Published as a conference paper at ICLR 2023

OTOV2: AUTOMATIC, GENERIC, USER-FRIENDLY

Tianyi Chen; Luming Liang, Tianyu Ding, Ilya Zharkov Zhihui Zhu'
Microsoft The Ohio State of University
Redmond, WA 98052, USA Columbus, OH 43210, USA

{tiachen, lulian, tianyuding, zharkov}@microsoft.com zhu.3440@osu.edu

ABSTRACT

The existing model compression methods via structured pruning typically require
complicated multi-stage procedures. Each individual stage necessitates numerous
engineering efforts and domain-knowledge from the end-users which prevent their
wider applications onto broader scenarios. We propose the second generation of
Only-Train-Once (OTOv2), which first automatically trains and compresses a gen-
eral DNN only once from scratch to produce a more compact model with competi-
tive performance without fine-tuning. OTOv2 is automatic and pluggable into var-
ious deep learning applications, and requires almost minimal engineering efforts
from the users. Methodologically, OTOv2 proposes two major improvements: (i)
Autonomy: automatically exploits the dependency of general DNNs, partitions
the trainable variables into Zero-Invariant Groups (ZIGs), and constructs the com-
pressed model; and (ii) Dual Half-Space Projected Gradient (DHSPG): a novel
optimizer to more reliably solve structured-sparsity problems. Numerically, we
demonstrate the generality and autonomy of OTOvV2 on a variety of model archi-
tectures such as VGG, ResNet, CARN, ConvNeXt, DenseNet and StackedUnets,
the majority of which cannot be handled by other methods without extensive
handcrafting efforts. Together with benchmark datasets including CIFAR10/100,
DIV2K, Fashion-MNIST, SVNH and ImageNet, its effectiveness is validated by
performing competitively or even better than the state-of-the-arts. The source code
is available at https://github.com/tianyic/only_train_once.

1 INTRODUCTION

Large-scale Deep Neural Networks (DNNs) have demonstrated successful in a variety of applica-
tions (,). However, how to deploy such heavy DNNs onto resource-constrained envi-
ronments is facing severe challenges. Consequently, in both academy and industry, compressing full
DNNs into slimmer ones with negligible performance regression becomes popular. Although this
area has been explored in the past decade, it is still far away from being fully solved.

Weight pruning is perhaps the most popular compression method because of its generality and ability
in achieving significant reductlon of FLOPs and model size by identifying and removing redundant
structures (,). However, most existing pruning
methods typically proceed a Comphcated mu1t1 stage procedure as shown in Flgure 1, which has
apparent limitations: (i) Hand-Craft and User-Hardness: requires significant engineering efforts
and expertise from users to apply the methods onto their own scenarios; (ii) Expensiveness: con-
ducts DNN training multiple times including the foremost pre-training, the intermediate training for
identifying redundancy and the afterwards fine-tuning; and (iii) Low-Generality: many methods
are designed for specific architectures and tasks and need additional efforts to be extended to others.

To address those drawbacks, we naturally need a DNN training and pruning method to achieve the

Goal. Given a general DNN, automatically train it only once to achieve both high performance and
slimmer model architecture simultaneously without pre-training and fine-tuning.

To realize, the following key problems need to be resolved systematically. (i) What are the removal
structures (see Section 3.1 for a formal definition) of DNNs? (ii) How to identify the redundant

*Corresponding Author. Partially supported by NSF grant CCF-2240708.

https://github.com/tianyic/only_train_once

Published as a conference paper at ICLR 2023

Classical Model Compression Methods

Train Full Identify Model | [Construct Fine-Tune

OTOv2 | OTOv1 | Others Model Redundancy Slim Model Retrain ©

Training Cost Low Low High (

oTOV1 S
Autonomy v ' X E:> ’@
. H Create ZIG Train Full Model Construct

User-Friendliness v X X [Partition by HSPG Slim Model } !

Generality v v ¥ O

Automatic User-Friendly
Generic High Performance
Figure 1: OTOvV2 versus existing methods.

removal structures? (iii) How to effectively remove redundant structures without deteriorating the
model performance to avoid extra fine-tuning? (iv) How to make all the above proceeding automat-
ically? Addressing them is challenging in the manner of both algorithmic designs and engineering
developments, thereby is not achieved yet by the existing methods to our knowledge.

To resolve (i-iii), Only-Train-Once (OTOvV1) (,) proposed a concept so-called Zero-
Invariant Group (ZIG), which is a class of minimal removal structures that can be safely removed
without affecting the network output if their parameters are zero. To jointly identify redundant ZIGs
and achieve satisfactory performance, OTOv1 further proposed a Half-Space Projected Gradient
(HSPG) method to compute a solution with both high performance and group sparsity over ZIGs,
wherein zero groups correspond to redundant removal structures. As a result, OTOv1 trains a full
DNN from scratch only once to compute a slimmer counterpart exhibiting competitive performance
without fine-tuning, and is perhaps the closest to the goal among the existing competitors.

Nevertheless, the fundamental problem (iv) is not addressed in OTOvV1, i.e., the ZIGs partition is
not automated and only implemented onto several specific architectures. OTOv1 suffers a lot from
requiring extensive hand-crafting efforts and domain knowledge to partition trainable variables into
ZIGs which prohibits its broader usages. Meanwhile, OTOv1 highly depends on HSPG to yield a so-
lution with both satisfactory performance and high group sparsity. However, the sparsity exploration
of HSPG is typically sensitive to the regularization coefficient thereby requires time-consuming
hyper-parameter tuning and lacks capacity to precisely control the ultimate sparsity level.

To overcome the drawbacks of OTOvl and simultaneously ———— Library Usage

.. . from only_train_once import OTO
tackle (l-lV),. we propose Only-Train-Once v2 (OTQy2), the [, o o7 Ui moden
next-generation one-shot deep neural network training and 3|oto = 0TO (model)
pruning framework. Given a full DNN , OTOv?2 is able to train Opfimizer = oto. fhspg 0

. # T as norma

apd compress it from scratch into a slimmer DNN with sig- optri;irzler.stepn(l)
nificant FLOPs and parameter quantity reduction. In contrast 7 | oto.compress ()
to others, OTOv2 drastically simplifies the complicated multi-
stage procedures; guarantees performance more reliably than OTOv1; and is generic, automatic
and user-friendly. Our main contributions are summarized as follows.

N AW~

* Infrastructure for Automated DNN One-Shot Training and Compression. We propose and
develop perhaps the first generic and automated framework to compress a general DNN with both
excellent performance and substantial complexity reduction in terms of FLOPs and model car-
dinality. OTOvV2 only trains the DNN once, neither pre-training nor fine-tuning is a necessity.
OTOV2 is user-friendly and easily applied onto generic tasks as shown in library usage. Its suc-
cess relies on the breakthroughs from both algorithmic designs and infrastructure developments.

* Automated ZIG Partition and Automated Compressed Model Construction. We propose
a novel graph algorithm to automatically exploit and partition the variables of a general DNN
into Zero-Invariant Groups (ZIGs), i.e., the minimal groups of parameters that need to be pruned
together. We further propose a novel algorithm to automatically construct the compressed model
by the hierarchy of DNN and eliminating the structures corresponding to ZIGs as zero. Both
algorithms are dedicately designed, and work effectively with low time and space complexity.

* Novel Structured-Sparsity Optimization Algorithm. We propose a novel optimization algo-
rithm, called Dual Half-Space Projected Gradient (DHSPG), to train a general DNN once from
scratch to effectively achieve competitive performance and high group sparsity in the manner of
ZIGs, which solution is further leveraged into the above automated compression. DHSPG for-
mulizes a constrained sparse optimization problem and solves it by constituting a direction within
the intersection of dual half-spaces to largely ensure the progress to both the objective convergence
and the identification of redundant groups. DHSPG outperforms the HSPG in OTOv1 in terms of
enlarging search space, fewer hyper-parameter tuning, and more reliably controlling sparsity.

Published as a conference paper at ICLR 2023

* Experimental Results. We apply OTOv2 onto a variety of DNNs (most of which have struc-
tures with complicated connectivity) and extensive benchmark datasets, including CIFAR10/100,
DIV2K, SVNH, Fashion-MNIST and ImageNet. OTOv2 trains and compresses various DNNs
simultaneously from scratch without fine-tuning for significant inference speedup and parameter
reduction, and achieves competitive or even state-of-the-art results on compression benchmarks.

