm that can efficiently approximate104

resource-rational strategies for decision-making in partially observable environments. MGPO chooses105

decision operations by approximating their value of computation [26] in a myopic manner: it always106

selects the computation whose execution would yield the highest expected gain in reward if a decision107

had to be made immediately afterward, without any additional planning.108

Cognitive tutors Past work has developed cognitive tutors that teach automatically discovered109

planning strategies to people [6, 32, 22, 10]. Training experiments indicated that training with110

these cognitive tutors could significantly boost the quality of people’s planning and decision-making111

[6, 32, 10, 14, 22]. These cognitive tutors teach efficient decision strategies in an automated manner,112

usually by computing the value of available decision operations using strategy discovery methods,113

and providing the learner feedback on the quality of the computations they select. Initially limited to114

small planning tasks due to the computational complexity of solving meta-level MDPs [20, 6], recent115

work has extended existing methods to larger [10] and partially observable [14] settings. However,116

none of these methods have been applied to naturalistic problems so far.117

A crucial obstacle is that these methods are limited to settings where all decision-relevant information118

comes from the same source. By contrast, in the real world, people have to choose between and119

integrate multiple different sources of information. In doing so, they have to take into account that120

some information sources are more reliable than others. Additionally, current strategy discovery121

methods are limited to artificial settings where each piece of information is an estimate of a potential122

future reward. By contrast, in the real world, most information is only indirectly related to future123

rewards, and different pieces of information have different units (e.g., temperature vs. travel time).124

3 Formalizing optimal decision strategies for human project selection as the125

solution to a meta-level MDP126

In this section, we introduce explain our general resource-rational model of project selection, which127

we expect to be widely applicable to concrete, real-world project selection problems.128

Our model of project selection consists of two decision problems, an object-level decision-problem129

and a meta-level MDP [4, 13]. The two decision problems separate the actions the decision-maker130

has to choose between (object level), such as executing one project versus another, from decision131

operations that represent thinking about which of those object-level actions to perform (meta-level),132

such as gathering information about the projects’ attributes. This allows us to solve both problems133

separately. The object-level decision problem is a MCDM problem, where a set of NP potential134

projects P = {p1, ...pNP
} are evaluated using NC relevant criteria C = [c1, ...cNC

] weighted by135

fixed predetermined weights W = [w1, ...wNC
]. Actions in the object-level problem represent136

selecting the corresponding project (A = {a1, ..., aNP
}). The reward of a selecting a project is137

computed by summing the weighted criteria scores of the selected project: rO(ai) =
∑

c wccc,i [9].138
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While the object-level decision problem is our model of the project selection task, the meta-level139

MDP is our formalization of the problem of discovering resource-rational project selection strategies.140

It models the task of gathering information about deciding which project to select. States in the meta-141

level MDP are belief states that represent the current information about each project’s attributes. We142

model belief states using a multivariate Normal distribution to quantify the estimated value and uncer-143

tainty about the NP projects’ scores on the NC criteria: b = [(µ1,1, σ1,1) , · · · , (µNP ,NC
, σNP ,NC

)].144

The actions (decision operations) of the meta-level MDP gather information about the different145

attributes of projects by asking one of the NE experts for their estimate of how one of the projects146

scores on one of the criteria. Experts provide discrete estimates from minobs to maxobs, and ex-147

pert estimates can differ in their reliability and their cost. Specifically, the available actions are148

AM = {a1,1,1, · · · , aNP ,NC ,NE
,⊥}, where the meta-level action ai,j,k represents asking the expert149

ek for their estimate of criterion cj of project pi. After receiving information obs from an expert,150

the current belief state bpicj = N (µ, σ) is updated by applying the update equation for a Gaussian151

likelihood function with standard deviation σe (i.e. the expert’s reliability) and a conjugate Gaussian152

prior (i.e., the current belief), that is µ̂ ←
(

wci
·µ

(wci
·σ)2 +

wci
·obs

(wci
·σe)2

)
·
(
(wci · σ)2 + (wci · σe)

