
Published as a conference paper at ICLR 2023

OTOV2: AUTOMATIC, GENERIC, USER-FRIENDLY

Tianyi Chen∗, Luming Liang, Tianyu Ding, Ilya Zharkov
Microsoft
Redmond, WA 98052, USA
{tiachen,lulian,tianyuding,zharkov}@microsoft.com

Zhihui Zhu†

The Ohio State of University
Columbus, OH 43210, USA
zhu.3440@osu.edu

ABSTRACT

The existing model compression methods via structured pruning typically require
complicated multi-stage procedures. Each individual stage necessitates numerous
engineering efforts and domain-knowledge from the end-users which prevent their
wider applications onto broader scenarios. We propose the second generation of
Only-Train-Once (OTOv2), which first automatically trains and compresses a gen-
eral DNN only once from scratch to produce a more compact model with competi-
tive performance without fine-tuning. OTOv2 is automatic and pluggable into var-
ious deep learning applications, and requires almost minimal engineering efforts
from the users. Methodologically, OTOv2 proposes two major improvements: (i)
Autonomy: automatically exploits the dependency of general DNNs, partitions
the trainable variables into Zero-Invariant Groups (ZIGs), and constructs the com-
pressed model; and (ii) Dual Half-Space Projected Gradient (DHSPG): a novel
optimizer to more reliably solve structured-sparsity problems. Numerically, we
demonstrate the generality and autonomy of OTOv2 on a variety of model archi-
tectures such as VGG, ResNet, CARN, ConvNeXt, DenseNet and StackedUnets,
the majority of which cannot be handled by other methods without extensive
handcrafting efforts. Together with benchmark datasets including CIFAR10/100,
DIV2K, Fashion-MNIST, SVNH and ImageNet, its effectiveness is validated by
performing competitively or even better than the state-of-the-arts. The source code
is available at https://github.com/tianyic/only_train_once.

1 INTRODUCTION

Large-scale Deep Neural Networks (DNNs) have demonstrated successful in a variety of applica-
tions (He et al., 2016). However, how to deploy such heavy DNNs onto resource-constrained envi-
ronments is facing severe challenges. Consequently, in both academy and industry, compressing full
DNNs into slimmer ones with negligible performance regression becomes popular. Although this
area has been explored in the past decade, it is still far away from being fully solved.

Weight pruning is perhaps the most popular compression method because of its generality and ability
in achieving significant reduction of FLOPs and model size by identifying and removing redundant
structures (Gale et al., 2019; Han et al., 2015; Lin et al., 2019). However, most existing pruning
methods typically proceed a complicated multi-stage procedure as shown in Figure 1, which has
apparent limitations: (i) Hand-Craft and User-Hardness: requires significant engineering efforts
and expertise from users to apply the methods onto their own scenarios; (ii) Expensiveness: con-
ducts DNN training multiple times including the foremost pre-training, the intermediate training for
identifying redundancy and the afterwards fine-tuning; and (iii) Low-Generality: many methods
are designed for specific architectures and tasks and need additional efforts to be extended to others.

To address those drawbacks, we naturally need a DNN training and pruning method to achieve the

Goal. Given a general DNN, automatically train it only once to achieve both high performance and
slimmer model architecture simultaneously without pre-training and fine-tuning.

To realize, the following key problems need to be resolved systematically. (i) What are the removal
structures (see Section 3.1 for a formal definition) of DNNs? (ii) How to identify the redundant

∗Corresponding Author. †Partially supported by NSF grant CCF-2240708.

1

https://github.com/tianyic/only_train_once

Published as a conference paper at ICLR 2023

OTOv2 OTOv1 Others
Training Cost Low Low High

Autonomy ✓ ✓– ✗
User-Friendliness ✓ ✗ ✗

Generality ✓ ✓ ✓–

Classical Model Compression Methods

OTOv2

OTOv1

Generic

Automatic User-Friendly

High Performance

Train Full

Model

Identify Model

Redundancy

Construct

Slim Model

Train Full Model

by HSPG

Construct

Slim Model

Fine-Tune

Retrain

Create ZIG

Partition

Figure 1: OTOv2 versus existing methods.

removal structures? (iii) How to effectively remove redundant structures without deteriorating the
model performance to avoid extra fine-tuning? (iv) How to make all the above proceeding automat-
ically? Addressing them is challenging in the manner of both algorithmic designs and engineering
developments, thereby is not achieved yet by the existing methods to our knowledge.

To resolve (i-iii), Only-Train-Once (OTOv1) (Chen et al., 2021b) proposed a concept so-called Zero-
Invariant Group (ZIG), which is a class of minimal removal structures that can be safely removed
without affecting the network output if their parameters are zero. To jointly identify redundant ZIGs
and achieve satisfactory performance, OTOv1 further proposed a Half-Space Projected Gradient
(HSPG) method to compute a solution with both high performance and group sparsity over ZIGs,
wherein zero groups correspond to redundant removal structures. As a result, OTOv1 trains a full
DNN from scratch only once to compute a slimmer counterpart exhibiting competitive performance
without fine-tuning, and is perhaps the closest to the goal among the existing competitors.

Nevertheless, the fundamental problem (iv) is not addressed in OTOv1, i.e., the ZIGs partition is
not automated and only implemented onto several specific architectures. OTOv1 suffers a lot from
requiring extensive hand-crafting efforts and domain knowledge to partition trainable variables into
ZIGs which prohibits its broader usages. Meanwhile, OTOv1 highly depends on HSPG to yield a so-
lution with both satisfactory performance and high group sparsity. However, the sparsity exploration
of HSPG is typically sensitive to the regularization coefficient thereby requires time-consuming
hyper-parameter tuning and lacks capacity to precisely control the ultimate sparsity level.

Library Usage
1 from only train once import OTO
2 # General DNN model
3 oto = OTO(model)
4 optimizer = oto.dhspg()
5 # Train as normal
6 optimizer.step()
7 oto.compress()

To overcome the drawbacks of OTOv1 and simultaneously
tackle (i-iv), we propose Only-Train-Once v2 (OTOv2), the
next-generation one-shot deep neural network training and
pruning framework. Given a full DNN , OTOv2 is able to train
and compress it from scratch into a slimmer DNN with sig-
nificant FLOPs and parameter quantity reduction. In contrast
to others, OTOv2 drastically simplifies the complicated multi-
stage procedures; guarantees performance more reliably than OTOv1; and is generic, automatic
and user-friendly. Our main contributions are summarized as follows.

• Infrastructure for Automated DNN One-Shot Training and Compression. We propose and
develop perhaps the first generic and automated framework to compress a general DNN with both
excellent performance and substantial complexity reduction in terms of FLOPs and model car-
dinality. OTOv2 only trains the DNN once, neither pre-training nor fine-tuning is a necessity.
OTOv2 is user-friendly and easily applied onto generic tasks as shown in library usage. Its suc-
cess relies on the breakthroughs from both algorithmic designs and infrastructure developments.

• Automated ZIG Partition and Automated Compressed Model Construction. We propose
a novel graph algorithm to automatically exploit and partition the variables of a general DNN
into Zero-Invariant Groups (ZIGs), i.e., the minimal groups of parameters that need to be pruned
together. We further propose a novel algorithm to automatically construct the compressed model
by the hierarchy of DNN and eliminating the structures corresponding to ZIGs as zero. Both
algorithms are dedicately designed, and work effectively with low time and space complexity.

• Novel Structured-Sparsity Optimization Algorithm. We propose a novel optimization algo-
rithm, called Dual Half-Space Projected Gradient (DHSPG), to train a general DNN once from
scratch to effectively achieve competitive performance and high group sparsity in the manner of
ZIGs, which solution is further leveraged into the above automated compression. DHSPG for-
mulizes a constrained sparse optimization problem and solves it by constituting a direction within
the intersection of dual half-spaces to largely ensure the progress to both the objective convergence
and the identification of redundant groups. DHSPG outperforms the HSPG in OTOv1 in terms of
enlarging search space, fewer hyper-parameter tuning, and more reliably controlling sparsity.

2

Published as a conference paper at ICLR 2023

• Experimental Results. We apply OTOv2 onto a variety of DNNs (most of which have struc-
tures with complicated connectivity) and extensive benchmark datasets, including CIFAR10/100,
DIV2K, SVNH, Fashion-MNIST and ImageNet. OTOv2 trains and compresses various DNNs
simultaneously from scratch without fine-tuning for significant inference speedup and parameter
reduction, and achieves competitive or even state-of-the-art results on compression benchmarks.

2 RELATED WORK

Structured Pruning. To compute compact architectures for efficient model inference and storage,
structured pruning identifies and prunes the redundant structures in a full model (Gale et al., 2019;
Han et al., 2015). The general procedure can be largely summarized as: (i) train a full model; (ii)
identify and remove the redundant structures to construct a slimmer DNN based on various criteria,
including (structured) sparsity (Lin et al., 2019; Wen et al., 2016; Li et al., 2020b; Zhuang et al.,
2020; Chen et al., 2017; 2018; 2021a; 2020a; Gao et al., 2020; Zhuang et al., 2020; Meng et al.,
2020; Yang et al., 2019), Bayesian pruning (Zhou et al., 2019; Louizos et al., 2017; van Baalen et al.,
2020), ranking importance (Li et al., 2020a; Luo et al., 2017; Hu et al., 2016; He et al., 2018a; Li
et al., 2019; Zhang et al., 2018), reinforcement learning (He et al., 2018b; Chen et al., 2019), lottery
ticket (Frankle & Carbin, 2018; Frankle et al., 2019; Renda et al., 2020), etc.; (iii) (iteratively) retrain
the pruned model to regain the accuracy regression during pruning. These methods have to conduct
a complicated and time-consuming procedure to trains the DNN multiple times and requires a good
deal of domain knowledge to manually proceed every individual step. OTOv1 (Chen et al., 2021b) is
recently proposed to avoid fine-tuning and end-to-end train and compress the DNN once, whereas its
automation relies on spending numerous handcrafting efforts on creating ZIGs partition and slimmer
model construction for specific target DNNs in advance, thereby is actually semi-automated.

Automated Machine Learning (AutoML). OTOv2 fills into a vital gap within AutoML domain
regarding given an general DNN architecture, how to automatically train and compress it into a slim-
mer one with competitive performance and significant FLOPs and parameter quantity reduction. The
existing AutoML methods focus on (i) automated feature engineering (Kanter & Veeramachaneni,
2015), (ii) automated hyper-parameter setting (Klein et al., 2017), and (iii) neural architecture search
(NAS) (Elsken et al., 2018). NAS searches a DNN architecture with satisfactory performance from
a prescribed fixed full graph wherein the connection between two nodes (tensors) is searched from
a pool of prescribed operators. NAS itself has no capability to slim and remove redundancy from
the searched architectures due to the pool being fixed and is typically time-consuming. As a result,
NAS may serve as a prerequisite step to search a target network architecture as the input to OTOv2.

3 OTOV2

OTOv2 has nearly reached the goal of model compression via weight pruning, which is outlined
in Algorithm 1. In general, given a neural networkM to be trained and compressed, OTOv2 first
automatically figures out the dependencies among the vertices to exploit minimal removal structures
and partitions the trainable variables into Zero-Invariant Groups (ZIGs) (Algorithm 2). ZIGs (G)
are then fed into a structured sparsity optimization problem, which is solved by a Dual Half-Space
Projected Gradient (DHSPG) method to yield a solution x∗

DHSPG with competitive performance as
well as high group sparsity in the view of ZIGs (Algorithm 3). The compressed modelM∗ is ul-
timately constructed via removing the redundant structures corresponding to the ZIGs being zero.
M∗ significantly accelerates the inference in both time and space complexities and returns the iden-
tical outputs to the full modelM parameterized as x∗

DHSPG due to the properties of ZIGs, thus avoids
further fine-tuningM∗. The whole procedure is proceeded automatically and easily employed onto
various DNN applications and consumes almost minimal engineering efforts from the users.

Algorithm 1 Outline of OTOv2.

1: Input. An arbitrary full modelM to be trained and compressed (no need to be pretrained).
2: Automated ZIG Partition. Partition the trainable parameters ofM into G.
3: TrainM by DHSPG. Seek a highly group-sparse solution x∗

DHSPG with high performance.
4: Automated Compressed ModelM∗ Construction. Construct a slimmer model upon x∗

DHSPG.
5: Output: Compressed slimmed modelM∗.

3

Published as a conference paper at ICLR 2023

3.1 AUTOMATED ZIG PARTITION

Background. We review relevant concepts before describing how to proceed ZIG partition automat-
ically. Due to the complicated connectivity of DNNs, removing an arbitrary structure or component
may result in an invalid DNN. We say a structure removal if and only if the DNN without this com-
ponent still serves as a valid DNN. Consequently, a removal structure is called minimal if and only if
it can not be further decomposed into multiple removal structures. A particular class of minimal re-
moval structures—that produces zero outputs to the following layer if their parameters being zero—
are called ZIGs (Chen et al., 2021b) which can be removed directly without affecting the network
output. Thus, each ZIG consists of a minimal group of variables that need to be pruned together and
dominates most DNN structures, e.g., layers as Conv, Linear and MultiHeadAtten. While
ZIGs exist for general DNNs, their topology can vary significantly due to the complicated connec-
tivity. This together with the lack of API poses severe challenges to automatically exploit ZIGs in
terms of both algorithmic designs and engineering developments.