2 RELATED WORK

Structured Pruning. To compute compact architectures for efficient model inference and storage,
structured pruning identifies and prunes the redundant structures in a full model (, ;
,). The general procedure can be largely summarized as: (i) train a full model; (i)
identify and remove the redundant structures to construct a slimmer DNN based on various criteria,
mcludmg (structured) sparsny (s ; s ; s ; s
,), Bayeswm pruning (, ; s ; s
) rankmg importance (; , ; , ; s

; s) relnforcement learning (s ; s), lottery
tlcket (; ,), etc (iii) (iteratively) retrain
the pruned model to regaln the accuracy regress1on during pruning. These methods have to conduct
a complicated and time-consuming procedure to trains the DNN multiple times and requires a good
deal of domain knowledge to manually proceed every individual step. OTOv1 (,)is
recently proposed to avoid fine-tuning and end-to-end train and compress the DNN once, whereas its
automation relies on spending numerous handcrafting efforts on creating ZIGs partition and slimmer

model construction for specific target DNNs in advance, thereby is actually semi-automated.

Automated Machine Learning (AutoML). OTOv2 fills into a vital gap within AutoML domain
regarding given an general DNN architecture, how to automatically train and compress it into a slim-
mer one with competitive performance and significant FLOPs and parameter quantity reduction. The
existing AutoML methods focus on (i) automated feature engineering (

), (ii) automated hyper-parameter setting (,), and (iii) neural architecture search
(NAYS) (s). NAS searches a DNN architecture with satisfactory performance from
a prescribed fixed full graph wherein the connection between two nodes (tensors) is searched from
a pool of prescribed operators. NAS itself has no capability to slim and remove redundancy from
the searched architectures due to the pool being fixed and is typically time-consuming. As a result,
NAS may serve as a prerequisite step to search a target network architecture as the input to OTOv2.

3 OTOv2

OTOV2 has nearly reached the goal of model compression via weight pruning, which is outlined
in Algorithm 1. In general, given a neural network M to be trained and compressed, OTOV2 first
automatically figures out the dependencies among the vertices to exploit minimal removal structures
and partitions the trainable variables into Zero-Invariant Groups (ZIGs) (Algorithm 2). ZIGs (G)
are then fed into a structured sparsity optimization problem, which is solved by a Dual Half-Space
Projected Gradient (DHSPG) method to yield a solution xf;spg With competitive performance as
well as high group sparsity in the view of ZIGs (Algorithm 3). The compressed model M* is ul-
timately constructed via removing the redundant structures corresponding to the ZIGs being zero.
M* significantly accelerates the inference in both time and space complexities and returns the iden-
tical outputs to the full model M parameterized as xjy5pg due to the properties of ZIGs, thus avoids
further fine-tuning M*. The whole procedure is proceeded automatically and easily employed onto
various DNN applications and consumes almost minimal engineering efforts from the users.

Algorithm 1 Outline of OTOV2.

Input. An arbitrary full model M to be trained and compressed (no need to be pretrained).
Automated ZIG Partition. Partition the trainable parameters of M into G.

Train M by DHSPG. Seck a highly group-sparse solution x}j;;pg With high performance.
Automated Compressed Model M* Construction. Construct a slimmer model upon }jyqpg-
Output: Compressed slimmed model M*.

Dhwn e

Published as a conference paper at ICLR 2023

3.1 AUTOMATED ZIG PARTITION

Background. We review relevant concepts before describing how to proceed ZIG partition automat-
ically. Due to the complicated connectivity of DNNs, removing an arbitrary structure or component
may result in an invalid DNN. We say a structure removal if and only if the DNN without this com-
ponent still serves as a valid DNN. Consequently, a removal structure is called minimal if and only if
it can not be further decomposed into multiple removal structures. A particular class of minimal re-
moval structures—that produces zero outputs to the following layer if their parameters being zero—
are called ZIGs (,) which can be removed directly without affecting the network
output. Thus, each ZIG consists of a minimal group of variables that need to be pruned together and
dominates most DNN structures, e.g., layers as Conv, Linear and MultiHeadAtten. While
ZI1Gs exist for general DNNs, their topology can vary significantly due to the complicated connec-
tivity. This together with the lack of API poses severe challenges to automatically exploit ZIGs in
terms of both algorithmic designs and engineering developments.

Algorithm 2 Automated Zero-Invariant Group Partition.

Input: A DNN M to be trained and compressed.

Construct the trace graph (£,V) of M.

Find connected components C over all accessory, shape-dependent joint and unknown vertices.
Grow C till incoming nodes are either stem or shape-independent joint vertices.

Merge connected components in C if any intersection.

Group pairwise parameters of stem vertices in the same connected component associated with
parameters from affiliated accessory vertices if any as one ZIG into G.

7: Return the zero-invariant groups G.

A AN A ey

Algorithmic Outline. To resolve the autonomy of ZIG partition, we present a novel, effective and
efficient algorithm. As outlined in Algorithm 2, the algorithm essentially partitions the graph of
DNN into a set of connected components of dependency, then groups the variables based on the
affiliations among the connected components. For more intuitive illustration, we provide a small but
complicated DemoNet along with explanations about its ground truth minimal removal structures
(ZI1Gs) in Figure 2. We now elaborate Algorithm 2 to automatically recover the ground truth ZIGs.

Graph Construction. In particular, we first establish the trace graph (£,V) of the target DNN,
wherein each vertex in)V refers to a specific operator, and the edges in £ describe how they con-
nect (line 2 of Algorithm 2). We categorize the vertices into stem, joint, accessory or unknown.
Stem vertices equip with trainable parameters and have capacity to transform their input tensors
into other shapes, e.g., Conv and Linear. Joint vertices aggregate multiple input tensors into a
single output such as Add, Mul and Concat. Accessory vertices operate a single input tensor into
a single output and may possess trainable parameters such as Bat chNorm and ReLu. The remain-
ing unknown vertices proceed some uncertain operations. Apparently, stem vertices compose most
of the DNN parameters. Joint vertices establish the connections cross different vertices, and thus
dramatically bring hierarchy and intricacy of DNN. To keep the validness of the joint vertices, the
minimal removal structures should be carefully constructed. Furthermore, we call joint vertices be-
ing input shape dependent (SD) if requiring inputs in the same shapes such as Add, otherwise being
shape-independent (SID) such as Concat along the channel dimension for Conv layers as input.

Construct Connected Components of Dependency. Now, we need to figure out the exhibiting depen-
dency across the vertices to seek the minimal removal structures of the target DNN. To proceed,
we first connect accessory, SD joint and unknown vertices together if adjacent to form a set of con-
nected components C (see Figure 2c and line 3 of Algorithm 2). This step is to establish the skeletons
for finding vertices that depend on each other when considering removing hidden structures. The
underlying intuitions of this step in depth are (i) the adjacent accessory vertices operate and are
subject to the same ancestral stem vertices if any; (ii) SD joint vertices force their ancestral stem
vertices dependent on each other to yield tensors in the same shapes; and (iii) unknown vertices
introduce uncertainty, hence finding potential affected vertices is necessary. We then grow C till all
their incoming vertices are either stem or SID joint vertices and merge the connected components
if any intersection as line 4-5. Remark here that the newly added stem vertices are affiliated by the
accessory vertices, such as Conv1 for BN1-ReLu and Conv3+Conv2 for BN2|BN3 in Figure 2d.
In addition, the SID joint vertices introduce dependency between their affiliated accessory vertices
and incoming connected components, e.g., Concat—BN4 depends on both Conv1-BN1-ReLu
and Conv3+Conv2-BN2|BN3 since BN4 normalizes their concatenated tensors along channel.

Published as a conference paper at ICLR 2023

(c) Connected components. (d Connected components of dependency
K1 b v Bi v Bi o by Ks bs v B2 v B by

i HHEEEE e

EEEEETT | IEEDOEEECT I

(e) Zero-Invariant Groups.