2
)

and153

σ̂ ←
√

1
1

(σ·s)2
+ 1

(σe·s)2
.154

The reward of these meta-level actions is the negative cost rM (ai,j,k) = −λek of asking the expert ek155

for help. Finally, the meta-level action ⊥ is the termination action, which corresponds to terminating156

the decision-making process and selecting a project. The reward of the termination action is the157

expected reward of selecting the best project according to the current belief-state. An optional158

budget parameter Na specifies the maximum number of available meta-level actions, after which the159

termination action is performed automatically.160

Meta-level MDPs are notoriously difficult to solve due to their extremely large state space [10, 13]. In161

the project selection task, the meta-level MDP has (maxobs −minobs + 2)NP ·NC ·NE possible belief162

states and NP ·NC ·NE + 1 possible meta-level actions. Our meta-level MDP introduces multiple163

new intricacies that current metareasoning methods like MGPO [14] aren’t equipped to handle,164

making strategy discovery in this setting especially difficult. Compared to previously formulated165

meta-level MDPs [4, 13, 10, 14, 22], our meta-level description of project selection differs in the166

following ways: (1) the maximum amount of meta-level actions is constrained with a budget, (2) the167

project selection task features multiple consultants who differ in both the quality of their advice and168

the cost of their services, (3) consultants in the project selection task offer discrete estimates of each169

criterion , requiring that (4) criteria ratings are scaled to allow weighting the criteria according to170

their importance.171

4 A new metareasoning algorithm for discovering optimal decision strategies172

for human project selection173

Previous metareasoning methods are unable to handle some of the intricacies of the project selection174

problem. Therefore, we developed a new strategy discovery method based on MGPO [14], which175

overcomes the limitations that prevent MGPO from being applicable to project selection. To reflect176

the commonalities and innovations, we call our new strategy discovery method MGPS (meta-greedy177

policy for project selection). Similar to MGPO, our method approximates the value of computation178

(VOC) [26] by myopically estimating the immediate improvement in decision quality. Improving179

upon MGPO, MGPS calculates the myopic approximation to the VOC in a way that accounts for180

discrete criteria ratings, criteria scaling, and multiple sources of information with different costs and181

reliabilities.182

MGPS calculates a myopic approximation to the VOC of asking an expert about a specific criterion183

of a single project according to Algorithm 1. To account for discrete advisor outputs, Algorithm 1184

iterates over the discrete set of possible ratings the expert might give and estimates the probability185

pobs of each rating (obs) and the belief update that would result from it µ̂obs . The probability of each186

rating is computed using the cumulative distribution function (Φ) of the belief state for the selected187

project’s criterion score (see Line 7). Here, the standard deviation σe of the likelihood function188

encodes the expert’s reliability, the prior (N (µ, σ)) is the current belief about the project’s score on189

the evaluated criterion, and the weights wci convert the criteria into a common currency. The belief190

update that would result from the observation (µ̂obs) is computed by applying the belief state update191
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Algorithm 1 MGPS VOC calculation for an action api,ci,ei

1: function MYOPIC_VOC(pi, ci, ei, b)
2: rp ← E[rO(pi)]
3: ralt ← maxpj∈P−{pi} E[rO(pj)]
4: µ, σ ← bpici
5: for obs from minobs to maxobs do
6: if minobs < obs < maxobs then

7: pobs ← Φ

(
wci

·(obs+0.5−µ)√
(wci

·σ)2+(wci
·σe)2

)
− Φ

(
wci

·(obs−0.5−µ)√
(wci

·σ)2+(wci
·σe)2

)
8: else if obs == minobs then

9: pobs ← Φ

(
wci

·(obs+0.5−µ)√
(wci

·σ)2+(wci
·σe)2

)
10: else
11: pobs ← 1− Φ

(
wci

·(obs−0.5−µ)√
(wci

·σ)2+(wci
·σe)2

)
12: end if
13: µ̂obs ←

(
wci

·µ
(wci

·σ)2 +
wci

·obs
(wci

·σe)2

)
·
(
(wci · σ)2 + (wci · σe)

2
)

14: end for
15: if rp > ralt then
16: voc←

∑maxobs

obs=minobs
pobs(rpalt

+ µ− rp − µ̂obs) · 1(rp − µ+ µ̂obs < ralt)
17: else
18: voc←

∑maxobs

obs=minobs
pobs(rp + µ̂obs − µ− rpalt

) · 1(rp − µ+ µ̂obs > ralt)
19: end if
20: return (1− wλ)voc - wλλei
21: end function

