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Abstract

This paper is concerned with online filtering of discretely observed nonlinear diffu-1

sion processes. Our approach is based on the fully adapted auxiliary particle filter2

which involves Doob’s h-transforms that are typically intractable. We propose a3

computational framework to approximate these h-transforms by solving the under-4

lying backward Kolmogorov equations using nonlinear Feynman-Kac formulas.5

The methodology allows one to train a locally optimal particle filter prior to the6

data-assimilation procedure. Numerical experiments illustrate that the proposed7

approach can be orders of magnitude more efficient than the bootstrap particle fil-8

ter in the regime of highly informative observations and when the observations are9

extreme under the model.10

1 Introduction11

Diffusion processes are fundamental tools in applied mathematics, statistics and machine learning.12

This rich class of continuous-time models have been used to model real-world phenomena in disci-13

plines as varied as life-sciences, engineering, economics and finance. However, working with dif-14

fusions can be challenging as its transition densities are only tractable in simple and specific cases15

such as (geometric) Brownian motions, Ornstein-Uhlenbeck (OU) processes and Cox-Ingersoll-Ross16

processes. This difficulty has hindered the use of standard methodologies for inference and data-17

assimilation of models driven by diffusion processes. Specialized methodologies have been devel-18

oped to circumvent or mitigate these issues [35, 4, 3, 14, 13, 5, 37].19

Consider a time-homogeneous multivariate diffusion process dXt = µ(Xt) dt + σ(Xt) dBt that20

is discretely observed at regular intervals. Noisy observations yk of the latent process Xtk is21

collected at time tk ≡ kT for k ≥ 1. We consider the online filtering problem which consists in22

estimating the conditional laws πk(dx) = P(Xtk ∈ dx|y1, . . . ,yk), i.e. the filtering distributions,23

as observations are collected. We focus on the use of Particle Filters (PF) that approximate the24

filtering distributions with a system of weighted particles. Although many previous works have25

relied on the Bootstrap Particle Filter (BPF), which simulates particles from the diffusion process,26

it can perform poorly in challenging scenarios as it fails to take the incoming observation yk into27

account. This issue can be partially tackled by relying on resampling at intermediate times between28

observations [10, 31]. The goal of this article is to show that the (locally) optimal approach given by29

the Fully Adapted Auxiliary Particle Filter (FA-APF) [33] can be implemented. This necessitates30

simulating a conditioned diffusion process, which can be formulated as a control problem involving31

an intractable Doob’s h-transform [36, 8]. We propose the Computational Doob’s h-Transform32

(CDT) framework for efficiently approximating these quantities. The method relies on nonlinear33

Feynman-Kac formulas for solving backward Kolmogorov equations simultaneously for all possible34

observations. Importantly, this preprocessing step only needs to be performed once before starting the35

online filtering procedure. Numerical experiments illustrate that the proposed approach can be orders36
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of magnitude more efficient than the BPF in the regime of highly informative observations or when37

the observations are extreme under the model. A PyTorch implementation to reproduce our numerical38

experiments is available at https://anonymous.4open.science/r/CompDoobTransform/.39

Notations. For two matrices A,B ∈ Rd,d, their Frobenius inner product is defined as ⟨A,B⟩F =40 ∑d
i,j=1 Ai,jBi,j . The Euclidean inner product for u,v ∈ Rd is denoted as ⟨u,v⟩ =

∑d
i=1 uivi.41

2 Background42

2.1 Filtering of discretely observed diffusions43

Consider an homogeneous diffusion process {Xt}t≥0 in X = Rd with initial distribution ρ0(dx) and44

dynamics45

dXt = µ(Xt) dt+ σ(Xt) dBt, (1)

described by the drift and volatility functions µ : Rd → Rd and σ : Rd → Rd,d. We assume standard46

smoothness and growth conditions [27] for a unique strong solution of (1) to exist for all times. The47

associated semi-group of transition probabilities ps(dx̂ | x) satisfies P(Xt+s ∈ A | Xt = x) =48 ∫
A
ps(dx̂ | x) for any s, t > 0 and measurable A ⊂ X . The process {Bt}t≥0 is a standard Rd-49