Figure 2: Automated ZIG partition illustration. IACZ and b; are the flatten filter matrix and bias vector

of Convi, where the jth row of IC; represents the jth 3D filter. +; and 3; are the weighting and
bias vectors of BNi. W, and b,,, are the weighting matrix and bias vector for Lineari. The
ground truth ZIGs G are present in Figure 2e. Since the output tensors of Conv2 and Conv3 are
added together, both layers associated with the subsequent BN2 and BN3 must remove the same

number of filters from &y and 1%3 and scalars from bo, b3, 2,73, 82 and B3 to keep the addition
valid. Since BN4 normalizes the concatenated outputs along channel from Conv1-BN1-ReLu and
Conv3+Conv2-BN2|BN3, the corresponding scalars in «y,, 34 need to be removed simultaneously.

Form ZIGs. Finally, we form ZIGs based on the connected components of dependency as Figure 2d.
The pairwise trainable parameters across all individual stem vertices in the same connected com-
ponent need to be first grouped together as Figure 2e, wherein the parameters of the same color
represent one group. Later on, the accessory vertices insert their trainable parameters if applicable
into the groups of their dependent stem vertices accordingly. Some accessory vertex such as BN4
may depend on multiple groups because of the SID joint vertex, thereby its trainable parameters
~,4 and B4 need to be partitioned and separately added into corresponding groups, e.g., v4, 34 and
~2,3%. In addition, the connected components that are adjacent to the output of DNN are excluded
from forming ZIGs since the output shape should be fixed such as Linear2. For safety, the con-
nected components that possess unknown vertices are excluded as well due to uncertainty, which
further guarantees the generality of the framework applying onto DNNs with customized operators.

Complexity Analysis. The proposed automated ZIG partition Algorithm 2 is a series of customized
graph algorithms dedicately composed together. In depth, every individual sub-algorithm is achieved
by depth-first-search recursively traversing the trace graph of DNN and conducting step-specific
operations, which has time complexity as O(|V| + |£|) and space complexity as O(]V]) in the worst
case. The former one is computed by discovering all neighbors of each vertex by traversing the
adjacency list once in linear time. The latter one is because the trace graph of DNN is acyclic
thereby the memory cache consumption is up to the length of possible longest path for an acyclic
graph as |V|. Therefore, automated ZIG partition can be efficiently completed within linear time.

3.2 DUAL HALF-SPACE PROJECTED GRADIENT (DHSPG)

Given the constructed ZIGs G by Algorithm 2, the next step is to jointly identify which groups are
redundant to be removed and train the remaining groups to achieve high performance. To tackle it,
we construct a structured sparsity optimization problem and solve it via a novel DHSPG. Compared
with HSPG, DHSPG constitutes a dual-half-space direction with automatically selected regulariza-
tion coefficients to more reliably control the sparsity exploration, and enlarges the search space by
partitioning the ZIGs into separate sets to avoid trapping around the origin for better generalization.

Published as a conference paper at ICLR 2023

Target Problem. Structured sparsity inducing optimization problem is a natural choice to seek a
group sparse solution with high performance, wherein the zero groups refer to the redundant struc-
tures, and the non-zero groups exhibit the prediction power to maintain competitive performance to
the full model. We formulate an optimization problem with a group sparsity constraint in the form
of ZIGs G as (1) and propose a novel Dual Half-Space Projected Gradient (DHSPG) to solve it.

minei%gze f(x), s.t Card{g € G|[x], =0} = K, (1)

where K is the target group sparsity level. Larger K indicates higher group sparsity in the solution
and typically results in more aggressive FLOPs and parameter quantity reductions.

Related Optimizers and Limitations. To solve such constrained
problem, ADMM converts it into a min-max problem, but can not
tackle the non-smooth and non-convex hard constraint of sparsity
without hurting the objective, thus necessitates extra fine-tuning af-
terwards (s). HSPG in OTOvV1 (R)
and proximal methods (,) relax it into a non-
constrained mixed ¢; /¢, regularization problem, but can not guar-
antee the sparsity constraint because of the implicit relationship be-
tween the regularization coefficient and the sparsity level. In addi-
tion, the augmented regularizer penalizes the magnitude of the en-
tire trainable variables which restricts the search space to converge Figure 3: Local optima =* €
to the local optima nearby the origin point, e.g., } in Figure 3. R? distribution over the ob-
However, the local optima with the highest generalization may lo- jective landscape.

cate variably for different applications, and some may stay away

from the origin point, e.g., 3, - - - , % in Figure 3.

Algorithm Outline for DHSPG. To
resolve the drawbacks of the exist-

0

Algorithm 3 Dual Half-Space Projected Gradient (DHSPG)

ing Optimization algorithms for solv- 1: Input: initial variable Tg € Rn, initial 1Carning rate «,
ing (1), we propose a novel algo- warm-up steps Ty, half-space project steps T}, target
rithm, named Dual Half-Space Pro- group sparsity K and ZIGs G.

Warm up T, steps via stochastic gradient descent.
Construct G, and G,,;, given G and K as (2).
fort=1T,T,+1,T,+2,---,do
Compute gradient estimate Vf (a;) or its variant.
Update [x;11]g,, as [x; — a;Vf(x¢)]g,,-

jected Gradient (DHSPG), stated as
Algorithm 3, with two takeaways.

Partition Groups. To avoid always
trapping in the local optima near the
origin point, we further partition the Select proper A, for g € G,

groups in G into two subsets: one Compute [Z1]g, via subgradient descent of 7).
has magnitudes of variables being pe- . if ¢t > T}, then

PRI

nalized Gy, and the other does not Perform Half-Space projection over [Z;1]g, -
force to penalize variable magnitude) Und -
Gnyp- Different criteria can be applied = pdate [2111]g, ¢ [&141]g,-

here to construct the above partition 12: Update o1

based on salience scores, e.g., cosine- 13: Return the final iterate Zpygpg-
similarity cos(6,) between the pro-
jection direction —[x], and the negative gradient or its estimation —[Vf(x)],. Higher cos-similarity
over g € G indicates that projecting the group of variables in g onto zeros is more likely to make
progress to the optimality of f (considering the descent direction from the perspective of optimiza-
tion). The magnitude over [x], then needs to be penalized. Therefore, we compute G, by picking
up the ZIGs with top-K highest salience scores and G, as its complementary as (2). To compute
more reliable scores, the partition is proceeded after performing 7, warm-up steps as line 2-3.

Gp = (Top-K) arg max salience-score(g) and G, = {1,2,--- ,n}\Gp. (2)
geg

Update Variables. For the variables in G,, of which magnitudes are not penalized, we proceed
vanilla stochastic gradient descent or its variants, such as Adam (), Le.,
[®:41]g,, < [®ig,, — [Vf(xt)]g,,. For the groups of variables in G, to penahze magnitude,
we seek to find out redundant groups as zero, but instead of directly projecting them onto zero as
ADMM which easily destroys the progress to the optimum, we formulate a relaxed non-constrained
subproblem as (3) to gradually reduce the magnitudes without deteriorating the objective and project
groups onto zeros if the projection serves as a descent direction during the training process.

Published as a conference paper at ICLR 2023

minimize ¢ ([z]g,) = f (I2lg,) + > Ag gl 3)
9p
where), is a group-specific regularization coefficient 9

00

and needs to be dedicately chosen to guarantee the de-
crease of both the variable magnitude for g as well as
the objective f. In particular, we compute a negative
subgradient of 1) as the search direction [d(x)]g, :=
—[Vf(@)lg, — X geg, Aol®ly/ max{||[z]gll,, 7} with T
as a safeguard constant. To ensure [d(x)]g, as a descent
direction for both f and ||x||5, [d(x)], needs to fall into
the intersection between the dual half-spaces with nor-
mal directions as —[Vf], and —[z], for any g € G, as
shown in Figure 4. In other words, [d(m)]gp [-Vf(z)]g,
and [d(m)]gp[—w}gp are greater than 0. It further indi-
cates that A, locates in the interval (Amin,g,)\max,g) = o []; 0o

(_ cos(8,) ||V (@)l » _%) if cos (0,) < 0 Figure 4: Search direction in DHSPG.

otherwise can be an arbitrary positive constant. Such A\, brings the decrease of both the objective
and the variable magnitude. We then compute a trial iterate [€;1]g, + [®; — aid(x¢)]g, via
the subgradient descent of ¢ as line 8. The trial iterate is fed into the Half-Space projector (

,) which outperforms proximal operators to yield group sparsity more productively with-
out hurting the objective as line 9-10. Remark here that OTOv1 utilizes a global coefficient A for
all groups, thus lacks sufficient capability to guarantee both aspects for each individual group in
accordance.

