
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SANIA∗: POLYAK-TYPE OPTIMIZATION FRAMEWORK
LEADS TO SCALE INVARIANT STOCHASTIC ALGO-
RITHMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Adaptive optimization methods are widely recognized as among the most popu-
lar approaches for training Deep Neural Networks (DNNs). Techniques such as
Adam, AdaGrad, and AdaHessian utilize a preconditioner that modifies the search
direction by incorporating information about the curvature of the objective func-
tion. However, despite their adaptive characteristics, these methods still require
manual fine-tuning of the step-size. This, in turn, impacts the time required to
solve a particular problem. This paper presents an optimization framework named
SANIA to tackle these challenges. Beyond eliminating the need for manual step-
size hyperparameter settings, SANIA incorporates techniques to address poorly
scaled or ill-conditioned problems. We also explore several preconditioning meth-
ods, including Hutchinson’s method, which approximates the Hessian diagonal of
the loss function. We conclude with an extensive empirical examination of the
proposed techniques across classification tasks, covering both convex and non-
convex contexts.

1 INTRODUCTION

Machine Learning (ML), especially Deep Neural Networks (DNNs), has emerged as a transforma-
tive tool, setting the stage for unprecedented advances across many disciplines, including computer
vision Krizhevsky et al. (2012); Simonyan & Zisserman (2014); He et al. (2016) and natural lan-
guage processing Wolf et al. (2020); Mikolov et al. (2013); Devlin et al. (2018); Radford et al.
(2018), as well as science Xie & Grossman (2018); Gómez-Bombarelli et al. (2018); Kaliyev et al.
and engineering Bello et al. (2016); LeCun et al. (1990) to name a few.
The enormous potential of these models is enabled through the efficacy of the optimization methods
that train them. In the domain of ML the training task can be expressed as solving the following
problem

minw∈Rdf(w) := 1
n

∑n
i=1 fi(w), (1)

where w ∈ Rd represents the weight parameter, and each fi : Rd → R is a sufficiently smooth
function. To provide a practical context, consider a dataset denoted as {(xi, yi)}ni=1, where
xi ∈ Rd is the data sample and yi ∈ R represents the label corresponding to that sample. If
fi(w) =

1
2 (xi

Tw− yi)2, this optimization problem gives rise to the well-known least squares prob-
lem. Similarly, if fi(w) = log(1 + e−yixi

Tw), we get logistic regression problem.
Stochastic Gradient Descent. To address problem equation 1, one of the fundamental techniques
employed is Stochastic Gradient Descent (SGD) Robbins & Monro (1951); Polyak (1990); Polyak
& Juditsky (1992); Nemirovski et al. (2009); Bottou et al. (2018). This method iteratively updates
the weight parameter w according to the following scheme:

wt+1 = wt − γt∇fi(wt), (2)
where γt is the step-size schedule and i ⊂ [n] := {1, 2, . . . , n} is chosen uniformly as random. Un-
fortunately, the optimal step-size1 schedule often relies on problem-specific parameters, such as the

∗SANIA is an abbreviation formed from letters of working title of this paper: ScAliNg Invariant Algorithm.
1In this work, we focus on the minimization of empirical loss equation 1. We refer to recent studies that

discuss how the step size can influence the generalization error Kaur et al. (2023); Wu & Su (2023); Ma &
Fattahi (2022); Chen & Bruna (2023).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Lipschitz-smoothness constant and the level of stochastic gradient noise, which are frequently not
accessible. Consequently, achieving an optimal step-size typically demands a substantial amount
of tuning, which can be quite costly in practical applications. Numerous methodologies have been
developed to tackle this issue. One of the first approaches that reduces the number of parame-
ters to tune is the AdaGrad method by Duchi et al. (2011); Li & Orabona (2019); Ward et al.
(2020). An additional challenge arises from the fact that using the same learning rate for each
feature j ∈ [d] might not yield the best performance. To address this, diagonal preconditioning
techniques have been employed in the SGD setting by methods such as AdaGrad by Duchi et al.
(2011), RMSProp by Tieleman et al. (2012), Adam by Kingma & Ba (2015), AMSGrad by Reddi
et al. (2018), AdamW by Loshchilov & Hutter (2019), AdaHessian by Yao et al. (2021), AdaDelta
by Zeiler (2012), and OASIS by Jahani et al. (2022). However, all of these methods still require
a considerable degree of parameter tuning to achieve optimal performance. Another approach is
associated with parameter-free regret minimization for online learning problems, as discussed in
various papers Mcmahan & Streeter (2012); McMahan & Orabona (2014); Orabona & Pál (2016);
Orabona & Tommasi (2017); Orabona (2019); Carmon & Hinder (2022); Ivgi et al. (2023); Defazio
& Mishchenko (2023); Cutkosky et al. (2023); Mishchenko & Defazio (2023). Finally, in our paper,
we explore the Stochastic Polyak step-size approach as an adaptive parameter-free method.
Stochastic Polyak step-size (SPS) Methods. Polyak step-size method was first proposed by Polyak
(1969; 1987) for non-smooth problems. Recently, stochastic Polyak step-size was proposed by Ober-
man & Prazeres (2019); Berrada et al. (2020); Loizou et al. (2021); Gower et al. (2021); Orvieto et al.
(2022). Subsequently, lots of variants of SPS have emerged, such as mSPS by D’Orazio et al. (2021)
and AdaSLS by Jiang & Stich (2023). To further relax the requirements for interpolation condition
in SPS, many attempts have been made by Gower et al. (2022); Orvieto et al. (2022); Garrigos et al.
(2023); Schaipp et al. (2023). A variant of second-order expansion for SPS was presented by Li
et al. (2023). Next we describe the main idea of Polyak step-size in more detail.
To derive the deterministic Polyak step-size, let us consider a convex function f(w) and the step
equation 2. We obtain the step-size from the following upper-bound on the distance from the current
point wt+1 to the minimum w∗:

∥wt+1 − w∗∥2 = ∥wt − w∗∥2 + ∥γt∇f(wt)∥2 − 2γt ⟨∇f(wt), wt − w∗⟩
≤ ∥wt − w∗∥2 + γ2t ∥∇f(wt)∥2 − 2γt(f(wt)− f(w∗)).

Minimizing the right hand side by γt, we get: γt =
f(wt)−f(w∗)
∥∇f(wt)∥2 . Similarly, in the stochastic case,

the Stochastic Polyak step-size (SPS) is defined as

wt+1 = wt − fi(wt)−f∗
i

∥∇fi(wt)∥2∇fi(wt), (3)

where f∗i is a minimal value of function fi(w). Another way to derive this formulation is by solving
the following optimization problem:

wt+1 = argminw∈Rd∥w − wt∥22, (4)
s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ = f∗i ,

where equation 3 is an explicit formulation of equation 4. In case where the value of f∗i is known
and set to 0 for all i (a common scenario in over-parameterized deep neural networks) we obtain this
simplified expression for equation 3: wt+1 = wt − fi(wt)