valued Brownian motion. The diffusion process {Xt}t≥0 is discretely observed at time tk = kT,50

for k ≥ 1, for some inter-observation time T > 0. The Y-valued observation Yk ∈ Y at time tk is51

modelled by the likelihood function g : X × Y → R+ in the sense that for any measurable A ⊂ Y ,52

we have P(Yk ∈ A | Xtk = xk) =
∫
A
g(xk,y) dy for some dominating measure dy on Y . For a53

test function φ : X → R, the generator of the diffusion process {Xt}t≥0 is given by54

Lφ = ⟨µ,∇φ⟩+ 1

2
⟨σσ⊤,∇2φ⟩F. (2)

This article is concerned with approximating the filtering distributions πk(dx) = P(Xtk ∈ dx |55

y1, . . . ,yk). For notational convenience, we set π0(dx) ≡ ρ0(dx).56

2.2 Particle filtering57

Particle Filters (PF), also known as Sequential Monte Carlo methods, are a set of Monte Carlo58

algorithms that can be used to solve filtering problems (see [7] for a recent textbook on the topic). PFs59

evolve a set of N ≥ 1 particles x1:N
t = (x1

t , . . . ,x
N
t ) ∈ XN forward in time using a combination of60

propagation and resampling operations.61

To initialize the PF, each initial particle xj
0 ∈ X for 1 ≤ j ≤ N is sampled independently from62

the distribution ρ0(dx) so that π0(dx) ≈ N−1
∑N

j=1 δ(dx;x
j
0). Approximations of the filtering63

distribution πk for k ≥ 1 are built recursively as follows. Given the Monte Carlo approximation64

of the filtering distribution at time tk, πk(dx) ≈ N−1
∑N

j=1 δ(dx;x
j
tk
), the particles x1:N

tk
are65

propagated independently forward in time by x̂j
tk+1

∼ qk+1(dx̂ | xj
tk
), using a Markov kernel66

qk+1(dx̂ | x) specified by the user. The BPF corresponds to the choice of Markov kernel qBPF
k+1(dx̂ |67

x) = P(Xtk+1
∈ dx̂ | Xtk = x) while the FA-APF [33] corresponds to the choice68

qFA-APF
k+1 (dx̂ | x) = P(Xtk+1

∈ dx̂ | Xtk = x,Yk+1 = yk+1). (3)

Each particle x̂j
tk+1

is associated with a normalized weight W
j

k+1 = W j
k+1/

∑N
i=1 W

i
k+1, where the69

unnormalized weights W j
k+1 > 0 are defined as70

W j
k+1 =

pT(dx̂
j
tk+1

| xj
tk
)

qk+1(dx̂
j
tk+1

| xj
tk
)
g(x̂j

tk+1
,yk+1). (4)

The BPF and FA-APF correspond respectively to having71

W j,BPF
k+1 = g(x̂j

tk+1
,yk+1) and W j,FA-APF

k+1 = E[g(Xtk+1
,yk+1) | Xtk = xj

tk
]. (5)
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The weights are such that πk+1(dx) ≈
∑N

j=1 W
j

k+1 δ(dx;x
j
tk+1

). The resampling step consists in72

defining a new set of particles x1:N
tk+1

with P(xj
tk+1

= x̂i
tk+1

) = W
i

k+1. This resampling scheme73

ensures that the equally weighted set of particles x1:N
tk+1

provides a Monte Carlo approximation of the74

filtering distribution at time tk+1 in the sense that πk+1(dx) ≈ N−1
∑N

j=1 δ(dx;x
j
tk+1

). Note that75

the particles x1:N
tk+1

do not need to be resampled independently given the set of propagated particles76

x̂1:N
tk+1

. We refer the reader to [15] for a recent discussion of resampling schemes within PFs and to77

[9] for a book-length treatment of the convergence properties of this class of Monte Carlo methods.78