Convergence and Complexity Analysis. DHSPG converges to the solution of (1) xfygpg in the
manner of both theory and practice. In fact, the theoretical convergence relies on the the construction
of dual half-space mechanisms which yield sufficient decrease for both objective f and variable
magnitude, see Lemma 2 and Corollary 1 in Appendix C. Together with the sparsity recovery of
Half-Space projector (, , Theorem 2), DHSPG effectively computes a solution with
desired group sparsity. In addition, DHSPG consumes the same time complexity O(n) as other
first-order methods, such as SGD and Adam, since all operations can be finished within linear time.

3.3 AUTOMATED COMPRESSED MODEL CONSTRUCTION

In the end, given the solution T{jygpg With
both high performance and group sparsity,
we now automatically construct a compact
model which is a manual step with un-
avoidable substantial engineering efforts
in OTOv1. In general, we traverse all ver-
tices with trainable parameters, then re-
move the structures in accordance with
ZIGs being zero, such as the dotted rows

of Ky, Ky, K5 and scalars of by, 71, By as Figure 5: Automated compressed model construction.
illustrated in Figure 5. Next, we erase the - N -
redundant parameters that affiliate with the G =1{91,92, 95} and [ZHpspGlgaugsugs = 0-
removed structures of their incoming stem vertices to keep the operations valid, e.g., the second and
third channels in g5 are removed though g5 is not zero. The automated algorithm is promptly com-
plete in linear time via performing two passes of depth-first-search and manipulating parameters to
produce a more compact model M*. Based on the property of ZIGs, M™ returns the same inference
outputs as the full M parameterized as T{jygpg thus no further fine-tuning is necessary.

4 NUMERICAL EXPERIMENTS

We develop OTOV2 to train and compress DNNs into slimmer networks with significant inference
speedup and storage saving without fine-tuning. The implementation details are presented in Ap-
pendix A. To demonstrate its effectiveness, we first verify the correctness of automated ZIG parti-
tion and automated compact model construction by employing OTOv2 onto a variety of DNNs with

Published as a conference paper at ICLR 2023

complicated structures (see the visualizations in Appendix D). Then, we compare OTOv2 with other
methods on the benchmark experiments to show its competitive (or even superior) performance. In
addition, we conduct ablation studies of DHSPG versus HSPG on the popular super-resolution task
and Bert (,) on Squad (,) in Appendix B. Together with
autonomy, user-friendliness and generality, OTOv2 arguably becomes the new state-of-the-art.

Sanity of Automated ZIG and Automated Compression. The foremost step is to validate the cor-
rectness of the whole framework including both algorithm designs and infrastructure developments.
We select five DNNs with complex topological structures, i.e., StackedUnets, DenseNet (

,), ConvNeXt (,) and CARN (,) (see Appendix B for de-
tails), as well as DemoNet in Section 3.1, all of which are not easily to be compressed via the ex-
isting non-automatic methods unless with sufficient domain knowledge and extensive handcrafting
efforts. Remark here that StackedUnets consumes two input tensors, and is constructed by stack-
ing two standard Unets (,) with different downsamplers and aggregating the
corresponding two outputs together. To intuitively illustrate the automated ZIG partition over these
complicated structures, we provide the visualizations of the connected components of dependency
in Appendix D. To quantitatively measure the performance of OTOv2, we further employ these

model architectures onto a variety of benchmark datasets, e.g., Fashion-MNIST (R),
SVNH (,), CIFAR10/100 (s) and ImageNet (R
). The main results are presented in Table 1.
Compared with the baselines trained Table 1: OTOv2 on extensive DNNs and datasets.
by vanilla SGD, under the same Backend Dataset Method FLOPs | #of Params | Top-1 Acc.
1 DemoNet Fashion-MNIST Baseline 100% 100% 84.5%
amOuI'lt Of tralnlng COSt’ OTOV2 au- DemoNet Fashion-MNIST OTOv2 24.0% 23.3% 84.3%
tomatically reaches not only the com- = “siackedUnets” | = ~ SVNH ~ ~| Baselne | 100% | ~ T00% |~ 948% ~
st StackedUnets SVNH OTOv2 26.4% 17.0% 94.7%
petitive performance but also remark- - 0@ H " 1 - eEarito” | Baseine [100 [~ Too% ~|~ 770% ~
able speed up in terms of FLOPs DenseNet121 CIFAR100 OTOvV2 | 20.8% 26.7% 75.5%
d . ducti o ComNeXeTiny |~ TmageNet ™ ~| TBaseline [100% [~ T00% | 820%
and parameter quantity reductions. In conyNex:-Tiny ImageNet OTOvV2 | 528% | 542% 811%

particular, the slimmer DemoNet and
StackedUnets computed by OTOv2 negligibly regress the top-1 accuracy by 0.1%-0.2% but signif-
icantly reduce the FLOPs and the number of parameters by 73.6%-83.0%. Consistent phenomena
also hold for DenseNet121 where the slimmer architecture is about 5 times more efficient than the
full models but with competitive accuracy. OTOv2 works with TIMM (,) to effec-
tively compress ConvNeXt-Tiny which shows its flexibility to the modernized training tricks. The
success of OTOv2 on these architectures well validates the sanity of the framework.

Benchmark Experiments. The secondary step is to demonstrate the effectiveness of OTOv2 by
comparing the performance with other state-of-the-arts on benchmark compression experiments,
i.e., common architectures such as VGG16 (s) and ResNet50 (s

) as well as datasets CIFAR10 (s) and ImageNet (s).

VGG16 on CIFAR10. We first consider vanilla VGG16 and a variant referred as VGG16-BN that
appends a batch normalization layer after every convolutional layer. OTOv2 automatically exploits
the minimal removal structures of VGG16 and partitions the trainable variables into ZIGs (see Fig-
ure 14 in Appendix D). DHSPG is then triggered over the partitioned ZIGs to train the model from
scratch to find a solution with high group sparsity. Finally, a slimmer VGG16 is automatically con-
structed without any fine-tuning. As shown in Table 2, the slimmer VGG16 leverages only 2.5% of
parameters to dramatically reduce the FLOPs by 86.6% with the competitive top-1 accuracy to the
full model and other state-of-the-art methods. Likewise, OTOv2 compresses VGG16-BN to main-
tain the baseline accuracy by the fewest 4.9% of parameters and 23.7% of FLOPs. Though SCP and
RP reach higher accuracy, they require significantly 43%-102% more FLOPs than that of OTOv2.

ResNetSO on C]FAR].O We now Table 3: ResNet50 for CIFAR10.
. Method FLOPs | #of Params | Top-1 Acc.

Co.nduCt experiments to compare Baseline 100% 100% 93.5%
w1th.a few representative automatic AMC (i) _ 60.0% 93.6%
pruning methods such as AMC and ANNC (,2020) - 50.0% 95.0%
ANNC. AMC establishes a rein- ~ PruneTrain(»2019) 1 30.0% - 93.1%
f] . ¢t id N2NSkip (s) - 10.0% 94.4%
orcement learning agent to guide OTOVI (,) 12.8% 3.8% 94.4%
a layer-wise compression, while it OTOV2 (90% group sparsity) 22% 1.2% 93.0%
only achieves autonomy over a few OTOv2 (80% group sparsity) 7.8% 4.1% 94.5%

prescribed specific models and requires multiple-stage training costs. Simple pruning methods

Published as a conference paper at ICLR 2023

Table 2: VGG16 and VGG16-BN for CIFAR10. Convolutional layers are in bold.

Method BN Architecture FLOPs | # of Params | Top-1 Acc.

