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ABSTRACT

Reliability of LLMs is questionable even as they get better at more tasks. A wider
adoption of LLMs is contingent on whether they are usably factual. And if they
are not, on whether they can properly calibrate their confidence in their responses.
This work focuses on utilizing the multilingual knowledge of an LLM to inform its
decision to abstain or answer when prompted. We develop a multilingual pipeline
to calibrate the model’s confidence and let it abstain when uncertain. We run several
multilingual models through the pipeline to profile them across different languages.
We find that the performance of the pipeline varies by model and language, but
that in general they benefit from it. This is evidenced by the accuracy improvement
of 71.2% for Bengali over a baseline performance without the pipeline. Even a
high-resource language like English sees a 15.5% improvement. These results hint
at possible further improvements.

1 INTRODUCTION

While large language models have driven extensive progress in natural language processing tasks,
their utility still hinges on their reliability. Reliability of LLMs is determined by their factuality
and their tendency to “hallucinate” when relevant information is not available (as parametric or
non-parametric knowledge) (Mishra et al., 2024; Asai et al., 2024; Mallen et al., 2023). LLMs are, by
design, prone to hallucinations. And hallucinations are a major concern for LLMs deployed in the
wild, especially in safety-critical situations like the medical domain (Ji et al., 2023).

Hallucination is an architectural limitation and feature of current language modeling tools. When
faced with uncertainty, instead of providing misleading responses, a desirable action for an LLM
is to abstain from answering. Research in LLM reliability through abstention has been focused
on implementing methods at different stages of training (pretraining, finetuning, post-training) and
during inference (Wen et al., 2024).

One line of hallucination abstention research is directed toward calibration of model confidence. This
is achieved by utilizing the knowledge of the generating model itself (Kadavath et al., 2022; Jiang
et al., 2021; Feng et al., 2024b; Xiong et al., 2024) to quantify its confidence on its answer. Using a
confidence threshold, the model can then be made to abstain from responding, or to respond with
caution.

In this work, we approach the abstention question using the multilingual knowledge of the model. We
design an inference pipeline with the assumption that it is possible to meaningfully apply a model’s
knowledge in several languages to check the correctness of its answer in any one language.

Multilingual knowledge of LMs has been used before for abstaining by having the model provide
feedback on its own answer (Feng et al., 2024a), similar to the self-reflection method in (Ji et al.,
2023). Instead of using feedback to improve an answer (which is better suited for open-ended
generation tasks), we translate questions prompt the model separately, then translate the answers back
to the original language and arrive at a consensus.

Etxaniz et al. (2023) find that language models cannot utilize cross-lingual knowledge implicitly:
prompting in one language doesn’t necessarily utilize the model’s knowledge in other languages, i.e.,
language models are unable to leverage multilingual knowledge if monolingually prompted. Thus, in
order to utilize the cross-lingual knowledge of a model, we use more than one language (grouped
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by categories like resource level, language family, etc.) to calibrate the model’s confidence to make
abstentions.

We introduce the MKA (Multilingual Knowledge Abstention) pipeline where given a question in a
certain (“target”) language, we translate it to a group of related (“auxiliary”) languages to prompt a
multilingual model to get responses in these languages, which are translated back to the target and
then utilized to calibrate the model’s confidence based on the semantic similarity of the responses.

2 METHOD

Problem Formulation Given a language model f : P → R where P and R are prompt and response
spaces, model abstention is a function g : (p, r) → {0, 1} where p ∈ P , r ∈ R. The model abstains
if g = 1. The function g for this work is the MKA pipeline.

2.1 MKA PIPELINE

The MKA pipeline is an inference-time confidence-calibration method. We use knowledge-based
MCQA (multiple-choice question answering) benchmarks for our experiments. The evaluation set has
triples comprising questions, choices and answers: (q, c, x). For illustration purposes, let’s consider
the evaluation set is in language t and the auxiliary language set is the low-resource LR set. Steps for
the MKA pipeline are as follows:

1. Translation: We use a translation system to translate the question q and the choices c
(in target language t) into languages as grouped in different auxiliary language sets. For
example, for LR = {LR0, LR1, LR2, . . .}, we translate q into all these languages. Our low
resource set LR includes Telugu, Nepali, Maithili, Bhojpuri, Yoruba, and Zulu.

