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ABSTRACT

We introduce a new constrained optimization method for policy gradient rein-
forcement learning, which uses two trust regions to regulate each policy update.
In addition to using the proximity of one single old policy as the first trust region
as done by prior works, we propose to form a second trust region through the
construction of another virtual policy that represents a wide range of past poli-
cies. We then enforce the new policy to stay closer to the virtual policy, which is
beneficial in case the old policy performs badly. More importantly, we propose a
mechanism to automatically build the virtual policy from a memory buffer of past
policies, providing a new capability for dynamically selecting appropriate trust re-
gions during the optimization process. Our proposed method, dubbed as Memory-
Constrained Policy Optimization (MCPO), is examined on a diverse suite of en-
vironments including robotic locomotion control, navigation with sparse rewards
and Atari games, consistently demonstrating competitive performance against re-
cent on-policy constrained policy gradient methods.

1 INTRODUCTION

Reinforcement learning (RL) combined with neural networks is the current workhorse in machine
learning. Using neural networks to approximate value and policy functions enables classical ap-
proaches such as Q-learning and policy gradient to achieve promising results on many challenging
problems such as Go, Atari games and robotics (Silver et al., 2017; Mnih et al., 2015; Lillicrap
et al., 2016; Mnih et al., 2016). Compared to Deep Q-learning, deep policy gradient (PG) methods
are often more flexible and applicable to both discrete and continuous action problems. However,
these methods tend to suffer from high sample complexity and training instability since the gradient
may not accurately reflect the policy gain when the policy changes substantially (Kakade & Lang-
ford, 2002). This is exacerbated for deep policy networks where numerous parameters need to be
optimized and small updates in parameter space can lead to huge changes in policy space.

To address this issue, one solution is to regularize each policy update by restricting the Kullback–
Leibler (KL) divergence between the new policy and the previous one, which can guarantee mono-
tonic policy improvement (Schulman et al., 2015a). However, jointly optimizing the approximate
advantage function and the KL term does not work in practice. Therefore, Schulman et al. (2015a)
proposed Trust Region Policy Optimization (TRPO) to constrain the new policy within a KL di-
vergence radius, which requires second-order gradients. Alternatives such as Proximal Policy Op-
timization (PPO) (Schulman et al., 2017) use a simpler first-order optimization with adaptive KL
or clipped surrogate objective while still maintaining the reliable performance of TRPO. Recent
methods recast the problem through a new lens using Expectation-Maximization or Mirror Descent
Optimization, and this also results in first-order optimization with KL divergence term in the loss
function (Abdolmaleki et al., 2018; Song et al., 2019; Yang et al., 2019; Tomar et al., 2020).

An issue with the above methods is that the previous policy used to restrict the new policy may
be suboptimal and thus unreliable in practice. For example, due to stochasticity and imperfect ap-
proximations, consider that the new policy may fall into a local optimum even under trust-region
optimizations. Then in the next update, this policy will become the “previous” policy, and will con-
tinue pulling the next policy to stay in the local optimum, thus slowing down the training progress.
For on-policy methods using mini-batch updates like PPO, the situation is more complicated as the
“previous” policy is defined as the old policy that was used to collect data, which can be either very
far or close to the current policy. There is no guarantee that the old policy defines a reasonable trust
region for regulating the new policy.
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In this paper, we propose a novel constrained policy iteration procedure, dubbed as Memory-
Constrained Policy Optimization (MCPO), wherein a virtual policy representing past policies takes
part in regularizing each policy update. The virtual and the old policy together form two trust re-
gions that attract the new policy by minimizing two KL divergences. The virtual policy is designed
to complement the old policy, attracting the new policy more when the old policy performs badly.
As such, we assign different coefficient weights to the two KL terms. The coefficient weights are
computed dynamically based on the performance of the two policies (the higher performer yields
higher coefficient weights). To create the virtual policy, we maintain a memory buffer of past poli-
cies, from which we build a mixture of policies. In particular, we use a neural network–named the
attention network, which takes the context surrounding the current, the old and the virtual policy,
to generate the attention weights to each policy in the memory. Then, we use the attention weights
to perform a convex combination of the parameters of each policy, forming the virtual policy. The
attention network is optimized to maximize the approximate expected advantages of the virtual pol-
icy. To train our system, we jointly optimize the policy and attention networks, alternating between
sampling data from the policy and updating the networks in a mini-batch manner.

We verify our proposed MCPO through a diverse set of experiments and compare ours with the per-
formance of recent constrained policy optimization baselines. In our experiment on classical control
tasks, amongst tested models, MCPO shows minimal sensitivity to hyperparameter changes, con-
sistently achieving good performance across tasks and hyperparameters. Our testbed on 6 Mujoco
tasks shows that MCPO with a big policy memory consistently outperforms others where the atten-
tion network plays an important role. We also demonstrate MCPO’s capability of learning efficiently
on sparse reward and high-dimensional problems such as navigation and Atari games. Finally, our
ablation study highlights the necessity of each component in MCPO.

2 BACKGROUND: POLICY OPTIMIZATION WITH TRUST REGION

In this section, we briefly review some fundamental constrained policy optimization approaches. A
general idea is to force the new policy πθ to be close to a recent policy πθold . In this paper, we refer
to a policy as its parameters (i.e. policy θ means policy πθ).

Conservative Policy Iteration (CPI) The method starts with a basic objective of policy gradient
algorithms, which is to maximize the expected advantage Ât.

LCPI (θ) = Êt
[
πθ (at|st)
πθold (at|st)

Ât

]
where the advantage Ât is a function of returns collected from (st, at) by using πθold (see Appendix
A.2) and Êt [·] indicates the empirical average over a finite batch of data. To constrain policy updates,
the new policy is a mixture of the old and the greedy policy: θ̃ = argmax LCPI (θ). That is,
θ = αθold + (1 − α)θ̃ where α is the mixture hyperparameter (Kakade & Langford, 2002). As
the data is sampled from previous iteration’s policy θold, the objective needs importance sampling
estimation. Hereafter, we denote πθ(at|st)

πθold (at|st)
as ratt (θ) for short.