Baseline X | 64-64-128-128-256-256-256-512-512-512-512-512-512-512-512 | 100% 100% 91.6%
SBP (.) X 47-50-91-115-227-160-50-72-51-12-34-39-20-20-272 31.1% 5.9% 91.0%
BC (s) X 51-62-125-128-228-129-38-13-9-6-5-6-6-6-20 38.5% 5.4% 91.0%
RBC (s) X 43-62-120-120-182-113-40-12-20-11-6-9-10-10-22 32.3% 3.9% 90.5%
RBP (s) X 50-63-123-108-104-57-23-14-9-8-6-7-11-11-12 28.6% 2.6% 91.0%
OTOVI (N) X 21-45-82-110-109-68-37-13-9-7-3-5-8-170-344 16.3% 2.5% 91.0%
OTOV2 (85% group sparsity) X 22-30-56-102-142-101-28-11-6-6-5-5-101-127 13.4% 2.5% 91.0%

~ " Baseline] "V | 64-64-128-128-256-256-256-512-512-512-512-512-512-512-512 7| 100% | 100% | 932%
EC (s) v | 32-64-128-128-256-256-256-256-256-256-256-256-256-512-512 | 65.8% 37.0% 93.1%
Hinge (s) v - 60.9% 20.0% 93.6%
SCP (s) v - 33.8% 7.0% 93.8%
OTOVI (s) v 22-56-93-123-182-125-95-45-27-21-10-13-19-244-392 26.8% 5.5% 93.3%
RP (N) v - 47.9% 42.1% 93.9%
CPGCN (s)| v - 26.9% 6.9% 93.1%
OTOv2 (80% group sparsity) v 14-51-77-122-183-146-92-41-16-13-8-11-14-107-183 23.7% 4.9% 93.2%

such as ANNC and SFW-pruning (,) do not construct slimmer models besides

merely projecting variables onto zero. OTOv2 overcomes all these drawbacks and is the first to
realize the end-to-end autonomy for simultaneously training and compressing arbitrary DNNs with
high performance. Furthermore, OTOv2 achieves the state-of-the-art results on this intersecting
ResNet50 on CIFAR10 experiment. In particular, as shown in Table 3, under 90% group sparsity
level, OTOV2 utilizes only 1.2% parameters and 2.2% FLOPs to reach 93.0% top-1 accuracy with
slight 0.5% regression. Under 80% group sparsity, OTOv2 achieves competitive 94.5% accuracy to
other pruning methods but makes use of substantially fewer parameters and FLOPs.

ResNet50 on ImageNet. We finally employ 78
OTOV2 to ResNet50 on ImageNet. Similarly to

other experiments, OTOv2 first automatically Grow-HS (2010)
partitions the trainable variables of ResNet50 e e
into ZIGs (see Figure 11 in Appendix D), and
then trains it once by DHSPG to automatically
construct slimmer models without fine-tuning.
We report a performance portfolio under vari-
ous target group sparsities ranging from 40%
to 70% and compare with other state-of-the-
art methods in Figure 6. Remark here that
more reliably controlling the ultimate sparsity
level to meet various deployment environments e

is a significant superiority of DHSPG to the hinNet (2017) N
HSPG. An increasing target group sparsity re- 0 . | . IW group spaisity
sults in more FLOPs and parameter quantity re- 30 50 70 90
ductions, meanwhile sacrifices more accuracy. FLOPs Reduction (%)

It is noticeable that OTOV2 roughly exhibits a

Pareto frontier in terms of top-1 accuracy and Figure 6: ResNet50 on ImageNet.

FLOPs reduction under various group sparsities. In particular, under 70% group sparsity, the slim-
mer ResNet50 by OTOv2 achieves fewer FLOPs (14.5%) than others with a 70.3% top-1 accuracy

<
=
T

. 10% group sparsity
RP (2022) Ps
[]
Hinge \;Ll)?[)‘r. oTO (2021’\
0® GNN-RL (2022) '
SCP (2020)

N 50% group sparsity

<
N
T

OTOv2

\
\
\

[
RRBP (2019) \

60% group sparsity h\

Top-1 Accuracy (%)
<
[V]
I

which is competitive to SFP (,) and RBP (,) especially under 3x
fewer FLOPs. The one with 72.3% top-1 accuracy under group sparsity as 60% is competitive to
CP (,), DDS-26 (,) and RRBP (,), but 2-3 times

more efficient. The slimmer ResNet50s under 40% and 50% group sparsity achieve the accuracy
milestone, i.e., around 75%, both of which FLOPs reductions outperform most of state-of-the-arts.
ResRep (s), Group-HS (s) and GBN-60 (s) achieve
over 76% accuracy but consume more FLOPs than OTOv2 and are not automated for general DNNs.

5 CONCLUSION

We propose OTOv2 that automatically trains a general DNN only once and compresses it into a
more compact counterpart without pre-training or fine-tuning to significantly reduce its FLOPs and
parameter quantity. The success stems from two major improvements upon OTOv1: (i) automated
ZIG partition and automated compressed model construction; and (ii) DHSPG method to more
reliably solve structured-sparsity problem. We leave the incorporation with NAS as future work.

Published as a conference paper at ICLR 2023

REFERENCES

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution:
Dataset and study. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition workshops, 2017.

Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast, accurate, and lightweight super-
resolution with cascading residual network. In Proceedings of the European conference on com-
puter vision (ECCV), pp. 252-268, 2018.

Arseny. Onnx2torch: an onnx to pytorch converter. https://github.com/ENOT-AutoDL/
onnx2torch, 2022.

Junjie Bai, Fang Lu, Ke Zhang, et al. Onnx: Open neural network exchange. https://github.
com/onnx/onnx, 2019.

Jianda Chen, Shangyu Chen, and Sinno Jialin Pan. Storage efficient and dynamic flexible runtime
channel pruning via deep reinforcement learning. 2019.

Tianyi Chen, Frank E Curtis, and Daniel P Robinson. A reduced-space algorithm for minimizing
¢ -regularized convex functions. SIAM Journal on Optimization, 27(3):1583-1610, 2017.

Tianyi Chen, Frank E Curtis, and Daniel P Robinson. Farsa for ¢;-regularized convex optimization:
local convergence and numerical experience. Optimization Methods and Software, 2018.

Tianyi Chen, Bo Ji, Yixin Shi, Tianyu Ding, Biyi Fang, Sheng Yi, and Xiao Tu. Neural network
compression via sparse optimization. arXiv preprint arXiv:2011.04868, 2020a.

Tianyi Chen, Guanyi Wang, Tianyu Ding, Bo Ji, Sheng Yi, and Zhihui Zhu. A half-space stochastic
projected gradient method for group-sparsity regularization. arXiv preprint arXiv:2009.12078,
2020b.

Tianyi Chen, Tianyu Ding, Bo Ji, Guanyi Wang, Yixin Shi, Jing Tian, Sheng Yi, Xiao Tu, and Zhihui
Zhu. Orthant based proximal stochastic gradient method for _1 1-regularized optimization. In
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD
2020, Ghent, Belgium, September 14—18, 2020, Proceedings, Part II1, pp. 57-73. Springer, 2021a.

Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang, Zhihui Zhu, Luming Liang, Yixin
Shi, Sheng Yi, and Xiao Tu. Only train once: A one-shot neural network training and pruning
framework. In Advances in Neural Information Processing Systems, 2021b.

Tristan Deleu and Yoshua Bengio. Structured sparsity inducing adaptive optimizers for deep learn-
ing. arXiv preprint arXiv:2102.03869, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Teee, 2009.

Yuan Cao Di Jiang and Qiang Yang. On the channel pruning using graph convolution network for
convolutional neural network acceleration. 2022.

Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jungong Han, Yuchen Guo, and Guiguang
Ding. Lossless cnn channel pruning via decoupling remembering and forgetting. Proceedings of
the IEEE International Conference on Computer Vision, 2021.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture
search via lamarckian evolution. arXiv preprint arXiv:1804.09081, 2018.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Stabilizing the
lottery ticket hypothesis. arXiv preprint arXiv:1903.01611, 2019.

10

https://github.com/ENOT-AutoDL/onnx2torch
https://github.com/ENOT-AutoDL/onnx2torch
https://github.com/onnx/onnx
https://github.com/onnx/onnx

Published as a conference paper at ICLR 2023

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Shang-Hua Gao, Yong-Qiang Tan, Ming-Ming Cheng, Chengze Lu, Yunpeng Chen, and Shuicheng
Yan. Highly efficient salient object detection with 100k parameters. In European Conference on
Computer Vision, pp. 702-721. Springer, 2020.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. arXiv preprint arXiv.:1808.06866, 2018a.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In The IEEE International Conference on Computer Vision (ICCV), Oct 2017.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 784-800, 2018b.

Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250,
2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 4700-4708, 2017.

Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from trans-
formed self-exemplars. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015.

Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks. In
Proceedings of the European conference on computer vision (ECCV), pp. 304-320, 2018.

Minsoo Kang and Bohyung Han. Operation-aware soft channel pruning using differentiable masks.
In International Conference on Machine Learning, pp. 5122-5131. PMLR, 2020.

James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data
science endeavors. In 2015 IEEE international conference on data science and advanced analyt-
ics (DSAA), pp. 1-10. IEEE, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast bayesian op-
timization of machine learning hyperparameters on large datasets. In Artificial intelligence and
statistics, pp. 528-536. PMLR, 2017.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s
thesis, Department of Computer Science, University of Toronto, 2009.

Bailin Li, Bowen Wu, Jiang Su, and Guangrun Wang. Eagleeye: Fast sub-net evaluation for efficient
neural network pruning. In European Conference on Computer Vision, pp. 639-654. Springer,
2020a.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Yawei Li, Shuhang Gu, Christoph Mayer, Luc Van Gool, and Radu Timofte. Group sparsity: The
hinge between filter pruning and decomposition for network compression. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8018-8027, 2020b.

11

Published as a conference paper at ICLR 2023

Yawei Li, Kamil Adamczewski, Wen Li, Shuhang Gu, Radu Timofte, and Luc Van Gool. Revisit-
ing random channel pruning for neural network compression. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 191-201, 2022.

Yuchao Li, Shaohui Lin, Baochang Zhang, Jianzhuang Liu, David Doermann, Yongjian Wu, Feiyue
Huang, and Rongrong Ji. Exploiting kernel sparsity and entropy for interpretable cnn compres-
sion. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
2800-2809, 2019.

Shaohui Lin, Rongrong Ji, Yuchao Li, Cheng Deng, and Xuelong Li. Toward compact convnets via
structure-sparsity regularized filter pruning. IEEE transactions on neural networks and learning
systems, 31(2):574-588, 2019.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11976-11986, 2022.

Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning. In
Advances in neural information processing systems, pp. 3288-3298, 2017.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,

pp. 5058-5066, 2017.

Sangkug Lym, Esha Choukse, Siavash Zangeneh, Wei Wen, Sujay Sanghavi, and Mattan Erez.
Prunetrain: fast neural network training by dynamic sparse model reconfiguration. In Proceed-
ings of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1-13, 2019.

David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and measuring ecological
statistics. In Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001,
volume 2, pp. 416-423. IEEE, 2001.

Fanxu Meng, Hao Cheng, Ke Li, Huixiang Luo, Xiaowei Guo, Guangming Lu, and Xing Sun.
Pruning filter in filter. arXiv preprint arXiv:2009.14410, 2020.

Lu Miao, Xiaolong Luo, Tianlong Chen, Wuyang Chen, Dong Liu, and Zhangyang Wang. Learning
pruning-friendly networks via frank-wolfe: One-shot, any-sparsity, and no retraining. In Interna-
tional Conference on Learning Representations, 2021.

Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and Dmitry P Vetrov. Structured bayesian
pruning via log-normal multiplicative noise. In Advances in Neural Information Processing Sys-
tems, pp. 6775-6784, 2017.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Junghun Oh, Heewon Kim, Seungjun Nah, Cheeun Hong, Jonghyun Choi, and Kyoung Mu Lee.
Attentive fine-grained structured sparsity for image restoration. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 17673-17682, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32. 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. arXiv preprint arXiv:2003.02389, 2020.

12

Published as a conference paper at ICLR 2023

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234-241. Springer, 2015.

Avinash Sharma, Arvind Subramaniam, and . N2nskip: Learning highly sparse networks using
neuron-to-neuron skip connections. In BMVC, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Mart van Baalen, Christos Louizos, Markus Nagel, Rana Ali Amjad, Ying Wang, Tijmen
Blankevoort, and Max Welling. Bayesian bits: Unifying quantization and pruning. arXiv preprint
arXiv:2005.07093, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. arXiv preprint arXiv:1608.03665, 2016.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch—-image-models, 2019.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017.

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance reduc-
tion. SIAM Journal on Optimization, 24(4):2057-2075, 2014.

Haichuan Yang, Shupeng Gui, Yuhao Zhu, and Ji Liu. Automatic neural network compression by
sparsity-quantization joint learning: A constrained optimization-based approach. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2178-2188, 2020.

Huanrui Yang, Wei Wen, and Hai Li. Deephoyer: Learning sparser neural network with differen-
tiable scale-invariant sparsity measures. arXiv preprint arXiv:1908.09979, 2019.

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global
filter pruning method for accelerating deep convolutional neural networks. arXiv preprint
arXiv:1909.08174, 2019.

Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-
representations. In International conference on curves and surfaces. Springer, 2010.

Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad, and Yanzhi Wang.
A systematic dnn weight pruning framework using alternating direction method of multipliers. In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 184-199, 2018.

Yuefu Zhou, Ya Zhang, Yanfeng Wang, and Qi Tian. Accelerate cnn via recursive bayesian pruning.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 3306-3315, 2019.

Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-level
structured pruning using polarization regularizer. Advances in Neural Information Processing
Systems, 33, 2020.

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Published as a conference paper at ICLR 2023

A IMPLEMENTATION DETAILS

A.1 LIBRARY IMPLEMENTATION

The implementation of the current version of OTOv2 (February, 2023) depends on Pytorch (

R) and ONNX (s) which is an open industrial standard for machine learning
interoperability and widely used in numerous Al products of the majority of top-tier industries (see
the partnersin ht tps: //onnx.ai/). In particular, the operators and the connectivity of a general
DNN are retrieved by calling the ONNX optimization API of Pytorch, which is the first step to
establish the trace graph of OTOv2 in Algorithm 2. The proposed DHSPG is implemented as an
instance of the optimizer class for Pytorch. The ultimate compact model construction in Section 3.3
is implemented by modifying the attributes and parameters of the vertices in onnx models according
t0 Tpyspg and ZIGs. As a result, OTOv2 realizes an end-to-end pipeline to automatically and
conveniently produce a compact model that meets inference restrictions and can be directly deployed
onto product environments. In addition, the constructed compact DNNs in onnx format can be
converted back into either torch or tensorflow formats if needed by open-source tools (,).

A.2 LIMITATIONS OF BETA VERSION

Dependency. The current version of OTOv2 (February, 2023) depends on the ONNX optimization
API in Pytorch to obtain vertices (operations) and the connections among them, i.e., (£,V) in line 2
in Algorithm 2. It is the foremost step for establishing the trace graph of DNN for automated ZIG
partition. Therefore, the DNNs that do not comply with this API are not supported by the beta
version of OTOv2 yet. We notice that Transformers sometimes have incompatibility issue for its
position embedding layers, whereas its trainable part such as encoder layers does not. The current
limitation is in the view of engineering perspective and would be resolved following the active and
rapid developments of the ONNX and PyTorch community driven by the industry and academy.

Unknown Operators. For sanity, we exclude the connected components that possess uncer-
tain/unknown vertices for forming ZIGs in Algorithm 2. This mechanism largely ensures the gen-
erality of the automated ZIG partition onto general DNNs. But the ignorance over these connected
components may miss some valid ZIGs thereby may leave redundant structures to be unpruned. We
will maintain and update the operator list which currently consists of 31 (known/certain) operators
to better exploit ZIGs.

A.3 EXPERIMENTAL DETAILS

We conducted the experiments on one NVIDIA A100 GPU Server. For the experiments in the main
body, we estimated the gradient via sampling a mini-batch of data points under first-order momen-
tum with coefficient as 0.9. The mini-batch sizes follow other related works from {64, 128,256}.
All experiments in the main body share the same commonly-used learning rate scheduler that start
from 10! and periodically decay by 10 till 10~* every Theriod €pochs. The length of decaying
period Tperi0q depends on the maximum epoch, i.e., 120 for ImageNet and 300 for others.

In general, we follow the usage of Half-Space projector in (,) to trigger it when the
learning rate is first decayed after T)ri0q4 €pochs. G, and G,,;, are constructed after Therioq /2 warm
up epochs empirically in our experiments. To compute the saliency score, we jointly consider both
cosine-similarity and magnitude of each group g € G. For the groups g € G, which magnitudes need
to be penalized, we set)\, in Algorithm 3 as A\, = A := 1072 if the regularization coefficient does
not need to be adjusted, i.e., cos (f,) > 0. Note that A := 1073 is the commonly used coefficient
in the sparsity regularization literatures (, ;). Otherwise,
we computed the Apmin,g := —cos(by) [[[Vf(x)]g]l, and Amax,g = M and set A\, by

cos (04)
amplifying Amin 4 by 1.1 and projecting back to Amay 4 if exceeding.