2. Prompting: Once q and c have been translated into the auxiliary languages of choice, we
construct the prompts PLR = {p0, p1, p2, p3, . . .} by concatenating the translated questions
and choices and adding prompting instructions. Then we prompt the model f with all
prompts in PLR.
Once we have the model’s generations, we process them to get only the answers RLR =
{r0, r1, r2, . . .}. We assume all answers are in the prompting language (not necessarily t).
To standardize the answers in order to compare them with the true answer x, we translate all
answers back to the target language ALR = {a0, a1, a2, . . .}.

3. Cosine Similarity Centroid Polling: We poll all answers in ALR to select the answer as
with the highest average cosine similarity across all answers. Using character n-grams as
features to construct vectors vi and vj for answers ai and aj , we consider as the model’s
final answer the response at position

i∗ = argmax
i∈{1,...,n}

 1

n

n∑
j=1

cos sim(vi, vj)


where cos sim(vi, vj) =

vi · vj
∥vi∥∥vj∥

4. Confidence calibration: Then we find the confidence of the model on the selected an-
swer as using the cosine similarity between sentence embeddings of the other answers
with that of as. For answers that have a similarity greater than 0.8, we multiply their
confidence weight by 1.5 (assumption: few very similar answers provide more confidence
than many dissimilar answers). This calibration method is model-independent. Given sen-
tences as and ai, for sentence embeddings es and ei computed using the embedding model
paraphrase-multilingual-mpnet-base-v2 (Reimers & Gurevych, 2020), confidence is
calculated as

cf =
1

|A \ as|

|A\as|∑
i=1

wi cos sim(es, ei)

where wi =

{
1.5 if cos sim(es, ei) > 0.8

1 otherwise
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Finally, we use a confidence cutoff cc to decide whether to abstain or answer given model
confidence cf on answer as.

2.2 BASELINE

To evaluate the performance of the MKA pipeline, we also benchmark the language models without
the pipeline. For this, we prompt the language model in the target language for all questions from
the evaluation set and use the same evaluation method and metrics as MKA. Refer to Table 2 for the
baseline scores.

2.3 AUTOMATIC EVALUATION

Even though we are working with an MCQA task where the model has only to choose an option
from given choices, we cannot use exact matching because a model answer is translated to the target
language from some auxiliary language, which often introduces artifacts. Thus, to evaluate responses,
we calculate the semantic similarity between the correct answer and the model answer as agreed on by
the MKA pipeline. Specifically, we use the cosine similarity and apply a cut off of 0.85 to establish if
the model answer is correct. Once again we use the paraphrase-multilingual-mpnet-base-v2
model offered by SentenceTransformers to get sentence embeddings (Reimers & Gurevych, 2020)
for evaluation.

3 EXPERIMENTS

3.1 SETUP

Models. For translation, we use an int8-quantized version of the NLLB-200 1.3B Distilled
model (Team et al., 2022). For prompting, we focus on models: Aya Expanse 8B (Dang et al., 2024),
Gemma 2 9B (Team et al., 2024), Qwen 2.5 7B (Qwen et al., 2025) and Gemma 2 2B (Team et al.,
2024). To investigate how the model size correlates to the pipeline performance, we also experiment
with the Gemma 2 27B (Team et al., 2024) to enable a comparison across the three models from the
Gemma 2 family (Appendix A). We use SGLang (Zheng et al., 2024) to prompt the models.

Eval sets. Because we are focusing on MCQA, we use the multilingual MMLU (OpenAI,
2024; Hendrycks et al., 2021). Among the languages available we evaluate the MKA pipeline
on prompts originating in six target languages: Bengali, English, Swahili, Yoruba, Japanese and
Indonesian.

Auxiliary language sets. We establish three auxiliary language sets based on resource lev-
els: high-resource (English, German, French, Spanish, Simplified Chinese, Portuguese), mid-resource
(Greek, Hebrew, Hindi, Indonesian, Ukrainian, Vietnamese) and low-resource (Telugu, Nepali,
Maithili, Bhojpuri, Yoruba, Zulu).