∥∇fi(wt)∥2∇fi(wt). This condition, referred to
as the ”interpolation condition”, is expressed as f∗i = 0.
Preconditioning / Feature scaling. Preconditioning is a technique used to improve the convergence
rate of algorithms applied to data that may exhibit poor scaling or ill-conditioning. Algorithms
leveraging preconditioning typically follow a generic update rule, which can be expressed as

wt+1 = wt − γtB−1
t mt, (5)

where Bt ∈ Rd×d is an invertible positive definite matrix, and mt is a gradient or its approxima-
tion. The origin of such a step is Newton method by Newton (1687); Raphson (1697); Kantorovich
(1948a;b; 1949) which uses the exact Hessian to precondition the gradient of the objective function,
i.e. Bt = ∇2f(wt) and mt = ∇fi(wt). Newton method can be very effective for minimizing
convex objectives. However, the prohibitive cost of computing and inverting the Hessian matrix, to-
gether with issues around negative eigenvalues, makes this approach impractical for machine learn-
ing tasks. To address this issue, one can use methods that never define the Hessian of the objective

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

function explicitly but rather use its approximation or solve the Newton system using iterative algo-
rithms (Martens et al., 2010).
Quasi-Newton methods (QN). Methods that construct an approximation of the (inverse) Hessian
date back to the 70s such as BFGS (Broyden, 1967; Fletcher, 1970; Goldfarb, 1970; Shanno,
1970), L-BFGS (Nocedal, 1980; Liu & Nocedal, 1989), and SR-1 (Conn et al., 1991; Khalfan
et al., 1993). These optimization methods take advantage of a cheap way to build (inverse) Hes-
sian matrix estimation algorithms based on past gradient information. One of the most prominent
QN method is Symmetric Rank 1(SR-1) which recursively approximates the Hessian as follows:
Bt+1 = Bt +

(yt−Btst)(yt−Btst)
⊤

(yt−Btst)⊤st
, where st = wt+1 − wt and yt = ∇fi(wt+1) − ∇fi(wt).

Although, SR-1 update only makes a rank-1 change to the previous Hessian approximation and
evidently has a simple form, in practice it displays better convergence to the true Hessian than
other similar methods like BFGS (Nocedal & Wright, 2006, p.145). Another useful property of this
approximation is self-complementarity, which means that we can find the inverse Hessian approx-
imation B−1

t using the same vector pair st and yt: B−1
t+1 = B−1

t +
(st−B−1

t yt)(st−B−1
t yt)

⊤

(st−B−1
t yt)⊤yt

. Note,
that this approximation method does not necessarily generate a positive definite matrix.
Contributions. Before delving into the details, we outline the primary contributions of this work:
• We present the General Framework for Preconditioned and Second-order Polyak methods. This

framework covers classical optimization methods, provides valuable insights into Polyak step-size
methods, and enables the development of novel Polyak step-size methods.

• We propose the first Stochastic Cubic Newton method with Polyak step-size.
• We introduce the new scale invariant versions of AdaGrad and Adam, which make them invariant

to some basis transformations.
• We conduct comprehensive experiments encompassing a diverse range of scenarios, including

both convex and non-convex settings.
Organisation. In this paper, we have consolidated our findings and integrated them into a compre-
hensive framework presented in Section 2. Additionally, Section 3 offers a detailed presentation of
the results from our experiments.
Notation and Assumptions. We introduce the notation used throughout the paper and state the
underlying assumptions that guide our analysis. We equip the primal space w ∈ E and the
dual space g ∈ E∗ with the conjugate norms ∥w∥ and ∥g∥∗, respectively. As a special case,
for a positive definite matrix B ∈ Rd×d, we introduce the conjugate Euclidean norms as fol-
lows: ∥w∥B = ⟨Bw,w⟩1/2 and ∥g∥B−1 =

〈
g,B−1g

〉1/2
. As an example, ∇f(w) ∈ E∗ and

∇2f(w)h ∈ E∗ for h ∈ E. We define the operator ⊙ as a component-wise product between two
vectors, also known as the Hadamard product. For the vector w, w2 and

√
w means component-wise

square and square root, respectively. We represent diag(w) as a diagonal matrix of a given vector v
and a vector diagonal(H) ∈ Rd as the diagonal of a matrix H ∈ Rd×d. For simplicity, we denote
gt = ∇fi(wt) and Ht = ∇2fi(wt) if it is not defined differently. Also, we denote an action of the
linear operator as B[h]2 = ⟨Bh, h⟩.
Interpolation Condition. The Interpolation Condition is an assumption often applied in optimiza-
tion and machine learning, particularly in the analysis of overparameterized models such as deep
neural networks. It assumes the existence of a set of model parameters w∗ such that the loss func-
tion f(w) achieves its infimum across all data points. This condition is indicative of a scenario
where the model has sufficient flexibility to perfectly fit the training data, leading to zero loss for
every data point. Such regimes are commonly encountered in overparameterized deep neural net-
works Ma et al. (2018b); Zhang et al. (2021) or non-parametric regression models Liang & Rakhlin
(2020); Belkin et al. (2019), where the model’s capacity exceeds the complexity of the data, ensur-
ing exact interpolation of the training set. This is one of the standard assumptions in analysis of
methods with the Stochastic Polyak step-size e.g. Schaipp et al. (2023); Loizou et al. (2021); Gower
et al. (2022); Li et al. (2023); Orvieto et al. (2022). Unless otherwise stated, our default assumption
is that Assumption 1 holds true.

Assumption 1: Interpolation Condition

We assume that the interpolation condition holds for a set of non-negative functions
{fi(w)}ni=1 (fi(w) ≥ 0 ∀w ∈ E), when ∃w∗ ∈ E, s.t. f(w∗) = 0. Consequently,
fi(w

∗) = 0 for all i = 1, 2, ..., n.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2 SANIA – GENERAL FRAMEWORK

2.1 GENERAL FRAMEWORK

In this section, we propose a general framework equation 6 for preconditioning stochastic Polyak
step-size methods. This framework generalizes some well-known first-order, second-order, and
Quasi-Newton methods from Polyak step-size perspective. The main feature of the framework is
that it highlights some insights about SPS and provides an instrument to generalize existing methods
as Polyak step-size methods. It makes them adaptive and parameter-free in the SPS setting. The
generality of this framework makes it difficult to propose an explicit step. Therefore, we will focus
on the most promising cases and provide their explicit formulations to introduce new methods.
In the following section we will demonstrate the problem settings required to derive existing and
proposed methods using SANIA equation 6. We note that if any particular variable from the General
Framework is not mentioned explicitly it is assumed to be fixed at zero.

Definition 1: SANIA: General Framework

Let Bt ≻ 0 and Dt be symmetric matrices, and τt be sequence of numbers that is given or
can be computed for any given t ≥ 0. We consider the following minimization problem:

wt+1, αt+1 = argmin
w∈Rd,α∈R

1
2∥w − wt∥2Bt

+ τtα

s.t. fi(wt) + ⟨mt, w − wt⟩+ 1
2 ⟨Dt(w − wt), w − wt⟩ ≤ α.

(6)

Note that Bt is required be a positive definite matrix to ensure that ∥ · ∥Bt is a Euclidean
norm.

2.2 EXISTING METHODS

SGD. Let us first derive an update rule for the most frequently used variant of Stochastic Gradient
Descent (SGD) method using SANIA equation 6.

We set parameters as follows:

τt = γt, mt = ∇fi(wt), Dt = 0, Bt = I .