In most settings, the FA-APF [33] that minimizes a local variance criterion [12] leads to better79

performance when compared to the BPF. This gain in efficiency can be very substantial when the80

signal-to-noise ratio is high or when observations contain outliers under the model specification.81

Nevertheless, implementing FA-APF requires sampling from the conditioned transition probability82

in (3), which is typically not feasible in practice. We will show in the following that this can be83

achieved in our setting by simulating a conditioned diffusion. We note also that standard strategies to84

approximate the FA-APF do not apply to our setup as the latent state process evolves on a higher85

frequency relative to the observations.86

2.3 Conditioned and controlled diffusions87

As the diffusion process (1) is assumed to be time-homogeneous, it suffices to focus on the initial88

interval [0,T] and study the dynamics of the diffusion X[0,T] = {Xt}t∈[0,T] conditioned upon the89

first observation YT = y. The conditioned dynamics can also be described by a diffusion process.90

Contrarily to the original diffusion, the conditioned process is not time-homogeneous in general. The91

conditioned process is described by the same volatility function but with a different drift term that92

takes the future observation YT = y into account.93

Before deriving the exact form of the conditioned diffusion in Section 2.4, this section describes a94

more general setting that will be of crucial importance in our proposed numerical scheme. For a95

control function c : X × Y × [0,T] → Rd and a given observation y ∈ Y , consider the controlled96

diffusion process {Xc,y
t }t∈[0,T] satisfying97

dXc,y
t = µ(Xc,y

t ) dt+ σ(Xc,y
t ) dBt︸ ︷︷ ︸

(original dynamics)

+ [σ c](Xc,y
t ,y, t) dt︸ ︷︷ ︸

(control drift term)

. (6)

The dynamics of the controlled diffusion is identical to the original diffusion, except for the additional98

drift term [σ c](x,y, t) ∈ Rd described by the control function c. For y ∈ Y and a test function99

φ : X → R, the generator of the controlled diffusion is given by100

Lc,y,tφ(x) = Lφ(x) + ⟨[σc](x,y, t),∇φ(x)⟩. (7)

Let P[0,T] and Pc,y
[0,T] denote the probability measures on the space of continuous functions101

C([0,T],Rd) generated by the original and controlled diffusions respectively. Under mild growth as-102

sumptions on the control c, the two measures are equivalent and Girsanov’s theorem [16] shows that103

dP[0,T ]

dPc,y
[0,T]

(X[0,T]) = exp

{
−1

2

∫ T

0

∥c(Xt,y, t)∥2 dt−
∫ T

0

⟨c(Xt,y, t), dBt⟩

}
. (8)

Our main objective is to construct a control function c⋆ : X × Y × [0,T] → Rd so that, for any104

observation value y ∈ Y , the controlled diffusion Xc⋆,y
[0,T] has the same dynamics as the original105

diffusion X[0,T ] conditioned upon the observation YT = y, i.e. for any measurable set A ⊂106

C([0,T],Rd), we have107

P
(
Xc⋆,y

[0,T] ∈ A
)

= E
[
1(X[0,T] ∈ A) g(XT,y)

]
/E[g(XT,y)]. (9)

We will give an exact expression of this control in Section 2.4 and propose a numerical scheme to108

approximate it in Section 3.1.109
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2.4 Doob’s h-transform110

To simplify notation, we shall denote the conditioned process X[0,T] | (YT = y) as X̂[0,T]. To111

describe its dynamics, we introduce the function112

h(x,y, t) = E[g(XT,y) | Xt = x] =

∫
X
g(xT,y) pT−t(dxT | x) (10)

which gives the probability of observing YT = y when the diffusion has state x ∈ X at time113

t ∈ [0,T]. We recall that the likelihood function g : X × Y → R+ was defined in Section 2.1.114

The definition in (10) implies that the function h : X × Y × [0, T ] → R+ satisfies the backward115

Kolmogorov equation [27],116

(∂t + L)h = 0, (11)

with terminal condition h(x,y,T) = g(x,y) for all (x,y) ∈ X × Y . For φ : X → R and an117

infinitesimal increment δ > 0, we have118

E[φ(X̂t+δ)|X̂t = x] = E[φ(Xt+δ) g(XT,y) | Xt = x] / E[g(XT,y)|Xt = x]

= E[φ(Xt+δ)h(Xt+δ,y, t+ δ) | Xt = x] / h(x,y, t)

= φ(x) + δ

{
L[φh]

h

}
(x,y, t) +O(δ2).