Algorithm 2 Automated Zero-Invariant Group Partition.

1: Input: A DNNM to be trained and compressed.
2: Construct the trace graph (E ,V) ofM.
3: Find connected components C over all accessory, shape-dependent joint and unknown vertices.
4: Grow C till incoming nodes are either stem or shape-independent joint vertices.
5: Merge connected components in C if any intersection.
6: Group pairwise parameters of stem vertices in the same connected component associated with

parameters from affiliated accessory vertices if any as one ZIG into G.
7: Return the zero-invariant groups G.

Algorithmic Outline. To resolve the autonomy of ZIG partition, we present a novel, effective and
efficient algorithm. As outlined in Algorithm 2, the algorithm essentially partitions the graph of
DNN into a set of connected components of dependency, then groups the variables based on the
affiliations among the connected components. For more intuitive illustration, we provide a small but
complicated DemoNet along with explanations about its ground truth minimal removal structures
(ZIGs) in Figure 2. We now elaborate Algorithm 2 to automatically recover the ground truth ZIGs.

Graph Construction.Graph Construction. In particular, we first establish the trace graph (E ,V) of the target DNN,
wherein each vertex in V refers to a specific operator, and the edges in E describe how they con-
nect (line 2 of Algorithm 2). We categorize the vertices into stem, joint, accessory or unknown.
Stem vertices equip with trainable parameters and have capacity to transform their input tensors
into other shapes, e.g., Conv and Linear. Joint vertices aggregate multiple input tensors into a
single output such as Add, Mul and Concat. Accessory vertices operate a single input tensor into
a single output and may possess trainable parameters such as BatchNorm and ReLu. The remain-
ing unknown vertices proceed some uncertain operations. Apparently, stem vertices compose most
of the DNN parameters. Joint vertices establish the connections cross different vertices, and thus
dramatically bring hierarchy and intricacy of DNN. To keep the validness of the joint vertices, the
minimal removal structures should be carefully constructed. Furthermore, we call joint vertices be-
ing input shape dependent (SD) if requiring inputs in the same shapes such as Add, otherwise being
shape-independent (SID) such as Concat along the channel dimension for Conv layers as input.

Construct Connected Components of Dependency.Construct Connected Components of Dependency. Now, we need to figure out the exhibiting depen-
dency across the vertices to seek the minimal removal structures of the target DNN. To proceed,
we first connect accessory, SD joint and unknown vertices together if adjacent to form a set of con-
nected components C (see Figure 2c and line 3 of Algorithm 2). This step is to establish the skeletons
for finding vertices that depend on each other when considering removing hidden structures. The
underlying intuitions of this step in depth are (i) the adjacent accessory vertices operate and are
subject to the same ancestral stem vertices if any; (ii) SD joint vertices force their ancestral stem
vertices dependent on each other to yield tensors in the same shapes; and (iii) unknown vertices
introduce uncertainty, hence finding potential affected vertices is necessary. We then grow C till all
their incoming vertices are either stem or SID joint vertices and merge the connected components
if any intersection as line 4-5. Remark here that the newly added stem vertices are affiliated by the
accessory vertices, such as Conv1 for BN1-ReLu and Conv3+Conv2 for BN2|BN3 in Figure 2d.
In addition, the SID joint vertices introduce dependency between their affiliated accessory vertices
and incoming connected components, e.g., Concat-BN4 depends on both Conv1-BN1-ReLu
and Conv3+Conv2-BN2|BN3 since BN4 normalizes their concatenated tensors along channel.

4

Published as a conference paper at ICLR 2023

Conv1 BN1Input ReLu

Conv2Conv3

BN2

ConcatBN4Conv4AvgPool

Linear1Linear2Output

BN3

(a) DNN to be trained and compressed.

Conv1 BN1Input ReLu

Conv2Conv3

BN2

ConcatBN4Conv4AvgPool

Linear1Linear2Output

BN3

(b) Accessory and shape-dependent vertices.

Conv1 BN1Input ReLu

Conv2Conv3

BN2

ConcatBN4Conv4AvgPool

Linear1Linear2Output

BN3

(c) Connected components.

Conv1 BN1Input ReLu

Conv2Conv3

BN2

ConcatBN4Conv4AvgPool

Linear1Linear2Output

BN3

(d) Connected components of dependency.
K̂1 K̂2 K̂3 K̂4 W1b1 b2 b3 b4 bw1

γ1 γ2 γ3β1 β2 β3γ1

4
β1

4
γ2

4
β2

4

(e) Zero-Invariant Groups.

Figure 2: Automated ZIG partition illustration. K̂i and bi are the flatten filter matrix and bias vector
of Convi, where the jth row of K̂i represents the jth 3D filter. γi and βi are the weighting and
bias vectors of BNi. Wi and bwi are the weighting matrix and bias vector for Lineari. The
ground truth ZIGs G are present in Figure 2e. Since the output tensors of Conv2 and Conv3 are
added together, both layers associated with the subsequent BN2 and BN3 must remove the same
number of filters from K̂2 and K̂3 and scalars from b2, b3,γ2,γ3,β2 and β3 to keep the addition
valid. Since BN4 normalizes the concatenated outputs along channel from Conv1-BN1-ReLu and
Conv3+Conv2-BN2|BN3, the corresponding scalars in γ4,β4 need to be removed simultaneously.

Form ZIGs.Form ZIGs. Finally, we form ZIGs based on the connected components of dependency as Figure 2d.
The pairwise trainable parameters across all individual stem vertices in the same connected com-
ponent need to be first grouped together as Figure 2e, wherein the parameters of the same color
represent one group. Later on, the accessory vertices insert their trainable parameters if applicable
into the groups of their dependent stem vertices accordingly. Some accessory vertex such as BN4
may depend on multiple groups because of the SID joint vertex, thereby its trainable parameters
γ4 and β4 need to be partitioned and separately added into corresponding groups, e.g., γ1

4 ,β
1
4 and

γ2
4 ,β

2
4 . In addition, the connected components that are adjacent to the output of DNN are excluded

from forming ZIGs since the output shape should be fixed such as Linear2. For safety, the con-
nected components that possess unknown vertices are excluded as well due to uncertainty, which
further guarantees the generality of the framework applying onto DNNs with customized operators.
Complexity Analysis. The proposed automated ZIG partition Algorithm 2 is a series of customized
graph algorithms dedicately composed together. In depth, every individual sub-algorithm is achieved
by depth-first-search recursively traversing the trace graph of DNN and conducting step-specific
operations, which has time complexity asO(|V|+ |E|) and space complexity asO(|V|) in the worst
case. The former one is computed by discovering all neighbors of each vertex by traversing the
adjacency list once in linear time. The latter one is because the trace graph of DNN is acyclic
thereby the memory cache consumption is up to the length of possible longest path for an acyclic
graph as |V|. Therefore, automated ZIG partition can be efficiently completed within linear time.

3.2 DUAL HALF-SPACE PROJECTED GRADIENT (DHSPG)

Given the constructed ZIGs G by Algorithm 2, the next step is to jointly identify which groups are
redundant to be removed and train the remaining groups to achieve high performance. To tackle it,
we construct a structured sparsity optimization problem and solve it via a novel DHSPG. Compared
with HSPG, DHSPG constitutes a dual-half-space direction with automatically selected regulariza-
tion coefficients to more reliably control the sparsity exploration, and enlarges the search space by
partitioning the ZIGs into separate sets to avoid trapping around the origin for better generalization.

5

Published as a conference paper at ICLR 2023

Target Problem. Structured sparsity inducing optimization problem is a natural choice to seek a
group sparse solution with high performance, wherein the zero groups refer to the redundant struc-
tures, and the non-zero groups exhibit the prediction power to maintain competitive performance to
the full model. We formulate an optimization problem with a group sparsity constraint in the form
of ZIGs G as (1) and propose a novel Dual Half-Space Projected Gradient (DHSPG) to solve it.

minimize
x∈Rn

f(x), s.t. Card{g ∈ G|[x]g = 0} = K, (1)

where K is the target group sparsity level. Larger K indicates higher group sparsity in the solution
and typically results in more aggressive FLOPs and parameter quantity reductions.

O

x
∗

2

x
∗

1

x
∗

3

x
∗

4

x
∗

5

∞

∞

[x]1

[x]2

Figure 3: Local optima x∗ ∈
R2 distribution over the ob-
jective landscape.

Related Optimizers and Limitations. To solve such constrained
problem, ADMM converts it into a min-max problem, but can not
tackle the non-smooth and non-convex hard constraint of sparsity
without hurting the objective, thus necessitates extra fine-tuning af-
terwards (Lin et al., 2019). HSPG in OTOv1 (Chen et al., 2021b)
and proximal methods (Xiao & Zhang, 2014) relax it into a non-
constrained mixed ℓ1/ℓp regularization problem, but can not guar-
antee the sparsity constraint because of the implicit relationship be-
tween the regularization coefficient and the sparsity level. In addi-
tion, the augmented regularizer penalizes the magnitude of the en-
tire trainable variables which restricts the search space to converge
to the local optima nearby the origin point, e.g., x∗

1 in Figure 3.
However, the local optima with the highest generalization may lo-
cate variably for different applications, and some may stay away
from the origin point, e.g., x∗

2, · · · ,x∗
5 in Figure 3.

Algorithm 3 Dual Half-Space Projected Gradient (DHSPG)

1: Input: initial variable x0 ∈ Rn, initial learning rate α0,
warm-up steps Tw, half-space project steps Th, target
group sparsity K and ZIGs G.

2: Warm up Tw steps via stochastic gradient descent.
3: Construct Gp and Gnp given G and K as (2).
4: for t = Tw, Tw + 1, Tw + 2, · · · , do
5: Compute gradient estimate∇f(xt) or its variant.
6: Update [xt+1]Gnp as [xt − αt∇f(xt)]Gnp .
7: Select proper λg for g ∈ Gp.
8: Compute [x̃t+1]Gp

via subgradient descent of ψ.
9: if t ≥ Th then

10: Perform Half-Space projection over [x̃t+1]Gp
.

11: Update [xt+1]Gp
← [x̃t+1]Gp

.
12: Update αt+1.
13: Return the final iterate x∗

DHSPG.

Algorithm Outline for DHSPG. To
resolve the drawbacks of the exist-
ing optimization algorithms for solv-
ing (1), we propose a novel algo-
rithm, named Dual Half-Space Pro-
jected Gradient (DHSPG), stated as
Algorithm 3, with two takeaways.

Partition Groups.Partition Groups. To avoid always
trapping in the local optima near the
origin point, we further partition the
groups in G into two subsets: one
has magnitudes of variables being pe-
nalized Gp, and the other does not
force to penalize variable magnitude
Gnp. Different criteria can be applied
here to construct the above partition
based on salience scores, e.g., cosine-
similarity cos (θg) between the pro-
jection direction−[x]g and the negative gradient or its estimation−[∇f(x)]g . Higher cos-similarity
over g ∈ G indicates that projecting the group of variables in g onto zeros is more likely to make
progress to the optimality of f (considering the descent direction from the perspective of optimiza-
tion). The magnitude over [x]g then needs to be penalized. Therefore, we compute Gp by picking
up the ZIGs with top-K highest salience scores and Gnp as its complementary as (2). To compute
more reliable scores, the partition is proceeded after performing Tw warm-up steps as line 2-3.

Gp = (Top-K) argmax
g∈G

salience-score(g) and Gnp = {1, 2, · · · , n}\Gp. (2)

Update Variables.Update Variables. For the variables in Gnp of which magnitudes are not penalized, we proceed
vanilla stochastic gradient descent or its variants, such as Adam (Kingma & Ba, 2014), i.e.,
[xt+1]Gnp

← [xt]Gnp
− αt[∇f(xt)]Gnp

. For the groups of variables in Gp to penalize magnitude,
we seek to find out redundant groups as zero, but instead of directly projecting them onto zero as
ADMM which easily destroys the progress to the optimum, we formulate a relaxed non-constrained
subproblem as (3) to gradually reduce the magnitudes without deteriorating the objective and project
groups onto zeros if the projection serves as a descent direction during the training process.