(see Line 13 and Equation 3). For the highest and lowest possible ratings, we instead calculate pobs192

using the open interval (see Lines 9 and 11). The updated expected value of the belief state according193

to an observation obs is then calculated using Bayesian inference to integrate the new observation194

into the belief state (see Line 13).195

The VOC calculation depends on the posterior belief states that would result from the different196

possible observations (µ̂obs), weighted by their probabilities. If the evaluated project currently has the197

highest expected reward (see Line 15), the VOC calculation expresses the probability of observing a198

value low enough that the second-best project becomes the most promising option (see Line 16). In199

the case where the evaluated project did not have the highest expected termination reward, the VOC200

calculation expresses the probability of observing a value high enough to make the evaluated project201

the most promising option (see Line 18). Finally, the cost of the requested expert λei is weighted202

using a free cost weight parameter wλ and subtracted from the VOC estimate (see Line 20).203

The full meta-greedy policy consists of calculating the VOC for all possible meta-level actions and204

iteratively selecting the meta-level action with the highest VOC. If no action has a positive VOC, the205

termination action ⊥ is chosen.206

5 Improving human project selection207

Having developed a general metareasoning method for discovering resource-rational strategies for208

human project selection, we now extend it to an intelligent cognitive tutor for teaching people how to209

select better projects. Our goal is to provide a proof of concept for a general AI-powered boosting210

approach that can be used to improve human decision-making across a wide range of project selection211

problems. We first introduce a general approach for teaching people the project selection strategies212

discovered by MGPS, and then apply it to a real-world project selection problem.213

5.1 MGPS Tutor: An intelligent tutor for teaching people how to select better projects214

Our intelligent tutor for project selection (MGPS Tutor) trains people to select the near-optimal215

decision operations identified by MGPS. To achieve this, it lets people practice on a series of project216

5



Figure 1: Example of the MGPS tutor offering a choice between requesting information from three
different experts (highlighted in orange) in the simplified training task of deciding between two
project alternatives. Refer to the supplemental material for an explanation of the experiment interface.

selection problems and gives them feedback. MPGS Tutor leverages MPGS in two ways: i) to217

pedagogically construct the set of queries the learner is asked to choose from, and ii) to give the218

learner feedback on their chosen query.219

Building on the choice tutor by [14], our tutor repeatedly asks the learner to choose from a pedagog-220

ically chosen set of decision operations (see Figure 1) that always includes the query that MGPS221

would have performed. Moreover, it leverages MGPS’s VOC calculation (Algorithm 1) to score the222

chosen query, and then provides binary feedback on its quality. If learners select a suboptimal expert,223

project, or criterion, they receive feedback indicating the correct choice and have to wait for a short224

time. The unpleasantness of having to wait serves as a penalty [6]. Otherwise, they receive positive225

reinforcement and the next choice is displayed. To receive positive reinforcement, the learner must226

select a query whose VOC is sufficiently close, as determined by a tolerance parameter t, to the VOC227

of the optimal action. We set the tolerance to t = 0.001.228

Our tutor teaches the strategy discovered by MGPS using a novel sophisticated training schedule,229

which fosters learning by incrementally increasing the complexity of the training task. This learning230

methodology is also known as shaping [31], and has been successfully applied to teach decision231

strategies to humans [14]. Our training schedule varies the numbers of projects, how many different232

expert assessments learners have to choose between, and the specific types of expert assessments233

offered as choices. In total, our tutor teaches the discovered project selection strategy using ten234

training trials. The first seven training trials use a smaller version of the project selection task with235

only two projects, while the last three trials use the full environment with five projects. The number236

of choices gradually increases throughout training from 1 in the first training trial to 9 in the last three237

training trials. The tutor varies the types of choices across trials. After an initial trial with only a238

single choice, the tutor offers choices that focus on different criteria within the same project for two239

trials. Then, the tutor offers choices that focus on different experts within the same project for two240

trials. The remaining trials combine both types of highlights while sometimes also featuring queries241