(12)

Furthermore, since the function h satisfies (11), some algebra shows that L[φh]/h = Lφ +119

⟨σσ⊤∇ log h,∇φ⟩. By taking δ → 0, this heuristic derivation shows that the generator of the condi-120

tioned diffusion equals Lφ+ ⟨σσ⊤∇ log h,∇φ⟩. Hence X̂[0,T] satisfies the dynamics of a controlled121

diffusion (6) with control function c⋆(x,y, t) = [σ⊤∇ log h](x,y, t). We refer readers to [36, 8] for122

a formal treatment of Doob’s h-transform.123

2.5 Nonlinear Feynman-Kac formula124

Obtaining the control function c⋆(x,y, t) = [σ⊤∇ log h](x,y, t) by solving the backward Kol-125

mogorov equation in (11) for each possible observation y ∈ Y is computationally not feasible. Fur-126

thermore, when the dimensionality of the state-space X becomes larger, standard numerical methods127

for solving Partial Differential Equations (PDEs) such as Finite Differences or the Finite Element128

Method become impractical. For these reasons, we propose instead to approximate the control func-129

tion c⋆ with neural networks, and employ methods based on automatic differentiation and the nonlin-130

ear Feynman-Kac approach to solve semilinear PDEs [19, 20, 24, 17, 6, 22, 23, 1, 18].131

As the non-negative function h typically decays exponentially for large ∥x∥, it is computationally132

more stable to work on the logarithmic scale and approximate the value function v(x,y, t) =133

− log[h(x,y, t)]. Using the fact that h satisfies the PDE (11), the value function satisfies134

(∂t + L)v =
1

2
∥σ⊤∇v∥2, v(x,y,T) = − log[g(x,y)] for all (x,y) ∈ X × Y. (13)

Let {Xc,y
t }t∈[0,T] be a controlled diffusion defined in Equation (6) with a given control function135

c : X × Y × [0,T] → Rd and define the diffusion process {Vt}t∈[0,T] as Vt = v(Xc,y
t ,y, t). Itô136

Lemma shows that for any observation YT = y and 0 ≤ s ≤ T, we have137

VT = Vs +

∫ T

s

(
1

2
∥Zt∥2 + ⟨c,Zt⟩

)
dt+

∫ T

s

⟨Zt, dBt⟩

with Zt = [σ⊤∇v](Xc,y
t ,y, t) and VT = − log[g(Xc,y

T ,y)]. In summary, the pair of processes138

(Vt,Zt) are such that the following equation holds,139

− log[g(Xc,y
T ,y)] = Vs +

∫ T

s

{
1

2
∥Zt∥2 + ⟨c,Zt⟩

}
dt+

∫ T

s

⟨Zt, dBt⟩. (14)

Crucially, under mild growth and regularity assumptions on the drift and volatility function µ :140

X → Rd and σ : X → Rd,d, the pair of processes (Vt,Zt) is the unique solution to Equation (14)141

[28, 29, 30, 40]. This result can be used as a building block for designing Monte Carlo approximations142

of the solution to semilinear and fully nonlinear PDEs [18, 34, 21]143
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3 Method144

3.1 Computational Doob’s h-transform145

As before, consider a diffusion {Xc,y
t }t∈[0,T] controlled by a function c : X ×Y × [0,T] → Rd and146

driven by the standard Brownian motion {Bt}t≥0. Furthermore, for two functions N0 : X × Y → R147

and N : X × Y × [0,T] → Rd, consider the diffusion process {Vt}t∈[0,T] defined as148