All questions and answers will be in the target languages while the intermediate processing
will be done in the auxiliary languages.

To evaluate the performance of the MKA pipeline over the baseline method (§2.2), we calculate
the pipeline’s confidence on the answers agreed upon by the model responses using the centroid
polling method (§2.1.3). Then we use confidence categories to establish whether there are definitive
confidence cutoffs (from 0 to 1 in increments of 0.02, i.e., 50 categories) where the pipeline is better
for specific configuration of target language, auxiliary languages and prompting model. To establish
these confidence categories, we find the average performance of a prompting model across its MKA
runs (total target language × auxiliary language sets runs). We consider the confidence category that
has the highest average accuracy to be the optimal confidence cutoff for a model.

3.2 METRICS

Accuracy. Given our focus on MCQA-type questions, we can expect any of four different outcomes
for the MKA pipeline on a question: abstain when model answer is correct (A1), abstain when model
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answer is incorrect (A2), answer when model answer is correct (A3) and answer when model answer
is incorrect (A4).

For this configuration we have two accuracies: abstained accuracy ACabs and answered accuracy
ACans.

ACabs =
A2

A1 +A2

ACans =
A3

A3 +A4

Figure 1: MKA Pipeline
confusion matrix

These metrics consider abstentions and responses individually. These
accuracies therefore do not allow meaningful comparison: the ratio
of abstentions-responses changes depending on the confidence cutoff,
which causes the denominators to change, making the accuracies not
directly comparable.

We thus use a composite metric ACcomp that looks at both abstentions
and answers at the same time and also has a constant denominator,
allowing meaningful comparisons:

ACcomp =
correctly answered + correctly abstained

total

=
A2 +A3

A1 +A2 +A3 +A4

However, a limitation of this composite metric is immediately obvious.
A badly performing model that hypothetically answers only one ques-
tion (correctly) and abstains all other questions will have an ACcomp

of 1. Thus, we also use the answer rate of the model to factor in the coverage across the eval set. We
use the answer coverage of the prompting model to devise an effective accuracy:

ACeff = ACcomp ∗ coverage

where coverage =
A3 +A4

total

Even this metric has the inherent bias that answering is preferable to abstaining. One way to curtail
the coverage bias on the effective accuracy would be to add an exponential weight. But since we
introduced the coverage part only to handle poorly performing models, we use the weight-less
formulation of the effective accuracy. All accuracy reported here, unless noted otherwise, are
effective accuracy.

Accuracy v/s Coverage. Even after introducing a multiplicative coverage component to
the effective accuracy, to make the impact of the coverage more explicit, we visualize how the
answered accuracy of the models is related to the answer rate (coverage) for every auxiliary language
set.

4 RESULTS

Model Performance and Optimal Confidence Cutoffs. From Table 1, we can see that different
models achieve optimal performance at different confidence cutoffs. To establish optimal cutoffs (cc),
we calculate the mean accuracy for every model across all its MKA runs. The cutoff with the highest
average accuracy is used as the cc for the model.

Aya Expanse 8B and Gemma2 27B (int4) perform better than the other models overall. No model is
definitively better than the others on any of the three auxiliary sets: the Gemma2 27B is usually better
at the mid- and high-resource auxiliary sets, and Gemma2 9B and Aya Expanse 8B score the best
accuracy on four auxiliary-language configurations each.
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Expanse 8B Qwen2.5 7B Gemma2 2B Gemma2 9B G2 27B (int4)
Tgt. cc 0.7 0.58 0.66 0.64 0.64

Ben
Low 0.3443 0.3101 0.3117 0.3649 0.4195 (+71.2%)
Mid 0.3280 0.3753 0.3226 0.4141 0.4025
High 0.3237 0.3675 0.3268 0.3864 0.3966
Avg 0.3320 0.3510 0.3204 0.3885 0.4062