KL-Regularized Policy Optimization (with fixed or adaptive KL coefficient) Another way to
enforce the constraint is to jointly maximize the expected advantage and minimize KL divergence
between the new and old policy, which ensures monotonic improvement (Schulman et al., 2015a).

LKLPO (θ) = Êt
[
ratt (θ) Ât − βKL [πθold (·|st) , πθ (·|st)]

]
where β is a hyperparameter that controls the degree of update conservativeness, which can be fixed
(KL Fixed) or changed (KL Adaptive) during training (Schulman et al., 2017).

Trust Region Policy Optimization (TRPO) The method optimizes the expected advantage with
hard constraint (Schulman et al., 2015a). This is claimed as a practical implementation that is less
conservative than the theoretically justified algorithm using KL regularizer mentioned above.
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LTRPO (θ) = Êt
[
ratt (θ) Ât

]
st δ ≥ KL [πθold (·|st) , πθ (·|st)]

where δ is the KL constraint radius.

Proximal Policy Optimization (PPO) PPO is a family of constrained policy optimization, which
uses first-order optimization and mini-batch updates including KL Adaptive and clipped PPO. In
this paper, we use PPO to refer to the method that limits the change in policy by clipping the loss
function (clipped PPO) (Schulman et al., 2017).

LPPO (θ) = Êt
[
min

(
ratt (θ) Ât, clip (ratt (θ) , 1− ε, 1 + ε) Ât

)]
where ε is the clip hyperparameter.

In the above equations, θ is the currently optimized policy, which is also referred to as the current
policy. θold represents a past policy, which can be one step before the current policy or the last policy
used to interact with the environment. In either case, the rule to decide θold is fixed throughout
training. If for some reason, θold is not optimal, it is unavoidable that the following updates will be
negatively impacted. We will address this issue in the next section.

3 MEMORY-CONSTRAINED POLICY OPTIMIZATION (MCPO)

3.1 TWO KL DIVERGENCE CONSTRAINTS

In trust-region methods with mini-batch updates such as PPO, the old policy θold is often chosen as
the last policy that is used to collect observations from the environment. Before the next environment
interaction, this old policy is fixed across policy updates, and can be one or many steps before
the current policy depending on the mini-batch size and the number of update loops. This can be
detrimental to the optimization if this old policy is poor in quality, forcing the following updates to
be close to a poor solution. To tackle this issue, we propose to constrain the new policy not only to
the policy θold, but also to a changeable policy that is representative of many past policies. Let ψ
denote the virtual policy that represents the history of policies. ψ is dynamically computed based on
the past policies using attention mechanism (see Sec. 3.2). In contrast to the fixed θold, depending
on the attention weights, ψ can represent a further or closer checkpoint to the current policy than
θold. We use both ψ and θold to construct the objective function as follows,

L1 (θ) = Êt
[
ratt (θ) Ât

]
− βÊt [(1− αt (·|st))KL [πθold (·|st) , πθ (·|st)]] (1)

− βÊt [αt (·|st)KL [πψ (·|st) , πθ (·|st)]]

where αt (·|st) is the coefficient weight resembling a forget gate, and β is the scaling coefficient of
the KL constraint terms. In this paper, the expectation is estimated by taking average over t in a
mini-batch of sampled data.

The forget gate determines how much the new policy should forget the virtual policy from the
memory and focus on the θold. Intuitively, if the virtual policy is better than the old policy, the new
policy should be kept close to the virtual policy and vice versa. Hence, αt = eRt(ψ)

eRt(ψ)+eRt(θold)
where

Rt (ψ) measures the performance of the policy ψ, which can be estimated by weighted importance
sampling. That is Rt (ψ) = ratt (ψ) Ât.

Besides deciding which trust region the new policy should rely on, we dynamically weigh the whole
KL terms via adjusting β. Using a fixed threshold dtarg to change β (e.g in KL Adaptive, if
KL [πθold (·|st) , πθ (·|st)] > dtarg, increase β (Schulman et al., 2017)) showed limited perfor-
mance since dtarg should vary depending on the current learning. We instead make use of ψ as a
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reference for selecting β. Let d (a, b) = Êt [KL [πa (·|st) , πb (·|st)]] denote the “distance” between
2 policies πa and πb, we propose a switching-β rule as follows,

{
β = βmax if d (θold, θ) > d (θold, ψ)

β = βmin otherwise
(2)

The intuition is that we encourage the enforcement of the constraint when πθ is too far from πθold
using the distance between πθold and πψ as a reference.

Algorithm 1 Memory-Constrained Policy Optimization (for 1 actor).
Require: A policy bufferM, an initial policy πθold . T , K, B are the learning horizon, number of

update epochs, and batch size, respectively.
1: Initialize ψold ← θold, θ ← θold
2: for iteration = 1, 2, ... do
3: Run policy πθold in environment for T timesteps. Compute advantage estimates Â1, ..., ÂT
4: for epoch = 1, 2, ...K do
5: for batch = 1, 2, ...T/B do
6: Compute ψ (Eq. 4) using ψold, θ, θold, then optimize LMCPO wrt θ (Eq. 5)
7: if d (θ, ψ) > d (θold, ψ) then add θ toM
8: if |M| > N then remove the last item fromM
9: ψold ← ψ

10: end for
11: end for
12: θold ← θ
13: end for

3.2 LEARNING TO GENERATE THE VIRTUAL POLICY

It is critical to compute a suitable virtual policy. On one hand, if the virtual policy is too far from
the currently optimizing point, it will be irrelevant, pulling the new policy back and postponing the
learning. On the other hand, if the virtual policy is too recent, it will not complement θold and cannot
prevent major changes in the policy update. Also, it is reasonable to find a virtual policy that has
good performance on current data. Otherwise, using trust regions near poor policies could destroy
the learning. We will utilize these intuitions to build the virtual policy.