6

Published as a conference paper at ICLR 2023

minimize
[x]Gp

ψ([x]Gp) := f
(
[x]Gp

)
+

∑
g∈Gp

λg ∥[x]g∥2 , (3)

Figure 4: Search direction in DHSPG.

where λg is a group-specific regularization coefficient
and needs to be dedicately chosen to guarantee the de-
crease of both the variable magnitude for g as well as
the objective f . In particular, we compute a negative
subgradient of ψ as the search direction [d(x)]Gp :=
−[∇f(x)]Gp −

∑
g∈Gp

λg[x]g/max{∥[x]g∥2, τ} with τ
as a safeguard constant. To ensure [d(x)]Gp as a descent
direction for both f and ∥x∥2, [d(x)]g needs to fall into
the intersection between the dual half-spaces with nor-
mal directions as −[∇f]g and −[x]g for any g ∈ Gp as
shown in Figure 4. In other words, [d(x)]⊤Gp

[−∇f(x)]Gp

and [d(x)]⊤Gp
[−x]Gp are greater than 0. It further indi-

cates that λg locates in the interval (λmin,g, λmax,g) :=(
− cos(θg) ∥[∇f(x)]g∥2 ,−

∥[∇f(x)]g∥2

cos (θg)

)
if cos (θg) < 0

otherwise can be an arbitrary positive constant. Such λg brings the decrease of both the objective
and the variable magnitude. We then compute a trial iterate [x̃t+1]Gp

← [xt − αtd(xt)]Gp
via

the subgradient descent of ψ as line 8. The trial iterate is fed into the Half-Space projector (Chen
et al., 2021b) which outperforms proximal operators to yield group sparsity more productively with-
out hurting the objective as line 9-10. Remark here that OTOv1 utilizes a global coefficient λ for
all groups, thus lacks sufficient capability to guarantee both aspects for each individual group in
accordance.
Convergence and Complexity Analysis. DHSPG converges to the solution of (1) x∗

DHSPG in the
manner of both theory and practice. In fact, the theoretical convergence relies on the the construction
of dual half-space mechanisms which yield sufficient decrease for both objective f and variable
magnitude, see Lemma 2 and Corollary 1 in Appendix C. Together with the sparsity recovery of
Half-Space projector (Chen et al., 2020b, Theorem 2), DHSPG effectively computes a solution with
desired group sparsity. In addition, DHSPG consumes the same time complexity O(n) as other
first-order methods, such as SGD and Adam, since all operations can be finished within linear time.

3.3 AUTOMATED COMPRESSED MODEL CONSTRUCTION

Figure 5: Automated compressed model construction.
G = {g1, g2, · · · , g5} and [x∗

DHSPG]g2∪g3∪g4 = 0.

In the end, given the solution x∗
DHSPG with

both high performance and group sparsity,
we now automatically construct a compact
model which is a manual step with un-
avoidable substantial engineering efforts
in OTOv1. In general, we traverse all ver-
tices with trainable parameters, then re-
move the structures in accordance with
ZIGs being zero, such as the dotted rows
of K̂1, K̂2, K̂3 and scalars of b2,γ1,β1 as
illustrated in Figure 5. Next, we erase the
redundant parameters that affiliate with the
removed structures of their incoming stem vertices to keep the operations valid, e.g., the second and
third channels in g5 are removed though g5 is not zero. The automated algorithm is promptly com-
plete in linear time via performing two passes of depth-first-search and manipulating parameters to
produce a more compact modelM∗. Based on the property of ZIGs,M∗ returns the same inference
outputs as the fullM parameterized as x∗

DHSPG thus no further fine-tuning is necessary.

4 NUMERICAL EXPERIMENTS

We develop OTOv2 to train and compress DNNs into slimmer networks with significant inference
speedup and storage saving without fine-tuning. The implementation details are presented in Ap-
pendix A. To demonstrate its effectiveness, we first verify the correctness of automated ZIG parti-
tion and automated compact model construction by employing OTOv2 onto a variety of DNNs with

7

Published as a conference paper at ICLR 2023

complicated structures (see the visualizations in Appendix D). Then, we compare OTOv2 with other
methods on the benchmark experiments to show its competitive (or even superior) performance. In
addition, we conduct ablation studies of DHSPG versus HSPG on the popular super-resolution task
and Bert (Vaswani et al., 2017) on Squad (Rajpurkar et al., 2016) in Appendix B. Together with
autonomy, user-friendliness and generality, OTOv2 arguably becomes the new state-of-the-art.

Sanity of Automated ZIG and Automated Compression. The foremost step is to validate the cor-
rectness of the whole framework including both algorithm designs and infrastructure developments.
We select five DNNs with complex topological structures, i.e., StackedUnets, DenseNet (Huang
et al., 2017), ConvNeXt (Liu et al., 2022) and CARN (Ahn et al., 2018) (see Appendix B for de-
tails), as well as DemoNet in Section 3.1, all of which are not easily to be compressed via the ex-
isting non-automatic methods unless with sufficient domain knowledge and extensive handcrafting
efforts. Remark here that StackedUnets consumes two input tensors, and is constructed by stack-
ing two standard Unets (Ronneberger et al., 2015) with different downsamplers and aggregating the
corresponding two outputs together. To intuitively illustrate the automated ZIG partition over these
complicated structures, we provide the visualizations of the connected components of dependency
in Appendix D. To quantitatively measure the performance of OTOv2, we further employ these
model architectures onto a variety of benchmark datasets, e.g., Fashion-MNIST (Xiao et al., 2017),
SVNH (Netzer et al., 2011), CIFAR10/100 (Krizhevsky & Hinton, 2009) and ImageNet (Deng et al.,
2009). The main results are presented in Table 1.

Table 1: OTOv2 on extensive DNNs and datasets.
Backend Dataset Method FLOPs # of Params Top-1 Acc.
DemoNet Fashion-MNIST Baseline 100% 100% 84.5%
DemoNet Fashion-MNIST OTOv2 24.0% 23.3% 84.3%

StackedUnets SVNH Baseline 100% 100% 94.8%
StackedUnets SVNH OTOv2 26.4% 17.0% 94.7%
DenseNet121 CIFAR100 Baseline 100% 100% 77.0%
DenseNet121 CIFAR100 OTOv2 20.8% 26.7% 75.5%

ConvNeXt-Tiny ImageNet Baseline 100% 100% 82.0%
ConvNeXt-Tiny ImageNet OTOv2 52.8% 54.2% 81.1%

Compared with the baselines trained
by vanilla SGD, under the same
amount of training cost, OTOv2 au-
tomatically reaches not only the com-
petitive performance but also remark-
able speed up in terms of FLOPs
and parameter quantity reductions. In
particular, the slimmer DemoNet and
StackedUnets computed by OTOv2 negligibly regress the top-1 accuracy by 0.1%-0.2% but signif-
icantly reduce the FLOPs and the number of parameters by 73.6%-83.0%. Consistent phenomena
also hold for DenseNet121 where the slimmer architecture is about 5 times more efficient than the
full models but with competitive accuracy. OTOv2 works with TIMM (Wightman, 2019) to effec-
tively compress ConvNeXt-Tiny which shows its flexibility to the modernized training tricks. The
success of OTOv2 on these architectures well validates the sanity of the framework.

Benchmark Experiments. The secondary step is to demonstrate the effectiveness of OTOv2 by
comparing the performance with other state-of-the-arts on benchmark compression experiments,
i.e., common architectures such as VGG16 (Simonyan & Zisserman, 2014) and ResNet50 (He et al.,
2016) as well as datasets CIFAR10 (Krizhevsky & Hinton, 2009) and ImageNet (Deng et al., 2009).

VGG16 on CIFAR10.VGG16 on CIFAR10. We first consider vanilla VGG16 and a variant referred as VGG16-BN that
appends a batch normalization layer after every convolutional layer. OTOv2 automatically exploits
the minimal removal structures of VGG16 and partitions the trainable variables into ZIGs (see Fig-
ure 14 in Appendix D). DHSPG is then triggered over the partitioned ZIGs to train the model from
scratch to find a solution with high group sparsity. Finally, a slimmer VGG16 is automatically con-
structed without any fine-tuning. As shown in Table 2, the slimmer VGG16 leverages only 2.5% of
parameters to dramatically reduce the FLOPs by 86.6% with the competitive top-1 accuracy to the
full model and other state-of-the-art methods. Likewise, OTOv2 compresses VGG16-BN to main-
tain the baseline accuracy by the fewest 4.9% of parameters and 23.7% of FLOPs. Though SCP and
RP reach higher accuracy, they require significantly 43%-102% more FLOPs than that of OTOv2.

Table 3: ResNet50 for CIFAR10.
Method FLOPs # of Params Top-1 Acc.
Baseline 100% 100% 93.5%

AMC (He et al., 2018b) – 60.0% 93.6%
ANNC (Yang et al., 2020) – 50.0% 95.0%

PruneTrain (Lym et al., 2019) 30.0% – 93.1%
N2NSkip (Sharma et al., 2020) – 10.0% 94.4%

OTOv1 (Chen et al., 2021b) 12.8% 8.8% 94.4%
OTOv2 (90% group sparsity) 2.2% 1.2% 93.0%
OTOv2 (80% group sparsity) 7.8% 4.1% 94.5%

ResNet50 on CIFAR10.ResNet50 on CIFAR10. We now
conduct experiments to compare
with a few representative automatic
pruning methods such as AMC and
ANNC. AMC establishes a rein-
forcement learning agent to guide
a layer-wise compression, while it
only achieves autonomy over a few
prescribed specific models and requires multiple-stage training costs. Simple pruning methods

8

Published as a conference paper at ICLR 2023

Table 2: VGG16 and VGG16-BN for CIFAR10. Convolutional layers are in bold.
Method BN Architecture FLOPs # of Params Top-1 Acc.
Baseline ✗ 64-64-128-128-256-256-256-512-512-512-512-512-512-512-512 100% 100% 91.6%

SBP (Neklyudov et al., 2017) ✗ 47-50-91-115-227-160-50-72-51-12-34-39-20-20-272 31.1% 5.9% 91.0%
BC (Louizos et al., 2017) ✗ 51-62-125-128-228-129-38-13-9-6-5-6-6-6-20 38.5% 5.4% 91.0%
RBC (Zhou et al., 2019) ✗ 43-62-120-120-182-113-40-12-20-11-6-9-10-10-22 32.3% 3.9% 90.5%
RBP (Zhou et al., 2019) ✗ 50-63-123-108-104-57-23-14-9-8-6-7-11-11-12 28.6% 2.6% 91.0%

OTOv1 (Chen et al., 2021b) ✗ 21-45-82-110-109-68-37-13-9-7-3-5-8-170-344 16.3% 2.5% 91.0%
OTOv2 (85% group sparsity) ✗ 22-30-56-102-142-101-28-11-6-6-5-5-101-127 13.4% 2.5% 91.0%

Baseline ✓ 64-64-128-128-256-256-256-512-512-512-512-512-512-512-512 100% 100% 93.2%
EC (Li et al., 2016) ✓ 32-64-128-128-256-256-256-256-256-256-256-256-256-512-512 65.8% 37.0% 93.1%

Hinge (Li et al., 2020b) ✓ – 60.9% 20.0% 93.6%
SCP (Kang & Han, 2020) ✓ – 33.8% 7.0% 93.8%

OTOv1 (Chen et al., 2021b) ✓ 22-56-93-123-182-125-95-45-27-21-10-13-19-244-392 26.8% 5.5% 93.3%
RP (Li et al., 2022) ✓ – 47.9% 42.1% 93.9%

CPGCN (Di Jiang & Yang, 2022) ✓ – 26.9% 6.9% 93.1%
OTOv2 (80% group sparsity) ✓ 14-51-77-122-183-146-92-41-16-13-8-11-14-107-183 23.7% 4.9% 93.2%

such as ANNC and SFW-pruning (Miao et al., 2021) do not construct slimmer models besides
merely projecting variables onto zero. OTOv2 overcomes all these drawbacks and is the first to
realize the end-to-end autonomy for simultaneously training and compressing arbitrary DNNs with
high performance. Furthermore, OTOv2 achieves the state-of-the-art results on this intersecting
ResNet50 on CIFAR10 experiment. In particular, as shown in Table 3, under 90% group sparsity
level, OTOv2 utilizes only 1.2% parameters and 2.2% FLOPs to reach 93.0% top-1 accuracy with
slight 0.5% regression. Under 80% group sparsity, OTOv2 achieves competitive 94.5% accuracy to
other pruning methods but makes use of substantially fewer parameters and FLOPs.

T
o
p
-1

A
cc

u
ra

cy
(%

)

FLOPs Reduction (%)
30 50 70 90

70

78

76

74

72

70% group sparsity

60% group sparsity

50% group sparsity

40% group sparsity

GNN-RL (2022)

RP (2022)

OTO (2021)

ResRep (2021)

SCP (2020)

Hinge (2020)

Group-HS (2019)

GBN-60 (2019)

RRBP (2019)

RBP (2019)

SFP (2018)

DDS-26 (2018)

ThinNet (2017)

CP (2017)

OTOv2

Figure 6: ResNet50 on ImageNet.