Eng
Low 0.3507 0.3103 0.3450 0.4356 0.4788
Mid 0.4730 0.3245 0.3885 0.5154 0.5558
High 0.5399 0.5135 0.4307 0.6452 0.7162 (+15.5%)
Avg 0.4545 0.3828 0.3881 0.5321 0.5836

Yor
Low 0.2931 0.2366 0.2828 0.2599 0.2758
Mid 0.2581 0.2451 0.2534 0.2654 0.2665
High 0.2941 (−24.6%) 0.2403 0.2508 0.2465 0.2363
Avg 0.2818 0.2407 0.2623 0.2573 0.2595

Swa
Low 0.2736 0.2925 0.2593 0.3157 0.2760
Mid 0.3424 (+20.1%) 0.3022 0.2295 0.3349 0.2958
High 0.3321 0.2950 0.2616 0.2806 0.3015
Avg 0.3160 0.2966 0.2501 0.3104 0.2911

Jpn
Low 0.2904 0.2957 0.3136 0.4070 0.3700
Mid 0.3575 0.3434 0.2943 0.4004 0.4366
High 0.3570 0.3996 0.3422 0.4246 0.4551 (−11.6%)
Avg 0.3350 0.3462 0.3167 0.4107 0.4206

Ind
Low 0.3304 0.3005 0.3023 0.4433 0.4290
Mid 0.4055 0.3503 0.3173 0.4750 0.5176
High 0.4175 0.4189 0.3635 0.4931 0.5281 (+21.4%)
Avg 0.3845 0.3566 0.3277 0.4705 0.4916

Table 1: Effective accuracies of the models with the MKA pipeline using the best confidence
cutoff cc (refer to Appendix C). {Low, Mid, High} are the auxiliary language sets. Bold is the
highest accuracy across the row. The highest accuracy for every target language also states (inside
parenthesis) the percent change over the the baseline method’s best accuracy for that language (Table
2). Performed on an evaluation set of size n = 200. G2 is Gemma2.

Aya Expanse Qwen2.5 Gemma2 Gemma2 Gemma2 27B
8B 7B 2B 9B (int4)

Ben 0.16 0.245 0.055 0.105 0.155
Eng 0.51 0.435 0.405 0.51 0.62
Yor 0.39 0.325 0.08 0.12 0.335
Swa 0.285 0.205 0.11 0.14 0.245
Jpn 0.515 0.41 0.245 0.285 0.45
Ind 0.435 0.365 0.215 0.345 0.435

Table 2: Accuracy of the models without the MKA pipeline (baseline method) on the target languages.
Sample size n = 200.

Low-resource target languages seem to benefit from our method: the best performance in Bengali
using the pipeline is 71.2% better than the best performance with the baseline method (refer to Table
2). Yoruba, another low-resource language, however, has 24.6% lower accuracy with the MKA
method. This might be explained by the poor translation performance for Yoruba: NLLB reports a
spBLEU of 26.6/13.8 (Yor→Eng/Eng→Yor). Compare these scores with Swahili’s: 48.1/37.9.

Bengali, English, Swahili and Indonesian all benefit from the MKA pipeline. Yoruba and Japanese
do not.
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(a) Effective Accuracy versus Confidence Cutoff

(b) Answered Accuracy versus Coverage

Figure 2: Accuracy analyses for the MKA Pipeline on Aya Expanse 8B, Gemma2 9B and Qwen2.5
7B across the target languages.
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These results show that the MKA pipeline does not seem to depend on the target languages. Instead,
it depends on the auxiliary languages and how well the translation system performs for a particular
translation pair.

Coverage and Accuracy Trade-offs. The accuracy-coverage relationship (Figure 2b) shows the
correlation between the answered accuracy and the answer rate (coverage). Higher coverage rates
(lesser abstention), obviously, lead to lesser accuracy. This is most pronounced for the low-resource
auxiliary languages, directly related to the reduced quality of prompts due to worse translation for
these languages.

Going from the low-resource to high-resource tasks, we see the languages form gradations so that the
highest-resourced languages perform well for all prompting models and the low-resource languages
perform below par, but still remotely better than the baseline. We can focus on the accuracy of each
model at full coverage to get a sense of this improvement. (Yoruba and Swahili start below 0.2 in the
low-resource set while they start near 0.2 for the high-resource set).