Policy Memory We first maintain a memory buffer M that stores past policy parameters M =

{θj}|M|j=1 . During optimization, we add a policy’s parameter to M if it is far enough from ψ. In
particular, we measure the distances d (θold, ψ) and d (θ, ψ), then propose conditional writing:

Add θ to M if d (θ, ψ) > d (θold, ψ) (3)

The memory capacity is N . When the memory is full, we discard the earliest policy inM.

Context Vector We hypothesize that the context surrounding θold, ψold and θ, where ψold is
the last virtual policy, plays a role in determining the next virtual policy. We build the context
by extracting specific features: pair-wise distances between policies (d (θold, ψold), d (θ, ψold),
d (θold, θ)), the empirical returns of these policies (Êt [Rt (ψold)], Êt [Rt (θ)], Êt [Rt (θold)]),
policy entropy (Êt [− log (πψold (·|st))], Êt [− log (πθ (·|st))], Êt [− log (πθold (·|st))]) and value
losses (Êt (Vψold (st)− Vtarget (st))

2, Êt (Vθ (st)− Vtarget (st))2, Êt (Vθold (st)− Vtarget (st))
2).

These features form a context vector vcontext that captures the properties of each policy and the re-
lationship between them, which can represent the context that generates the attention weights.

Attention Mechanism We argue that the virtual policy should be determined based on the context.
A simple strategy such as taking average of policies in M is likely sub-optimal as the quality of
these policies vary and some can be irrelevant to the current learning context. Hence, we propose to
sum the policies in a weighted manner wherein the weights are generated by a neural network whose
input is vcontext. We compute ψ by performing “attention” in the parameter space as follows,
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Model
Pendulum LunarLander BWalker

1M 1M 5M
KL Adaptive (dtarg = 0.003) -407.74±484.16 238.30±34.07 206.99±5.34
KL Adaptive (dtarg = 0.01) -147.52±9.90 254.26±19.43 247.70±14.16
KL Adaptive (dtarg = 0.03) -601.09±273.18 246.93±12.57 259.80±6.33
KL Fixed (β = 0.01) -1051.14±158.81 247.61±19.79 221.55±38.64
KL Fixed (β = 0.1) -464.29±426.27 256.75±20.53 263.56±10.04
KL Fixed (β = 1) -136.40±4.49 192.62±32.97 215.13±13.29
PPO (clip ε = 0.1) -282.20±243.42 242.98±13.50 205.07±19.13
PPO (clip ε = 0.2) -514.28±385.34 256.88±20.33 253.58±7.49
PPO (clip ε = 0.3) -591.31±229.32 259.93±22.52 260.51±17.86
MDPO (β0 = 0.5) -136.45±8.21 247.96±4.74 251.18±29.10
MDPO (β0 = 1) -139.14±10.32 207.96±43.86 245.27±10.47
MDPO (β0 = 2) -135.52±5.28 227.76±16.96 226.80±15.67
VMPO (α0 = 0.1) -144.51±7.04 201.87±29.48 236.57±10.62
VMPO (α0 = 1) -139.50±5.54 212.85±43.35 238.82±11.11
VMPO (α0 = 5) -296.48±213.06 222.13±35.55 164.40±40.36
MCPO (N = 5) -133.42±4.53 262.23±12.47 265.80±5.55
MCPO (N = 10) -146.88±3.78 263.04±11.48 266.26±8.87
MCPO (N = 40) -135.57±5.22 267.19±13.42 249.51±12.75

Table 1: Mean and std. over 5 runs on classical control tasks (with number of training environment
steps). Bold denotes the best mean. Underline denotes good results (if exist), statistically indifferent
from the best in terms of Cohen effect size less than 0.5.

ψ =

|M|∑
j

fϕ (vcontext)j θj (4)

where fϕ is the attention network– a feed-forward neural network parameterized by ϕ with softmax
activation. The network outputs a N -dimensional output vector establishing the attention weights.
Here ψ is a function of ϕ and we train ϕ to improve ψ’s performance.

Objective function Given the virtual policy ψ (ϕ), we find ϕ to maximize its performance L2 (ϕ) =

Êt [Rt (ψ (ϕ))]. We aim to obtain the best representative of past policies without examining the per-
formance of each individual policy inM since evaluating all policies is highly expensive, especially
when |M| is large. In addition, learning a “soft” attention is more flexible than searching for a
“hard” policy that performs best (in terms of L2) since the performance measurement itself can be
noisy and not always reliable. To train the whole system, we use gradient ascent to maximize

LMCPO = L1 (θ) + L2 (ϕ) . (5)

When optimizingL1, we fix ϕ and only update θ to avoid gradient back-propagation via ϕ (similarly,
when optimizing L2, we fix θ and only update ϕ). Theoretical motivation for the design of L1 and
L2 is given in Appendix C. We implement MCPO using minibatch update procedure (Schulman
et al., 2017). Algo. 1 illustrates a high-level implementation of MCPO with 1 actor.

4 EXPERIMENTAL RESULTS

In our experiments, the main baselines are recent on-policy constrained methods that use first-order
optimization, in which most of them employ KL terms in the objective function. They are KL
Adaptive, KL Fixed, PPO (Schulman et al., 2017), MDPO (Tomar et al., 2020) and VMPO (Song
et al., 2019). We also include second-order methods such as TRPO (Schulman et al., 2015a) and
ACKTR (Wu et al., 2017). Across experiments, for MCPO, we fix βmax = 10, βmin = 0.01 and
only tune N . More details on the baselines and tasks are given in Appendix B.1.
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Figure 1: Unlock (left) and UnlockPickup (right)’s learning curves (mean and std. over 10 runs).