about different projects and also increasing the overall number of choices.242

5.2 Evaluating the effectiveness of MGPS Tutor in a training experiment243

To evaluate if AI-powered boosting can improve human project selection, we tested the MPGS tutor244

in a training experiment. We tested if people trained by MPGS tutor learn more resource-rational245

project selection strategies. To make our assessment task as naturalistic as possible, we modelled it246

on a real project selection problem that was faced by an Iranian financial institution [17]. We will247

first describe how we modeled this real-world problem, and then the training experiment.248
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Table 1: Results of the human training experiment. Per condition, the normalized mean resource-
rationality score and the mean click agreement are reported. For both measures, we also report the
95% confidence interval under the Gaussian assumption (±1.96 standard errors).

Condition RR-score Click Agreement

MGPS Tutor 0.3256± 0.0609 0.4271± 0.0201
No tutor −0.0227± 0.0622 0.2521± 0.0171
Dummy tutor 0.0225± 0.0612 0.2664± 0.0159

A project-selection problem from the real world Khalili-Damghani and Sadi-Nezhad [17] worked249

on the real-world problem of helping a financial institution select between five potential projects with250

an eye to sustainability. Each project was evaluated by six advisors, who assigned scores from one to251

five on six different criteria. For our model of the task, we use the same number of experts, criteria,252

and projects, and the same criteria weights as the financial institution. The remaining parameters253

of the meta-level MDP were estimated as follows. We initialized the beliefs about the project’s254

attributes by calculating the mean and the standard deviation of all expert ratings for each criterion255

according to [17]. We estimated the reliability of each expert by calculating the standard deviation256

from the average distance of their ratings from the average rating of all other experts, weighted by the257

number of occurrences of each guess. We estimated the cost parameter λ of the meta-level MDP by258

λ = cost
stakes · r(⊥) to align the meta-level MDP’s cost-reward ratio to its real-world equivalent. Using259

the expected termination reward of the environment r(⊥) = 3.4 and rough estimates for the stakes260

stakes = $10000000 and expert costs cost = $5000, this led to λ = 0.002. While [17] assumed all261

expert ratings are available for free, this is rarely the case. To make our test case more representative,262

we assumed that advisor evaluations are available on-request for a consulting fee. To capture that263

real-world decisions often have deadlines that limit how much information can be gathered, we set264

the maximum number of sequentially requested expert consultations to 5.265

Methods of the experiment We recruited 301 participants for an online training experiment266

on Prolific. The average participant age was 29 years, and 148 participants identified as female.267

Participants were paid £3.50 for completing the experiment, plus an average bonus of £0.50. The268

median duration of the experiment was 22 minutes, resulting in a median pay of £10.9 per hour. Our269

experiment was preregistered on AsPredicted and approved by the ethics commission of [removed]270

under IRB protocol [removed].271

Each participant was randomly assigned to one of three conditions: (1) the No tutor condition, in272

which participants did not receive any feedback and were free to discover efficient strategies on273

their own; (2) the MGPS tutor condition, in which participants practiced with our cognitive tutor274

that provided feedback on the resource-rationality score MGPS assigns to the selected planning275

actions; and (3) the Dummy tutor condition, an additional control condition in which participants276

practiced with a dummy tutor comparable to the MGPS tutor, albeit with randomized feedback on277

which planning actions are correct. All participants practiced their planning strategy in 10 training278

trials and were then evaluated across 10 test trials.279

We evaluated the participants’ performance using two measures: their RR-score and click agreement.280

RR-score’s are normalized by subtracting the average reward of a random baseline algorithm and281

dividing by the participant scores’ standard deviation. The random baseline algorithm is defined as the282

policy that chooses meta-level actions at random until the maximum number of decision operations is283

reached. Click agreement measures, how well participants learned to follow the near-optimal strategy284

discovered by our method. Specifically, we computed for each participant, which proportion of285

their information requests matched the action taken by the approximately resource-rational strategy286

discovered by MGPS.287

Experiment results Table 1 shows the results of the experiment. To determine whether the condition288

of participants had a significant effect on the RR-score and click agreement, we used an ANOVA289

analysis with Box approximation [3]. The ANOVA revealed a significant effect of condition on290

both RR-score (F (1.99, 293.57) = 10.48, p < .0001) and click agreement (F (1.99, 291.48) = 15.5,291

p < .0001). We further compared the performance of participants in the MGPS tutor condition to292

participants in the two control conditions with post hoc ANOVA-type statistics and used Cohen’s d293
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Table 2: Results of the performance evaluation. For each algorithm, we report the averge normalized
resource-rationality score (RR-Scores) and the runtime per decision problem. For both measures, we
also report the 95% confidence interval under the Gaussian assumption (±1.96 standard errors).

