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Abstract

Atomic-resolution imaging of 2D and quantum materials benefits from precisely
extracting crystallographic strain, shear, and rotation to understand their mechan-
ical, optical, and electronic properties. One powerful technique is 4-D STEM
(4-dimensional scanning transmission electron microscopy) [1], where a conver-
gent electron beam is scanned across a sample while measuring the resulting
diffraction pattern with a direct electron detector. Extracting the crystallographic
strain, shear, and rotation from this data relies either on cross-correlation of probe
templates (e.g., implemented in py4DSTEM [2, 7, 8, 9]) or determining the center
of mass (CoM) of the diffraction peaks [10, 11]. These algorithms have limitations.
They require manual preprocessing and hyperparameter tuning, are sensitive to
signal-to-noise, and generally are difficult to automate. We build novel and unique
neural network structure cycle-consistent-spatial-transforming autoencoders (CC-
ST-AE) for extracting spatial parameters on noisy 4-D STEM and generate more
accurate and robust results compared with state-of-art.

1 Introduction

In the 4-D STEM field, whether correctly measuring the crystal structure with sub-atomic precision
can strongly affect revealing their mechanical, optical, and electronic properties. It is challenging
for current strategies directly working on extremely noisy 4D-STEM strain mapping, the precision
cannot be guaranteed.

Recently, machine learning techniques have been used to assist in analyzing 4D-STEM data, however,
these models do not possess the capacity to learn the strain, rotation, or translation instead they just
learn an approximation that almost always tends to be correct as long as the test examples are within
the training dataset distribution.

We developed a novel neural network structure – Cycle Consistent Spatial Transforming Autoencoder
(CC-ST-AE, Fig 1). This model takes a set of diffraction images and trains a sparse autoencoder to
classify an observed diffraction pattern to a dictionary of learned set of “averaged” diffraction patterns.
Secondly, it learns the affine transformation matrix parameters that minimize the reconstruction error
between the dictionary and the input diffraction pattern [12]. Since the affine transformation includes
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Figure 1: Schematic drawing of cycle-consistent spatial transforming autoencoder.

translation, strain, shear, and rotation, we can parsimoniously learn the strain tensor. To ensure
the model is physics-conforming, train the model cycle consistently, by ensuring the inverse affine
transformation from the dictionary results in the original diffraction pattern.

We update the weights of the model based on the loss of mean squared error (MSE) between input
datasets and output of the decoder. The inputs to the decoder are binary vectors which only have one
element activated (equal to 1) and the others deactivated (equal to 0). We need the encoder not only
to extract the spatial transform matrix but also to do classification on each diffraction image. The
encoder consists of multi-convolutional layers [3], fully connected layers, and one K-Sparse layer [4].
K-Sparse layer only keeps the highest K activities from input vectors - in this case 1. This achieves
exact sparsity in the hidden representation which is used for classification in our model structure. The
diffraction images belonging to the same cluster generate the same binary vector through the encoder
which results in the same base through the decoder. Comparing the base with input images belonging
to it can make the training process focus solely on learning the spatial transformation. To enhance
this training strategy, we train the model cycle consistently.

Besides MSE in loss function, we also add regularizations to make the model train efficiently and
correctly. We add L1 regularization on learned bases to prevent the learning process from focusing on
extremely high-intensity values and make the generated bases sparse. The regularization of strain and
shear parameters is also added to make the learned affine parameters change in a reasonable range.
What we care about is the position of diffraction spots, to prevent extending beyond the boundary and
avoid the high-intensity center spot from being considered by the model training process, we apply a
mask region to each diffraction image. We make a circular ring mask to prevent the training from
being influenced by irregular boundary shapes caused by various rotation parameters. Last but not
least, when training on extremely noisy 4D-STEM, it is hard to get robust results since the intensity of
background noise and diffraction spots are too similar to distinguish. Therefore we slowly reduce the
size of the mask, minimizing the influence of the background noise and eliminating learning the strain
of the noise profile. Thus we minimize the effects of noise focusing on the important information
contained in the diffraction spot. However, such strategy has the limitation that it is impossible to
block all the noise, and it is also hard to guarantee whole diffraction spots are included when reducing
the size of mask. Different affine parameters applied on images will vary the size of noise, which
makes model optimize noise size and results in poor performance. To minimize these effects, inverse
affine transformation are added for every pixel in mask region.