Vt = V0 +

∫ s

0

{
1

2
∥Zt∥2 + ⟨c(Xc,y

t ,y, t),Zt⟩
}
dt+

∫ s

0

⟨Zt, dBt⟩, (15)

where the initial condition V0 and the process {Zt}t∈[0,T] are defined as149

V0 = N0(X
c,y
0 ,y) and Zt = N(Xc,y

t ,y, t). (16)

Importantly, we remind the reader that the two diffusion processes Xc,y
t and Vt are driven by the150

same Brownian motion Bt. The uniqueness result mentioned at the end of Section 2.5 implies151

that, if for any choice of initial condition Xc,y
0 ∈ X and terminal observation y ∈ Y the condition152

VT = − log[g(Xc,y
T ,y)] is satisfied, then we have that for all (x,y, t) ∈ X × Y × [0,T]153

N0(x,y) = − log h(x,y, 0) and N(x,y, t) = −[σ⊤∇ log h](x,y, t). (17)

In particular, the optimal control is given by c⋆(x,y, t) = −N(x,y, t).154

These remarks suggest parametrizing the functions N0(·, ·) and N(·, ·, ·) by two neural networks with155

respective parameters θ0 ∈ Θ0 and θ ∈ Θ while minimizing the loss function156

L(θ0, θ; c) = E
[(

VT + log[g(Xc,Y
T ,Y)]

)2
]
. (18)

The above expectation is with respect to the distribution of the Brownian motion {Bt}t≥0, the initial157

condition Xc,Y
0 ∼ ηX(dx) of the controlled diffusion, and the observation Y ∼ ηY(dy) at time T.158

In practice, we will let the three sources of randomness be independent of each other. The spread159

of the distributions ηX and ηY should be large enough to cover typical states under the filtering160

distributions πk, k ≥ 1 and future observations to be filtered respectively. Specific choices will be161

detailed for each application in Section 4. For offline problems, one could learn in a data-driven162

manner by selecting ηY as the empirical distribution of actual observations. Furthermore, any control163

function c : X × Y × [0,T] → Rd with mild growth and regularity assumptions can be employed164

within our methodology: specific choices are discussed at the end of this section.165

CDT algorithm. The following outlines our training procedure to learn neural networks N0 and N166

that satisfy (17). To minimize the loss function (18), any stochastic gradient algorithm can be used167

with a user-specified mini-batch size of J ≥ 1. The following steps are iterated until convergence.168

1. Choose a control c : X × Y × [0,T] → Rd, possibly based on the current neural network169

parameters (θ0, θ) ∈ Θ0 ×Θ.170

2. Simulate independent Brownian paths Bj
[0,T], initial conditions Xj

0 ∼ ηX(dx), and observa-171

tions Yj ∼ ηY(dy) for 1 ≤ j ≤ J .172

3. Generate the controlled trajectories: the j-th sample path Xj
[0,T] is obtained by forward173

integration of the controlled dynamics in Equation (6) with initial condition Xj
0, control174

c(·,Yj , ·), and the Brownian path Bj
[0,T].175

4. Generate the value trajectories: the j-th sample path Vj
[0,T] is obtained by forward integration176

of the dynamics in Equation (15)–(16) with the Brownian path Bj
[0,T] and the current neural177

network parameters (θ0, θ) ∈ Θ0 ×Θ.178

5. Construct a Monte Carlo estimate of the loss function (18):179

L̂ = J−1
J∑

j=1

(Vj
T + log[g(Xj

T,Y
j)])2 (19)
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6. Use automatic differentiation to compute ∂θ0 L̂ and ∂θL̂ and update the parameters (θ0, θ).180

Importantly, if the control function c in Step:1 does depend on the current parameters (θ0, θ), the181

gradient operations executed in Step:6 should not be propagated through the control function c. A182

standard stop-gradient operation available in most popular automatic differentiation frameworks183

can be used for this purpose.184

Time-discretization of diffusions. For clarity of exposition, we have described our algorithm in185

continuous-time. In practice, one would have to discretize these diffusion processes, which is entirely186

straightforward. Although any numerical integrator could potentially be considered, the experiments187

in Section 4 employed the standard Euler-Maruyama scheme [25].188

Parametrizations of functions N0 and N. In all numerical experiments presented in Section 4, the189

functions N0 and N are parametrized with fully-connected neural networks with two hidden layers190

and the Leaky ReLU activation function except in the last layer. Future work could explore other191

neural network architectures for our setting.192

Choice of controlled dynamics. In challenging scenarios where observations are highly informative193

and/or extreme under the model, choosing a good control function to implement Step:1 of the194

proposed algorithm can be crucial. We focus on two possible implementations:195

• CDT static scheme: a simple (and naive) choice is not using any control, i.e. c(x,y, t) ≡196