Algorithm RR-score Runtime (s)

MGPS 0.9942± 0.0234 0.9079± 0.0052
PO-UCT (10 steps) −0.4344± 0.0106 0.0175± 0.0004
PO-UCT (100 steps) 0.7309± 0.0302 0.1972± 0.0008
PO-UCT (1000 steps) 0.8681± 0.0256 2.3567± 0.0028
PO-UCT (5000 steps) 0.9054± 0.0232 10.8913± 0.0173

[8] to evaluate the size of the effects. The post hoc tests revealed that participants in the MGPS tutor294

condition achieved a significantly higher RR-score than participants in the No tutor (F (1) = 17.88,295

p < .0001, d = .35) and Dummy tutor (F (1) = 13.4, p = .0002, d = .31) conditions. Additionally,296

participants in the MGPS tutor reached a higher click agreement with our pre-computed near optimal297

strategy than participants in the No tutor (F (1) = 25.08, p < .0001, d = .58) and Dummy tutor298

(F (1) = 19.3, p < .0001, d = .56) conditions.299

When evaluated on the same test trials and normalizing against the baseline reward and the standard300

deviation of the experiment results, MGPS achieves a mean reward of 1.17, demonstrating that301

MGPS discovers more resource-rational strategies than participants across all conditions. Although302

participants in the MGPS tutor condition performed significantly the better than participants in the303

other conditions, they did not learn to follow the strategy taught by the tutor exactly. Participants304

in the other conditions only discovered strategies with a similar RR-score to the random baseline305

strategy, with participants in the No tutor condition performing even worse than the random baseline306

strategy, and participants in the Dummy tutor condition outperforming the random baseline only by a307

small margin.308

6 Performance evaluation309

The results reported in the previous section show that MPGS can discover project selection strategies310

that are more effective than the strategies people discover on their own. But how does its performance311

compare to other strategy discovery algorithms? To answer this question, we evaluated MGPS on312

a computational benchmark. We chose PO-UCT [29] for comparisons because it is an established313

baseline for metareasoning algorithms in partially observable environments [14] and the more314

specialized MGPO algorithm is not applicable to project selection. PO-UCT utilizes Monte Carlo tree315

search to simulate the effects of different actions, resulting in more accurate results with increased316

computation time, making it a useful baseline for MGPS’s computational efficiency and performance.317

Method We evaluated the effectiveness of our method in the project selection task by comparing it318

against PO-UCT [29] with different numbers of steps. All methods were evaluated across the same319

5000 randomly generated instances of the project selection environment.320

Our main performance measure was the resource-rationality score (RR-Score defined in Equation 1).321

To highlight the achieved improvements over a baseline algorithm that performs random meta-level322

actions, we normalized the reported RR-scores. Specifically, we applied a z-score transformation,323

subtracting the average reward of the random baseline algorithm (see Section 5.2) from the RR-324

Scores and dividing by the evaluated algorithm’s RR-Scores’ standard deviation. We analyze the325

differences in RR-Scores with an ANOVA and evaluate the size of statistical effects with Cohen’s d326

[8]. Additionally, we compare the computational efficiency of the different methods, which is crucial327

for being able to provide real-time feedback in our cognitive tutor.328

Results As shown in Table 2, MGPS outperformed all tested versions of PO-UCT and the random329

baseline strategy. 1 An ANOVA revealed significant differences in the RR-scores of the strategies330

discovered by the different methods (F (4, 24995) = 2447, p < .0001). Hukey-HSD post-hoc331