The explicit method equation 2 is the solution of the following implicit problem:

wt+1, αt+1 = argminw∈Rd,α∈R
1
2∥w − wt∥22 + γtα,

s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ ≤ α.
(7)

The proof is presented in Appendix B.1. Note, that normally α is an upper bound for f∗i . Hence, if
f∗i is known, we can fix α = f∗i . This leads us to the Stochastic Polyak step-size method.
Stochastic Polyak step-size (SPS). The update rule for Stochastic Gradient Descent with Polyak
step-size can be derived as follows:

We set parametersa as follows:

α = f∗i , mt = ∇fi(wt), Dt = 0, Bt = I ,

and solve the following problem:

wt+1 = argminw∈Rd
1
2∥w − wt∥22,

s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ ≤ f∗i .
(8)

aNote that in this formulation, we do not optimize over α , and therefore, the value for τ is not required.
In the subsequent text, we will omit specifying a value for this parameter wherever it is unnecessary.

We demonstrate in Appendix B.2 that equation 3 serves as an explicit formulation of equation 8.
When f∗i is known (as in the case of interpolation under Assumption 1), the method becomes both
adaptive and parameter-free. Otherwise, an estimate of f∗i must be tuned, analogous to tuning the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

step-size parameter γt in SGD. Furthermore, we show that a similar transition can be applied to
other methods.
Preconditioned SGD. Preconditioning is used to introduce curvature information into SGD equa-
tion 5. We precondition the stochastic gradient approximation, denoted as mt, with a positive def-
inite matrix Bt ≻ 0. There are many methods that fit this description, ranging from the classical
Damped Newton method and Quasi-Newton methods (like BFGS) to modern diagonal precondi-
tioning techniques such as Adam, AdaGrad, and Hutchinson method. We can derive Preconditioned
SGD from equation 6.

With 0 < γt ≤ 1 as a step-size, we choose the parameters as follows:

τt = γt, mt = gt, Dt = 0, Bt = Bt,

and solve the following problem:

wt+1, αt+1 = argminw∈Rd,α∈R
1
2∥w − wt∥2Bt

+ γtα

s.t. fi(wt) + ⟨gt, w − wt⟩ ≤ α.
(9)

We get the next explicit step: wt+1 = wt − γtB−1
t gt. Note that gt can represent either∇fi(wt) or

an alternative approximation of the gradient. This notation will also be used in the subsequent text.

Next, we describe some preconditioning methods.
AdaGrad is an adaptive optimization method that approximates the Hessian of the objective func-
tion using the cumulative squared gradient information to scale the learning rates. Accumulation of
all previous gradients in the preconditioner Bt leads to decay in the learning rate γt which increases
performance for sparse settings (non-frequent features) at the cost of degrading in case of dense
settings.

The AdaGrad preconditioning is derived by: mt = gt = ∇fi(wt), and Bt = diag
(√∑t

j=1 g
2
j

)
.

Adam is incorporating both adaptive learning rates and momentum. The update rule involves the
computation of the moving average of both the first and second moments of the gradients. The first
moment (β1) is the mean of the gradients, and the second moment (β2) is the uncentered variance
of the gradients.

The Adam preconditioning is derived by:

mt =
(1−β1)

∑t
j=1 βt−i

1 gj

1−βt
1

, Bt = diag

(√
(1−β2)

∑t
j=1 βt−j

2 g2
j

1−βt
2

)
,

where 0 < β1, β2 < 1 are two hyperparameters referred to as first and second moment coefficients.
The biased estimates are corrected by dividing them by the bias correction terms, which are powers
of the decay rates β1 and β2, respectively.

Hutchinson’s method is employed to estimate the diagonal of the Hessian matrix (Hutchinson,
1989). To achieve this, the method utilizes only a handful of Hessian-vector products, which can
be efficiently computed using backpropagation (Christianson, 1992). Specifically, the product of a
Hessian matrix∇2f(w) and a vector h can be computed through a directional derivative of the gra-
dient, given by d

dt ∇f(w + th)|t=0 = ∇2f(w)h. Hutchinson’s method leverages Hessian-vector
products to estimate the diagonal through diag(∇2f(w)) = E[h ⊙ (∇2f(w)h)], where h is a ran-
dom vector with Rademacher distribution2 or a normal distribution as discussed in (Bekas et al.,
2007) and Lemma B.4 in Appendix. Utilizing this identity, we can estimate the Hessian diagonal
by a weighted average of each iteration’s result: Bt = βBt−1 + (1 − β) diag(h ⊙ ∇2fit(wt)h),
where β ∈ (0, 1) is a momentum parameter, it is a number of a random function on the step t,
and B0 = 1

k

∑k
j=1 diag(hj ⊙ ∇2fj(w0)hj), where k is a number of functions for initialization

of the approximation. To ensure Bt remains positive definite, especially in the face of potential
non-convexities in the loss functions, we apply truncation by positive number µ and retain only the
absolute values of elements given by (Bt)j,j = max{µ, |Bt|j,j}. Some of the recent works utilizing

2hj ∈ {−1,+1} with equal probability.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

this method are PSPS (Abdukhakimov et al., 2023), Sophia (Liu et al., 2024), OASIS (Jahani et al.,
2022), and others (Sadiev et al., 2022; Pirau et al., 2023). .
Preconditioned SPS. Similarly to SGD and SPS, Polyak step-size could be introduced for Precon-
ditioned SGD methods. Preconditioned SPS (PSPS) was presented by Abdukhakimov et al. (2023).
It can be also derived from SANIA for Bt ≻ 0.

We choose the parameters as follows:

α = f∗i , mt = gt, Dt = 0, Bt = Bt,

and solve the following problem:

wt+1 = argminw∈Rd
1
2∥w − wt∥2Bt

,

s.t. fi(wt) + ⟨mt, w − wt⟩ ≤ f∗i .
(10)

We get the next explicit step:

wt+1 = wt − fi(wt)−f∗
i

∥mt∥2

B
−1
t

B−1
t mt. (11)

Theorem 1

Let fi(w) be a convex, Lmax-Lipschitz smooth function that satisfy the Interpolation Con-
dition (Assumption 1) for all i ∈ {1, . . . , n}. Assume Bt ≻ 0 is a sequence of positive
definite matrices for all t ∈ {0, . . . , T}, with mt = ∇fi(wt), and that Bt satisfies the order-
ing Bt ⪰ Bt+1 ⪰ ν for some ν > 0. Then, for the sequence wt generated by equation 11,
the average iterate ŵT = 1

T

∑T−1
t=0 wt satisfies the following convergence guarantee:

E[f(ŵT)− f∗] ≤
2Lmax∥w0 − w∗∥2B0

νT
. (12)

In PSPS, the norm in the projection is changed to a weighted norm based on the preconditioning
matrix Bt ≻ 0, it helps to improve the convergence rate in case of badly scaled/ill-conditioned
datasets.
Gradient regularized Newton method. One of the main issues of Newton method is a lack of
global convergence. To solve it with provably fast convergence, Cubic Regularized Newton method
was proposed by Nesterov & Polyak (2006). Later, to simplify subproblem solution, the gradi-
ent regularization was proposed by Mishchenko (2023); Doikov & Nesterov (2023). Next, we
present a formulation of a Stochastic Cubic Newton Method with gradient regularization from equa-
tion 6.