0 ∈ Rd for all (x,y, t) ∈ X × Y × [0,T].197

• CDT iterative scheme: use the current approximation of the optimal control c⋆ described198

by the parameters (θ0, θ) ∈ Θ0 ×Θ. This corresponds to setting c(x,y, t) = −N(x,y, t).199

While using a static control approach can perform reasonably well in some situations, our results in200

Section 4 suggest that the iterative control procedure is a more reliable strategy. This is consistent201

with findings in the stochastic optimal control literature [38, 32]. This choice of control function202

drives the forward process Xc,y
t to regions of the state-space where the likelihood function is large and203

helps mitigate convergence and stability issues. Furthermore, Section 4 reports that (at convergence),204

the solutions N0 and N can be significantly different. The iterative control procedure leads to more205

accurate solutions and, ultimately, better performance when used for online filtering.206

3.2 Online filtering207

Before performing online filtering, we first run the CDT algorithm described in Section 3.1 to construct208

an approximation of the optimal control c⋆(x,y, t) = [σ⊤∇ log h](x,y, t). For concreteness, denote209

by ĉ : X × Y × [0,T] → Rd the resulting approximate control, i.e. ĉ(x,y, t) = −N(x,y, t) where210

N(·, ·, ·) is parametrized by the final parameter θ ∈ Θ. Similarly, denote by V̂0 : X × Y → R the211

approximation of the initial value function v(x,y, 0) = − log h(x,y, 0), i.e. V̂0(x,y) = N0(x,y)212

where N0(·, ·) is parametrized by the final parameter θ0 ∈ Θ0.213

For implementing online filtering with N ≥ 1 particles, consider a current approximation πk(dx) =214

N−1
∑N

j=1 δ(dx;x
j
tk
) of the filtering distributions at time tk ≥ 0. Given the future observation215

Yk+1 = yk+1, the particles x1:N
tk

are then propagated forward by exploiting the approximately216

optimal control (x, t) 7→ ĉ(x,yk+1, t−tk). In particular, x̂j
tk+1

is obtained by setting x̂j
tk+1

= X̂j
tk+1

217

where {X̂j
t}t∈[tk,tk+1] follows the controlled diffusion218

dX̂j
t = µ(X̂j

t ) dt+ σ(X̂j
t ) dB

j
t︸ ︷︷ ︸

(original dynamics)

+ [σĉ](X̂j
t ,yk+1, t− tk) dt︸ ︷︷ ︸

(approximately optimal control)

(20)

initialized at X̂j
tk

= xj
tk

. Each propagated particle x̂j
tk+1

is associated with a normalized219

weight W
j

k+1 = W j
k+1/

∑N
i=1 W

i
k+1 where W j

k+1 = (dP[tk,tk+1]/dP
ĉ,yk+1

[tk,tk+1]
)(X̂j

[tk,tk+1]
) ×220

g(x̂j
tk+1

,yk+1). We recall that the probability measures P[tk,tk+1] and Pĉ,yk+1

[tk,tk+1]
correspond to the221

original and controlled diffusions on the interval [tk, tk+1]. Girsanov’s theorem, as described in Equa-222

tion (8), implies that223

W j
k+1 = exp

{
−1

2

∫ tk+1

tk

∥Zj
t∥2 dt+

∫ tk+1

tk

⟨Zj
t , dB

j
t ⟩+ log g(xj

tk+1
,yk+1)