B EXTENSIVE ABLATION STUDY

In this appendix, we present additional experiments to demonstrate the superiority of DHSPG over
finding local optima with higher performance than HSPG. As described in the main body, the main

14

https://onnx.ai/

Published as a conference paper at ICLR 2023

advantages of DHSPG compared with HSPG in OTOv1 are (i) enlarging search space to be capable
of finding local optima with higher performance if any, and (ii) more reliably guarantee ultimate
group sparsity level. The later one has been demonstrated by the experiments of ResNet50, where
DHSPG can precisely achieve different prescribed group sparsity level to meet the requirements
of various deploying environments. In contrast, HSPG lacks capacity to achieve a specific group
sparsity level due to the implicit relationship between the regularization coefficient A and the sparsity
level. The former one will be validated in this appendix. In depth, one takeaway of DHSPG is to
separate groups of variables, then treat them via different and specifically designed mechanisms
which greatly enlarge the search space. However, HSPG applies the same mechanism to update all
variables, which may easily result in convergence to the origin and may be not optimal. In addition,
we also provide the runtime comparison in Appendix B.3.

B.1 SUPER RESOLUTION

We select the popular model architecture CARN (,) for super-resolution task with
the scaling factor of two. As (,), we use benchmark DIV2K dataset (

,) for training and Setl4 (,), B100 (,) and Ur-
ban100 (,) datasets for evaluation. Similarly to other experiments presented in the
main body, OTOv2 automatically partitions the trainable variables of CARN into ZIGs (see Figure 8
in Appendix D). Then we follow the training procedure in (,) to apply
the Adam strategy into DHSPG, i.e., utilizing both first and second order momentums to compute
a gradient estimate as line 5 in Algorithm 3. Under the same learning scheduler and total number
of steps as the baseline, we conduct both DHSPG and HSPG to compute solutions with high group
sparsity, where we set target group sparsity as 50% for DHSPG and fine-tune the regularization co-
efficient \ for HSPG as the power of 10 from 10~3 to 102 to pick up the one with significant FLOPs
and parameters reductions with satisfactory performance. Finally, the more compact CARN models
are constructed via the automated compressed model construction in Section 3.3. We report the final
results in Table 4.

Table 4: OTOv2 under DHSPG versus HSPG on CARNx2.

o PSNR

Method | Optimizer | FLOPS | # of Params Selid BI100 Urbani00
Baseline Adam 100% 100% 335 321 31.5
OTOv2 HSPG 35.5% 35.4% 33.0 316 30.9
OTOv2 | DHSPG | 24.3% 24.1% 332 319 31.1

Unlike the classification experiments where HSPG and DHSPG perform quite competitively, OTOv2
with DHSPG significantly outperforms OTOv2 with HSPG on this super-resolution task via CARN
by using 46% fewer FLOPs and parameters to achieve significantly better PSNR on these benchmark
datasets. It exhibits a strong evidence to show the higher generality of DHSPG to enlarge the search
space rather than restrict it near the origin point to fit more general applications.

B.2 BERT ON SQUAD

We next compare DHSPG versus HSPG on pruning the large-scale transformer Bert (,

), evaluated on Squad, a question-answering benchmark (,). Remark here
that since Transformer are not reliably compatible with PyTorch’s ONNX optimization API at this
moment, they can not enjoy the end-to-end autonomy of OTOV2 yet. To compare two optimizers, we
apply DHSPG onto the OTOv1 framework, which manually conducts ZIG partition and constructs
compressed Bert without fine-tuning. The results are reported in Table 5.

Based on Table 5, it is apparent that DHSPG performs significantly better than HSPG and Prox-
SSI (,) by achieving 83.8%-87.7% F1-scores and 74.6%-80.0% exact match
rates. In constrast, HSPG and ProxSSI reach 82.0%-84.1% F1-scores and 71.9%-75.0% exact match
rates. The underlying reason of such remarkable improvement by DHSPG is that DHSPG enlarges
to search space away from trapping around origin points by partitioning groups into magnitude-
penalized or not and treating them separately. However, both ProxSSI and HSPG penalize the mag-
nitude of all variables and apply the same update mechanism onto all variables, which deteriorate

15

Published as a conference paper at ICLR 2023

the performance significantly in this experiment. The results well validate the effectiveness of the
design of DHSPG to enlarge search space for typical better generalization performance.

Table 5: Numerical results of Bert on Squad.

- 0% group sparsty
Method # of Params | Exact | Fl-score | Inference SpeedUp o st . ‘
Baseline 100% 81.0% | 88.3% Ix %F OTOvi + DHSPG *
ProxSSI (8) 83.4%" 72.3% | 82.0% 1x S
OTOvV1 + DHSPG (10% group sparsity) 93.3% 80.0% | 87.7% 1.1x 2 IOVLAHSPG (2021) Tt e o
OTOv1 + DHSPG (30% group sparsity) 80.1% 79.4% 87.3% 1.2x g ‘
OTOv1 + DHSPG (50% group sparsity) 68.3% 78.1% 86.2% 1.3x =97 *
OTOv1 + DHSPG (70% group sparsity) 55.0% 74.6% 83.8% 1.4x
OTOv1 + HSPG 91.0% 75.0% | 84.1% 1.1x sor
OTOv1 + HSPG 66.7% 71.9% | 82.0% 1.3x
T Approximate value based on the group sparsity reported in (s). '8; n . L L o

Params Reduction (%)

B.3 RUNTIME COMPARISON

We provide runtime comparison of the proposed DHSPG versus the optimization algorithms used
in the benchmark baseline experiments. In particular, we calculate the average runtime per epoch
and report the relative runtime in Figure 7. Based on Figure 7, we observe that the per epoch cost
of DHSPG is competitive to other standard optimizers. In addition, OTOv2 only trains the DNN
once with the similar amount of total epochs for training the baselines. However, other compression
methods have to proceed multi-stage training procedures including pretraining the baselines by the
standard optimizers, thereby are not training efficient compared to OTOv2.

L5 | C3: pHSPG [: Adam
77777 [J: sGD : AdamW|
1.0 T e b 1 1 —
0.5
CIFAR10 ImageNet DIV2K Squad
VGG16 ResNet50 CARNx2 Bert

Figure 7: Average runtime per epoch relative comparison.

C CONVERGENCE ANALYSIS

In this appendix, we provide the rough convergence analysis for the proposed DHSPG. This paper
is application-track and mainly focuses on deep learning compression and infrastructure but not the
theoretical convergence. Therefore, for simplicity, we assume full gradient estimate at each iteration.
More rigorous analysis under stochastic settings will be left as future work,

Lemma 1. The objective function f satisfies

La? 5 La? 9
flatad(e) < f@)-(a - 55) @5+ 55 Y A2+ (La-1)a 3 Ay cos(0) 7@
9€G, 9€G,
“)

Proof. By the algorithm,

d(z) = —[Vf(=)]g —)‘gﬁ if g € Gp, 5)
—[Vf(x)l, otherwise.

16

Published as a conference paper at ICLR 2023

We can rewrite the direction [d(x))], for g € G, as the summation of two parts,

()], = |d(x) +d(x)] . ©
where
d(x) T[vf(w)]gza and |||d(x)| || = |-\, l, -cos (0, — 90°)|| = Agsin (6,). (7)
g g]l
Consequently,
(@) | = o] - o] |
= ||-[Vf(x)]y — A =], 2—/\251n2(0g)
[l ®
= s, |+ 33 + 2T @ Ay it — s)
= [[Vf (@)]]I* + Xj cos® (8,) + 2X, [[[Vf ()] | cos (6,)
= [I[VF (@)]g]| + Ag cos (8,))7,
and

7 _ IV @)]gll 4 Ay cos (8y)
s = IVF @,

By the descent lemma, we have that

(@ +0d(a))
<f(@) +aVf (@) d@) + o @)

[Vf(@)]g := —wy[Vf(z)], 9

La?