4.1 CLASSICAL CONTROL: HYPERPARAMETER SENSITIVITY TEST

In this section, we compare MCPO to other first-order policy gradient methods (KL Adaptive, KL
Fixed, PPO, MDPO and VMPO) on 3 classical control tasks: Pendulum, LunarLander and Bipedal-
Walker, which are trained for one, one and five million environment steps, respectively. Here, we
are curious to know whether tuning hyperparameters helps the baselines solve these simple tasks,
and how their performances fluctuate as the hyperparameters vary. For each model, we choose one
hyperparameter that controls the conservativeness of policy update, and we try different values for
the signature hyperparameter while keeping the others the same. For example, for PPO, we tune
the clip value ε; for KL Fixed we tune β coefficient and these possible values are chosen following
prior works. For our MCPO, we tune the size of the policy memory N (5, 10 and 40). We do not
try bigger policy memory size to keep MCPO running efficiently (see Appendix B.2 for details of
baselines, the choice of hyperparameters and running time analysis).

Table 1 reports the results of MCPO and 5 baselines with different hyperparameters. For these simple
tasks, tuning the hyperparameters often helps the model achieve at least moderate performance.
However, models like KL Adaptive and VMPO cannot reach good performance despite being tuned.
PPO shows good results on LunarLander and BipedalWalker, yet underperfoms others on Pendulum.
Interestingly, if tuned properly, the vanilla KL Fixed can show competitive results compared to
PPO and MDPO in BipedalWalker. Amongst all, our MCPO with suitable N achieves the best
performance on all tasks. Remarkably, its performance does not fluctuate much as N changes from
5 to 40, often obtaining good and best results. On the contrary, other methods observe clear drop in
performance if the hyperparameters are set incorrectly (see Appendix B.2 for full learning curves).

4.2 NAVIGATION TASKS: SAMPLE EFFICIENCY TEST

Here, we validate our method on sparse reward environments using MiniGrid library (Chevalier-
Boisvert et al., 2018). In particular, we test MCPO and other baselines (same as above) on Unlock
and UnlockPickup tasks. In these tasks, the agent navigates through rooms and picks up objects to
complete the episode. The agent only receives reward +1 if it can complete the episode successfully.
For sample efficiency test, we train all models on Unlock (find key and open the door) and Unlock-
Pickup (find key, open the door and pickup an object), for only 100,000 and 1 million environment
steps, respectively. The models use the best conservative hyperparameters found in the previous task
(more in Appendix B.3).

Fig. 1 shows the learning curves of examined models on these two tasks. For Unlock task, except
for MCPO and VMPO, 100,000 steps seem not enough for the models to learn useful policies.
When trained with 1 million steps on UnlockPickup, the baselines can find better policies, yet still
underpefrom MCPO. Here VMPO shows faster learning progress than MCPO at the beginning,
however it fails to converge to the best solution. Our MCPO is the best performer, consistently
ending up with average return of 0.9 (90% of episodes finished successfully).

To illustrate how the virtual policy supports building trust regions to boost MCPO’s performance,
we analyze the relationships amongst the old (θ), the virtual policy (ψ) and the policies stored in
M (θj) throughout Unlock training. Fig. 2 (a) plots the location of these policies over a truncated
period of training (from update step 5160 to 7070). Due to conditional writing rule, the steps where
policies are added toM can be uneven (first row-red lines), often distributed right after the locations
of the old policy (second row-green lines). We query at 10-th step behind the old policy (fourth row-
cyan lines) to find which policy in M has the highest attention (third row-yellow lines, linked by
blue arrows). As shown in Fig. 2 (a) (second and third row), the attended policy, which mostly
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Figure 2: (a) Policy analysis on Unlock. First row (red lines): steps where a policy is added toM, i.e.
the steps of θj . Second row (green lines): steps of old policies θold. Third row (yellow lines): steps of
mostly attended policy, approximating ψ. Fourth row (cyan lines): 3 steps of interest where we want
to find their attended steps. Blue arrows link a query step and the step that receives highest attention.
(b) Quality of ψ vs. θold. Average return collected by ψ and θold at different stages of training. (c) 3
Mujoco tasks. The slot inM received the highest attention j∗ = argmaxj fϕ (vcontext)j over time.

resembles ψ, can be further or closer to the query step than the old policy depending on the training
stage. Since we let the attention network learn to attend to the policy that maximizes the advantage
of current mini-batch data, the attended one is not necessarily the same as the old policy.

The choice of the chosen virtual policy being better than the old policy is shown in Fig. 2 (b) where
we collect several checkpoints of virtual and old policies across training and evaluate each of them
on 10 testing episodes. Here using ψ to form the second KL constraint is beneficial as the new
policy is generally pulled toward a better policy during training. That contributes to the excellent
performance of MCPO compared to other single trust-region baselines, especially KL Fixed and
Adaptive, which are very close to MCPO in term of objective function style.

4.3 MUJOCO CONTINUOUS CONTROL: EFFECTIVENESS OF LEARNED ψ

Next, we examine MCPO and some trust-region methods from the literature that are known to have
good performance on continuous control problems: TRPO, PPO and MDPO. To understand the role
of the attention network in MCPO, we design a variant of MCPO: Mean ψ, which simply constructs
ψ by taking average over policy parameters in M. We pick 6 hard Mujoco tasks and train each
model for 10 million environment steps. For each baseline, we again only tune the conservative
hyperparameters and report the best configurations in Table 2 (see Appendix B.4 for full results).

The results show that MCPO is the best performer on 5 out of 6 tasks, where clear outperformance
gaps can be found in HalfCheetah, Ant, Humanoid and HumanoidStandup. We note that this is only
achieved as MCPO uses N = 40, which indicates that bigger policy memory (more conservative-
ness) is beneficial in this case. The variant Mean ψ demonstrates reasonable performance for the
first 4 tasks, yet almost fails to learn on the last two, which means using a mean virtual policy is
unsuitable in these tasks.