ResNet50 on ImageNet.ResNet50 on ImageNet. We finally employ
OTOv2 to ResNet50 on ImageNet. Similarly to
other experiments, OTOv2 first automatically
partitions the trainable variables of ResNet50
into ZIGs (see Figure 11 in Appendix D), and
then trains it once by DHSPG to automatically
construct slimmer models without fine-tuning.
We report a performance portfolio under vari-
ous target group sparsities ranging from 40%
to 70% and compare with other state-of-the-
art methods in Figure 6. Remark here that
more reliably controlling the ultimate sparsity
level to meet various deployment environments
is a significant superiority of DHSPG to the
HSPG. An increasing target group sparsity re-
sults in more FLOPs and parameter quantity re-
ductions, meanwhile sacrifices more accuracy.
It is noticeable that OTOv2 roughly exhibits a
Pareto frontier in terms of top-1 accuracy and
FLOPs reduction under various group sparsities. In particular, under 70% group sparsity, the slim-
mer ResNet50 by OTOv2 achieves fewer FLOPs (14.5%) than others with a 70.3% top-1 accuracy
which is competitive to SFP (He et al., 2018a) and RBP (Zhou et al., 2019) especially under 3x
fewer FLOPs. The one with 72.3% top-1 accuracy under group sparsity as 60% is competitive to
CP (He et al., 2017), DDS-26 (Huang & Wang, 2018) and RRBP (Zhou et al., 2019), but 2-3 times
more efficient. The slimmer ResNet50s under 40% and 50% group sparsity achieve the accuracy
milestone, i.e., around 75%, both of which FLOPs reductions outperform most of state-of-the-arts.
ResRep (Ding et al., 2021), Group-HS (Yang et al., 2019) and GBN-60 (You et al., 2019) achieve
over 76% accuracy but consume more FLOPs than OTOv2 and are not automated for general DNNs.

5 CONCLUSION

We propose OTOv2 that automatically trains a general DNN only once and compresses it into a
more compact counterpart without pre-training or fine-tuning to significantly reduce its FLOPs and
parameter quantity. The success stems from two major improvements upon OTOv1: (i) automated
ZIG partition and automated compressed model construction; and (ii) DHSPG method to more
reliably solve structured-sparsity problem. We leave the incorporation with NAS as future work.

9

Published as a conference paper at ICLR 2023

REFERENCES

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution:
Dataset and study. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition workshops, 2017.

Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast, accurate, and lightweight super-
resolution with cascading residual network. In Proceedings of the European conference on com-
puter vision (ECCV), pp. 252–268, 2018.

Arseny. Onnx2torch: an onnx to pytorch converter. https://github.com/ENOT-AutoDL/
onnx2torch, 2022.

Junjie Bai, Fang Lu, Ke Zhang, et al. Onnx: Open neural network exchange. https://github.
com/onnx/onnx, 2019.

Jianda Chen, Shangyu Chen, and Sinno Jialin Pan. Storage efficient and dynamic flexible runtime
channel pruning via deep reinforcement learning. 2019.

Tianyi Chen, Frank E Curtis, and Daniel P Robinson. A reduced-space algorithm for minimizing
ℓ1-regularized convex functions. SIAM Journal on Optimization, 27(3):1583–1610, 2017.

Tianyi Chen, Frank E Curtis, and Daniel P Robinson. Farsa for ℓ1-regularized convex optimization:
local convergence and numerical experience. Optimization Methods and Software, 2018.

Tianyi Chen, Bo Ji, Yixin Shi, Tianyu Ding, Biyi Fang, Sheng Yi, and Xiao Tu. Neural network
compression via sparse optimization. arXiv preprint arXiv:2011.04868, 2020a.

Tianyi Chen, Guanyi Wang, Tianyu Ding, Bo Ji, Sheng Yi, and Zhihui Zhu. A half-space stochastic
projected gradient method for group-sparsity regularization. arXiv preprint arXiv:2009.12078,
2020b.

Tianyi Chen, Tianyu Ding, Bo Ji, Guanyi Wang, Yixin Shi, Jing Tian, Sheng Yi, Xiao Tu, and Zhihui
Zhu. Orthant based proximal stochastic gradient method for 1 1-regularized optimization. In
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD
2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part III, pp. 57–73. Springer, 2021a.

Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin
Shi, Sheng Yi, and Xiao Tu. Only train once: A one-shot neural network training and pruning
framework. In Advances in Neural Information Processing Systems, 2021b.

Tristan Deleu and Yoshua Bengio. Structured sparsity inducing adaptive optimizers for deep learn-
ing. arXiv preprint arXiv:2102.03869, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Yuan Cao Di Jiang and Qiang Yang. On the channel pruning using graph convolution network for
convolutional neural network acceleration. 2022.

Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jungong Han, Yuchen Guo, and Guiguang
Ding. Lossless cnn channel pruning via decoupling remembering and forgetting. Proceedings of
the IEEE International Conference on Computer Vision, 2021.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture
search via lamarckian evolution. arXiv preprint arXiv:1804.09081, 2018.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Stabilizing the
lottery ticket hypothesis. arXiv preprint arXiv:1903.01611, 2019.

10

https://github.com/ENOT-AutoDL/onnx2torch
https://github.com/ENOT-AutoDL/onnx2torch
https://github.com/onnx/onnx
https://github.com/onnx/onnx

Published as a conference paper at ICLR 2023

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Shang-Hua Gao, Yong-Qiang Tan, Ming-Ming Cheng, Chengze Lu, Yunpeng Chen, and Shuicheng
Yan. Highly efficient salient object detection with 100k parameters. In European Conference on
Computer Vision, pp. 702–721. Springer, 2020.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. arXiv preprint arXiv:1808.06866, 2018a.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In The IEEE International Conference on Computer Vision (ICCV), Oct 2017.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 784–800, 2018b.

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250,
2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from trans-
formed self-exemplars. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015.

Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks. In
Proceedings of the European conference on computer vision (ECCV), pp. 304–320, 2018.

Minsoo Kang and Bohyung Han. Operation-aware soft channel pruning using differentiable masks.
In International Conference on Machine Learning, pp. 5122–5131. PMLR, 2020.

James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data
science endeavors. In 2015 IEEE international conference on data science and advanced analyt-
ics (DSAA), pp. 1–10. IEEE, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast bayesian op-
timization of machine learning hyperparameters on large datasets. In Artificial intelligence and
statistics, pp. 528–536. PMLR, 2017.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s
thesis, Department of Computer Science, University of Toronto, 2009.

Bailin Li, Bowen Wu, Jiang Su, and Guangrun Wang. Eagleeye: Fast sub-net evaluation for efficient
neural network pruning. In European Conference on Computer Vision, pp. 639–654. Springer,
2020a.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool, and Radu Timofte. Group sparsity: The
hinge between filter pruning and decomposition for network compression. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8018–8027, 2020b.

11

Published as a conference paper at ICLR 2023

Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu Timofte, and Luc Van Gool. Revisit-
ing random channel pruning for neural network compression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 191–201, 2022.

Yuchao Li, Shaohui Lin, Baochang Zhang, Jianzhuang Liu, David Doermann, Yongjian Wu, Feiyue
Huang, and Rongrong Ji. Exploiting kernel sparsity and entropy for interpretable cnn compres-
sion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
2800–2809, 2019.

Shaohui Lin, Rongrong Ji, Yuchao Li, Cheng Deng, and Xuelong Li. Toward compact convnets via
structure-sparsity regularized filter pruning. IEEE transactions on neural networks and learning
systems, 31(2):574–588, 2019.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11976–11986, 2022.

Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning. In
Advances in neural information processing systems, pp. 3288–3298, 2017.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,
pp. 5058–5066, 2017.

Sangkug Lym, Esha Choukse, Siavash Zangeneh, Wei Wen, Sujay Sanghavi, and Mattan Erez.
Prunetrain: fast neural network training by dynamic sparse model reconfiguration. In Proceed-
ings of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–13, 2019.

David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and measuring ecological
statistics. In Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001,
volume 2, pp. 416–423. IEEE, 2001.

Fanxu Meng, Hao Cheng, Ke Li, Huixiang Luo, Xiaowei Guo, Guangming Lu, and Xing Sun.
Pruning filter in filter. arXiv preprint arXiv:2009.14410, 2020.

Lu Miao, Xiaolong Luo, Tianlong Chen, Wuyang Chen, Dong Liu, and Zhangyang Wang. Learning
pruning-friendly networks via frank-wolfe: One-shot, any-sparsity, and no retraining. In Interna-
tional Conference on Learning Representations, 2021.

Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and Dmitry P Vetrov. Structured bayesian
pruning via log-normal multiplicative noise. In Advances in Neural Information Processing Sys-
tems, pp. 6775–6784, 2017.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Junghun Oh, Heewon Kim, Seungjun Nah, Cheeun Hong, Jonghyun Choi, and Kyoung Mu Lee.
Attentive fine-grained structured sparsity for image restoration. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 17673–17682, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32. 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. arXiv preprint arXiv:2003.02389, 2020.

12

Published as a conference paper at ICLR 2023

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Avinash Sharma, Arvind Subramaniam, and . N2nskip: Learning highly sparse networks using
neuron-to-neuron skip connections. In BMVC, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Mart van Baalen, Christos Louizos, Markus Nagel, Rana Ali Amjad, Ying Wang, Tijmen
Blankevoort, and Max Welling. Bayesian bits: Unifying quantization and pruning. arXiv preprint
arXiv:2005.07093, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. arXiv preprint arXiv:1608.03665, 2016.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017.

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance reduc-
tion. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

Haichuan Yang, Shupeng Gui, Yuhao Zhu, and Ji Liu. Automatic neural network compression by
sparsity-quantization joint learning: A constrained optimization-based approach. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2178–2188, 2020.

Huanrui Yang, Wei Wen, and Hai Li. Deephoyer: Learning sparser neural network with differen-
tiable scale-invariant sparsity measures. arXiv preprint arXiv:1908.09979, 2019.

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global
filter pruning method for accelerating deep convolutional neural networks. arXiv preprint
arXiv:1909.08174, 2019.

Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-
representations. In International conference on curves and surfaces. Springer, 2010.

Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad, and Yanzhi Wang.
A systematic dnn weight pruning framework using alternating direction method of multipliers. In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 184–199, 2018.

Yuefu Zhou, Ya Zhang, Yanfeng Wang, and Qi Tian. Accelerate cnn via recursive bayesian pruning.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 3306–3315, 2019.

Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-level
structured pruning using polarization regularizer. Advances in Neural Information Processing
Systems, 33, 2020.

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Published as a conference paper at ICLR 2023

A IMPLEMENTATION DETAILS

A.1 LIBRARY IMPLEMENTATION

The implementation of the current version of OTOv2 (February, 2023) depends on Pytorch (Paszke
et al., 2019) and ONNX (Bai et al., 2019) which is an open industrial standard for machine learning
interoperability and widely used in numerous AI products of the majority of top-tier industries (see
the partners in https://onnx.ai/). In particular, the operators and the connectivity of a general
DNN are retrieved by calling the ONNX optimization API of Pytorch, which is the first step to
establish the trace graph of OTOv2 in Algorithm 2. The proposed DHSPG is implemented as an
instance of the optimizer class for Pytorch. The ultimate compact model construction in Section 3.3
is implemented by modifying the attributes and parameters of the vertices in onnx models according
to x∗

DHSPG and ZIGs. As a result, OTOv2 realizes an end-to-end pipeline to automatically and
conveniently produce a compact model that meets inference restrictions and can be directly deployed
onto product environments. In addition, the constructed compact DNNs in onnx format can be
converted back into either torch or tensorflow formats if needed by open-source tools (Arseny, 2022).

A.2 LIMITATIONS OF BETA VERSION

Dependency. The current version of OTOv2 (February, 2023) depends on the ONNX optimization
API in Pytorch to obtain vertices (operations) and the connections among them, i.e., (E ,V) in line 2
in Algorithm 2. It is the foremost step for establishing the trace graph of DNN for automated ZIG
partition. Therefore, the DNNs that do not comply with this API are not supported by the beta
version of OTOv2 yet. We notice that Transformers sometimes have incompatibility issue for its
position embedding layers, whereas its trainable part such as encoder layers does not. The current
limitation is in the view of engineering perspective and would be resolved following the active and
rapid developments of the ONNX and PyTorch community driven by the industry and academy.

Unknown Operators. For sanity, we exclude the connected components that possess uncer-
tain/unknown vertices for forming ZIGs in Algorithm 2. This mechanism largely ensures the gen-
erality of the automated ZIG partition onto general DNNs. But the ignorance over these connected
components may miss some valid ZIGs thereby may leave redundant structures to be unpruned. We
will maintain and update the operator list which currently consists of 31 (known/certain) operators
to better exploit ZIGs.

A.3 EXPERIMENTAL DETAILS

We conducted the experiments on one NVIDIA A100 GPU Server. For the experiments in the main
body, we estimated the gradient via sampling a mini-batch of data points under first-order momen-
tum with coefficient as 0.9. The mini-batch sizes follow other related works from {64, 128, 256}.
All experiments in the main body share the same commonly-used learning rate scheduler that start
from 10−1 and periodically decay by 10 till 10−4 every Tperiod epochs. The length of decaying
period Tperiod depends on the maximum epoch, i.e., 120 for ImageNet and 300 for others.