With L2 as a Lipschitz-continuous constant for Hessian, we choose the parameters as follows:

τt =
√

3
L2∥gt∥ , mt = gt = ∇fi(wt),

Dt = Ht = ∇2fi(wt), Bt = I ,

and solve the following problem:

wt+1, αt+1 = argmin
w∈Rd,α∈R

1
2∥w − wt∥22 + α

√
3

L2∥gt∥

s.t. fi(wt) + ⟨gt, w − wt⟩+ 1
2Ht[w − wt]

2 ≤ α.
(13)

We get the next step:

wt+1 = wt −
[
Ht + I

√
L2

3 ∥gt∥
]−1

gt.

SP2. In (Li et al., 2023), the constraint of SPS equation 3 was extended for the second-order infor-
mation, aimed at incorporating additional curvature information to accelerate the convergence rate.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Next, we present the implicit formulation of SP2 under Assumption 1:

wt+1 = argmin
w∈Rd

1
2∥w − wt∥2,

s.t. fi(wt) + ⟨gt, w − wt⟩+ 1
2Ht[w − wt]

2 = 0.
(14)

The explicit formulation was presented only for generalized linear models.

In next sections, we will propose a variant of explicit solution for SP2 with connection to Cubic
Newton.

2.3 PROPOSED METHODS

Gradient regularized Newton method with Polyak step-size. Similarly to SGD and SPS, we
propose a new version of Cubic Newton method with Polyak step-size and its stochastic version. If
f∗i is known for example in case of interpolation with Assumption 1, then the method is parameter-
free. This result is new both in deterministic and stochastic cases. Similarly to SGD, we fix α = f∗i
in equation 13 and get the next method.

We choose the parameters as follows:

α = f∗i , τt =
√

3
L2∥gt∥ , mt = gt = ∇fi(wt), Dt = Ht = ∇2fi(wt), Bt = I ,

and solve the following problem:

wt+1 = argminw∈Rd
1
2∥w − wt∥22,

s.t. fi(wt) + ⟨gt, w − wt⟩+ 1
2Ht[w − wt]

2 ≤ f∗i .
(15)

The explicit step is formulated as follows:

wt+1 = wt − (1− κt) [κtI + (1− κt)Ht]
−1
gt, (16)

where κt = 0 if fi(wt) − f∗i > 1
2∥gt∥

2
H−1

t

, otherwise κt is computed by Cubic Newton-type
line-search.

SANIA Quasi-Newton for Bt ≻ 0. Similarly to PSPS equation 10, this approach covers AdaGrad,
Adam, Hutchinson’s method, Quasi-Newton methods with Bt ≻ 0, and Newton method for convex
functions with Ht ≻ 0. The method is inspired by Affine-Invariant Cubic Newton from Hanzely
et al. (2022). Note, the Hessian approximation Bt is used both in the scaling of the objective norm
and in the constraint model. We derive it from equation 6.

The parameters are chosen as follows:

α = f∗i , τt = γt, mt = gt, Dt = Bt, Bt = Bt,

and solve the following problem:

wt+1 = argminw∈Rd
1
2∥w − wt∥2Bt

, (17)

s.t. fi(wt) + ⟨mt, w − wt⟩+ 1
2Bt[w − wt]

2 ≤ f∗i .

The explicit step is:
wt+1 = wt − λtB−1

t mt, (18)

where for υt =
2(fi(wt)−f∗

i)

∥mt∥2

B
−1
t

, we define

λt =
{

1−
√
1−υt, if υt≤1,

1, otherwise. (19)

Note, that for υt > 1, there is no solution of equation 17 and we define λt = 1 as a minimum of the
constraint. The main difference between PSPS equation 11 and SANIA-Quasi-Newton equation 18
is the parameter λt. For equation 18, step-size λt ≤ 1 in equation 19, while in contrast for equa-
tion 11 λt could be much bigger than 1. For Newton method, the step-size λt is naturally bounded

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

by 1, which makes SANIA-Quasi-Newton step-size safer than the step-size of PSPS. More details,
comparisons, and theoretical results are presented in Appendix.

Lemma 1

Let fi(x) be a convex function for all i ∈ [1, . . . , n] and have the same minimum w∗ (As-
sumption 1), Bt ≻ 0 are positive definite matrices for t ∈ [0, . . . , T], and mt = ∇fi(wt).
Then for equation 18 method with the step size λt ∈ (0, υt), we have ∥wt+1 − w∗∥2Bt

<

∥wt − w∗∥2Bt
. Additionally, for λt = υt/2, we get ∥wt+1 − w∗∥2Bt

≤ ∥wt − w∗∥2Bt
−

(fi(wt)− f∗i)υt/2.

SANIA AdaGrad-SQR. We propose a new preconditioning method, called AdaGrad-SQR, by re-
moving the square root from AdaGrad update. In Section 2.4, we will prove that the improved
algorithm have ”scale invariance” property. Figure 1 shows that the proposed algorithm behaves the
same both on original and scaled versions of datasets.

We define mt, Bt, Dt for equation 18 as follows:

mt = gt, Bt = Dt = diag
(∑t

j=1 g
2
j

)
. (20)

SANIA Adam-SQR. Along with SANIA AdaGrad-SQR, we propose another ”scale-invariant”
method. Following the same idea, it removes the square root from the preconditioning matrix of
Adam.

We define mt, Bt, Dt for equation 18 as follows:

mt =
(1−β1)

∑t
j=1 βt−j

1 gj

1−βt
1

, Bt = Dt = diag

(
(1−β2)

∑t
j=1 βt−j

2 g2
j

1−βt
2

)
. (21)

SANIA PCG for Newton method for non-convex functions. In cases where the functions fi(w)
are non-convex, the Hessian matrixHt may not be positive definite but invertible. This characteristic
renders the approach not applicable, as ∥gt∥H−1

t
is no longer a norm. To address this issue, we

propose a solution based on the rank-1 SR-1 approximation.

First, let us define Bt and Dt as follows:

Bt = Dt =
yy⊤

s⊤y
, mt = gt, α = f∗i , τt = γt,

where s = H−1
t gt and y = Hts = gt.

Then, by solving the problem equation 17, we get an explicit method:

wt+1 = wt − λtB+
t ∇fi(wt),

where for υt =
2(fi(wt)−f∗

i)

∥gt∥2

B
+
t

we define λt =
{

1−
√
1−υt, if υt≤1,

1, otherwise.

Note that Bt is a rank-1 matrix, hence non-invertible, but it does have a pseudoinverse which is
given by B+

t = ss⊤

s⊤y
, hence, B+

t gt = H−1
t gt.

We present more details in Appendix 25. In practice, we solve H−1
t gt by using Conjugate Gradient

method, which allows to compute only Hessian-vector products without computing and storing the
full Hessian Ht.

