
Stochastic Gradient MCMC for Gaussian Process
Inference on Massive Geostatistical Data

Mohamed A. Abba1 Brian J. Reich1 Reetam Majumder2∗ Brandon Feng1

1Department of Statistics, North Carolina State University
2Department of Mathematical Sciences, University of Arkansas

∗reetamm@uark.edu

Abstract

Gaussian processes (GPs) are the workhorses of spatial data analyses, but are diffi-
cult to scale to large spatial datasets. The Vecchia approximation induces sparsity
in the dependence structure and is one of several methods proposed to scale GP
inference. We develop a stochastic gradient Markov chain Monte Carlo frame-
work for efficient computation in GPs for spatial data. At each step, the algorithm
subsamples a minibatch of locations and subsequently updates process parame-
ters through stochastic gradient Riemannian Langevin dynamics (SGRLD) on a
Vecchia-approximated GP likelihood. We are able to conduct full Bayesian anal-
ysis for GPs with up to 100,000 locations using our spatial SGRLD, and demon-
strate its efficacy through numerical studies and an application using ocean tem-
perature data.

1 Introduction

Gaussian process (GP) modeling is a powerful statistical and machine learning tool used to tackle
a variety of tasks including regression, classification, and optimization. Within spatial statistics, in
particular, GPs have become the primary tool for inference [11], with their main advantage being the
ability to provide predictions at unobserved locations along with uncertainty quantification. How-
ever, handling large datasets with GPs poses computational challenges due to the cubic time com-
plexity and quadratic memory requirements to evaluate the joint likelihood. This is compounded in
the course of Bayesian inference, where thousands of Markov chain Monte Carlo (MCMC) itera-
tions are needed to accurately approximate the posterior distribution. Scalable computation for GPs
is therefore necessary for inference on large spatial datasets.

Stochastic gradient (SG) based optimization, where gradient information is used to sample the pos-
terior efficiently, has emerged as an attractive alternative to regular MCMC for scalable computation.
Instead of computing a costly gradient based on the full dataset, SG methods only need an unbiased
and possibly noisy estimate using a subsample of the data. Although SGMCMC is widely used for
iid data [24, 30, 6, 21, 9, 5], a naive application in the correlated setting would overlook critical
dependencies in the data during subsampling. Moreover, the gradient estimate from the subsamples
are not guaranteed to be unbiased. SGMCMC has been used for certain classes of dependent data
[20, 22, 2, 3, 7], but to the best of our knowledge, subsampling methods for spatial data that result
in unbiased gradient estimates have not been explored. In this work, we develop an SGMCMC al-
gorithm based on Langevin dynamics (SGLD) for large spatial datasets, assumed to have a Matérn
correlation structure [27]. We extend the SGLD method to the case of non-iid data using the Vec-
chia approximation that substantially reduces the computational cost to provide a method that takes
account of the local curvature to improve convergence.
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2 Methodology

2.1 The Matérn GP and the Vecchia approximation

Let Yi for i ∈ {1, ..., n} be the observation at a spatial location si = (si1, si2), and let Xi =
(Xi1, ..., Xip) be a corresponding vector of covariates. The data-generation model for GP regression
in the case of Gaussian data is

Yi = Xiβ + Zi + εi, (1)

with covariate effects β, spatial process Zi ≡ Z(si), and measurement error εi
iid∼ Normal(0, τ2)

with a nugget τ2. The process Z(s) is an isotropic spatial Gaussian process with mean E{Z(s)} = 0,
spatial variance Var{Z(s)} = σ2 and spatial correlation Cor{Zi, Zj} = K(dij) for distance dij =
||si−sj ||. Specifically, we assume that the process has a Matérn correlation function [27] with range
ρ and smoothness ν:

K(d) =
1

Γ(ν)2ν−1

(
d

ρ

)ν

Kν

(
d

ρ

)
, (2)

whereKν is the modified Bessel function of the second kind. Let θ = (σ2, ρ, ν, τ2) be the collection
of covariance parameters. The marginal distribution (over Z) of Y = {Y1, . . . , Yn} is multivariate
normal with mean E[Y] = Xβ, for X ∈ Rn×p covariate matrix with the ith row Xi, and covariance
matrix E[(Y− Xβ)(Y− Xβ)T | θ] = Σ(θ) with

Σ(θ) = σ2K + τ2In, (3)
Ki,j = K(dij).