1As the RR-scores are normalized by subtracting the mean RR-score of the random baseline, the random
baseline strategy itself has a normalized RR-score of 0.
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comparisons indicated that the strategies discovered by MGPS are significantly more resource-332

rational than the strategies discovered by PO-UCT with 10 steps (p < .0001, d = 2.18), 100 steps333

(p < .0001, d = .27), 1000 steps (p < .0001, d = .14), or 5000 steps (p < .0001, d = .11).334

While MGPS achieves significantly higher RR-scores than all PO-UCT variants, the size of the effect335

decreases from a very large effect to a small effect when increasing PO-UCT’s computational budget336

sufficiently. We therefore expect that PO-UCT with a much more than 5000 steps would ultimately337

achieve comparable RR-scores to MGPO, albeit at a much higher computational cost. Moreover,338

MGPS was substantially faster than PO-UCT with a computational budget of 1000 steps or more,339

which is when PO-UCT’s performance starts to approach that of MGPS. With a computational budget340

of 100 steps or fewer, PO-UCT is faster than MGPS. However, such a small computational budget is341

not enough for PO-UCT to discover strategies with a RR-score anywhere near that of the strategy342

discovered by MGPS. Critically, the high amount of computation required for PO-UCT to achieve an343

approximately similar level of resource-rationality would render PO-UCT unusable for a cognitive344

tutor that computes feedback in real time.345

7 Conclusion346

People’s decision-making is prone to systematic errors [16], and although people are happy to delegate347

some decisions, most CEOs are unlikely to let AI decide which projects their company should work348

on. Moreover, people are reluctant to use the more accurate technical decision procedures because349

they tend to be more tedious [28, 21, 18]. Motivated by people’s insistence on making their own350

decisions with simple heuristics, we leveraged AI to discover and teach decision strategies that351

perform substantially better than people’s intuitive strategies but are nevertheless simple enough that352

people use them. To this end, we introduced a metareasoning method for leveraging AI to discover353

optimal decision strategies for human project selection. Modeling project selection through the lens354

of resource rationality allowed is to formulate a mathematically precise criterion for the quality of355

decision strategies for human project selection. We further develop an efficient automatic strategy356

discovery algorithm automatically discovers efficient strategies for human project selection. Our357

algorithm discovered decision strategies that are much more resource-rational than the strategies358

humans discovered on their own and the strategies discovered by a general-purpose algorithm for359

solving POMDPs (PO-UCT). Using the efficient decision strategies discovered by our algorithm,360

we create a cognitive tutor that uses a shaping schedule and metacognitive feedback to teach the361

strategies to humans. In the training experiment, our cognitive tutor fostered significant improvements362

in participants’ resource rationality.363

A main limitation of our method is that it is unknown how precisely the environment parameters364

need to be estimated to construct the metareasoning task, which can prove especially problematic365

when there isn’t much data on past decisions. Future work could investigate and potentially address366

it by extending MGPS with a Bayesian inference approach to estimate the environment structure.367

Encouraged by the promising results from successfully teaching humans in our naturalistic model368

of project selection, we are excited about future work assessing the real-world impact of improving369

people’s decision-making by evaluating their decisions directly in the real world. Additionally,370

we are also excited about potential future work that combines MGPS with AI-Interpret [32] to371

automatically derive human-legible recommendations for how to make project selection decisions.372

Lastly, although MGPS performed very well on our benchmarks, MGPS’s myopic approximation373

could fail in more complicated scenarios with interdependent criteria. Such challenges could be374

addressed by solving meta-level MDPs with methods from deep reinforcement learning, for example375

by utilizing AlphaZero [30].376

Our results indicate that it is possible to use resource-rational analysis combined with automatic377

strategy discovery to improve human decision-making in a realistic project selection problem. As378

selecting projects is a common problem faced by both organizations and individuals, improving their379

decision strategies in this setting would have a direct positive impact. For example, a project-selection380

tutor could be integrated into MBA programs to teach future decision-makers efficient decision381

strategies as part of their education. We are optimistic that our general methodology is also applicable382

to other real-world problems, offering a promising pathway to teach people efficient strategies for383

making better decisions in other areas as well. Besides project selection problems, we believe our384

approach could be used to improve real-world decision-making in areas such as career choice, grant385

making, and public policy.386
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