2.4 AFFINE AND SCALE INVARIANCE

The family of Stochastic Gradient Methods with Polyak step-size offers an update rule that alleviates
the need of fine-tuning the learning rate of an optimizer. However, existing first-order algorithms,
whether stochastic or deterministic, perform poorly on ill-conditioned datasets. One possible rea-
son for this is their strong dependence on the chosen basis. This is why, in machine learning, it is
common practice to normalize data, as it makes the optimization space and basis more amenable. In

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the case of generalized linear models (GLM), the choice of basis is directly linked to the handling
of ill-conditioned datasets. Changing the basis leads to improvement of conditioning.
Affine invariance is one of the key features of the Newton method, which makes it basis-
independent (Nesterov & Nemirovskii, 1994; Nesterov, 2018). Let A ∈ Rd×d be a non-degenerate
matrix. We consider function ϕ(y) = f(Ay). By affine transformation, we denote f(w) →
ϕ(y) = f(Ay), w → A−1y. Now, we discuss what is affine invariant friendly and what is not.
First of all, the local Hessian norm ∥h∥∇2f(w) is affine-invariant: ∥z∥2∇2ϕ(y) =

〈
∇2ϕ(y)z, z

〉
=〈

A⊤∇2f(Ay)Az, z
〉
=
〈
∇2f(w)h, h

〉
= ∥h∥2∇2f(w). However, the norm ∥z∥2I is not affine invari-

ant. Second of all, Damped Newton method is affine invariant (Lemma 5.1.1 (Nesterov, 2018)).
It means that for the function f(w) Damped Newton method with affine invariant step-size γt
generates wt+1 = wt − γt[∇2f(wt)]

−1∇f(wt). For a function ϕ(y), Damped Newton method
generates yt+1 = yt − γt[∇2ϕ(yt)]

−1∇ϕ(yk). If y0 = A−1w0, then ∀t : yt = A−1wt. Essen-
tially, we get a bijection between yt and wt. Also, the function values during the optimization
are the same ϕ(yt) = f(wt). It means that for GLM, we will automatically get the best ba-
sis. Finally, we can show that SANIA Newton and SANIA CG are affine invariant, because the
step-size λt in equation 19 is affine-invariant friendly. All proofs are presented in Appendix D.2.

0 20 40 60 80 100
Epochs

10 1

100

Te
st

 L
os

s SANIA Id (original data)
SANIA Id (scaled data)
SANIA (V 1)2 (scaled data)
SANIA diag(H) 1 (original data)
SANIA diag(H) 1 (scaled data)

Synthetic, n=10,000, d=200

0 20 40 60 80 100
Epochs

10 1Te
st

 L
os

s

SANIA Adagrad (original data)
SANIA Adagrad (scaled data)
SANIA AdagradSQR (original data)
SANIA AdagradSQR (scaled data)

Synthetic, n=10,000, d=200

0 20 40 60 80 100
Epochs

10 1Te
st

 L
os

s

SANIA Adam (original data)
SANIA Adam (scaled data)
SANIA AdamSQR (original data)
SANIA AdamSQR (scaled data)

Synthetic, n=10,000, d=200

Figure 1: Observation of scale invari-
ance of SANIA while minimizing logis-
tic regression objective function on syn-
thetic binary classification dataset with
scaling factor k = 4.

Scale invariance is a special case of affine invariance,
where the matrix A is a diagonal matrix. This implies
the removal of rotations from the transformations, allow-
ing only diagonal transformations. To distinguish scale
invariance from affine invariance, we denote the trans-
formation V ∈ Rd×d as a non-degenerate diagonal ma-
trix. It’s evident that the diagonal preconditioning from
AdaGrad, Adam, and Hutchinson is not affine invariant
because it does not adapt to rotations. However, they
could be scale invariant. It turns out that classical Ada-
Grad and Adam are not scale invariant, but if we remove
the square root, they become scale invariant. We propose
the new scale invariant SANIA AdaGrad-SQR in equa-
tion 20 and new scale invariant SANIA Adam-SQR in
equation 21. All proofs are presented in Appendix D.2.
Scale invariance property of SANIA Adam-SQR and SA-
NIA AdaGrad-SQR is shown in Figure 1, where SA-
NIA Adam-SQR and SANIA AdaGrad-SQR are converg-
ing identically for both original and badly scaled versions
of the datasets, while using classical Adam and AdaGrad
preconditioners result in different convergence steps. Re-
cently, scale invariant version of AdaGrad, named KATE,
was proposed by Choudhury et al. (2024).

Figure 1 illustrates that SANIA is able to become scale
invariant with various preconditioners. Note that SANIA
Bt = Id, SANIA Bt = diag((V −1)2), and SANIA
Bt = diag(H−1) are preconditioned by Identity matrix
(i.e. no preconditioning), squared inverse of the scaling
vector used to obtain the scaled version of the dataset,
and inverse of the Hessian diagonal of the objective func-
tion, respectively. One of the most noteworthy observa-
tions from this figure is that using the vector employed to
transform the dataset for scaling, as a preconditioner, re-
sults in a scale invariant method. This essentially leads to
convergence in a similar manner as non-preconditioned
SANIA applied to the original dataset. In practice, ob-
taining such information is typically unattainable and of-
ten not even approximable. However, by utilizing the
curvature of the objective function, we can achieve the
same scale invariance property. This is also demonstrated
in Figure 1 by comparing SANIA preconditioned with
the diagonal of the Hessian (SANIA diag(H−1

t)) on both the original and scaled data. This

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

method results in improved convergence while maintaining scale invariance, albeit with minor nu-
merical instabilities. Nevertheless, SANIA diag(H−1

t) is still impractical for large problems in-
volving demanding calculations of Hessian. For reference, in the same figure we display perfor-
mance of Adam with a constant step size, which deteriorates when scaled data is introduced.

3 EXPERIMENTS

0 20 40 60 80 100
Epochs

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 A
cc

ur
ac

y

Adam t = 0.001
SANIA AdamSQR
Adagrad t = 0.01
SANIA AdagradSQR
KATE t = 0.001

MNIST (LeNet5)

0 20 40 60 80 100
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y
Adam t = 0.001
SANIA AdamSQR
Adagrad t = 0.01
SANIA AdagradSQR
KATE t = 0.001

FashionMNIST (SimpleConvNet)

0 25 50 75 100 125 150 175 200
Epochs

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y

Adam t = 0.01
SANIA AdamSQR
Adagrad t = 0.1
SANIA AdagradSQR
KATE t = 0.1

SVHN (ShuffleNetV2x0_5)

Figure 2: Performance of SANIA vari-
ants of Adam, Adagrad compared to
standard Adam, Adagrad and KATE.

We test our methods on multiclass and binary classifi-
cation problems with both linear models and neural net-
works. Considering practicality of the methods in experi-
ments we only focus on SANIA Adam-SQR and SANIA
Adagrad-SQR. For experiments with NNs we choose 5
architectures, namely LeNet5 Lecun et al. (1998), Sim-
ple Convolutional Neural Network with 2 convolutional
layers (∼ 400K parameters), DenseNet121 Huang et al.
(2018), ResNet18 He et al. (2015) and ShuffleNetV2
with 0.5x output channels Ma et al. (2018a) trained on 5
datasets, MNIST LeCun et al. (2010), Fashion-MNIST
Xiao et al. (2017), CIFAR10 and CIFAR100, Krizhevsky
et al. (2009) and SVHN Netzer et al. (2011) respectively.
For evaluations with a linear model on binary classifica-
tion problems we consider logistic regression that is de-
fined as fLogReg(w) =

1
n

∑n
i=1 log(1 + exp(−yixTi w)),

where {(xi, yi)}ni=1 is our dataset, xi ∈ Rd and yi ∈
{−1,+1}. We select small and large scale datasets from
LibSVM data repository3 and conduct additional experi-
ments to illustrate performance and scale invariance prop-
erty of out methods. To simulate badly scaled data we
introduce scaled version of each dataset where its feature
columns are multiplied by a vector e = {exp(ai)}di=1
where ai is generated from a uniform distribution on the
interval [−k, k].
All experiments are conducted with 5 initial seeds (0-4)
and learning rates for Adam and Adagrad are chosen after
multiple rounds of manual fine-tuning. Additional exper-
iments (Figures 3, 5, 6, 7), findings and other details
(synthetic dataset generation, learning rates and etc.) can
be found in Appendix E. The source code is available 4.