The full log-likelihood for the process is given by:

ℓfull(β,θ) = −
n

2
log(2π)− 1

2
log detΣ(θ)− 1

2
(Y− Xβ)TΣ(θ)−1(Y− Xβ). (4)

Evaluating the full likelihood of the process involves computing the determinant and inverse of Σ(θ)
which generally requires O(n3) operations, and becomes prohibitive for large spatial datasets. To
alleviate this, we write the joint distribution of Y as a product of univariate conditional distributions,
which can then be approximated by a Vecchia approximation [29, 28, 8, 16]:

f(Y1, ..., Yn) =

n∏
i=1

f(Yi|Y1, ..., Yi−1) ≈
n∏

i=1

fi(Yi|Y(i)), (5)

for Y(i) = {Yj ; j ∈ Ni} and conditioning set Ni ⊆ {1, ..., i − 1}, e.g., the indices of the mi ≤ m
locations in Ni that are closest to si according to some ordering of the data. Conditioning on Ni

leads to substantial computational savings when m is small, i.e., m << n. Let p(β,θ) be the
prior distribution on the regression and covariance parameters. Using (5) we can write the posterior
p(β,θ | Y) (ignoring a constant that does not depend on the parameters) as:

ℓ(β,θ) =

n∑
i=1

log f(Yi | Y(i),β,θ),

log p(β,θ | Y) = ℓ(β,θ) + log p(β,θ). (6)

The log-likelihood and log-posterior of the parameters {β,θ} can consequently be written as a sum
of conditional normal log-densities, where the conditioning set is at most of size m.

2.2 SGLD and SGRLD for spatial data

The Vecchia approximation reduces the computational cost for evaluating the full likelihood and the
posterior from O(n3) to O(nm3); however, this can still pose challenges for very large n. We can
further reduce the cost of Bayesian inference by using subsampling strategies. Note that sampling
the summands of (6) with equal probability and without replacement leads to an unbiased estimate
of the gradient. Let B ⊂ {1, . . . , n} be a subsample, i.e., a minibatch index set of size nB, and let

ℓ̄B(β,θ) =
n

nB

∑
i∈B

log f(Yi | Y(i),β,θ). (7)
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Theorem 1. The gradient of ℓ̄B is an unbiased estimator of the gradient of the Vecchia likelihood
ℓ(β,θ).

Proof.

EB[∇ℓ̄B(β,θ)] = ∇EB

[
n

nB

n∑
i=1

log f(Yi | Y(i),β,θ)δi∈B

]

= ∇
n∑

i=1

log f(Yi | Y(i),β,θ)

= ∇ℓ(β,θ). (8)

Using (8), we can construct an unbiased estimate of the gradient of the Vecchia log-posterior based
on a minibatch of the data:

ḡB(β,θ) = ∇ℓ̄B(β,θ) +∇ log p(β,θ), (9)
reducing the cost of learning iterations to be linear in nB instead of n, i.e., O(m3nB).

SGMCMC proceeds by simulating continuous dynamics of a potential energy, namely the negative
log-posterior, − log p(β,θ | Y), in a manner that generates samples from the posterior distribution.
Let ϕ = (βT,θT)T be the vector of all parameters for the GP regression model. The Langevin
diffusion over log p(ϕ | Y) is given by the stochastic differential equation

d(ϕt) = ∇ log p(ϕt | Y)dt+
√
2dWt, (10)

where dWt is Brownian motion and the index t represents time. The distribution of samples ϕt
converges to the true posterior as t → ∞ [26]. Since simulating a continuous time process is
infeasible in practice, we use the Euler discretization method to approximate the Langevin dynamics:

ϕt+1 = ϕt + ht∇ log p(ϕt | Y) +
√
2htet, (11)

where ht is the step size at time t, ϕt the current value of the parameter, and et is random white
noise. This recursive sampling approach is known as the Langevin Monte Carlo algorithm. Often, a
Metropolis-Hastings (MH) correction step is added to account for the discretization error.

Computing the gradient of the log-posterior for large n represents a computational bottleneck. To
overcome this problem, the key idea of stochastic gradient Langevin dynamics (SGLD) is to replace
∇ log p(ϕ | Y) with an unbiased gradient estimate, i.e., ḡB(ϕ) in (9), that is computationally cheaper
to compute and uses a decreasing step size ht to avoid the costly MH correction steps,

SGLD : ϕt+1 = ϕt + htḡB(ϕt) +
√
2htet, (12)

for positive step sizes that satisfy the Robbins-Monro conditions [25]. Note that (12) updates all
parameters using the same step size, which can cause slow mixing when different parameters have
different curvature or scales. Stochastic gradient Reimannian Langevin dynamics (SGRLD) ac-
counts for differences in curvature and scale by using an appropriate Riemannian metric G(ϕ) and
preconditioning the unbiased gradient and noise in (12) using G−1(ϕ). Commonly used metrics for
G(ϕ) include the Fisher information matrix and estimates of the Hessian of the log-posterior. Given
a preconditioning matrix G(ϕ), the SGRLD step is

SGRLD : ϕt+1 = ϕt + ht

(
G−1(ϕt)ḡB(ϕt) + Γ(ϕt)