=1(@) + ol @), [d(@)]g,, + oIV @) [dw)lg, + o |[d(@)la,, |3+ To |[d(), |
1)~ (o= 52) [9r@le. I+ al9s)5, e, + 2o~ s, |
o ~ o? ~ 2
—f(x) - <a : >HVf Now, I’ + o[V @), |d() + ()] +LT d(z) +d(@)] 2
« ~ a? ||+ 2
—1(@) - (a= 5) I9s@)e, | + v, [d@)], + 5 |[a@)], |
N T 7 La? ~ 2
+ La? {d(m)}gp [d()} ot [d(w)}gp 2
La? 9 - H[Vf H + Mg cos (6,)
= 1)~ (o~ 2 I @)lo,, |~ o [V () Vi (@),
(=557) Ivf@l.,| X]
£ IS W2 sin? (6) + Cae 3 (IIVF @)l + Ay cos (6,))
9€Gp 9€G,

=f<a:>—(a—L“) [V @, = (0= 2) 9@, — o 3 Ay cos () 7@

9€Gp
O S 2 s (0,) + c0s? (0,)) + La® 3 A, [[9F(@)lyl cos (0,
9€Gy 9€Gp
—f() - (a—) IV @3+ 200 37 02+ (L=)0 3 A cos (0, [V (@)
9€Gp geqg

17

Published as a conference paper at ICLR 2023

Lemma 2. Suppose o < % and f is L-smooth, then there exists some positive Ay € (Amin,gs Amax,g)
forany g € G, such as

f(@ + ad(@)) < f(x) - (a - LO‘) 19/ (2))g., |3 (10)
Proof. Based on Lemma 1 and @ < 1 we have that
f(z + ad())
L
<fla) - (a— 0‘) IF @)+ 200 37 X2+ (La— 10’3 Ay cos () [(TF (@)
9€Gy geg
L 2
<rt0)~ (o= 5 [0, [+ 32 s
(11
where we denote
chzZ)\?7 9
Wrag) = 252 1 (Lo — avcos (6) 197 (@)1, Ag — (a -) V@I, (2

We can see that for any g € G,,, then h(\, g) < 0 if and only if the fo]lowmg holds

(1 = Lajarcos (6,) [I[V/ (2)]gl, + \/(1 — La)2a? cos? (6,) |[Vf (@)]y3 + 2La? (o — £52) [[[Vf ()],

Ay <

- La?
Y
(13)
Next: we need to show for the group g that requires)\, adjustment, the (Apin, g, :\q) is a valid interval,
i.e., A\g > Amin,g. To show it, combining with Anin,g = — cos (6,) [|[Vf(x)]4][,, we have that
(Lo = Dadmng + /(1= La)2a2)2;, +2La? (o — L82) X2/ cos? (6)
9= La?
(Lo = D) Aminyg 4 Amingv/1 — L2a? tan? (6,) + 2La tan? (6,)
R La 14
(La— 1)Aming + AmingV/—(La — 1)2tan? (8,) + tan? (6,) + 1 (14)
N La

> (LO(- 1))\min,g + Amin,g
La

=)\minﬁga
where the second last inequality holds since 0 < « < 1/L, then

\/—(La — 1)2tan? (0,) + tan? () + 1 > 1.

Then, we need to show that 5\9 is greater than 0. There are two cases to be considered:

* cosf, < 0: then Ay > Aping = — cos (6,) I[Vf(x)]gll, > 0.

* cosfy > 0: itfollows 0 < o < 1/L and (13) that A, > 0.

Thus for Ay € (Amin,g, Min{Amax,g, 5\9}) h(Ag,g) < 0. Consequently, there exists some positive
Ag € (Amin,gs Amax,g) S0 that A(Ag, g) < 0. Flnally, the proof is complete if we choose)4 satisfies
the above for any g € G,

o —) H Vf(x

7= (0-f
(04) H Vf(®)]g,,

18

f(x+ ad(x) G ‘Z—I— Z h(A, g)

9<% (15)

2
) .

Published as a conference paper at ICLR 2023

O
Lemma 3. Forany g € Gp, if 0 < o < %%, then the magnitude of the variables satisfies
Iz + ad(@)]gll, <[]l - (16)
Andifa = w W]% rw € (0,1), then
Il + ad(@)lg 2 =], I3 + (w2 — 20) |2l |3 cos? (8). an
Proof.
[+ ad(@)]y|;
2
ety —a (5@l + 2 22
N [z] 2P (18)
= - Y A a:g) v A, —Elg
= |y 3 + t(a),
where
2
t(a) = —2a[:c];— <[Vf(Mg + Ag[]> +a? [Vf(x)]y +)\g& = Aa®—2Ba (19)
1Py P 1lgll Il
and
4= H[Vf(w)] ASYC T [0)
T =gl
B =[], <[Vf(Mg +Ag”[[]}|) > 0. (21)
2

note that B > 0 because of the selection of \,.

€T T T
Consequently, we have that if 0 < o < 28 = 2], [d@)),)lg, then ¢(«) < 0.
A Hd(=)]gll5

(] [d(x)]

Finally, if « = w =wZ forw € (0,2), then

llld(=)]glI3
32 B B?
t(a) = Aw? el 2BwZ = (w? — 2w)j = (w? — 2w) ||[z], ||ZCOS (0g), (22)
which completes the proof.
O
Corollary 1. Suppose a = wmingeg, W for some w € (0,1) and |cos(b,)| > p for

g € G, N G7%(x) and some positive p € (0, 1]. Then there exists v € (0, 1) such that
2
e + ad(@), |5 < (1 =) ||, I, (23)

Proof. The result can be complete via summing (17) over G,, and combining with o selection. [J

D ZIG ILLUSTRATION

In this appendix, for more intuitive illustration, we provide the visualizations of the connected com-
ponents of dependency for the experimented DNNs throughout the whole paper. They are con-
structed by performing Algorithm 2 to automatically partition ZIGs. Due to the large-scale and in-
tricacy of graphs, we recommend to zoom in for reading greater details (under 200%-1600% zoom-
in scale via Adobe PDF reader). The vertices marked as the same color represent one connected
component of dependency. See the figures starting from the next pages.

19

Published as a conference paper at ICLR 2023

%
fl

:

:
:

i

3

Figure 8: CARN.

20

Published as a conference paper at ICLR 2023

conv3x3

out-36

batchnorm batchnorm

out-39

out-38

add conv3x3

out-40

out-37

add

out-41

concat

out-42

batchnorm

out-43

conv3x3

out-44

globalaveragepool

out-45

shape

constant

out-47 out-46

constant gather

out-48

out-49

unsqueeze unsqueeze

out-51 out-50

concat

out-52

reshape

out-53

linear

out-54

linear

out-55

Figure 9: DemoNet.

21

Published as a conference paper at ICLR 2023

(J

l"ii/,)

'W\

9l
u ; i |l

"mrumv J

'ne

lll!rm

—
1% """‘
i %:.‘"'l_ l.ﬁ»\
M

= . IMJIJI[[")‘*W

= = ———
-7_‘ =——= ,
= —

Vil [11
uﬁ il "',’]/I'\»",I'rll |

Ju;fm‘li

't\\l. ‘ \‘ 'ﬂw

i it
i
\fﬁ”ﬁ: ! l i

u\f ot
“Mirﬂl

Figure 10: DenseNet121.

22

Published as a conference paper at ICLR 2023

Y T T P e e T R T LT L L TR L T

Figure 11: ResNet50.

23

Published as a conference paper at ICLR 2023

Figure 12: StackedUnets.

24

Published as a conference paper at ICLR 2023

S

>

R T T

LA

Figure 13: ConvNeXt-Tiny.

25

Published as a conference paper at ICLR 2023

(a) VGG16. (b) VGG16-BN.

Figure 14: VGG16 and VGG16-BN.

26

	Introduction
	Related Work
	OTOv2
	Automated ZIG Partition
	Dual Half-Space Projected Gradient (DHSPG)
	Automated Compressed Model Construction

	Numerical Experiments
	Conclusion
	Implementation Details
	Library Implementation
	Limitations of Beta Version
	Experimental Details

	Extensive Ablation Study
	Super Resolution
	Bert on Squad
	Runtime Comparison

	Convergence Analysis
	ZIG Illustration