In general, we follow the usage of Half-Space projector in (Chen et al., 2021b) to trigger it when the
learning rate is first decayed after Tperiod epochs. Gp and Gnp are constructed after Tperiod/2 warm
up epochs empirically in our experiments. To compute the saliency score, we jointly consider both
cosine-similarity and magnitude of each group g ∈ G. For the groups g ∈ Gp which magnitudes need
to be penalized, we set λg in Algorithm 3 as λg = Λ := 10−3 if the regularization coefficient does
not need to be adjusted, i.e., cos (θg) ≥ 0. Note that Λ := 10−3 is the commonly used coefficient
in the sparsity regularization literatures (Chen et al., 2021b; Xiao & Zhang, 2014). Otherwise,
we computed the λmin,g := − cos(θg) ∥[∇f(x)]g∥2 and λmax,g := −∥[∇f(x)]g∥2

cos (θg)
and set λg by

amplifying λmin,g by 1.1 and projecting back to λmax,g if exceeding.

B EXTENSIVE ABLATION STUDY

In this appendix, we present additional experiments to demonstrate the superiority of DHSPG over
finding local optima with higher performance than HSPG. As described in the main body, the main

14

https://onnx.ai/

Published as a conference paper at ICLR 2023

advantages of DHSPG compared with HSPG in OTOv1 are (i) enlarging search space to be capable
of finding local optima with higher performance if any, and (ii) more reliably guarantee ultimate
group sparsity level. The later one has been demonstrated by the experiments of ResNet50, where
DHSPG can precisely achieve different prescribed group sparsity level to meet the requirements
of various deploying environments. In contrast, HSPG lacks capacity to achieve a specific group
sparsity level due to the implicit relationship between the regularization coefficient λ and the sparsity
level. The former one will be validated in this appendix. In depth, one takeaway of DHSPG is to
separate groups of variables, then treat them via different and specifically designed mechanisms
which greatly enlarge the search space. However, HSPG applies the same mechanism to update all
variables, which may easily result in convergence to the origin and may be not optimal. In addition,
we also provide the runtime comparison in Appendix B.3.

B.1 SUPER RESOLUTION

We select the popular model architecture CARN (Ahn et al., 2018) for super-resolution task with
the scaling factor of two. As (Oh et al., 2022), we use benchmark DIV2K dataset (Agustsson &
Timofte, 2017) for training and Set14 (Zeyde et al., 2010), B100 (Martin et al., 2001) and Ur-
ban100 (Huang et al., 2015) datasets for evaluation. Similarly to other experiments presented in the
main body, OTOv2 automatically partitions the trainable variables of CARN into ZIGs (see Figure 8
in Appendix D). Then we follow the training procedure in (Agustsson & Timofte, 2017) to apply
the Adam strategy into DHSPG, i.e., utilizing both first and second order momentums to compute
a gradient estimate as line 5 in Algorithm 3. Under the same learning scheduler and total number
of steps as the baseline, we conduct both DHSPG and HSPG to compute solutions with high group
sparsity, where we set target group sparsity as 50% for DHSPG and fine-tune the regularization co-
efficient λ for HSPG as the power of 10 from 10−3 to 103 to pick up the one with significant FLOPs
and parameters reductions with satisfactory performance. Finally, the more compact CARN models
are constructed via the automated compressed model construction in Section 3.3. We report the final
results in Table 4.

Table 4: OTOv2 under DHSPG versus HSPG on CARNx2.

Method Optimizer FLOPS # of Params PSNR
Set14 B100 Urban100

Baseline Adam 100% 100% 33.5 32.1 31.5
OTOv2 HSPG 35.5% 35.4% 33.0 31.6 30.9
OTOv2 DHSPG 24.3% 24.1% 33.2 31.9 31.1

Unlike the classification experiments where HSPG and DHSPG perform quite competitively, OTOv2
with DHSPG significantly outperforms OTOv2 with HSPG on this super-resolution task via CARN
by using 46% fewer FLOPs and parameters to achieve significantly better PSNR on these benchmark
datasets. It exhibits a strong evidence to show the higher generality of DHSPG to enlarge the search
space rather than restrict it near the origin point to fit more general applications.

B.2 BERT ON SQUAD

We next compare DHSPG versus HSPG on pruning the large-scale transformer Bert (Vaswani et al.,
2017), evaluated on Squad, a question-answering benchmark (Rajpurkar et al., 2016). Remark here
that since Transformer are not reliably compatible with PyTorch’s ONNX optimization API at this
moment, they can not enjoy the end-to-end autonomy of OTOv2 yet. To compare two optimizers, we
apply DHSPG onto the OTOv1 framework, which manually conducts ZIG partition and constructs
compressed Bert without fine-tuning. The results are reported in Table 5.

Based on Table 5, it is apparent that DHSPG performs significantly better than HSPG and Prox-
SSI (Deleu & Bengio, 2021) by achieving 83.8%-87.7% F1-scores and 74.6%-80.0% exact match
rates. In constrast, HSPG and ProxSSI reach 82.0%-84.1% F1-scores and 71.9%-75.0% exact match
rates. The underlying reason of such remarkable improvement by DHSPG is that DHSPG enlarges
to search space away from trapping around origin points by partitioning groups into magnitude-
penalized or not and treating them separately. However, both ProxSSI and HSPG penalize the mag-
nitude of all variables and apply the same update mechanism onto all variables, which deteriorate

15

Published as a conference paper at ICLR 2023

the performance significantly in this experiment. The results well validate the effectiveness of the
design of DHSPG to enlarge search space for typical better generalization performance.

Table 5: Numerical results of Bert on Squad.

Method # of Params Exact F1-score Inference SpeedUp
Baseline 100% 81.0% 88.3% 1×

ProxSSI (Deleu & Bengio, 2021) 83.4%† 72.3% 82.0% 1×
OTOv1 + DHSPG (10% group sparsity) 93.3% 80.0% 87.7% 1.1×
OTOv1 + DHSPG (30% group sparsity) 80.1% 79.4% 87.3% 1.2×
OTOv1 + DHSPG (50% group sparsity) 68.3% 78.1% 86.2% 1.3×
OTOv1 + DHSPG (70% group sparsity) 55.0% 74.6% 83.8% 1.4×

OTOv1 + HSPG 91.0% 75.0% 84.1% 1.1×
OTOv1 + HSPG 66.7% 71.9% 82.0% 1.3×

† Approximate value based on the group sparsity reported in (Deleu & Bengio, 2021).

F
1
-S
co

re
(%

)

Params Reduction (%)
0 10 50

78

88

84

82

80

10% group sparsity

OTOv1 + DHSPG
86

20 30 40

30% group sparsity

70% group sparsityOTOv1+HSPG (2021)

ProxSSI (2021)

50% group sparsity

B.3 RUNTIME COMPARISON

We provide runtime comparison of the proposed DHSPG versus the optimization algorithms used
in the benchmark baseline experiments. In particular, we calculate the average runtime per epoch
and report the relative runtime in Figure 7. Based on Figure 7, we observe that the per epoch cost
of DHSPG is competitive to other standard optimizers. In addition, OTOv2 only trains the DNN
once with the similar amount of total epochs for training the baselines. However, other compression
methods have to proceed multi-stage training procedures including pretraining the baselines by the
standard optimizers, thereby are not training efficient compared to OTOv2.

CIFAR10 ImageNet

0.5

1.0

1.5
: DHSPG

: SGD

: Adam

VGG16 ResNet50
DIV2K
CARNx2

: AdamW

Squad
Bert

Figure 7: Average runtime per epoch relative comparison.

C CONVERGENCE ANALYSIS

In this appendix, we provide the rough convergence analysis for the proposed DHSPG. This paper
is application-track and mainly focuses on deep learning compression and infrastructure but not the
theoretical convergence. Therefore, for simplicity, we assume full gradient estimate at each iteration.
More rigorous analysis under stochastic settings will be left as future work,
Lemma 1. The objective function f satisfies

f(x+αd(x)) ≤ f(x)−
(
α− Lα2

2

)
∥∇f(x)∥22+

Lα2

2

∑
g∈Gp

λ2g+(Lα−1)α
∑
g∈Gp

λg cos (θg) ∥[∇f(x)]g∥2 .

(4)

Proof. By the algorithm,

d(x) =

{
−[∇f(x)]g − λg [x]g

∥[x]g∥2
if g ∈ Gp,

−[∇f(x)]g otherwise.
(5)

16

Published as a conference paper at ICLR 2023

We can rewrite the direction [d(x)]g for g ∈ Gp as the summation of two parts,

[d(x)]g =
[
d̂(x) + d̃(x)

]
g
, (6)

where[
d̂(x)

]⊤
g
[∇f(x)]g = 0, and

∥∥∥∥[d̂(x)]
g

∥∥∥∥ =

∥∥∥∥−λg [x]g
∥[x]g∥

· cos (θg − 90◦)

∥∥∥∥ = λg sin (θg). (7)

Consequently,∥∥∥∥[d̃(x)]
g

∥∥∥∥2 =
∥∥∥[d(x)]g∥∥∥2 − ∥∥∥∥[d̂(x)]

g

∥∥∥∥2
=

∥∥∥∥−[∇f(x)]g − λ [x]g
∥[x]g∥

∥∥∥∥2 − λ2g sin2 (θg)
=

∥∥∥[∇f(x)]g∥∥∥2 + λ2g + 2[∇f(x)]⊤g λg
[x]g
∥[x]g∥

− λ2g sin2 (θg)

= ∥[∇f(x)]g∥2 + λ2g cos
2 (θg) + 2λg ∥[∇f(x)]g∥ cos (θg)

= [∥[∇f(x)]g∥+ λg cos (θg)]
2
,

(8)

and

[d̃(x)]g = −∥[∇f(x)]g∥+ λg cos (θg)

∥[∇f(x)]g∥
[∇f(x)]g := −ωg[∇f(x)]g (9)

By the descent lemma, we have that

f(x+ αd(x))

≤f(x) + α∇f(x)⊤d(x) + Lα2

2
∥d(x)∥22

=f(x) + α[∇f(x)]⊤Gnp
[d(x)]Gnp

+ α[∇f(x)]⊤Gp
[d(x)]Gp

+
Lα2

2

∥∥[d(x)]Gnp

∥∥2
2
+
Lα2

2

∥∥[d(x)]Gp

∥∥2
2

=f(x)−
(
α− Lα2

2

)∥∥∇f(x)]Gnp

∥∥2 + α[∇f(x)]⊤Gp
[d(x)]Gp

+
Lα2

2

∥∥[d(x)]Gp

∥∥2
2

=f(x)−
(
α− Lα2

2

)∥∥∇f(x)]Gnp

∥∥2 + α[∇f(x)]⊤Gp

[
d̂(x) + d̃(x)

]
Gp

+
Lα2

2

∥∥∥∥[d̂(x) + d̃(x)
]
Gp

∥∥∥∥2
2

=f(x)−
(
α− Lα2

2

)∥∥∇f(x)]Gnp

∥∥2 + α[∇f(x)]⊤Gp

[
d̃(x)

]
Gp

+
Lα2

2

∥∥∥∥[d̂(x)]Gp

∥∥∥∥2
2

+ Lα2
[
d̂(x)

]⊤
Gp

[
d̃(x)

]
Gp

+
Lα2

2

∥∥∥∥[d̃(x)]Gp

∥∥∥∥2
2

=f(x)−
(
α− Lα2

2

)∥∥∇f(x)]Gnp

∥∥2 − α [∇f(x)]⊤Gp

∑
g∈Gp

∥∥∥[∇f(x)]g∥∥∥+ λg cos (θg)∥∥∥[∇f(x)]g∥∥∥ [∇f(x)]g

+
Lα2

2

∑
g∈Gp

λ2g sin
2 (θg) +

Lα2

2

∑
g∈Gp

(
∥[∇f(x)]g∥2 + λg cos (θg)

)2
=f(x)−

(
α− Lα2

2

)∥∥∇f(x)]Gnp

∥∥2 − (
α− Lα2

2

)∥∥[∇f(x)]Gp

∥∥2
2
− α

∑
g∈Gp

λg cos (θg) ∥[∇f(x)]g∥

+
Lα2

2

∑
g∈Gp

λ2g
(
sin2 (θg) + cos2 (θg)

)
+ Lα2

∑
g∈Gp

λg ∥[∇f(x)]g∥ cos (θg)

=f(x)−
(
α− Lα2

2

)
∥∇f(x)∥22 +

Lα2

2

∑
g∈Gp

λ2g + (Lα− 1)α
∑
g∈G

λg cos (θg) ∥[∇f(x)]g∥

17

Published as a conference paper at ICLR 2023

Lemma 2. Suppose α ≤ 1
L and f is L-smooth, then there exists some positive λg ∈ (λmin,g, λmax,g)

for any g ∈ Gp such as

f(x+ αd(x)) ≤ f(x)−
(
α− Lα2

2

)∥∥[∇f(x)]Gnp

∥∥2
2

(10)

Proof. Based on Lemma 1 and α ≤ 1
L , we have that

f(x+ αd(x))

≤f(x)−
(
α− Lα2

2

)
∥∇f(x)∥22 +

Lα2

2

∑
g∈Gp

λ2g + (Lα− 1)α
∑
g∈G

λg cos (θg) ∥[∇f(x)]g∥2 ,

≤f(x)−
(
α− Lα2

2

)∥∥∥[∇f(x)]Gnp

∥∥∥2
2
+

∑
g∈Gp

h(λg, g)

(11)
where we denote

h(λg, g) :=
Lα2λ2g

2
+ (Lα− 1)α cos (θg) ∥[∇f(x)]g∥2 λg −

(
α− Lα2

2

)
∥[∇f(x)]g∥22 . (12)

We can see that for any g ∈ Gp, then h(λ, g) ≤ 0 if and only if the following holds

λg ≤
(1− Lα)α cos (θg) ∥[∇f(x)]g∥2 +

√
(1− Lα)2α2 cos2 (θg) ∥[∇f(x)]g∥22 + 2Lα2

(
α− Lα2

2

)
∥[∇f(x)]g∥22

Lα2︸ ︷︷ ︸
:=λ̂g

.