)
+

√
2htG

−1/2(ϕt)et, (13)

where the term Γ(ϕt) represents the drift term that describes how the preconditioner G(ϕt) changes
with respect to ϕt. The drift term is given by

Γ(ϕt)i =
∑
j

∂G(ϕt)
−1
ij

∂ϕtj

. (14)

The drift term vanishes in the SGLD step since the preconditioner is assumed to be the identity
matrix. The SGRLD algorithm in (13) takes steps in the steepest ascent on the manifold defined by
the metric G(ϕt). While the Fisher information matrix is often intractable, our use of the Vecchia
approximation facilitates computation of the Fisher information and its inverse without incurring a
high computational cost; derivations of the expressions are provided in Appendix A. Code for our
approach is available in the form of an R package on GitHub [1].
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Figure 1: Argo ocean temperature measurements at a depth of 100 meters.

MSE Coverage R2 Time (in minutes)

NNGP 6.41 0.88 0.89 218.55

SGRLD 1.47 0.93 0.94 7.01

Table 1: Prediction MSE, squared correlation between predicted and observed (R2) and coverage
rate of the 95% predictive credible intervals on the test set and the correlation between the predicted
temperatures and true observed values. The last column gives the total training time in minutes. We
take 8000 and 40000 samples using the NNGP and SGRLD method respectively.

3 Results

We tested the efficacy of our proposed SGRLD method in (13) using a numerical study and assessed
its performance against four state-of-the-art Bayesian methods. The first three are SG methods with
adaptive drifts. The last method is the nearest neighbor Gaussian process (NNGP) [8] that uses
the full dataset to sample the posterior distribution using the Vecchia approximation. The methods
were compared for datasets with n =

{
104, 105, 106

}
locations. Study details are provided in the

Appendix B.1. SGRLD outperformed the competing methods with very low MSE across parame-
ters. Additionally, all SG methods outperformed NNGP. SGRLD had consistently high coverage for
95% credible intervals and overall the highest expected sample size per minute (ESS/min) among
all methods.

We also applied the proposed method to the ocean temperature data provided by the Argo Program
[4] made available through the GpGp package [13]in R. Each of the n = 32, 436 observations are
taken on buoys in the spring of 2016, and measures ocean temperature (C) at depths of roughly 100,
150, and 200 meters. The data are plotted in Figure 1 for a depth of 100 meters. As an illustrative
example, the mean function is taken to be quadratic in latitude and longitude. All prior distributions
and MCMC settings are the same as in the numerical study in Section B.1.

We set aside 20% of all observations as the testing set, and train the models using 8000 and 40000
MCMC iterations for the NNGP and SGRLD methods respectively. Table 1 gives the MSE and
coverage rate on the testing set, and total training time respectively. SGRLD results in less than
a quarter of the MSE of NNGP while also requiring less than a twentieth of the time. For the
coverage of the 95% prediction intervals, the NNGP method’s average coverage on the testing set is
significantly lower than the nominal value, while our proposed method achieves 93% coverage.

Table 2 gives the posterior mean, 95% interval and the effective sample size [(ESS), 14] per minute
for the covariance parameters for SGRLD and NNGP. The posterior means and credible intervals for
ρ, and to a lesser extent σ2, vary substantially across methods. The range estimates from SGRLD
are almost three orders of magnitude higher than the NNGP estimate. Given the prediction results
in Table 1, this indicates that the NNGP is underestimating ρ. Furthermore, for NNGP, the credible
interval for ρ has a total width of 10−2, perhaps indicating poor convergence. We also see from Table
2 that our SGRLD method allows fast exploration of the posterior and leads to massively higher ESS
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Method Parameter Posterior mean 95% CI ESS/min

NNGP
σ2 6.72 (6.32, 7.08) 0.17
ρ 0.10 (0.10, 0.11) 3.42
ν 0.33 (0.32, 0.34) 0.04
τ2 0.08 (0.08, 0.09) 0.08

SGRLD
σ2 10.64 (7.41, 13.57) 52.21
ρ 48.93 (22.94, 68.46) 115.41
ν 0.25 (0.23, 0.27) 18.68
τ2 0.04 (0.03, 0.05) 39.13

Table 2: Posterior mean, 95% credible intervals and ESS per minute for all covariance parameters.

per minute, while giving reasonable convergence (Figure 2). Additional plots and results, including
a sensitivity study for the hyperparameters m and nB, are provided in the Appendix B.2.