We validated this model on a number of benchmark tasks including Simulated 4D-STEM data with a
ground truth of the strain, rotation, and shear parameters. Then, applied different levels of poisson
background noise on simulated 4D-STEM to test the robustness of the model and compare it with
other strategies. Secondly, we test this model experimental 4D-STEM on two different tungsten
disulfide (WS2) and tungsten diselenide (WSe2) 2D-heterostructures [5].
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The open-source computational tool – py4DSTEM provides high-throughput multimodal data corre-
lation strain mapping tool to the community. Which is a powerful tool and broadly used for extracting
atomic-scale information from 4D-STEM datasets. Therefore, we list py4DSTEM as the baseline to
compare with our method during the training process. To evaluate the performance and robustness of
each strategy, we first train the model on the simulated 4D-STEM [6]. The simulated 4D-STEM con-
sists of different sizes of grains connected with each other, the strain, shear, and rotation parameters
remain the same in each grain and vary among them. The strain and shear range from -2% to 2% and
rotation from 0 to 360 degrees. The goal is to extract these parameters as accurately as possible.

Recently, we developed an open-source computational tool – Auto4DSTEM, which to analyze
4D-STEM datasets. It includes various types of custom CC-ST-AE neural networks for extracting
different atomic-scale information depending on the dataset. The tool is multi-functional, including
data preprocessing, model architecture design, and neural network training with hyperparameter
tuning, which covers every step from raw data to final results. The notebook of tutorial on simulated
4D-STEM is included in the supplemental material.

2 Results and Discussion

We start from noise-free 4D-STEM and use MAE (Mean Absolute Error) between the label and
learned spatial parameters for performance evaluation. Both strategies can generate results of MAE
below 2 × 103 (10%) difference compared with the label, our model can make an average error
around 3× 10−4 lower, however this difference is largely inconsequential. The noise-free 4D-STEM
is an unrealistically easy test as all experimental datasets have noise. To simulate the experimental
4D-STEM, the various intensity of poisson-distributed background noise is added to the dataset to
mimic the real background noise created by an electron beam. The percentage of poisson noise
intensity is set from 5% to 70%, we train the dataset at each level of noise intensity and compare
the training results between py4DSTEM and CC-ST-AE. When adding 5% of poisson distributed
background noise, there’s a clear change for py4DSTEM, the MAE increased by 20% compared with
the noise-free dataset. However, the CC-ST-AE strategy can maintain similar performance. When
increasing the intensity of background noise, the MAE and growth rate of MAE are both higher for
py4DSTEM compared with CC-ST-AE. When the intensity of background noise goes to 50%, the
MAE of Strain X (strain along horizontal direction) is 3.2× 10−3 for py4DSTEM, which gets 60%
worse than the performance on the noise-free dataset. The MAE is 1.8× 10−3 for CC-ST-AE, which
performs more than 43% better than py4DSTEM, only 20% worse than itself on the noise-free dataset.
The MAE of Strain Y (strain along vertical direction) is 3.2× 10−3 for py4DSTEM, which is 60%
worse than the performance on the noise-free dataset. The MAE is 1.9× 10−3 for CC-ST-AE, which
performs more than 40% better than py4DSTEM, only 5% worse than itself on the noise-free dataset.
The MAE of Shear is 1.9× 10−3 for py4DSTEM, whereas the MAE is 1.5× 10−3 for CC-ST-AE.
Both on strain and shear, CC-ST-AE can perform far better than py4DSTEM. If we only look into
strain parameters, the performance of CC-ST-AE on 50% background noise 4D-STEM is even better
than the performance of py4DSTEM on noise-free 4D-STEM.

We take 25% background noise 4D-STEM as an example, the map and histogram of strain x (along
horizontal direction), strain y (along vertical direction), and strain xy (shear, along diagonal direction)
extracted by py4DSTEM and CC-ST-AE are shown in Fig 2. it is clear that CC-ST-AE can extract
sharper and more clustered distributions than py4DSTEM on every type of strain. This means less
MAE difference compared with the label and more accuracy in physics.