(13)

Next, we need to show for the group g that requires λg adjustment, the (λmin,g, λ̂g) is a valid interval,
i.e., λ̂g ≥ λmin,g . To show it, combining with λmin,g = − cos (θg) ∥[∇f(x)]g∥2, we have that

λ̂g =
(Lα− 1)αλmin,g +

√
(1− Lα)2α2λ2min,g + 2Lα2

(
α− Lα2

2

)
λ2min,g/ cos

2 (θg)

Lα2

=
(Lα− 1)λmin,g + λmin,g

√
1− L2α2 tan2 (θg) + 2Lα tan2 (θg)

Lα

=
(Lα− 1)λmin,g + λmin,g

√
−(Lα− 1)2 tan2 (θg) + tan2 (θg) + 1

Lα

>
(Lα− 1)λmin,g + λmin,g

Lα
= λmin,g,

(14)

where the second last inequality holds since 0 < α ≤ 1/L, then√
−(Lα− 1)2 tan2 (θg) + tan2 (θg) + 1 > 1.

Then, we need to show that λ̂g is greater than 0. There are two cases to be considered:

• cos θg < 0: then λ̂g ≥ λmin,g = − cos (θg) ∥[∇f(x)]g∥2 > 0.

• cos θg ≥ 0: it follows 0 < α < 1/L and (13) that λ̂g > 0.

Thus for λg ∈ (λmin,g,min{λmax,g, λ̂g}), h(λg, g) ≤ 0. Consequently, there exists some positive
λg ∈ (λmin,g, λmax,g) so that h(λg, g) ≤ 0. Finally, the proof is complete if we choose λg satisfies
the above for any g ∈ Gp,

f(x+ αd(x)) ≤ f(x)−
(
α− Lα2

2

)∥∥∥[∇f(x)]Gnp

∥∥∥2
2
+

∑
g∈Gp

h(λ, g)

≤ f(x)−
(
α− Lα2

2

)∥∥∥[∇f(x)]Gnp

∥∥∥2
2
.

(15)

18

Published as a conference paper at ICLR 2023

Lemma 3. For any g ∈ Gp, if 0 < α <
2[x]⊤g [d(x)]g

∥[d(x)]g∥2
2

, then the magnitude of the variables satisfies

∥[x+ αd(x)]g∥2 < ∥[x]g∥2 . (16)

And if α = ω
[x]⊤g [d(x)]g

∥[d(x)]g∥2
2

for ω ∈ (0, 1), then

∥[x+ αd(x)]g∥22 = ∥[x]g∥22 + (ω2 − 2ω) ∥[x]g∥22 cos
2 (θg). (17)

Proof.

∥[x+ αd(x)]g∥22

=

∥∥∥∥[x]g − α(
[∇f(x)]g + λg

[x]g
∥[x]g∥2

)∥∥∥∥2
2

= ∥[x]g∥22 − 2α[x]⊤g

(
[∇f(x)]g + λg

[x]g
∥[x]g∥2

)
+ α2

∥∥∥∥[∇f(x)]g + λg
[x]g
∥[x]g∥2

∥∥∥∥2
2

= ∥[x]g∥22 + t(α),

(18)

where

t(α) = −2α[x]⊤g
(
[∇f(x)]g + λg

[x]g
∥[x]g∥2

)
+α2

∥∥∥∥[∇f(x)]g + λg
[x]g
∥[x]g∥2

∥∥∥∥2
2

= Aα2−2Bα (19)

and

A :=

∥∥∥∥[∇f(x)]g + λg
[x]g
∥[x]g∥2

∥∥∥∥2
2

> 0 (20)

B :=[x]⊤g

(
[∇f(x)]g + λg

[x]g
∥[x]g∥2

)
> 0. (21)

note that B > 0 because of the selection of λg .

Consequently, we have that if 0 < α < 2B
A =

2[x]⊤g [d(x)]g

∥[d(x)]g∥2
2

, then t(α) < 0.

Finally, if α = ω
[x]⊤g [d(x)]g

∥[d(x)]g∥2
2

= ωB
A for ω ∈ (0, 2), then

t(α) = Aω2B
2

A2
− 2Bω

B

A
= (ω2 − 2ω)

B2

A
= (ω2 − 2ω) ∥[x]g∥22 cos

2 (θg), (22)

which completes the proof.

Corollary 1. Suppose α = ωming∈Gp

[x]⊤g [d(x)]g

∥[d(x)]g∥2
2

for some ω ∈ (0, 1) and | cos(θg)| ≥ ρ for

g ∈ Gp ∩ G ̸=0(x) and some positive ρ ∈ (0, 1]. Then there exists γ ∈ (0, 1) such that∥∥[x+ αd(x)]Gp

∥∥2
2
≤ (1− γ2)

∥∥[x]Gp

∥∥2
2
. (23)

Proof. The result can be complete via summing (17) over Gp and combining with α selection.

D ZIG ILLUSTRATION

In this appendix, for more intuitive illustration, we provide the visualizations of the connected com-
ponents of dependency for the experimented DNNs throughout the whole paper. They are con-
structed by performing Algorithm 2 to automatically partition ZIGs. Due to the large-scale and in-
tricacy of graphs, we recommend to zoom in for reading greater details (under 200%-1600% zoom-
in scale via Adobe PDF reader). The vertices marked as the same color represent one connected
component of dependency. See the figures starting from the next pages.

19

Published as a conference paper at ICLR 2023

relu

out-116

add

out-120

conv3x3

out-117

relu

out-121

concat

out-122

conv1x1

out-115

conv3x3

out-119

relu

out-124

concat

out-125

conv1x1

out-123

relu

out-127

add

out-131

conv3x3

out-128

concat

out-133

relu

out-132

conv1x1

out-126

conv3x3

out-130

relu

out-118

relu

out-145

conv3x3

out-146

conv3x3

out-144

relu

out-154

conv3x3

out-155

conv1x1

out-153

relu

out-100

add

out-104

conv3x3

out-101

concat

out-106

relu

out-105

conv1x1

out-99

conv3x3

out-103

relu

out-108

add

out-112

conv3x3

out-109

relu

out-113

concat

out-114

conv1x1

out-107

conv3x3

out-111

relu

out-156

reshape

out-158

transpose

out-159

reshape

out-161

conv3x3

out-162

constant

out-160

constant

out-157

relu

out-110

relu

out-151

concat

out-152

conv1x1

out-150

add

out-77

relu

out-78

concat

out-79

conv3x3

out-73

conv3x3

out-74

concat

out-98

conv3x3

out-76

relu

out-102

relu

out-75

relu

out-83

conv3x3

out-84

conv3x3

out-82

relu

out-129

relu

out-91

conv3x3

out-92

conv3x3

out-90

relu

out-137

conv3x3

out-138

conv3x3

out-136

relu

out-81

add

out-85

relu

out-86

concat

out-87

conv1x1

out-80

relu

out-97

conv1x1

out-96

relu

out-143

add

out-147

relu

out-148

concat

out-149

conv1x1

out-142

relu

out-89

add

out-93

relu

out-94

concat

out-95

conv1x1

out-88

relu

out-135

add

out-139

relu

out-140

concat

out-141

conv1x1

out-134

conv1x1

out-72

conv1x1

out-163

Figure 8: CARN.

20

Published as a conference paper at ICLR 2023

batchnorm

out-34

relu

out-35

concat

out-42

conv3x3

out-36

conv3x3

out-37

conv3x3

out-33

globalaveragepool

out-45

shape

out-46

reshape

out-53

gather

out-48

unsqueeze

out-50

concat

out-52

linear

out-54

unsqueeze

out-51

constant

out-49

constant

out-47

conv3x3

out-44

batchnorm

out-43

batchnorm

out-38

add

out-40

add

out-41

batchnorm

out-39

linear

out-55

Figure 9: DemoNet.