4 Discussion

SG methods offer considerable speed-ups when the data size is very large. This enables fast ex-
ploration of the posterior in significantly less time. GPs however fall within the correlated setting
case where SGMCMC methods have received limited attention. Spatial correlation is a critical com-
ponent of GPs and naive subsampling during parameter estimation would lead to random divisions
of the spatial domain at each iteration. By leveraging the form of the Vecchia approximation, we
derive unbiased gradient estimates based on minibatches of the data. We developed a new stochas-
tic gradient based MCMC algorithm for scalable Bayesian inference in large spatial data settings.
Without the Vecchia approximation, subsampling strategies would always lead to biased gradient
estimates. The proposed method also uses the exact Fisher information to speed up convergence and
explore the parameter space efficiently. Our work contributes to the literature on scalable methods
for Gaussian process, and can be extended to non Gaussian models, e.g., to classification problems.
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A Derivation of Gradients and Fisher Information for SGRLD

Given an index set for a mini-batch subset of the data B, the log-likelihood in (7) decomposes as
the sum of log-conditional densities of the Yi given the conditioning points Y(i). Computing the
gradient of these conditional densities is analytically complicated and not computationally tractable.
We follow [12] to first rewrite the log-conditional densities in terms of marginal densities, and then
compute the gradients and Fisher information. Let ui = Y(i), the set of neighbours, and vi =

(Y(i), Yi), the vector of concatenating the ith observation and its neighbours. Let Qi and Ri be the
covariate matrices for ui and vi respectively, and let Ai and Bi denote the covariance matrices of ui

and vi. The minibatch log-likelihood in (7) can thus be written as

ℓ̄B(ϕ) =
∑
i∈B

log f(vi | ϕ)− log f(ui | ϕ)

=− 1

2

∑
i∈B

log detBi − log detAi (15)

− 1

2

∑
i∈B

[(vi − Riβ)
T

B−1
i (vi − Riβ)− (ui −Qiβ)

T

A−1
i (ui −Qiβ)]−

nB

2
log(2π).

In order to compute the log-likelihood, we need the following quantities

p1B(θ) =
∑
i∈B

log detBi − log detAi (16)

p2B(θ) =
∑
i∈B

(vTi B−1
i vi − uT

i A−1
i ui) (17)

p3B(θ) =
∑
i∈B

(RT
i B−1

i vi −QT
i A−1

i ui) (18)

p4B(θ) =
∑
i∈B

(RT
i B−1

i Ri −QT
i A−1

i Qi). (19)

The quantities in (16) – (19) only depend on the covariance parameters θ via Ai and Bi and not the
mean parameters β. We can now write the minibatch log-likelihood as

ℓ̄B(ϕ) = −
nB

2
log(2π)− 1

2

[
p1B(θ) + p2B(θ)− 2βTp3B(θ) + βTp4B(θ)β

]
. (20)

A.1 Mean parameters

The gradient of the minibatch log-likelihood with respect to the mean parameters β is
∂ℓ̄B(β,θ)

∂β
= p3B(θ)− p4B(θ)β. (21)

For the Fisher information, recall that if a random vector follows a multivariate normal model with
mean and variance parameterized by two different parameter vectors, i.e., W ∼ N(µ(β),Σ(θ)),
then the Fisher information is block diagonal I(ϕ) = diag(I(β), I(θ)). Furthermore, let Jβ be
the Jacobian of µ(β) with respect to β. Then the Fisher information matrix is analytically available
[23] and takes the form

I(β) = JβΣ
−1JT

β (22)

I(θ)jk =
1

2
Tr

(
Σ−1 ∂Σ

∂θj
Σ−1 ∂Σ

∂θk

)
. (23)

Using (22) and the chain rule property of the Fisher information, IY (si)|ui
(ϕ) = Ivi(ϕ)− Iui

(ϕ),
and summing over the components of the log-likelihood, we get

IB(β) =
∑
i∈B

(RT
i B−1

i Ri −QT
i A−1

i Qi) = p4B(θ). (24)

Hence the Fisher information of β is constant with respect to the mean parameters. In addition,
since I(ϕ) is block diagonal, the drift term which represents how I(β) changes with respect to ϕ
is ΓB(β) = 0p. The SGRLD step for regression parameters is thus

βt+1 = βt + htp
4
B(θt)

−1
(
p3B(θt)− p4B(θt)βt

)
+
√

2htp
4
B(θ)

−1/2et. (25)
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A.2 Covariance parameters

For the covariance parameters, we first start by computing the partial derivatives of the quantities
defined in (16) – (19) with respect to the components of θ, pkj (θ) = ∂pkB(θ)/∂θj for j ∈ {1, . . . , 4},

p1j (θ) =
∑
i∈B

(
Tr(B−1

i

∂Bi

∂θj
)− Tr(A−1

i

∂Ai

∂θj
)