To understand the effectiveness of the attention network, we visualize the attention pattern of MCPO
on the last two tasks and on Hopper-a task that Mean ψ performs well. Fig. 2 (c) illustrates that for
the first two harder tasks, MCPO gradually learns to favour older policies inM (j∗ > 35), which
puts more restriction on the policy change as the model converges. This strategy seems critical
for those tasks as the difference in average return between learned ψ and Mean ψ is huge in these
cases. On the other hand, on Hopper, the top attended slots are just above the middle policies inM
(j∗ ∼ 25), which means this task prefers an average restriction.
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Model HalfCheetah Walker2d Hopper Ant Humanoid HumanoidStandup
TRPO 2,811±114 3,966±56 3,159±72 2,438±402 4,576±106 145,143±3,702
PPO 4,753±1,614 5,278±594 2,968±1,002 3,421±534 3,375±1,684 155,494±6,663
MDPO 4,774±1,598 4,957±330 3,153±956 3,553±696 1,620±2,145 90,646±5,855
Mean ψ 4,942±3,095 5,056±842 3,430±259 4,570±548 353±27 71,308±11,113
MCPO 6,173±595 5,120±588 3,620±252 4,673±249 4,848±711 195,404±32,801

Table 2: Mean and std. over 5 runs on 6 Mujoco tasks at 10M environment steps.

VMPO

1

2

3

A
vg

.
R

e
tu

rn

1e3 BeamRider

0

1

2

3

4

1e2 Breakout

0

2

4

6

8

1e2 Enduro

0 2M 4M 6M 8M 10M
Step

1

2

3

A
vg

. 
R

e
tu

rn

1e3 Gopher

0 2M 4M 6M 8M 10M
Step

0.5

1.0

1.5

1e3 Seaquest

0 2M 4M 6M 8M 10M
Step

2

4

6

8
1e2 SpaceInvaders

ACKTR MCPO PPO 

Figure 3: Mean and std. over 5 runs on 6 Atari games over 10M environment steps.

4.4 ATARI GAMES: SCALING TO HIGHER DIMENSIONS

As showcasing the robustness of our method to high-dimensional inputs, we execute an experiment
on a subset of Atari games wherein the states are screen images and the policy and value function ap-
proximator uses deep convolutional neural networks. We choose 6 typical games (Mnih et al., 2013)
and benchmark MCPO against PPO, ACKTR and VMPO, training all models for only 10 million
environment steps. In this experiment, MCPO uses N = 10 and other baselines’ hyperparameters
are selected based on the original papers (see Appendix B.5).

Fig. 3 visualizes the learning curves of the models. Regardless of our regular tuning, VMPO per-
forms poorly, indicating that this method is unsuitable or needs extensive tuning to work for low-
sample training regime. ACKTR, works extremely well on certain games (Breakout and Seaquest),
but shows mediocre results on others (Enduro, BeamRider), overall underperfoming MCPO. PPO is
always similar or inferior to MCPO on this testbed. Our MCPO always demonstrates competitive
results, outperforming all other models in 4 games, especially on Enduro and Gopher, and showing
comparable results with that of the best model in the other 2 games.

4.5 ABLATION STUDY

Finally, we verify MCPO’s 3 components: virtual policy (Eq. 1), switching-β (Eq. 2) and con-
ditional writing rule (Eq. 3). We also confirm the role of choosing the right memory size N and
learning to attend to the virtual policy ψ. As such, we pick BipedalWalkerHardcore from OpenAI
Gym and train MCPO with different configurations for 50M steps. First, we tune N (5,10 and 40)
using the normal MCPO with all components on and find out thatN = 10 is the best, reaching about
169 return score. Keeping N = 10, for each component, we ablate or replace our component with
an alternative and report the findings as follows.

Virtual policy To show the benefit of pushing the new policy toward the virtual policy, we imple-
ment a variant of MCPO that does not use ψ’s KL term in Eq. 1 (a.k.a. αt = 0). This variant
underperfoms the normal MCPO by a margin of 100 return. Switching-β The results show that
compared to the annealed β strategy adopted from MDPO, our switching-β achieves significantly
better results with about 50 return score higher. Conditional writing We compare our proposal with
the vanilla approach that adds a new policy toM at every update step (frequent writing) and another
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version that writes toM every interval of 10 update steps (uniform writing). Both frequent and uni-
form writing show slow learning progress, and ends up with negative rewards. Perhaps, frequently
adding policies toM makes the memory content similar, hastening the removal of older, yet maybe
valuable policies. Uniform writing is better, yet it can still add similar policies toM and requires
additional effort for tuning the writing interval. Learned ψ To benchmark, we try alternatives: (1)
using Mean ψ and (2) only using half of the features in vcontext to generate ψ (Eq. 4). The results
confirm that the Mean ψ is not a strong baseline for this task, only reaping moderate rewards. Using
less features for the context causes information loss, hinder generations of useful ψ, and thus, un-
derperforms the full-feature version by a margin of 50 return. For completeness, we also compare
our methods to heavily tuned baselines and confirm that the normal MCPO (N = 10) is the best
performer. All the learning curves and details can be found in Appendix B.6.

5 RELATED WORKS

A framework for model-free reinforcement learning with policy gradient is approximate policy itera-
tion (API), which alternates between estimating the advantage of the current policy, and updating the
current policy’s parameters to obtain a new policy by maximizing the expected advantage (Bertsekas
& Tsitsiklis, 1995; Sutton et al., 2000). Theoretical studies have shown that constraining policy up-
dates is critical for API (Kakade & Langford, 2002; Schulman et al., 2015a; Shani et al., 2020;
Vieillard et al., 2020b). An early attempt to improve API is Conservative Policy Iteration (CPI),
which sets the new policy as a stochastic mixture of previous greedy policies (Kakade & Langford,
2002). The mixture idea of CPI inspires other methods which explore different ways to estimate the
greedy policy (Pirotta et al., 2013) or employs neural networks as function approximators (Vieillard
et al., 2020a). Our paper differs from these works in three aspects: (1) we do not directly set the new
policy to the mixture, rather, we use a mixture of previously found policies (the virtual policy) to
define the trust region constraining the new policy via KL regularization; (2) our mixture can consist
of more than 2 modes, and thus using multiple mixture weights (attention weights); (3) we use the
attention network to learn these weights based on the training context.