}
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where Zj
t = −ĉ(X̂j

t ,yk+1, t − tk). Similarly to Equation (15), consider the diffusion process224

{Vj
t}t∈[tk,tk+1] defined by the dynamics dVj

t = − 1
2∥Z

j
t∥2 dt + ⟨Zj

t , dB
j
t ⟩ with initialization at225

Vj
tk

= V̂0(x
j
tk
,yk+1). Therefore the weight can be re-written as226

W j
k+1 = exp

{
Vj

tk+1
+ log g(xj

tk+1
,yk+1)︸ ︷︷ ︸

≈0

}
exp

{
−V̂0(x

j
tk
,yk+1)

}
, (21)

and computed by numerically integrating the process {Vj
t}t∈[tk,tk+1]. Given the definition of the loss227

function in (18), we can expect the term within the first exponential to be close to zero. In the ideal228

case where ĉ(x,y, t) ≡ c⋆(x,y, t) and V̂0(x,y) ≡ − log h(x,y, 0), one recovers the exact AF-APF229

weights in (5). Once the unnormalized weights (21) are computed, the resampling steps are identical230

to those described in Section 2.2 for a standard PF. For practical implementations, all the processes231

involved in the proposed methodology can be straightforwardly time-discretized. To distinguish232

between CDT learning with static or iterative control, we shall refer to the resulting approximation of233

FA-APF as Static-APF and Iterative-APF respectively.234

4 Experiments235

This section presents numerical results obtained on three models. All experiments employed 2000236

iterations of the Adam optimizer with a learning rate of 0.01 and a mini-batch size of 1000 sample237

paths with 10 different observations. Training times took around one to two minutes on a standard238

CPU. We note that this compute time is marginal compared to the cost of running filters with many239

particles and/or to assimilate large number of observations. Moreover, we can also benefit from240

the use of hardware accelerators. We set the inter-observation time as T = 1 and employed the241

Euler-Maruyama integrator with a stepsize of 0.02 for all examples. Our results are not sensitive to242

the choice of T and discretization stepsize if it is sufficiently small. We examined the performance243

of each particle filter by computing its effective sample size (ESS) averaged over observation244

times and independent repetitions, the evidence lower bound (ELBO) E[log p̂(y1, . . . ,yK)], and245

the variance Var[log p̂(y1, . . . ,yK)], where p̂(y1, . . . ,yK) denotes its unbiased estimator of the246

marginal likelihood of the time-discretized filter p(y1, . . . ,yK). When testing particle filters with247

varying number of observations K, we increased the number of particles linearly with K to keep248

marginal likelihood estimators stable [2].249

4.1 Ornstein-Uhlenbeck model250

We considered an Ornstein-Uhlenbeck process given by (1) with µ(x) = −x, σ(x) = 1 and the Gaus-251

sian observation model g(x,y) = N (y;x, σ2
Y). We chose ηX = N (0, 1/2) as the stationary distri-252

bution and ηY = N (0, 1/2 + σ2
Y) as the implied distribution of the observation when training neural253

networks with the CDT iterative scheme. We took different values of σY ∈ {0.125, 0.25, 0.5, 1.0}254

to vary the informativeness of observations. Analytically tractability in this example allows us to255

visualize the quality of our neural network approximations in Figure 1 and consider two idealized256

particle filters, namely an APF with exact networks (Exact-APF) and the FA-APF. Comparing our257

proposed Iterative-APF to Exact-APF and FA-APF enables us to distinguish between neural network258

approximation errors and time-discretization errors. We note that all PFs except the FA-APF involve259

time-discretization.260

Columns 1 to 4 of Figure 2 summarize our numerical findings when filtering simulated observations261

from the model. We see that the performance of BPF deteriorates as the observations become more262

informative, which is to be expected. Furthermore, when σY is small, the impact of our neural263

network approximation and time-discretization becomes more noticeable. For the values of σY and264

the number of observations K considered, we obtained around an order of magnitude gain in efficiency265

over BPF. From Column 5, we note that these gains become very substantial when we filter K = 100266

observations that are simulated with observation noise that are several standard deviations larger than267

σY = 0.25 under the model specification. In particular, while the ELBO of BPF diverges as we268

increase the degree of noise in the simulated observations, the ELBO of Iterative-APF remains stable.269
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Figure 1: Neural network approximations for Ornstein-Uhlenbeck model with σY = 0.5.
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Figure 2: Results for Ornstein-Uhlenbeck model based on 100 independent repetitions of each PF.
The ELBO gap in the second row is relative to FA-APF.