)
(26)

p2j (θ) =
∑
i∈B

(
vTi B−1

i

∂Bi

∂θj
B−1
i vi − uT

i A−1
i

∂Ai

∂θj
A−1

i ui

)
(27)

p3j (θ) =
∑
i∈B

(
RT

i B−1
i

∂Bi

∂θj
B−1
i vi −QT

i A−1
i

∂Ai

∂θj
A−1

i ui

)
(28)

p4j (θ) =
∑
i∈B

(
RT

i B−1
i

∂Bi

∂θj
B−1
i Ri −QT

i A−1
i

∂Ai

∂θj
A−1

i Qi

)
(29)

∂ℓ̄B(β,θ)

∂θj
= −1

2

[
p1j (θ) + p2j (θ)− 2p3j (θ)β + βTp4j (θ)β

]
. (30)

Using (23) and the chain rule decomposition of the Fisher information, we derive the analytic form
of the Fisher information and drift term for the covariance parameters

IB(θ)jk =
1

2

∑
i∈B

Tr

(
B−1
i

∂Bi

∂θj
B−1
i

∂Bi

∂θk

)
− Tr

(
A−1

i

∂Ai

∂θj
A−1

i

∂Ai

∂θk

)
(31)

∂IB(θ)jk
∂θk

=
∑
i∈B

Tr

(
B−1
i

∂2Bi

∂θj∂θk
B−1
i

∂Bi

∂θk

)
− Tr

(
B−1
i

∂Bi

∂θj
B−1
i

∂Bi

∂θk
B−1
i

∂Bi

∂θk

)
−
∑
i∈B

Tr

(
A−1

i

∂2Ai

∂θj∂θk
A−1

i

∂Ai

∂θk

)
− Tr

(
A−1

i

∂Ai

∂θj
A−1

i

∂Ai

∂θk
A−1

i

∂Ai

∂θk

)
(32)

ΓB(θ)j =−
∑
k

IB(θ)−1
j·

∂IB(θ)
∂θk

IB(θ)−1
·k . (33)

B Additional Numerical Results

B.1 Numerical study

In this section, we test our proposed SGRLD method in (13) on synthetic data and assess its perfor-
mance against state-of-the-art Bayesian methods. We use Mean Squared Error (MSE) and coverage
of credible intervals of posterior MCMC estimators to evaluate the estimation of the spatial covari-
ance parameters, and we use the effective sample sizes (ESS) per minute to gauge computational
efficiency of MCMC algorithms. We present results only for the spatial covariance parameters θ
since the results are similar across methods for β.

B.1.1 Data generation

We generate data on a regular rectangular grid formed with n1 locations on the x-axis and n2

on the y-axis, with a total number of points n = n1n2 and grid spacing one. We consider
n =

{
104, 105, 106

}
for n1 = {100, 300, 1000} and n2 = n/n1. We generate the Gaussian

process Z(s) from a Matérn kernel with possible smoothness values ν ∈ {0.5, 1.0, 1.5}. The range
parameter ρ is chosen such that the correlation function is approximately 10−4 for the maximum
distance between two points in the grid. We fix the spatial variance σ2 = 5, and consider different
scenarios for the observation noise based on the proportion of variance κ = τ2/σ2 ∈ {0.2, 1.0, 5.0}.
Let Xi = (1, xi), the covariate for the ith site; the mean of the Gaussian process will take the form
E[Yi] = β0 + β1 cos(xi), where β0 = −3, and β1 = 5, and xi

iid∼ Uniform(−3, 3). For n = 106,
generating a Gaussian process is computationally infeasible, thus we generate a Vecchia approxi-
mated Gaussian process with m = 120 neighbors for each site. For each n, we generate 100 datasets
and record the posterior mean and posterior credible intervals for parameters.
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B.1.2 Competing methods and metrics

We compare our SGRLD method with four different MCMC methods. The first three are SGM-
CMC methods that all use momentum and past gradient information to estimate the curvature and
accelerate the convergence. These methods extend the momentum methods used in SG optimization
methods for faster exploration of the posterior. The first method is preconditioned SGLD [(PSGLD),
19] that uses the Root Mean Square Propagation [(RMSPROP), 15] algorithm to estimate a diagonal
preconditioner for the minibatch gradient and injected noise. The second method is ADAMSGLD
[17] that extends the widely used Adam (adaptive moment) optimizer [18] to the SGLD setting.
ADAMSGLD approximates the first-order and second-order moments of the minibatch gradients to
construct a preconditioner. Finally, we also include the performance of momentum SGLD (MSGLD)
where no preconditioner is used but past gradient information is used to accelerate the exploration of
the posterior. The details of the above algorithms are included in the Appendix C. Finally, the NNGP
method [8] is a standard MCMC method based on the Vecchia approximation and is implemented
in the R package spNNGP [10]. For this method, the initial values are set to the true values and the
Metropolis-Hastings proposal distribution is chosen adaptively using the default settings.