Also motivated by Kakade & Langford (2002), TRPO extends the theory to general stochastic poli-
cies, rather than just mixture polices, ensuring monotonic improvement by combining maximizing
the approximate expected advantage with minimizing the KL divergence between two consecutive
policies (Schulman et al., 2015a). Arguing that optimizing this way is too conservative and hard
to tune, the authors reformulate the objective as a constrained optimization problem to solve it with
conjugate gradient and line search. To simplify the implementation of TRPO, Schulman et al. (2017)
introduces first-order optimization methods and code-level improvement, which results in PPO–an
API method that optimizes a clipped surrogate objective using minibatch updates.

Another line of works views constrained policy improvement as Expectation-Maximization algo-
rithm where minimizing KL-term corresponds to the Expectation step, which can be off-policy (Ab-
dolmaleki et al., 2018) or on-policy (Song et al., 2019). From mirror descent perspective, several
works also use KL divergence to regularize policy updates (Yang et al., 2019; Tomar et al., 2020;
Shani et al., 2020). A recent analysis also points out the advantages of using KL term as a regular-
izer over a hard constraint (Lazić et al., 2021). Some other works improve the standard trust-region
with adaptive clip range (Wang et al., 2019) or off-policy data (Fakoor et al., 2020). Our approach
shares similarities with them where we also jointly optimize the approximate expected advantage
and KL constraint terms for multiple epochs of minibatch updates. However, we propose a novel
dynamic virtual policy to construct the second trust region as a supplement to the traditional trust
region defined by the old or previous policy.

6 DISCUSSION

We have presented Memory-Constrained Policy Optimization, a new method to regularize each
policy update with two-trust regions with respect to one single old policy and another virtual policy
representing history of past policies. The new policy is encouraged to stay closer to the region
surrounding the policy that performs better. The virtual policy is determined online through a learned
attention to a memory of past policies. MCPO is applicable in various problems and settings, less
sensitive to hyperparameter changes, and showing better performance in many environments.
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APPENDIX

A METHOD DETAILS

A.1 THE ATTENTION NETWORK

The attention network is implemented as a feedforward neural network with one hidden layer:

• Input layer: 12 units
• Hidden layer: N units coupled with a dropout layer p = 0.5

• Output layer: N units, softmax activation function

N is the capacity of policy memory. The 12 features of the input vcontext is listed in Table 3.

A.2 THE ADVANTAGE FUNCTION

In this paper, we use GAE (Schulman et al., 2015b) as the advantage function for all models and
experiments

Ât =
1

Nactor

Nactor∑
i

T−t−1∑
k=0

(γλ)
k (
rit+k + γV

(
sit+k+1

)
− V

(
sit+k

))
where γ is the discounted factor and Nactor is the number of actors. The term rit+k + γV

(
sit+k+1

)
is also known as Vtarget in computing the value loss. Note that Algo. 1 illustrates the procedure for
1 actor. In practice, we use Nactor depending on the tasks.

A.3 THE OBJECTIVE FUNCTION

Following Schulman et al. (2017), our objective function also includes value loss and entropy terms.
This is applied to all of the baselines. For example, the complete objective function for MCPO reads

L = LMCPO − c1Êt (Vθ (st)− Vtarget (st))2 + c2Êt [− log (πψold (·|st))]
where c1 and c2 are value and entropy coefficient hyperparameters, respectively. Vθ is the value
network, also parameterized with θ.

B EXPERIMENTAL DETAILS

B.1 BASELINES AND TASKS

All baselines in this paper share the same setting of policy and value networks. Except for TRPO, all
other baselines use minibatch training. The only difference is the objective function, which revolves
around KL and advantage terms. We train all models with Adam optimizer. We summarize the
policy and value network architecture in Table 4.

The baselines ACKTR, PPO1, TRPO2 use available public code. They are Pytorch reimplementation
of OpenAI’s stable baselines, which can reproduce the original performance relatively well. For
MDPO, we refer to the authors’ source code3 to reimplement the method. For VMPO, we refer
to this open source code4 to reimplement the method. We implement KL Fixed and KL Adaptive,
using objective function defined in Sec. 2.

We use environments from Open AI gyms 5, which are public and using The MIT License. Mujoco
environments use Mujoco software6 (our license is academic lab). Table 5 lists all the environments.

1https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
2https://github.com/ikostrikov/pytorch-trpo
3https://github.com/manantomar/Mirror-Descent-Policy-Optimization
4https://github.com/YYCAAA/V-MPO_Lunarlander
5https://gym.openai.com/envs/
6https://www.roboti.us/license.html
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Dimension Feature Meaning
1 d (θ, ψold) “Distance” between θ and ψold
2 d (θold, ψold) “Distance” between θold and ψold
3 d (θold, θ) “Distance” between θold and θ
4 Êt [Rt (ψold)] Approximate expected advantage of ψold
5 Êt [Rt (θold)] Approximate expected advantage of θold
6 Êt [Rt (θ)] Approximate expected advantage of θ
7 Êt [− log (πψold (·|st))] Approximate entropy of ψold
8 Êt [− log (πθold (·|st))] Approximate entropy of θold
9 Êt [− log (πθ (·|st))] Approximate entropy of θ

10 Êt (Vψold (st)− Vtarget (st))
2 Value loss of ψold

11 Êt (Vθold (st)− Vtarget (st))
2 Value loss of θold

12 Êt (Vθ (st)− Vtarget (st))2 Value loss of θ

Table 3: Features of the context vector.

Input type Policy/Value networks

Vector 2-layer feedforward
net (tanh, h=64)

Image
3-layer ReLU CNN with

kernels {32/8/4, 64/4/2, 32/3/1}+2-layer
feedforward net (ReLU, h=512)

Table 4: Network architecture shared across baselines.