In Figure 2 (see also Figures 3 and 6 in appendix) we can
see that all presented variations of SANIA closely match
or outperform other adaptive optimization methods across
both under- and over-parametarized settings. Once again,
note that while other methods require step-size fine-tuning and multiple runs of experiments, SANIA
only needs one run for one set of configurations (i.e. scaling factor, batch-size, and etc.).

4 CONCLUSION

In this paper, we introduced a versatile and inclusive framework that not only encompasses classical
optimization techniques but also sheds valuable light on Polyak step-size methods. Our research
introduce the first Cubic Newton method with Polyak step-size which combines the efficiency of
stochastic methods and the robustness of Newton methods. We have presented innovative variants
of AdaGrad and Adam optimization algorithms that are scale invariant. Our proposed methods are
affine or scale invariant, and this important development ensures the invariance of these methods to
basis transformation, expanding their applicability and reliability in various scenarios. Our work is
supported by comprehensive experiments including both convex and non-convex settings.

3https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
4https://anonymous.4open.science/r/SANIA-A12E

10

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://anonymous.4open.science/r/SANIA-A12E

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Farshed Abdukhakimov, Chulu Xiang, Dmitry Kamzolov, and Martin Takáč. Stochastic gradient
descent with preconditioned Polyak step-size. arXiv preprint arXiv:2310.02093, 2023.

C. Bekas, E. Kokiopoulou, and Y. Saad. An estimator for the diagonal of a matrix. Applied
Numerical Mathematics, 57(11):1214–1229, 2007. ISSN 0168-9274. doi: https://doi.org/
10.1016/j.apnum.2007.01.003. URL https://www.sciencedirect.com/science/
article/pii/S0168927407000244. Numerical Algorithms, Parallelism and Applications
(2).

Mikhail Belkin, Alexander Rakhlin, and Alexandre B Tsybakov. Does data interpolation contra-
dict statistical optimality? In The 22nd International Conference on Artificial Intelligence and
Statistics, pp. 1611–1619. PMLR, 2019.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Albert A Bennett. Newton’s method in general analysis. Proceedings of the National Academy of
Sciences, 2(10):592–598, 1916.

Leonard Berrada, Andrew Zisserman, and M Pawan Kumar. Training neural networks for and by
interpolation. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119, pp. 799–809. PMLR, 9 2020. URL https:
//proceedings.mlr.press/v119/berrada20a.html.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

Charles G Broyden. Quasi-Newton methods and their application to function minimisation.
Mathematics of Computation, 21:368–381, 1967. doi: 10.2307/2003239. URL http://www.
jstor.org/stable/2003239.

Yair Carmon and Oliver Hinder. Making SGD parameter-free. In Po-Ling Loh and Maxim
Raginsky (eds.), Proceedings of Thirty Fifth Conference on Learning Theory, volume 178 of
Proceedings of Machine Learning Research, pp. 2360–2389. PMLR, 02–05 Jul 2022. URL
https://proceedings.mlr.press/v178/carmon22a.html.

Lei Chen and Joan Bruna. Beyond the edge of stability via two-step gradient updates. In
International Conference on Machine Learning, pp. 4330–4391. PMLR, 2023.

Sayantan Choudhury, Nazarii Tupitsa, Nicolas Loizou, Samuel Horvath, Martin Takac, and Eduard
Gorbunov. Remove that square root: A new efficient scale-invariant version of adagrad. arXiv
preprint arXiv:2403.02648, 2024.

Bruce Christianson. Automatic Hessians by reverse accumulation. IMA Journal of Numerical
Analysis, 12(2):135–150, 1992.

Andrew R Conn, Nicholas IM Gould, and Philippe L Toint. Convergence of Quasi-Newton matrices
generated by the symmetric rank one update. Mathematical Programming, 50:177–195, 1991.
doi: 10.1007/BF01594934. URL https://doi.org/10.1007/BF01594934.

Ashok Cutkosky, Aaron Defazio, and Harsh Mehta. Mechanic: A learning rate tuner. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=uhKtQMn21D.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. In An-
dreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume
202, pp. 7449–7479. PMLR, 1 2023. URL https://proceedings.mlr.press/v202/
defazio23a.html.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

11

https://www.sciencedirect.com/science/article/pii/S0168927407000244
https://www.sciencedirect.com/science/article/pii/S0168927407000244
https://proceedings.mlr.press/v119/berrada20a.html
https://proceedings.mlr.press/v119/berrada20a.html
http://www.jstor.org/stable/2003239
http://www.jstor.org/stable/2003239
https://proceedings.mlr.press/v178/carmon22a.html
https://doi.org/10.1007/BF01594934
https://openreview.net/forum?id=uhKtQMn21D
https://openreview.net/forum?id=uhKtQMn21D
https://proceedings.mlr.press/v202/defazio23a.html
https://proceedings.mlr.press/v202/defazio23a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nikita Doikov and Yurii Nesterov. Gradient regularization of Newton method with Bregman dis-
tances. Mathematical Programming, 2023. ISSN 1436-4646. doi: 10.1007/s10107-023-01943-7.
URL https://doi.org/10.1007/s10107-023-01943-7.

Nikita Doikov, Konstantin Mishchenko, and Yurii Nesterov. Super-universal regularized newton
method. SIAM Journal on Optimization, 34:27–56, 2024. doi: 10.1137/22M1519444. URL
https://doi.org/10.1137/22M1519444.

Ryan D’Orazio, Nicolas Loizou, Issam Laradji, and Ioannis Mitliagkas. Stochastic mirror descent:
Convergence analysis and adaptive variants via the mirror stochastic polyak stepsize. arXiv
preprint arXiv:2110.15412, 2021.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011. URL
http://jmlr.org/papers/v12/duchi11a.html.

Roger Fletcher. A new approach to variable metric algorithms. The Computer Journal, 13:317–
322, 1 1970. ISSN 0010-4620. doi: 10.1093/comjnl/13.3.317. URL https://doi.org/10.
1093/comjnl/13.3.317.

Guillaume Garrigos, Robert M Gower, and Fabian Schaipp. Function value learning: Adap-
tive learning rates based on the Polyak stepsize and function splitting in erm. arXiv preprint
arXiv:2307.14528, 2023.

Donald Goldfarb. A family of variable-metric methods derived by variational means. Mathematics
of Computation, 24:23–26, 1970. doi: 10.2307/2004873. URL https://doi.org/10.
2307/2004873.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven contin-
uous representation of molecules. ACS central science, 4(2):268–276, 2018.

Robert M. Gower, Aaron Defazio, and Michael Rabbat. Stochastic polyak stepsize with a moving
target, 2021.

Robert M Gower, Mathieu Blondel, Nidham Gazagnadou, and Fabian Pedregosa. Cutting some
slack for SGD with adaptive Polyak stepsizes. arXiv preprint arXiv:2202.12328, 2022.

Andreas Griewank. The modification of Newton’s method for unconstrained optimization by bound-
ing cubic terms. Technical report, Technical report NA/12, 1981.