For the SGMCMC methods, the batch size is set to 250 when the number of locations is 104 and
500 for the other two cases. We noticed during our experiments that batch sizes in the order of 200
perform better than smaller size ones, with very similar performance to larger ones. The number
of epochs will depend on the size of data, and is chosen such that the total number of iterations is
20, 000, of which a quarter are discarded as burn-in. The learning rate is divided by a factor of 2
every 5 epochs, so the final learning rate is set at 1% of the initial value. A first tentative value of the
learning rate is set at 1/n, then reduced until the norm of the first step is less than one. We noticed
that the appropriate learning rate for our SGRLD method is within one to two orders of magnitude
large than the learning rate for the other SG sampling methods. For all the methods, the size of the
conditioning set is fixed at m = 15. The conditioning sets were selected using the max-min ordering
[16] for n < 106, and random ordering otherwise. [16] showed that the max-min ordering results
in significant improvements over other coordinate based orderings. However, when n is very large,
the cost of max-min ordering becomes prohibitive. For the NNGP method, we take 2000 samples
when n < 105 and 1000 otherwise. For all the methods we use a non-informative flat prior on the
regression parameters. For the covariance parameters, we set the following priors:

ρ ∼ Gamma(9.0, 2.0)
ν ∼ Log-Normal(1.0, 1.0)

τ2, σ2 ∼ Gamma(0.1, 0.1)

The prior 90% credible intervals for ρ and ν are (2.06, 7.88) and (0.52, 14.08) respectively, which
represent weakly informative priors.

B.1.3 Results

Table 3 gives the MSE results. Our SGRLD method outperforms all the others with very low MSE
across parameters. In particular, the SGMCMC methods all outperform the NNGP method. In our
experiments, we noticed that the NNGP method suffers from very slow mixing due to the MH step
necessary for sampling the covariance parameters. In fact, even if we start the NNGP sampling pro-
cess at true values of the covariance parameters, and reduce the variance of the proposal distribution,
the acceptance rate of the MH step stays below 15%. None of the SGMCMC methods requires any
such step as long as the learning rate is kept small.

Table 4 summarizes the results for the coverage of the 95% credible intervals. Our SGRLD method
again outperforms the other methods. One exception is that the PSGLD algorithm surpasses the
SGRLD in the coverage of the variance parameter. Across methods, the smoothness parameter
consistently has the lowest coverage, followed by the range parameter. Even for n = 106, MSGLD,
ADAMSGLD and NNGP fail to attain attain a 90% coverage rate. Whilst the SGRLD coverage rate
for both parameters is higher than 90% even for n = 104.

For the ESS results in Table 5, the SGRLD method offers superior ESS per minute for all the param-
eters. The PSGLD and MSGLD method seem to adapt to the curvature of the variance parameter,
with PSGLD offering higher effective samples than SGRLD. This suggests that the computed pre-
conditioner in PSGLD adapts mainly to the curvature of the variance term, but fails to measure the
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Table 3: Mean squared error (Monte Carlo standard errors) of covariance parameters computed
using 100 simulations, each having sample size n. The proposed SGRLD method compared with
other SGMCMC methods (PSGLD, ADAMSGLD, MSGLD) and the full likelihood NNGP method.

n Algorithm Variance (σ2) Range (ρ) Smoothness (ν) Nugget (τ2)

104

PSGLD 0.074(0.013) 0.039(0.008) 0.103(0.017) 0.002(4 · 10−4)
ADAMSGLD 0.075(0.017) 0.036(0.008) 0.129(0.023) 0.002(6 · 10−4)

MSGLD 0.066(0.014) 0.034(0.008) 0.108(0.0196) 0.002(6 · 10−4)
NNGP 0.414(0.131) 0.095(0.071) 0.162(0.106) 0.093(2.4 · 10−2)

SGRLD 0.056(0.016) 0.031(0.006) 0.077(0.013) 0.001(10−4)

105

PSGLD 0.008(0.001) 0.002(0.0003) 0.011(0.0019) 1 · 10−4(2 · 10−5)
ADAMSGLD 0.014(0.005) 0.008(0.002) 0.031(0.008) 1 · 10−4(2 · 10−4)

MSGLD 0.017(0.001) 0.003(5 · 10−4) 0.019(0.002) 2 · 10−4(4 · 10−5)
NNGP 0.116(0.030) 0.024(0.01) 0.118(0.08) 4 · 10−2(0.01)

SGRLD 0.005(8 · 10−4) 0.001(1.0 · 10−4) 0.008(1.8 · 10−3) 10−4(2 · 10−5)

106

PSGLD 0.003(0.001) 0.003(0.0008) 0.002(0.0014) 3.1 · 10−4(6 · 10−5)
ADAMSGLD 0.009(0.002) 0.006(0.002) 0.026(0.007) 2 · 10−4(9 · 10−5)