Prompting instruction volatility The pipeline was observed to be volatile to the prompt-
ing instructions, especially for the Qwen-2.5 7B model. This is likely related to the models
themselves.

5 CONCLUSION

We implemented an inference-time confidence calibration pipeline for LLMs that utilizes the multi-
lingual knowledge of the model to decide whether it should answer or abstain when prompted. We
evaluated the pipeline using accuracy metrics based on answers and abstentions. We benchmarked
the models using a baseline method and compared its performance against the proposed method and
found that given availability of good machine translation systems, the MKA pipeline can improve the
accuracy of an LLM by abstaining when it lacks confidence in the responses instead of confabulating.
This validates confidence calibration with multilingual knowledge as a useful tool to tackle model
hallucination.

6 LIMITATIONS AND FUTURE WORK

The pipeline relies on semantic distance in the form of cosine similarity between sentence embeddings
to evaluate the correctness of the model answers. This may be improved by using commercial LLMs
as evaluator of equivalence of the model answers and the ground truths.

An interesting direction for future work would be to use the multilingual knowledge internally,
i.e., without translating between the target and auxiliary languages. Such work will address many
weaknesses of the current pipeline, like translation artifacts, dependence on cosine similarity, and the
overall reliance on disjointed post-inference techniques.

Reproducibility Statement We have tried to ensure that the results in this work are reproducible by
making the experiments deterministic using low temperature while decoding and using random seed
when possible. The code will be available at github.com/sharad461/MKA-hallucination. The
random seed used for the reported experiments is 97 and the sample size is 200. As discussed earlier
(in Results), prompting instructions may cause variation. For the same prompt we have observed
consistent results across multiple runs.
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A GEMMA MODELS

(a) Effective Accuracy versus Confidence Cutoff for the MKA pipeline on the Gemma models.

(b) Answered Accuracy versus Confidence Cutoff.
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B MKA PIPELINE OUTPUT EXAMPLE

Stage Content Language Similarity

Original Question At birth, the least developed part of the brain is the
Options: visual system, cortex, brain stem, cerebellum

English

(Answer: cortex)

Translated Prompts

Bei der Geburt ist der am wenigsten entwickelte Teil des
Gehirns die
Options: Synapse, Kortex, Hirnstamm, Zerebellum

German

À la naissance, la partie du cerveau le moins développée
est le
Options: système visuel, cortex, tronc cérébral, cervelet

French

Al nacer, la parte menos desarrollada del cerebro es el
Options: sistema visual, corteza, tronco cerebral, cere-
belo

Spanish

在出生时,大脑最不发达的部分是
Options: 视觉系统,皮层,脑干,小脑

Chinese

No nascimento, a parte menos desenvolvida do cérebro
é a
Options: sistema visual, córtex, tronco cerebral, cerebelo

Portuguese

Model Responses

cortex English
Kortex German
[cortex] French
[corteza] Spanish
皮层 Chinese
córtex Portuguese

Translated Responses

the cortex English -
The cortex German 1.000
[Cortex] What is it? French 0.496
[crust] Spanish 0.185
The cortex Chinese 1.000
the cortex Portuguese 1.000

Final Decision “the cortex” (Confidence: 1.000, Similarity with ground truth: 0.956) Correct

Table 3: The MKA pipeline processing a multiple-choice question. The target language is English
and the auxiliary language set is the high-resource set (German, English, French, Spanish, Simplified
Chinese and Portuguese). Bold is the answer selected by the centroid polling method (2.1.3). The
system shows high confidence and agreement across the languages. The final decision achieves high
similarity with the ground truth. Thus, the model chooses to answer.
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C CONFIDENCE CUTOFF ANALYSES

Confidence Cutoff Analysis for Aya Expanse 8B

Confidence Cutoff Analysis for Qwen2.5 7B
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Confidence Cutoff Analysis for Gemma2 2B

Confidence Cutoff Analysis for Gemma2 9B
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Confidence Cutoff Analysis for Gemma2 27B
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