21

Published as a conference paper at ICLR 2023

batchnorm

out-788

relu

out-789

conv1x1

out-790

concat

out-787

batchnorm

out-791

relu

out-792

conv3x3

out-793

batchnorm

out-795

relu

out-796

conv1x1

out-797

concat

out-794

batchnorm

out-798

relu

out-799

conv3x3

out-800

batchnorm

out-802

relu

out-803

conv1x1

out-804

concat

out-801

batchnorm

out-805

relu

out-806

conv3x3

out-807

batchnorm

out-809

relu

out-810

conv1x1

out-811

concat

out-808

batchnorm

out-812

relu

out-813

conv3x3

out-814

batchnorm

out-816

relu

out-817

conv1x1

out-818

concat

out-815

batchnorm

out-819

relu

out-820

conv3x3

out-821

batchnorm

out-823

relu

out-824

conv1x1

out-825

concat

out-822

batchnorm

out-826

relu

out-827

conv3x3

out-828

batchnorm

out-830

relu

out-831

conv1x1

out-832

concat

out-829

batchnorm

out-833

relu

out-834

conv3x3

out-835

batchnorm

out-837

relu

out-838

conv1x1

out-839

concat

out-836

batchnorm

out-840

relu

out-841

conv3x3

out-842

batchnorm

out-844

relu

out-845

conv1x1

out-846

concat

out-843

batchnorm

out-847

relu

out-848

conv3x3

out-849

batchnorm

out-851

relu

out-852

conv1x1

out-853

concat

out-850

batchnorm

out-854

relu

out-855

conv3x3

out-856

batchnorm

out-858

relu

out-859

conv1x1

out-860

concat

out-857

batchnorm

out-861

relu

out-862

conv3x3

out-863

batchnorm

out-865

relu

out-866

conv1x1

out-867

concat

out-864

pad

out-868

averagepool2x2

out-869

concat

out-870

concat

out-877

concat

out-884

concat

out-891

concat

out-898

concat

out-905

concat

out-912

concat

out-919

concat

out-926

concat

out-933

concat

out-940

concat

out-947

concat

out-954

concat

out-961

concat

out-968

concat

out-975

concat

out-982

concat

out-989

concat

out-996

concat

out-1003

concat

out-1010

concat

out-1017

concat

out-1024

concat

out-1031

concat

out-1038

batchnorm

out-871

relu

out-872

conv1x1

out-873

batchnorm

out-874

relu

out-875

conv3x3

out-876

batchnorm

out-878

relu

out-879

conv1x1

out-880

batchnorm

out-881

relu

out-882

conv3x3

out-883

batchnorm

out-885

relu

out-886

conv1x1

out-887

batchnorm

out-888

relu

out-889

conv3x3

out-890

batchnorm

out-892

relu

out-893

conv1x1

out-894

batchnorm

out-895

relu

out-896

conv3x3

out-897

batchnorm

out-899

relu

out-900

conv1x1

out-901

batchnorm

out-902

relu

out-903

conv3x3

out-904

batchnorm

out-906

relu

out-907

conv1x1

out-908

batchnorm

out-909

relu

out-910

conv3x3

out-911

batchnorm

out-913

relu

out-914

conv1x1

out-915

batchnorm

out-916

relu

out-917

conv3x3

out-918

batchnorm

out-920

relu

out-921

conv1x1

out-922

batchnorm

out-923

relu

out-924

conv3x3

out-925

batchnorm

out-927

relu

out-928

conv1x1

out-929

batchnorm

out-930

relu

out-931

conv3x3

out-932

batchnorm

out-934

relu

out-935

conv1x1

out-936

batchnorm

out-937

relu

out-938

conv3x3

out-939

batchnorm

out-941

relu

out-942

conv1x1

out-943

batchnorm

out-944

relu

out-945

conv3x3

out-946

batchnorm

out-948

relu

out-949

conv1x1

out-950

batchnorm

out-951

relu

out-952

conv3x3

out-953

batchnorm

out-955

relu

out-956

conv1x1

out-957

batchnorm

out-958

relu

out-959

conv3x3

out-960

batchnorm

out-962

relu

out-963

conv1x1

out-964

batchnorm

out-965

relu

out-966

conv3x3

out-967

batchnorm

out-969

relu

out-970

conv1x1

out-971

batchnorm

out-972

relu

out-973

conv3x3

out-974

batchnorm

out-976

relu

out-977

conv1x1

out-978

batchnorm

out-979

relu

out-980

conv3x3

out-981

batchnorm

out-983

relu

out-984

conv1x1

out-985

batchnorm

out-986

relu

out-987

conv3x3

out-988

batchnorm

out-990

relu

out-991

conv1x1

out-992

batchnorm

out-993

relu

out-994

conv3x3

out-995

batchnorm

out-997

relu

out-998

conv1x1

out-999

batchnorm

out-1000

relu

out-1001

conv3x3

out-1002

batchnorm

out-1004

relu

out-1005

conv1x1

out-1006

batchnorm

out-1007

relu

out-1008

conv3x3

out-1009

batchnorm

out-1011

relu

out-1012

conv1x1

out-1013

batchnorm

out-1014

relu

out-1015

conv3x3

out-1016

batchnorm

out-1018

relu

out-1019

conv1x1

out-1020

batchnorm

out-1021

relu

out-1022

conv3x3

out-1023

batchnorm

out-1025

relu

out-1026

conv1x1

out-1027

batchnorm

out-1028

relu

out-1029

conv3x3

out-1030

batchnorm

out-1032

relu

out-1033

conv1x1

out-1034

batchnorm

out-1035

relu

out-1036

conv3x3

out-1037

batchnorm

out-1039

relu

out-1040

conv1x1

out-1041

pad

out-1042

averagepool2x2

out-1043

concat

out-1044

concat

out-1051

concat

out-1058

concat

out-1065

concat

out-1072

concat

out-1079

concat

out-1086

concat

out-1093

concat

out-1100

concat

out-1107

concat

out-1114

concat

out-1121

concat

out-1128

concat

out-1135

concat

out-1142

concat

out-1149

concat

out-1156

batchnorm

out-1045

relu

out-1046

conv1x1

out-1047

batchnorm

out-1048

relu

out-1049

conv3x3

out-1050

batchnorm

out-1052

relu

out-1053

conv1x1

out-1054

batchnorm

out-1055

relu

out-1056

conv3x3

out-1057

batchnorm

out-1059

relu

out-1060

conv1x1

out-1061

batchnorm

out-1062

relu

out-1063

conv3x3

out-1064

batchnorm

out-1066

relu

out-1067

conv1x1

out-1068

batchnorm

out-1069

relu

out-1070

conv3x3

out-1071

batchnorm

out-1073

relu

out-1074

conv1x1

out-1075

batchnorm

out-1076

relu

out-1077

conv3x3

out-1078

batchnorm

out-1080

relu

out-1081

conv1x1

out-1082

batchnorm

out-1083

relu

out-1084

conv3x3

out-1085

batchnorm

out-1087

relu

out-1088

conv1x1

out-1089

batchnorm

out-1090

relu

out-1091

conv3x3

out-1092

batchnorm

out-1094

relu

out-1095

conv1x1

out-1096

batchnorm

out-1097

relu

out-1098

conv3x3

out-1099

batchnorm

out-1101

relu

out-1102

conv1x1

out-1103

batchnorm

out-1104

relu

out-1105

conv3x3

out-1106

batchnorm

out-1108

relu

out-1109

conv1x1

out-1110

batchnorm

out-1111

relu

out-1112

conv3x3

out-1113

batchnorm

out-1115

relu

out-1116

conv1x1

out-1117

batchnorm

out-1118

relu

out-1119

conv3x3

out-1120

batchnorm

out-1122

relu

out-1123

conv1x1

out-1124

batchnorm

out-1125

relu

out-1126

conv3x3

out-1127

batchnorm

out-1129

relu

out-1130

conv1x1

out-1131

batchnorm

out-1132

relu

out-1133

conv3x3

out-1134

batchnorm

out-1136

relu

out-1137

conv1x1

out-1138

batchnorm

out-1139

relu

out-1140

conv3x3

out-1141

batchnorm

out-1143

relu

out-1144

conv1x1

out-1145

batchnorm

out-1146

relu

out-1147

conv3x3

out-1148

batchnorm

out-1150

relu

out-1151

conv1x1

out-1152

batchnorm

out-1153

relu

out-1154

conv3x3

out-1155

batchnorm

out-1157

relu

out-1158

globalaveragepool

out-1159

flatten

out-1160

linear

out-1161

batchnorm

out-736

relu

out-737

conv3x3

out-738

conv1x1

out-735

batchnorm

out-733

relu

out-734

concat

out-732

batchnorm

out-729

relu

out-730

maxpool3x3

out-731

concat

out-739

concat

out-746

concat

out-753

concat

out-760

concat

out-767

concat

out-774

conv7x7

out-728

batchnorm

out-740

relu

out-741

conv1x1

out-742

batchnorm

out-743

relu

out-744

conv3x3

out-745

batchnorm

out-747

relu

out-748

conv1x1

out-749

batchnorm

out-750

relu

out-751

conv3x3

out-752

batchnorm

out-754

relu

out-755

conv1x1

out-756

batchnorm

out-757

relu

out-758

conv3x3

out-759

batchnorm

out-761

relu

out-762

conv1x1

out-763

batchnorm

out-764

relu

out-765

conv3x3

out-766

batchnorm

out-768

relu

out-769

conv1x1

out-770

batchnorm

out-771

relu

out-772

conv3x3

out-773

batchnorm

out-775

relu

out-776

conv1x1

out-777

pad

out-778

averagepool2x2

out-779

concat

out-780

batchnorm

out-781

relu

out-782

conv1x1

out-783

batchnorm

out-784

relu

out-785

conv3x3

out-786

Figure 10: DenseNet121.

22

Published as a conference paper at ICLR 2023

batchnorm

out-467

add

out-470

relu

out-471

add

out-480

conv1x1

out-472

relu

out-481

add

out-490

conv1x1

out-482

relu

out-491

globalaveragepool

out-492

shape

out-493

reshape

out-500

gather

out-495

unsqueeze

out-497

concat

out-499

linear

out-501

unsqueeze

out-498

constant

out-496

constant

out-494

batchnorm

out-489

batchnorm

out-479

batchnorm

out-469

conv1x1

out-466

conv1x1

out-468

conv1x1

out-478

conv1x1

out-488

batchnorm

out-424

relu

out-425

conv1x1

out-426

conv3x3

out-423

batchnorm

out-382

relu

out-383

conv1x1

out-384

conv3x3

out-381

batchnorm

out-461

relu

out-462

conv3x3

out-463

conv1x1

out-460

batchnorm

out-372

relu

out-373

conv1x1

out-374

conv3x3

out-371

batchnorm

out-360

relu

out-361

conv1x1

out-362

conv3x3

out-359

batchnorm

out-451

relu

out-452

conv3x3

out-453

conv1x1

out-450

batchnorm

out-340

relu

out-341

conv1x1

out-342

conv3x3

out-339

batchnorm

out-434

relu

out-435

conv1x1

out-436

conv3x3

out-433

batchnorm

out-405

add

out-408

relu

out-409

add

out-418

conv1x1

out-410

relu

out-419

add

out-428

conv1x1

out-420

relu

out-429

add

out-438

conv1x1

out-430

relu

out-439

add

out-448

conv1x1

out-440

relu

out-449

add

out-458

relu

out-459

batchnorm

out-457

batchnorm

out-447

batchnorm

out-437

batchnorm

out-427

batchnorm

out-417

batchnorm

out-407

conv1x1

out-404

conv1x1

out-406

conv1x1

out-416

conv1x1

out-446

conv1x1

out-456

batchnorm

out-363

add

out-366

relu

out-367

add

out-376

conv1x1

out-368

relu

out-377

add

out-386

conv1x1

out-378

relu

out-387

add

out-396

conv1x1

out-388

relu

out-397

conv1x1

out-398

batchnorm

out-395

batchnorm

out-385

batchnorm

out-375

batchnorm

out-365

conv1x1

out-364

conv1x1

out-394

batchnorm

out-331

add

out-334

relu

out-335

add

out-344

conv1x1

out-336

relu

out-345

add

out-354

conv1x1

out-346

relu

out-355

conv1x1

out-356

batchnorm

out-353

batchnorm

out-343

batchnorm

out-333

conv1x1

out-330

conv1x1

out-332

conv1x1

out-352

batchnorm

out-441

relu

out-442

conv3x3

out-443

batchnorm

out-357

relu

out-358

batchnorm

out-431

relu

out-432

batchnorm

out-483

relu

out-484

conv3x3

out-485

batchnorm

out-414

relu

out-415

conv3x3

out-413

batchnorm

out-399

relu

out-400

conv3x3

out-401

batchnorm

out-347

relu

out-348

conv3x3

out-349

batchnorm

out-421

relu

out-422

batchnorm

out-389

relu

out-390

conv3x3

out-391

batchnorm

out-337

relu

out-338

batchnorm

out-411

relu

out-412

batchnorm

out-464

relu

out-465

batchnorm

out-322

relu

out-323

conv1x1

out-324

conv3x3

out-321

batchnorm

out-402

relu

out-403

batchnorm

out-328

relu

out-329

conv3x3

out-327

batchnorm

out-486

relu

out-487

batchnorm

out-392

relu

out-393

batchnorm

out-473

relu

out-474

conv3x3

out-475

batchnorm

out-454

relu

out-455

batchnorm

out-325

relu

out-326

batchnorm

out-476

relu

out-477

batchnorm

out-444

relu

out-445

batchnorm

out-369

relu

out-370

batchnorm

out-379

relu

out-380

batchnorm

out-350

relu

out-351

Figure 11: ResNet50.

23

Published as a conference paper at ICLR 2023

relu

out-109

batchnorm

out-110

add

out-140

globalaveragepool

out-141

squeeze

out-142

squeeze

out-143

linear

out-144

batchnorm

out-139

relu

out-138

conv3x3

out-108

conv3x3

out-137

relu

out-116

add

out-126

conv3x3

out-117

conv3x3

out-127

upsample

out-125

concat

out-124

constant

out-122

constant

out-123

conv3x3

out-115

conv3x3

out-121

relu

out-88

batchnorm

out-89

maxpool2x2

out-90

add

out-97

conv3x3

out-91

conv3x3

out-98

upsample

out-96

concat

out-95

constant

out-93

constant

out-94

conv3x3

out-87

conv3x3

out-92

batchnorm

out-81

relu

out-82

conv3x3

out-83

conv3x3

out-80

maxpool2x2

out-84

conv3x3

out-85

add

out-106

batchnorm

out-100

relu

out-101

upsample

out-105

relu

out-107

concat

out-104

constant

out-102

constant

out-103

conv3x3

out-99

batchnorm

out-112

relu

out-113

add

out-135

conv3x3

out-114

relu

out-136

upsample

out-134

relu

out-130

batchnorm

out-129

concat

out-133

constant

out-131

constant

out-132

conv3x3

out-111

conv3x3

out-128

relu

out-86

relu

out-118

batchnorm

out-119

conv3x3

out-120

Figure 12: StackedUnets.