MSGLD 0.011(1.8 · 10−3) 0.003(5 · 10−4) 0.019(0.002) 1 · 10−5(3 · 10−5)
NNGP 0.078(0.055) 0.016(0.009) 0.126(0.086) 0.08(0.049)

SGRLD 0.002(3 · 10−4) 0.001(1 · 10−4) 0.004(6.1 · 10−3) 0.4 · 10−4(1 · 10−5)

Table 4: Coverage of the 95% credible intervals (Monte Carlo standard errors) for the covariance
parameters computed using 100 simulations, each having sample size n. The proposed SGRLD
method is compared with other SGMCMC methods (PSGLD, ADAMSGLD, MSGLD) and the full
likelihood NNGP method.

n Algorithm Variance, σ2 Range, ρ Smoothness, ν Nugget, τ2

104

PSGLD 0.977(0.02) 0.845(0.06) 0.815(0.06) 0.931(0.05)
ADAMSGLD 0.886(0.05) 0.791(0.08) 0.647(0.08) 0.636(0.05)

MSGLD 0.793(0.03) 0.847(0.07) 0.709(0.07) 0.683(0.05)
NNGP 0.783(0.06) 0.776(0.05) 0.614(0.07) 0.812(0.01)

SGRLD 0.955(0.03) 0.924(0.05) 0.909(0.04) 0.935(0.01)

105

PSGLD 0.991(0.03) 0.913(0.04) 0.862(0.05) 0.965(0.02)
ADAMSGLD 0.861(0.03) 0.754(0.07) 0.814(0.03) 0.738(0.05)

MSGLD 0.896(0.04) 0.881(0.07) 0.774(0.08) 0.872(0.07)
NNGP 0.826(0.05) 0.758(0.04) 0.714(0.03) 0.872(0.02)

SGRLD 0.957(0.01) 0.964(0.01) 0.948(0.01) 0.932(5 · 10−3)

106

PSGLD 0.987(6 · 10−3) 0.934(0.02) 0.901(0.03) 0.961(0.01)
ADAMSGLD 0.902(0.01) 0.824(10−3) 0.838(0.02) 0.781(0.03)

MSGLD 0.884(10−3) 0.918(0.02) 0.846(0.01) 0.926(0.01)
NNGP 0.866(0.03) 0.818(0.06) 0.834(0.04) 0.862(0.01)

SGRLD 0.968(6 · 10−3) 0.941(8 · 10−3) 0.929(5 · 10−3) 0.941(2 · 10−3)

curvature of the smoothness and range. A similar behavior is also observed in the other two meth-
ods, MSGLD and ADAMSGLD. On the other hand, the ESS for SGRLD is of the same order for all
the parameters. We believe this indicates that using the Fisher information matrix as a Riemannian
metric provides an accurate measure of the curvature and results in higher effective samples for all
the parameters. The NNGP method provides low effective sample sizes compared to the other three
methods due to the low acceptance rate from the MH correction step.

B.2 Additional Argo results

Figure 2 shows trace plots for the posterior sampling of the covariance parameters using SGRLD.
We conduct a sensitivity analysis to assess the effect of the mini batch size and conditioning set
size on the results. We compare the SGRLD results with mini-batch size nB ∈ {100, 250, 500} and
conditioning set size m ∈ {10, 15, 30}. Table 6 show the posterior mean and 95% credible inter-
vals of the covariance parameters for all combinations of the two hyperparameters. The posterior
mean of the spatial variance, smoothness and nugget vary little across these combinations of tuning
parameters. For the range parameter, we notice a sensitivity to small batch sizes, e.g., nB = 100
resulting in wide credible intervals and larger estimates compared to the other cases. For batch sizes
{250, 500} the estimates are similar across values of m.
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Table 5: Effective sample size per minute (Monte Carlo standard errors) of covariance parameters
computed using 100 simulations, each having sample size n. The proposed SGRLD method is
compared with other SGMCMC methods (PSGLD, ADAMSGLD, MSGLD) and the full likelihood
NNGP method.

n Algorithm Variance, σ2 Range, ρ Smoothness, ν Nugget, τ2

104

PSGLD 42.97(1.57) 8.43(0.54) 4.33(0.26) 9.82(0.79)
ADAMSGLD 9.12(0.45) 4.22(0.33) 2.85(0.28) 3.80(0.48)

MSGLD 15.68(0.95) 6.48(0.70) 3.65(0.44) 5.11(0.78)
NNGP 1.02(0.33) 0.99(0.24) 1.11(0.75) 0.51(0.14)

SGRLD 23.8(1.15) 23.9(1.19) 25.2(1.25) 30.5(1.55)

105

PSGLD 66.87(2.09) 10.06(0.65) 3.59(0.21) 11.3(0.79)
ADAMSGLD 7.87(0.38) 2.37(0.27) 1.15(0.13) 1.64(0.24)