4.2 Logistic diffusion model270

Next we consider a logistic diffusion process [11, 26] to model the dynamics of a population size271

{Pt}t≥0, defined by272

dPt = (θ23/2 + θ1 − θ2Pt)Pt dt+ θ3Pt dBt. (22)

We apply the Lamperti transformation Xt = log(Pt)/θ3 and work with the process {Xt}t≥0 that273

satisfies (1) with µ(x) = θ1/θ3 − (θ2/θ3) exp(θ3x) and σ(x) = 1. Following [26], we adopt274

a negative binomial observation model g(x,y) = NB(y; θ4, exp(θ3x)) for counts y ∈ N0 with275

dispersion θ4 > 0 and mean exp(θ3x). We set (θ1, θ2, θ3, θ4) as the parameter estimates obtained276

in [26]. Noting that (22) admits a Gamma distribution with shape parameter 2(θ23/2 + θ1)/θ
2
3 − 1277

and rate parameter 2θ2/θ23 as stationary distribution [11], we select ηX as the push-forward under278

the Lamperti transformation and ηY as the implied distribution of the observation when training279

neural networks under both static and iterative CDT schemes. To induce varying levels of informative280

observations, we considered θ4 ∈ {1.069, 4.303, 17.631, 78.161}.281

Figure 3 displays our filtering results for various number of simulated observations from the model282

(Columns 1 to 4) and for K = 100 observations that are simulated with an observation model with283

several standard deviations larger than θ4 = 17.631 under the model specification (Column 5). In the284

latter setup, we solved for different values of θ4 in the negative binomial observation model to induce285

larger standard deviations. The behaviour of BPF and Iterative-APF is similar to the previous example286

as the observations become more informative with larger values of θ4. Iterative-APF outperforms287

both BPF and Static-APF over all combinations of θ4 and K considered, and also when filtering288

observations that are increasingly extreme under the model. We note also that the APFs trained using289

the CDT static scheme can sometimes give unstable results, particularly in challenging scenarios.290
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Figure 3: Results for logistic diffusion model based on 100 independent repetitions of each PF. The
ELBO gap in the second row is relative to Iterative-APF.
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Figure 4: Results for cell model based on 100 independent repetitions of each PF. The ELBO gap in
the second row is relative to Iterative-APF.

4.3 Cell model291

Lastly, we examine a cell differentiation and development model from [39]. Cellular expression292

levels Xt = (Xt,1,Xt,2) of two genes are modelled by (1) with293

µ(x) =

(
x4
1/(2

−4 + x4
1) + 2−4/(2−4 + x4

2)− x1

x4
2/(2

−4 + x4
2) + 2−4/(2−4 + x4

1)− x2

)
(23)

and σ(x) =
√
0.1Id. The terms in (23) describe self-activation, mutual inhibition and inactivation294

respectively, and the volatility captures intrinsic and external fluctuations. We initialize the diffusion295

process from the undifferentiated state of X0 = (1, 1) and consider the Gaussian observation model296

g(x,y) = N (y;x, σ2
YI2). To train neural networks under both static and iterative CDT schemes,297

we selected ηX and ηY as the empirical distributions obtained by simulating states and observations298

from the model for 2000 time units.299

Figure 4 illustrates our numerical results for various number of observations K and σY ∈300

{0.25, 0.5, 1.0, 2.0}. It shows that Iterative-APF offers significant gains over BPF and Static-APF301

when filtering observations that are informative (see Columns 1 to 4) and highly extreme under the302

model specification of σY = 0.5 (see Column 5). In this example, Static-APF did not exhibit any303

unstable behaviour and its performance lies somewhere in between BPF and Iterative-APF.304
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