Tasks Continuous Gym
action category

Pendulum-v0
X

Classical
LunarLander-v2 Box2dBipedalWalker-v3 �

Unlock-v0
X MiniGridUnlockPickup-v0

MuJoCo tasks (v2): HalfCheetah
� MuJoCoWalker2d, Hopper, Ant

Humanoid, HumanoidStandup
Atari games (NoFramskip-v4):

X AtariBeamrider, Breakout
Enduro, Gopher

Seaquest, SpaceInvaders
BipedalWalkerHardcore-v3 � Box2d

Table 5: Tasks used in the paper.
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Hyperparameter Pendulum LunarLander BipedalWalker MiniGrid BipedalWaker
Hardcore

Horizon T 2048 2048 2048 2048 2048
Adam step size 3× 10−4 3× 10−4 3× 10−4 3× 10−4 3× 10−4

Num. epochs K 10 10 10 10 10
Minibatch size B 64 64 64 64 64

Discount γ 0.99 0.99 0.99 0.99 0.99
GAE λ 0.95 0.95 0.95 0.95 0.95

Num. actors Nactor 4 4 32 4 128
Value coefficient c1 0.5 0.5 0.5 0.5 0.5

Entropy coefficient c2 0 0 0 0 0

Table 6: Network architecture shared across baselines on Pendulum, LunarLander, BipedalWalker,
MiniGrid and BipedalWaker Hardcore

Model Speed (env. steps/s)
MCPO (N=5) 1,170

MCPO (N=10) 927
MCPO (N=40) 560

PPO 1,250

Table 7: Computing cost of MCPO and PPO on Pendulum.

B.2 DETAILS ON CLASSICAL CONTROL

For these tasks, all models share hyperparameters listed in Table 6. Besides, each method has its
own set of additional hyperparameters. For example, PPO, KL Fixed and KL Adaptive have ε, β
and dtarg, respectively. These hyperparameters directly control the conservativeness of the policy
update for each method. For MDPO, β is automatically reduced overtime through an annealing
process from 1 to 0 and thus should not be considered as a hyperparameter. However, we can still
control the conservativeness if β is annealed from a different value β0 rather 1. We realize that
tuning β0 helped MDPO (Table 1). We quickly tried with several values β0 ranging from 0.01 to 10
on Pendulum, and realize that only β0 ∈ {0.5, 1, 2} gave reasonable results. Thus, we only tuned
MDPO with these β0 in other tasks. For VMPO there are many other hyperparameters such as η0,
α0, εη and εα. Due to limited compute, we do not tune all of them. Rather, we only tune α0-the initial
value of the Lagrange multiplier that scale the KL term in the objective function. We refer to the
paper’s and the code repository’s default values of α0 to determine possible values α0 ∈ {0.1, 1, 5}.
For our MCPO, we can tune several hyperparameters such as N , βmin, and βmax. However, for
simplicity, we only tune N ∈ {5, 10, 40} and fix βmin = 0.01 and βmax = 10.

On our machines using 1 GPU Tesla V100-SXM2, we measure the running time of MCPO with
different N compared to PPO on Pendulum task, which is reported in Table 7. As N increases, the
running speed of MCPO decreases. For this reason, we do not test with N > 40. However, we
realize that with N = 5 or N = 10, MCPO only runs slightly slower than PPO. We also realize that
the speed gap is even reduced when we increase the number of actorsNactor as in other experiments.
In terms of memory usage, maintaining a policy memory will definitely cost more. However, as our
policy, value and attention networks are very simple. The maximum storage even for N = 40 is less
than 5GB.

In addition to the configurations reported in Table 1, for KL Fixed and PPO, we also tested with
extreme values β = 10 and ε ∈ {0.5, 0.8}. Figs. 6, 7 and 8 visualize the learning curves of all
configurations for all models.

B.3 DETAILS ON MINIGRID NAVIGATION

Based on the results from the above tasks, we pick the best signature hyperparameters for the models
to use in this task as in Table 8. In particular, for each model, we rank the hyperparameters per task
(higher rank is better), and choose the one that has the maximum total rank. For hyperparameters
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Model Chosen hyperparameter
KL Adaptive dtarg = 0.01

KL Fixed β = 0.1
PPO ε = 0.2

MDPO β0 = 0.5
VMPO α0 = 1
MCPO N = 10

Table 8: Signature hyperparameters used in MiniGrid tasks.

Hyperparameter Mujoco Atari

Horizon T 2048 128
Adam step size 3× 10−4 2.5× 10−4

Num. epochs K 10 4
Minibatch size B 32 32

Discount γ 0.99 0.99
GAE λ 0.95 0.95

Num. actors Nactor 16 32
Value coefficient c1 0.5 1.0

Entropy coefficient c2 0 0.01

Table 9: Network architecture shared across baselines on Mujoco and Atari

that share the same total rank, we prefer the middle value. The other hyperparameters for this task
is listed in Table 6.

B.4 DETAILS ON MUJOCO

For shared hyperparameters, we use the values suggested in the PPO’s paper, except for the number
of actors, which we increase to 16 for faster training as our models are trained for 10M environment
steps (see Table 9).

For the signature hyperparameter of each method, we select some of the reasonable values. For
PPO, the authors already examined with ε ∈ {0.1, 0.2, 0.3} on the same task and found 0.2 the best.
This is somehow backed up in our previous experiments where we did not see major difference in
performance between these values. Hence, seeking for other ε rather than the optimal ε = 0.2, we
ran our PPO implementation with ε ∈ {0.2, 0.5, 0.8}. For TRPO, the authors only used the KL
radius threshold δ = 0.01, which may be already the optimal hyperparameter. Hence, we only tried
δ ∈ {0.005, 0.01}. The results showed that δ = 0.005 always performed worse. For MCPO and
Mean ψ, we only ran with extreme N ∈ {5, 40}. For MDPO, we still tested with β0 ∈ {0.5, 1, 2}.
Full learning curves with different hyperparameter are reported in Fig. 9. Learning curves including
TRGPPO7 are reported in Fig. 10

B.5 DETAILS ON ATARI

For shared hyperparameters, we use the values suggested in the PPO’s paper, except for the number
of actors, which we increase to 32 for faster training (see Table 9). For the signature hyperparam-
eter of the baselines, we used the recommended value in the original papers. For MCPO, we use
N = 10 to balance between running time and performance. Table 10 shows the values of these
hyperparameters.