24

Published as a conference paper at ICLR 2023

add

out-218

div

out-220

mul

out-224

erf

out-221

add

out-223

mul

out-226

matmul

out-228

constant

out-225

constant

out-222

constant

out-219

matmul

out-217

transpose

out-551

matmul

out-552

reducemean

out-184

sub

out-185

sub

out-190

pow

out-188

reducemean

out-189

add

out-192

sqrt

out-193

div

out-194

mul

out-197

add

out-200

add

out-232

conv7x7

out-201

add

out-264

conv7x7

out-233

add

out-296

conv7x7

out-265

reducemean

out-297

sub

out-298

sub

out-303

pow

out-301

reducemean

out-302

add

out-305

sqrt

out-306

div

out-307

mul

out-310

add

out-313

conv2x2

out-314

unsqueeze

out-312

unsqueeze

out-311

unsqueeze

out-309

unsqueeze

out-308

constant

out-304

cast

out-300

constant

out-299

transpose

out-295

mul

out-294

add

out-293

transpose

out-263

mul

out-262

add

out-261

transpose

out-231

mul

out-230

add

out-229

unsqueeze

out-199

unsqueeze

out-198

unsqueeze

out-196

unsqueeze

out-195

constant

out-191

cast

out-187

constant

out-186

conv4x4

out-183

matmul

out-260

matmul

out-292

transpose

out-558

reducemean

out-560

sub

out-561

cast

out-562

div

out-569

pow

out-564

reducemean

out-565

add

out-567

sqrt

out-568

mul

out-570

add

out-571

matmul

out-573

constant

out-566

cast

out-563

constant

out-559

conv7x7

out-557

transpose

out-572

transpose

out-202

reducemean

out-204

sub

out-205

cast

out-206

div

out-213

pow

out-208

reducemean

out-209

add

out-211

sqrt

out-212

mul

out-214

add

out-215

constant

out-210

cast

out-207

constant

out-203

add

out-574

div

out-576

mul

out-580

erf

out-577

add

out-579

mul

out-582

matmul

out-584

constant

out-581

constant

out-578

constant

out-575

transpose

out-216

transpose

out-583

transpose

out-234

reducemean

out-236

sub

out-237

cast

out-238

div

out-245

pow

out-240

reducemean

out-241

add

out-243

sqrt

out-244

mul

out-246

add

out-247

matmul

out-249

constant

out-242

cast

out-239

constant

out-235

transpose

out-590

reducemean

out-592

sub

out-593

cast

out-594

div

out-601

pow

out-596

reducemean

out-597

add

out-599

sqrt

out-600

mul

out-602

add

out-603

matmul

out-605

constant

out-598

cast

out-595

constant

out-591

conv7x7

out-589

transpose

out-248

transpose

out-604

add

out-250

div

out-252

mul

out-256

erf

out-253

add

out-255

mul

out-258

constant

out-257

constant

out-254

constant

out-251

add

out-606

div

out-608

mul

out-612

erf

out-609

add

out-611

mul

out-614

matmul

out-616

constant

out-613

constant

out-610

constant

out-607

transpose

out-259

transpose

out-615

transpose

out-266

reducemean

out-268

sub

out-269

cast

out-270

div

out-277

pow

out-272

reducemean

out-273

add

out-275

sqrt

out-276

mul

out-278

add

out-279

matmul

out-281

constant

out-274

cast

out-271

constant

out-267

transpose

out-622

reducemean

out-624

sub

out-625

cast

out-626

div

out-633

pow

out-628

reducemean

out-629

add

out-631

sqrt

out-632

mul

out-634

add

out-635

matmul

out-637

constant

out-630

cast

out-627

constant

out-623

conv7x7

out-621

transpose

out-280

transpose

out-636

add

out-282

div

out-284

mul

out-288

erf

out-285

add

out-287

mul

out-290

constant

out-289

constant

out-286

constant

out-283

add

out-638

div

out-640

mul

out-644

erf

out-641

add

out-643

mul

out-646

matmul

out-648

constant

out-645

constant

out-642

constant

out-639

transpose

out-291

transpose

out-647

transpose

out-316

reducemean

out-318

sub

out-319

cast

out-320

div

out-327

pow

out-322

reducemean

out-323

add

out-325

sqrt

out-326

mul

out-328

add

out-329

matmul

out-331

constant

out-324

cast

out-321

constant

out-317

conv7x7

out-315

transpose

out-654

reducemean

out-656

sub

out-657

cast

out-658

div

out-665

pow

out-660

reducemean

out-661

add

out-663

sqrt

out-664

mul

out-666

add

out-667

matmul

out-669

constant

out-662

cast

out-659

constant

out-655

conv7x7

out-653

transpose

out-330

transpose

out-668

add

out-332

div

out-334

mul

out-338

erf

out-335

add

out-337

mul

out-340

matmul

out-342

constant

out-339

constant

out-336

constant

out-333

add

out-670

div

out-672

mul

out-676

erf

out-673

add

out-675

mul

out-678

matmul

out-680

constant

out-677

constant

out-674

constant

out-671

transpose

out-341

transpose

out-679

add

out-343

mul

out-344

transpose

out-345

add

out-346

add

out-378

conv7x7

out-347

add

out-410

conv7x7

out-379

reducemean

out-411

sub

out-412

sub

out-417

pow

out-415

reducemean

out-416

add

out-419

sqrt

out-420

div

out-421

mul

out-424

add

out-427

conv2x2

out-428

unsqueeze

out-426

unsqueeze

out-425

unsqueeze

out-423

unsqueeze

out-422

constant

out-418

cast

out-414

constant

out-413

transpose

out-409

mul

out-408

add

out-407

transpose

out-377

mul

out-376

add

out-375

matmul

out-374

matmul

out-406

transpose

out-686

reducemean

out-688

sub

out-689

cast

out-690

div

out-697

pow

out-692

reducemean

out-693

add

out-695

sqrt

out-696

mul

out-698

add

out-699

matmul

out-701

constant

out-694

cast

out-691

constant

out-687

conv7x7

out-685

transpose

out-348

reducemean

out-350

sub

out-351

cast

out-352

div

out-359

pow

out-354

reducemean

out-355

add

out-357

sqrt

out-358

mul

out-360

add

out-361

matmul

out-363

constant

out-356

cast

out-353

constant

out-349

transpose

out-700

transpose

out-362

add

out-702

div

out-704

mul

out-708

erf

out-705

add

out-707

mul

out-710

matmul

out-712

constant

out-709

constant

out-706

constant

out-703

add

out-364

div

out-366

mul

out-370

erf

out-367

add

out-369

mul

out-372

constant

out-371

constant

out-368

constant

out-365

transpose

out-711

transpose

out-373

transpose

out-736

reducemean

out-738

sub

out-739

cast

out-740

div

out-747

pow

out-742

reducemean

out-743

add

out-745

sqrt

out-746

mul

out-748

add

out-749

matmul

out-751

constant

out-744

cast

out-741

constant

out-737

conv7x7

out-735

transpose

out-380

reducemean

out-382

sub

out-383

cast

out-384

div

out-391

pow

out-386

reducemean

out-387

add

out-389

sqrt

out-390

mul

out-392

add

out-393

matmul

out-395

constant

out-388

cast

out-385

constant

out-381

transpose

out-750

transpose

out-394

add

out-752

div

out-754

mul

out-758

erf

out-755

add

out-757

mul

out-760

matmul

out-762

constant

out-759

constant

out-756

constant

out-753

add

out-396

div

out-398

mul

out-402

erf

out-399

add

out-401

mul

out-404

constant

out-403

constant

out-400

constant

out-397

transpose

out-761

transpose

out-405

add

out-763

mul

out-764

transpose

out-765

add

out-766

add

out-798

conv7x7

out-767

add

out-830

conv7x7

out-799

reducemean

out-831

reducemean

out-833

sub

out-834

cast

out-835

div

out-842

pow

out-837

reducemean

out-838

add

out-840

sqrt

out-841

mul

out-843

add

out-844

linear

out-845

constant

out-839

cast

out-836

constant

out-832

transpose

out-829

mul

out-828

add

out-827

transpose

out-797

mul

out-796

add

out-795

conv2x2

out-734

matmul

out-794

matmul

out-826

transpose

out-430

reducemean

out-432

sub

out-433

cast

out-434

div

out-441

pow

out-436

reducemean

out-437

add

out-439

sqrt

out-440

mul

out-442

add

out-443

matmul

out-445

constant

out-438

cast

out-435

constant

out-431

conv7x7

out-429

transpose

out-768

reducemean

out-770

sub

out-771

cast

out-772

div

out-779

pow

out-774

reducemean

out-775

add

out-777

sqrt

out-778

mul

out-780

add

out-781

matmul

out-783

constant

out-776

cast

out-773

constant

out-769

transpose

out-444

transpose

out-782

add

out-446

div

out-448

mul

out-452

erf

out-449

add

out-451

mul

out-454

matmul

out-456

constant

out-453

constant

out-450

constant

out-447

add

out-784

div

out-786

mul

out-790

erf

out-787

add

out-789

mul

out-792

constant

out-791

constant

out-788

constant

out-785

transpose

out-455

transpose

out-793

add

out-457

mul

out-458

transpose

out-459

add

out-460

add

out-492

conv7x7

out-461

add

out-524

conv7x7

out-493

add

out-556

conv7x7

out-525

add

out-588

add

out-620

add

out-652

add

out-684

add

out-716

reducemean

out-717

sub

out-718

sub

out-723

pow

out-721

reducemean

out-722

add

out-725

sqrt

out-726

div

out-727

mul

out-730

add

out-733

unsqueeze

out-732

unsqueeze

out-731

unsqueeze

out-729

unsqueeze

out-728

constant

out-724

cast

out-720

constant

out-719

transpose

out-715

mul

out-714

add

out-713

transpose

out-683

mul

out-682

add

out-681

transpose

out-651

mul

out-650

add

out-649

transpose

out-619

mul

out-618

add

out-617

transpose

out-587

mul

out-586

add

out-585

transpose

out-555

mul

out-554

add

out-553

transpose

out-523

mul

out-522

add

out-521

transpose

out-491

mul

out-490

add

out-489

matmul

out-488

matmul

out-520

transpose

out-800

reducemean

out-802

sub

out-803

cast

out-804

div

out-811

pow

out-806

reducemean

out-807

add

out-809

sqrt

out-810

mul

out-812

add

out-813

matmul

out-815

constant

out-808

cast

out-805

constant

out-801

transpose

out-462

reducemean

out-464

sub

out-465

cast

out-466

div

out-473

pow

out-468

reducemean

out-469

add

out-471

sqrt

out-472

mul

out-474

add

out-475

matmul

out-477

constant

out-470

cast

out-467

constant

out-463

transpose

out-814

transpose

out-476

add

out-816

div

out-818

mul

out-822

erf

out-819

add

out-821

mul

out-824

constant

out-823

constant

out-820

constant

out-817

add

out-478

div

out-480

mul

out-484

erf

out-481

add

out-483

mul

out-486

constant

out-485

constant

out-482

constant

out-479

transpose

out-825

transpose

out-487

transpose

out-494

reducemean

out-496

sub

out-497

cast

out-498

div

out-505

pow

out-500

reducemean

out-501

add

out-503

sqrt

out-504

mul

out-506

add

out-507

matmul

out-509

constant

out-502

cast

out-499

constant

out-495

transpose

out-508

add

out-510

div

out-512

mul

out-516

erf

out-513

add

out-515

mul

out-518

constant

out-517

constant

out-514

constant

out-511

transpose

out-519

transpose

out-526

reducemean

out-528

sub

out-529

cast

out-530

div

out-537

pow

out-532

reducemean

out-533

add

out-535

sqrt

out-536

mul

out-538

add

out-539

matmul

out-541

constant

out-534

cast

out-531

constant

out-527

transpose

out-540

add

out-542

div

out-544

mul

out-548

erf

out-545

add

out-547

mul

out-550

constant

out-549

constant

out-546

constant

out-543

transpose

out-227

Figure 13: ConvNeXt-Tiny.

25

Published as a conference paper at ICLR 2023

relu

out-76

linear

out-77

linear

out-75

relu

out-44

conv3x3

out-45

conv3x3

out-43

relu

out-46

conv3x3

out-47

relu

out-48

maxpool2x2

out-49

conv3x3

out-50

relu

out-41

maxpool2x2

out-42

conv3x3

out-40

relu

out-51

conv3x3

out-52

relu

out-53

conv3x3

out-54

relu

out-39

conv3x3

out-38

relu

out-55

maxpool2x2

out-56

conv3x3

out-57

relu

out-36

maxpool2x2

out-37

conv3x3

out-35

relu

out-58

conv3x3

out-59

relu

out-60

conv3x3

out-61

relu

out-62

maxpool2x2

out-63

globalaveragepool

out-64

shape

out-65

reshape

out-72

gather

out-67

unsqueeze

out-69

concat

out-71

linear

out-73

unsqueeze

out-70

constant

out-68

constant

out-66

relu

out-34

conv3x3

out-33

relu

out-74

(a) VGG16.

batchnorm

out-119

relu

out-120

maxpool2x2

out-121

conv3x3

out-122

conv3x3

out-118

batchnorm

out-106

relu

out-107

conv3x3

out-108

conv3x3

out-105

batchnorm

out-109

relu

out-110

maxpool2x2

out-111

conv3x3

out-112

batchnorm

out-133

relu

out-134

conv3x3

out-135

conv3x3

out-132

batchnorm

out-136

relu

out-137

conv3x3

out-138

batchnorm

out-129

relu

out-130

maxpool2x2

out-131

conv3x3

out-128

relu

out-154

linear

out-155

linear

out-153

batchnorm

out-116

relu

out-117

conv3x3

out-115

batchnorm

out-99

relu

out-100

conv3x3

out-101

conv3x3

out-98

batchnorm

out-123

relu

out-124

conv3x3

out-125

batchnorm

out-102

relu

out-103

maxpool2x2

out-104

batchnorm

out-113

relu

out-114

batchnorm

out-139

relu

out-140

maxpool2x2

out-141

globalaveragepool

out-142

shape

out-143

reshape

out-150

gather

out-145

unsqueeze

out-147

concat

out-149

linear

out-151

unsqueeze

out-148

constant

out-146

constant

out-144

relu

out-152

batchnorm

out-126

relu

out-127

(b) VGG16-BN.

Figure 14: VGG16 and VGG16-BN.

26

	Introduction
	Related Work
	OTOv2
	Automated ZIG Partition
	Dual Half-Space Projected Gradient (DHSPG)
	Automated Compressed Model Construction

	Numerical Experiments
	Conclusion
	Implementation Details
	Library Implementation
	Limitations of Beta Version
	Experimental Details

	Extensive Ablation Study
	Super Resolution
	Bert on Squad
	Runtime Comparison

	Convergence Analysis
	ZIG Illustration