Slavomı́r Hanzely, Dmitry Kamzolov, Dmitry Pasechnyuk, Alexander Gasnikov, Pe-
ter Richtárik, and Martin Takáč. A damped Newton method achieves global O

(
1
k2

)
and local quadratic convergence rate. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing
Systems, volume 35, pp. 25320–25334. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
a1f0c0cd6caaa4863af5f12608edf63e-Paper-Conference.pdf.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015. URL https://arxiv.org/abs/1512.03385.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks, 2018. URL https://arxiv.org/abs/1608.06993.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076,
1989.

12

https://doi.org/10.1007/s10107-023-01943-7
https://doi.org/10.1137/22M1519444
http://jmlr.org/papers/v12/duchi11a.html
https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.2307/2004873
https://doi.org/10.2307/2004873
https://proceedings.neurips.cc/paper_files/paper/2022/file/a1f0c0cd6caaa4863af5f12608edf63e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a1f0c0cd6caaa4863af5f12608edf63e-Paper-Conference.pdf
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1608.06993

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Maor Ivgi, Oliver Hinder, and Yair Carmon. DoG is SGD’s best friend: A parameter-free dynamic
step size schedule. arXiv preprint arXiv:2302.12022, 2023.

Majid Jahani, Sergey Rusakov, Zheng Shi, Peter Richtárik, Michael W Mahoney, and Martin
Takáč. Doubly adaptive scaled algorithm for machine learning using second-order informa-
tion. In Tenth International Conference on Learning Representations (ICLR 2022), 2022. URL
https://openreview.net/forum?id=HCelXXcSEuH.

Xiaowen Jiang and Sebastian U Stich. Adaptive SGD with Polyak stepsize and line-search: Ro-
bust convergence and variance reduction. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=blC2kbzvNC.

Alibek T Kaliyev, Ryan F Forelli, Shuyu Qin, Yichen Guo, Seda Memik, Michael W Mahoney,
Amir Gholami, Nhan Tran, Philip Harris, Martin Takáč, et al. Rapid fitting of band-excitation
piezoresponse force microscopy using physics constrained unsupervised neural networks. In AI
for Accelerated Materials Design-NeurIPS 2023 Workshop.

Leonid Vitalyevich Kantorovich. Functional analysis and applied mathematics. Uspekhi
Matematicheskikh Nauk, 3(6):89–185, 1948a. (In Russian). Translated as N.B.S Report 1509,
Washington D.C. (1952).

Leonid Vitalyevich Kantorovich. On Newton’s method for functional equations. Doklady Akademii
Nauk SSSR, 59(7):1237–1240, 1948b. (In Russian).

Leonid Vitalyevich Kantorovich. On Newton’s method. Trudy Matematicheskogo Instituta imeni
VA Steklova, 28:104–144, 1949. (In Russian).

Leonid Vitalyevich Kantorovich. Some further applications of principle of majorants. Doklady
Akademii Nauk SSSR, 80(6):849–852, 1951a. (In Russian).

Leonid Vitalyevich Kantorovich. Principle of majorants and Newton’s method. Doklady Akademii
Nauk SSSR, 76(1):17–20, 1951b. (In Russian).

Leonid Vitalyevich Kantorovich. On approximate solution of functional equations. Uspekhi
Matematicheskikh Nauk, 11(6):99–116, 1956. (In Russian).

Leonid Vitalyevich Kantorovich. Some further applications of Newton’s method. Vestnik LGU,
Seriya Matemetika Mekhanika, 0(7):68–103, 1957. (In Russian).

Simran Kaur, Jeremy Cohen, and Zachary Chase Lipton. On the maximum hessian eigenvalue and
generalization. In Proceedings on, pp. 51–65. PMLR, 2023.

Michal Kempka, Wojciech Kotlowski, and Manfred K Warmuth. Adaptive scale-invariant online
algorithms for learning linear models. In International conference on machine learning, pp. 3321–
3330. PMLR, 2019.

H Fayez Khalfan, Richard H Byrd, and Robert B Schnabel. A theoretical and experimental study
of the symmetric rank-one update. SIAM Journal on Optimization, 3:1–24, 1993. doi: 10.1137/
0803001. URL https://doi.org/10.1137/0803001.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), San Diego, CA, USA, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Yann LeCun, B Boser, John S Denker, Donnie Henderson, RE Howard, Wayne E Hubbard,
LD Jackel, and DS Touretzky. Advances in neural information processing systems. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc, pp. 396–404, 1990.

13

https://openreview.net/forum?id=HCelXXcSEuH
https://openreview.net/forum?id=blC2kbzvNC
https://doi.org/10.1137/0803001

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yann LeCun, Corinna Cortes, Chris Burges, et al. Mnist handwritten digit database, 2010.

Shuang Li, William Joseph Swartworth, Martin Takáč, Deanna Needell, and Robert M. Gower. SP2 :
A second order stochastic Polyak method. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=5mqFra2ZSuf.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with
adaptive stepsizes. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), Proceedings of the
Twenty-Second International Conference on Artificial Intelligence and Statistics, volume 89,
pp. 983–992. PMLR, 4 2019. URL https://proceedings.mlr.press/v89/li19c.
html.

Tengyuan Liang and Alexander Rakhlin. Just interpolate: Kernel “ridgeless” regression can gener-
alize. 2020.

Dong C Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical Programming, 45:503–528, 1989. doi: 10.1007/BF01589116. URL https://
doi.org/10.1007/BF01589116.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training, 2024. URL https://arxiv.org/
abs/2305.14342.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic Polyak
step-size for SGD: An adaptive learning rate for fast convergence. In Arindam Banerjee and Kenji
Fukumizu (eds.), Proceedings of The 24th International Conference on Artificial Intelligence and
Statistics, volume 130, pp. 1306–1314. PMLR, 10 2021. URL https://proceedings.
mlr.press/v130/loizou21a.html.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=Bkg6RiCqY7.

Jianhao Ma and Salar Fattahi. Blessing of nonconvexity in deep linear models: Depth flattens the
optimization landscape around the true solution. arXiv preprint arXiv:2207.07612, 2022.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design, 2018a. URL https://arxiv.org/abs/1807.11164.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the effec-
tiveness of sgd in modern over-parametrized learning. In International Conference on Machine
Learning, pp. 3325–3334. PMLR, 2018b.

James Martens et al. Deep learning via hessian-free optimization. In ICML, volume 27, pp. 735–
742, 2010.

Brendan Mcmahan and Matthew Streeter. No-regret algorithms for unconstrained online con-
vex optimization. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger (eds.),
Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/
file/38ca89564b2259401518960f7a06f94b-Paper.pdf.

H. Brendan McMahan and Francesco Orabona. Unconstrained online linear learning in hilbert
spaces: Minimax algorithms and normal approximations. In Maria Florina Balcan, Vitaly Feld-
man, and Csaba Szepesvári (eds.), Proceedings of The 27th Conference on Learning Theory, vol-
ume 35 of Proceedings of Machine Learning Research, pp. 1020–1039, Barcelona, Spain, 13–15
Jun 2014. PMLR. URL https://proceedings.mlr.press/v35/mcmahan14.html.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representa-
tions of words and phrases and their compositionality. Advances in neural information processing
systems, 26, 2013.