The previous training has revealed that the CC-ST-AE is competitive in spatial transformation matrices
extraction and maintains robustness when background noise varies. The table of MAE between
results learned by different methods (py4DSTEM and CC-ST-AE) and labels on various levels of
Poisson Distributed simulated 4-D STEM showed in Fig 3. We can see that from noise-free 4-D
STEM to very high-intensity background noise (70%) 4-D STEM, CC-ST-AE generates better and
more robust results compared with py4DSTEM, which is considered to be state-of-the-art. When
adding noise intensity until background noise intensity exceeds diffraction spots, the py4DSTEM
starts to fail. CC-ST-AE still works at that point (around 60% background noise). The MAE of Strain
X for py4DSTEM on 60% background noise gets to 3.9 × 10−3, where the MAE for CC-ST-AE
is 2.0× 10−3, which performs more than 95% better than py4DSTEM. The MAE of Strain Y for
py4DSTEM gets to 4.0× 10−3, where the MAE for CC-ST-AE is 2.1× 10−3, which performs more
than 90% better than py4DSTEM. The MAE of Shear for py4DSTEM gets to 2.5× 10−3 whereas
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Figure 2: Results comparison between py4DSTEM (correlation strain mapping strategy) and CC-
ST-AE on 25% noisy simulated 4D-STEM. a) Average intensity of real-space domain, every pixel
corresponds to a diffraction image (b, c), diffraction images in the same grain share the same spatial
transformation parameters. b) A sample of diffraction image from noise-free 4D-STEM. c) Add
25% poisson distributed background to b. d, e, f) Map of strain x (horizontal), strain y (vertical),
and strain xy (diagonal) of 25% noisy 4D-STEM generated by py4DSTEM. g, h, i) Histogram of
strain x (horizontal), strain y (vertical), and strain xy (diagonal) of 25% noisy 4D-STEM generated
by py4DSTEM. j, k, l) Map of strain x (horizontal), strain y (vertical), and strain xy (diagonal) of
25% noisy 4D-STEM generated by CC-ST-AE. m, n, o) Histogram of strain x (horizontal), strain y
(vertical), and strain xy (diagonal) of 25% noisy 4D-STEM generated by CC-ST-AE.

Figure 3: Results comparison of MAE of Strain X, Strain Y and Shear between different methods
(py4DSTEM and CC-ST-AE) and label on different levels of poisson distributed background noise
simulated 4-D STEM.
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Figure 4: Results comparison between py4DSTEM and CC- ST-AE on WS2WSe2 4-D STEM. a)
Microscope Image of Sample Domain. b) Strain map image of py4DSTEM result. c) Strain map
image of CC-ST-AE result.

the MAE for CC-ST-AE is 1.5 × 10−3, which performs more than 75% better than py4DSTEM.
Py4DSTEM cannot generate a clear and reasonable distribution on the histogram of the strain map
when background noise goes to 60% where CC-ST-AE can. After testing, CC-ST-AE can even
work on 70% intensity of background noise 4D-STEM and generate a robust result, which can be
considered as an extremely noisy dataset. Furthermore, after the comparison, if we only look into
strain parameters, the performance of CC-ST-AE on 60% background noise 4D-STEM has the similar
performance of py4DSTEM on noise-free 4D-STEM.

After proving CC-ST-AE can extract more accurate physics and achieve better performance compared
with py4DSTEM, we validate the model on experimental 4D-STEM two different tungsten disulfide
(WS2) and tungsten diselenide (WSe2) 2D-heterostructures. According to the theoretical character of
the material, there should be many triangle shapes on the strain map image. Traditional strategies
cannot directly work on extremely noisy raw 4D-STEM with low-intensity diffraction patterns. A
common strategy is binning the diffraction image to improve the signal-to-noise but reduces spatial
resolution. The result of the strain map created by the neural network is shown in Fig 4, c. To make
the comparison, the result of py4DSTEM is shown in Fig 4, b. Since the model can distinguish the
sample region from the background, we only focus on the sample and make the background region
blank. Both techs can extract strain parameters and generate triangle shapes. Comparing the images,
we can find that there are fewer broken regions on the image created by the neural network. it is
easy to conclude that the image quality of the neural network is higher than that on py4DSTEM.
The training results proved that the CC-ST-AE strategy can work on experimental 4d-stem and have
the ability to beat the state-of-art. The strain map created by py4DSTEM also has less precision in
determining the strain values. When using CC-ST-AE, the generated strain map is clearer, and with
higher image quality. More of the known strain features are apparent in the real-space image and
strain histogram.

This model shows several significant improvements including: 1. When tested on simulated data, the
model can generate ground truth with minimal error. 2. The model can learn the rotation and strain
on noisy diffraction patterns where correlation strain mapping failed and significantly outperforms
py4DSTEM. 3. Our model can accommodate large and continuous rotations difficult with other
methods. 4. Our model is more robust to noisy data, especially on extremely noisy data where other
strategies do not work. 5. Our model can map the strain, shear, and rotation; identify dislocation
and ripples; and distinguish background and sample area automatically with improved robustness to
noise.

3 Conclusion

Ultimately, this work demonstrates how embedding physical concepts into unsupervised neural
networks can simplify, automate, and accelerate analysis pipelines while simultaneously leveraging
stochastic averaging that improves the robustness of noisy data. This algorithmic concept can
be extended to include other physical phenomena (e.g., polarization, sample tilt), can be used in
automated experiments, and can be applied to other applications in materials characterization.
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