We also report the average normalized human score (mean and median) of the models over 6 games
in Table 11. As seen, MCPO is significantly better than other baselines in terms of both mean and
median normalized human score. We also report full learning curves of models and normalized
human score including TRGPPO in 9 games in Fig. 4 and Table 12, respectively.

7We use the authors’ source code https://github.com/wangyuhuix/TRGPPO using default con-
figuration. Training setting is adjusted to follow the common setting as for other baselines (see Table 9).
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Model Chosen hyperparameter
PPO ε = 0.2

ACKTR δ = 0.01
VMPO α0 = 5
MCPO N = 10

Table 10: Signature hyperparameters used in Atari tasks.

Model Mean Median
PPO 154.63 48.36

ACKTR 266.73 21.99
VMPO 412.19 20.85
MCPO 300.25 100.28

Table 11: Average normalized human score over 6 games. For each model, the performance of each
run is measured by the best checkpoint during training over 10 million frames, then take average
over 5 runs.

To verify whether MCPO can maintain its performance over longer training, we examine Atari
training for 40 million frames. As shown in Fig. 5, MCPO is still the best performer in this training
regime.

B.6 DETAILS ON ABLATION STUDY

In this section, we give more details on the ablated baselines.

• No ψ We only changed the objective to

L1 (θ) = Êt
[
ratt (θ) Ât

]
− βÊt [KL [πθold (·|st) , πθ (·|st)]] (6)

where β is still determined by the β-switching rule.

• Annealed β We determine the β in Eq. 1 by MDPO’s annealing rule, a.k.a, βi = 1.0 −
i

Ttotal
where Ttotal is the total number of training policy update steps and i is the current

update step. We did not test with other rules such as fixed or adaptive β as we realize that
MDPO is often better than KL Fixed and KL Adaptive in our experiments, indicating that
the annealed β is a stronger baseline.

• Frequent writing We add a new policy toM at every policy update step.

• Uniform writing Inspired by the uniform writing mechanism in Memory-Augmented Neu-
ral Networks (Le et al., 2019), we add a new policy to M at every interval of 10 update
steps. The interval size could be tuned to get better results but it would require additional
effort, so we preferred our conditional writing over this one.

• Mean ψ The virtual policy is determined as

Model Mean Median
PPO 131.19 52.85

ACKTR 195.52 25.30
VMPO 18.20 13.56

TRGPPO 116.80 43.24
MCPO 229.99 65.78

Table 12: Average normalized human score over 9 games. For each model, the performance of each
run is measured by the best checkpoint during training over 10 million frames, then take average
over 5 runs.
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Figure 4: Atari games: learning curves (mean and std. over 5 runs) across 10M training steps.
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Figure 7: LunarLander-v2: learning curves (mean and std. over 5 runs) across 5M training steps.

ψ =

|M|∑
j

θj (7)

• Half feature We only use features from 1 to 6 listed in Table 3.

The other baselines including KL Adaptive, KL Fixed, MDPO, PPO, and VMPO are the same as in
B.2. The full learning curves of all models with different hyperparameters are plotted in Fig. 11.

C THEORETICAL ANALYSIS OF MCPO

In this section, we explain the design of our objective function L1 and L2. Similar to Schulman et al.
(2015a), we can construct a theoretically guaranteed version of our practical objective functions that
ensures monotonic policy improvement.

First, we explain the design of L1 by recasting L1 as

L1θold (θ) = Lθold (θ)

− C1D
max
KL (θold, θ)

− C2D
max
KL (ψ, θ)

where Lθold (θ) = η (πθold) +
∑
s ρπθold (s)

∑
a πθ (a|s)Aπθold (s, a)–the local approximation

to the expected discounted reward η (θ), Dmax
KL (a, b) = maxsKL (πa (·|s) , πb (·|s)), C1 =

4maxs,a|Aπ(s,a)|γ
(1−γ)2 and C2 > 0.
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Figure 8: BipedalWalker-v3: learning curves (mean and std. over 5 runs) across 1M training steps.
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Figure 9: Mujoco: learning curves (mean and std. over 5 runs) across 10M training steps.
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Figure 11: BibedalWalkerHardcore-v3: learning curves (mean and std. over 5 runs) across 50M
training steps.
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As the KL is non-negative, L1θold (θ) ≤ Lθold (θ) − C1D
max
KL (θold, θ). According to Schulman

et al. (2015a), the RHS is a lower bound on η (θ), so L1 is also a lower bound on η (θ) and thus, it
is reasonable to maximize the practical L1, which is an approximation of L1θold .

Next, we show that by optimizing both L1 and L2, we can interpret our algorithm as a monotonic
policy improvement procedure. As such, we need to reformulate L2 as

L2θold (ψ) = Lθold (ψ)− C1D
max
KL (θold, ψ)

Note that compared to the practical L2 (as defined in the main paper on page 5), we have introduced
here an additional KL term, which means we need to find ψ that is close to θold and maximizes the
approximate advantage Lθold (ψ). As we maximize L2θold (ψ), the maximizer ψ satisfies

L2θold (ψ) ≥ L2θold (θold) = Lθold (θold)

We also have

η (θ) ≥ L1θold (θ) (8)
η (θold) = Lθold (θold) ≤ L2θold (ψ)

= Lθold (ψ)− C1D
max
KL (θold, ψ)

= L1θold (ψ) (9)

Subtracting both sides of Eq. 9 from Eq. 8 yields

η (θ)− η (θold) ≥ L1θold (θ)− L1θold (ψ)

Thus by maximizing L1θold (θ), we guarantee that the true objective η (θ) is non-decreasing.

Although the theory suggests that the practical L2 could be L∗2 =

Êt [Rt (ψ (ϕ))− C1KL [πθold (·|st) , πψ (·|st)]], it would require additional tuning of C1.
More importantly, optimizing an objective in form of L∗2 needs a very small step size, and could
converge slowly. Hence, we simply discard the KL term and only optimize L2 = Êt [Rt (ψ (ϕ))]
instead. Empirical results show that using this simplification, MCPO’s learning curves still
generally improve monotonically over training time.
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