MSGLD 12.92(0.67) 3.15(0.36) 1.206(0.11) 1.71(0.13)
NNGP 0.89(0.08) 0.75(0.31) 1.02(0.14) 0.47(0.07)

SGRLD 22.7(0.33) 22.44(0.27) 22.69(0.13) 23.23(0.34)

106

PSGLD 96.49(3.37) 13.68(0.81) 3.04(0.11) 9.74(0.42)
ADAMSGLD 6.17(0.13) 4.56(0.52) 1.98(0.62) 2.36(0.83)

MSGLD 15.07(1.01) 3.78(0.81) 2.06(0.30) 5.01(0.97)
NNGP 0.81(0.16) 1.01(0.34) 0.28(0.05) 0.52(0.03)

SGRLD 25.8(0.14) 26.05(0.18) 29.62(0.28) 24.07(0.27)

Figure 2: Evolution of SGRLD sampling from the posterior distribution of the covariance parame-
ters.

nB m σ2 ρ ν τ2

100

10 10.18(8.79,11.89) 53.67(41.11,66.87) 0.24(0.22,0.25) 0.04(0.03,0.04)
15 11.29(9.08,13.53) 54.95(39.18,72.83) 0.25(0.22,0.27) 0.04(0.03,0.04)
30 9.60(5.09,13.24) 46.41(13.34,74.52) 0.24(0.20,0.26) 0.04(0.03,0.07)

250

10 10.52(9.08,12.25) 49.55(37.79,62.85) 0.25(0.22,0.26) 0.04(0.03,0.05)
15 10.64(7.41,13.57) 48.93(22.94,68.46) 0.25(0.23,0.27) 0.04(0.03,0.05)
30 10.59(7.41,13.57) 46.08(22.95,69.46) 0.25(0.23,0.27) 0.04(0.03,0.05)

500

10 11.02(9.74,12.69) 49.23(39.56,60.36) 0.25(0.23,0.27) 0.04(0.03,0.04)
15 11.41(9.75,13.20) 48.42(37.98,60.26) 0.25(0.24,0.27) 0.04(0.03,0.04)
30 11.52(9.72,13.61) 48.39(36.61,62.35) 0.26(0.24,0.28) 0.04(0.03,0.04)

Table 6: Sensitivity analysis to the choice of the conditioning set size m and the mini-batch size nB.
Posterior mean and 95% credible intervals are displayed for each combination of nB and m.
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C Competing Algorithms

Here we give the detailed algorithms of the SG methods with adaptive drifts. The RMSprop (Root
Mean Square Propagation) algorithm is an optimization algorithm originally developed for training
neural network models. It adapts the learning rates of each parameter based on the historical gradient
information. This can be seen as adaptive preconditioning method.

Algorithm 1: RMSprop Algorithm
Input: Initial parameter values θ0, learning rate h0, decay rate ρ, small constant ϵ
Output: Optimized parameter values θ
Initialize square gradient accumulator r0 = 0;
while not converged do

Sample minibatch without repetition; Compute gradient ḡ on mini-batch;
Accumulate squared gradient: rt ← ρrt−1 + (1− ρ)ḡ ⊙ ḡ;
Update parameters: θt+1 ← θt − htḡ ⊘

√
rt + ϵ;

Momentum SGD is an optimization algorithm that uses a Neseterov momentum term to accelerate
the convergence in the presence of high curvature or noisy gradients. Momentum SGD proceeds as
follows

Algorithm 2: Momentum SGD Algorithm
Input: Initial parameter values θ0, learning rate h0, momentum term α
Output: Optimized parameter values θ
Initialize velocity v0 = 0;
while not converged do

Sample minibatch without repetition; Compute gradient ḡt on mini-batch;
Update velocity: vt ← αvt−1 − htḡ;
Update parameters: θt+1 ← θt + vt;

The Adam algorithm combines ideas from RMSprop and momentum to adaptively adjust learning
rates.

Algorithm 3: Adam Algorithm
Input: Initial parameter values θ0, learning rate h0, exponential decay rates for moments α1,

α2, small constant ϵ
Output: Optimized parameter values θ
Initialize moment estimates m0 = 0, v0 = 0, time step t = 0;
while not converged do

Sample minibatch without repetition; Compute gradient ḡ on mini-batch;
Update biased first moment estimate: mt+1 ← α1mt + (1− α1)ḡ;
Update biased second raw moment estimate: vt+1 ← β2v + (1− α2)ḡ ⊙ ḡ;
Correct bias in moment estimates: m̂t ← mt/(1− αt

1), v̂t ← vt/(1− αt
2);

Update parameters: θt+1 ← θt − αm̂t ⊘ (
√
v̂t + ϵ);
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