14

https://openreview.net/forum?id=5mqFra2ZSuf
https://proceedings.mlr.press/v89/li19c.html
https://proceedings.mlr.press/v89/li19c.html
https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/BF01589116
https://arxiv.org/abs/2305.14342
https://arxiv.org/abs/2305.14342
https://proceedings.mlr.press/v130/loizou21a.html
https://proceedings.mlr.press/v130/loizou21a.html
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/1807.11164
https://proceedings.neurips.cc/paper_files/paper/2012/file/38ca89564b2259401518960f7a06f94b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/38ca89564b2259401518960f7a06f94b-Paper.pdf
https://proceedings.mlr.press/v35/mcmahan14.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Konstantin Mishchenko. Regularized Newton method with global ≀(1/k2) convergence. SIAM
Journal on Optimization, 33(3):1440–1462, 2023. doi: 10.1137/22M1488752. URL https:
//doi.org/10.1137/22M1488752.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner. arXiv preprint arXiv:2306.06101, 2023.

Jorge J. Moré. The levenberg–marquardt algorithm: implementation and theory. In Conference
on Numerical Analysis, University of Dundee, Scotland, 7 1977. URL https://www.osti.
gov/biblio/7256021.

A Nemirovski, A Juditsky, G Lan, and A Shapiro. Robust stochastic approximation approach to
stochastic programming. SIAM Journal on Optimization, 19:1574–1609, 2009. doi: 10.1137/
070704277. URL https://doi.org/10.1137/070704277.

Yurii Nesterov. Lectures on Convex Optimization. Springer Cham, 2 edition, 2018. ISBN 978-3-
319-91577-7. doi: 10.1007/978-3-319-91578-4.

Yurii Nesterov and Arkadii Nemirovskii. Interior-Point Polynomial Algorithms in Convex
Programming. Society for Industrial and Applied Mathematics, 1994. doi: 10.
1137/1.9781611970791. URL https://epubs.siam.org/doi/abs/10.1137/1.
9781611970791.

Yurii Nesterov and Boris T Polyak. Cubic regularization of Newton method and its global per-
formance. Mathematical Programming, 108:177–205, 2006. doi: 10.1007/s10107-006-0706-8.
URL https://doi.org/10.1007/s10107-006-0706-8.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 4. Granada, 2011.

Isaac Newton. Philosophiae naturalis principia mathematica. Edmond Halley, 1687.

Jorge Nocedal. Updating Quasi-Newton matrices with limited storage. Mathematics of
Computation, 35:773–782, 1980. doi: 10.2307/2006193. URL https://doi.org/10.
2307/2006193.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer New York, 2 edition, 2006.
ISBN 978-0-387-30303-1. doi: 10.1007/978-0-387-40065-5.

Adam M Oberman and Mariana Prazeres. Stochastic gradient descent with polyak’s learning rate.
arXiv preprint arXiv:1903.08688, 2019.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2019.

Francesco Orabona and Dávid Pál. Coin betting and parameter-free online learn-
ing. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/
file/320722549d1751cf3f247855f937b982-Paper.pdf.

Francesco Orabona and Tatiana Tommasi. Training deep networks without learning rates through
coin betting. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/
paper/2017/file/7c82fab8c8f89124e2ce92984e04fb40-Paper.pdf.

Antonio Orvieto, Simon Lacoste-Julien, and Nicolas Loizou. Dynamics of SGD with stochas-
tic Polyak stepsizes: Truly adaptive variants and convergence to exact solution. In S Koyejo,
S Mohamed, A Agarwal, D Belgrave, K Cho, and A Oh (eds.), Advances in Neural
Information Processing Systems, volume 35, pp. 26943–26954. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/ac662d74829e4407ce1d126477f4a03a-Paper-Conference.pdf.

15

https://doi.org/10.1137/22M1488752
https://doi.org/10.1137/22M1488752
https://www.osti.gov/biblio/7256021
https://www.osti.gov/biblio/7256021
https://doi.org/10.1137/070704277
https://epubs.siam.org/doi/abs/10.1137/1.9781611970791
https://epubs.siam.org/doi/abs/10.1137/1.9781611970791
https://doi.org/10.1007/s10107-006-0706-8
https://doi.org/10.2307/2006193
https://doi.org/10.2307/2006193
https://proceedings.neurips.cc/paper_files/paper/2016/file/320722549d1751cf3f247855f937b982-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/320722549d1751cf3f247855f937b982-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/7c82fab8c8f89124e2ce92984e04fb40-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/7c82fab8c8f89124e2ce92984e04fb40-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ac662d74829e4407ce1d126477f4a03a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ac662d74829e4407ce1d126477f4a03a-Paper-Conference.pdf

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Vitali Pirau, Aleksandr Beznosikov, Martin Takáč, Vladislav Matyukhin, and Alexander Gasnikov.
Preconditioning meets biased compression for efficient distributed optimization. Computational
Management Science, 21(1):14, Dec 2023. ISSN 1619-6988. doi: 10.1007/s10287-023-00496-6.
URL https://doi.org/10.1007/s10287-023-00496-6.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM Journal on Control and Optimization, 30:838–855, 1992. doi: 10.1137/0330046. URL
https://doi.org/10.1137/0330046.

Boris Teodorovich Polyak. Minimization of unsmooth functionals. USSR Computational
Mathematics and Mathematical Physics, 9:14–29, 1969. ISSN 0041-5553. doi: https://doi.org/
10.1016/0041-5553(69)90061-5. URL https://www.sciencedirect.com/science/
article/pii/0041555369900615.

Boris Teodorovich Polyak. Introduction to optimization. Optimization Software, Inc., Publications
Division, 1987.

Boris Teodorovich Polyak. A new method of stochastic approximation type. Avtomatika i
Telemekhanika, 51:98–107, 1990.

Boris Teodorovich Polyak. Newton’s method and its use in optimization. European Journal of
Operational Research, 181:1086–1096, 2007. ISSN 0377-2217. doi: https://doi.org/10.1016/
j.ejor.2005.06.076. URL https://www.sciencedirect.com/science/article/
pii/S0377221706001469.

Roman Polyak. Complexity of the regularized Newton method. arXiv preprint arXiv:1706.08483,
2017.

Roman A Polyak. Regularized Newton method for unconstrained convex optimization.
Mathematical Programming, 120:125–145, 2009. ISSN 1436-4646. doi: 10.1007/
s10107-007-0143-3. URL https://doi.org/10.1007/s10107-007-0143-3.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Joseph Raphson. Analysis Aequationum Universalis Seu Ad Aequationes Algebraicas Resolvendas
Methodus Generalis & Expedita, Ex Nova Infinitarum Serierum Methodo, Deducta Ac
Demonstrata. Th. Braddyll, 1697.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018. URL https://openreview.
net/forum?id=ryQu7f-RZ.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, 22:400–407, 1951. ISSN 0003-4851. URL http://www.jstor.
org/stable/2236626.

Abdurakhmon Sadiev, Aleksandr Beznosikov, Abdulla Jasem Almansoori, Dmitry Kamzolov,
Rachael Tappenden, and Martin Takáč. Stochastic gradient methods with preconditioned updates.
arXiv preprint arXiv:2206.00285, 2022.

Fabian Schaipp, Ruben Ohana, Michael Eickenberg, Aaron Defazio, and Robert M Gower. Momo:
Momentum models for adaptive learning rates. arXiv preprint arXiv:2305.07583, 2023.

David F Shanno. Conditioning of Quasi-Newton methods for function minimization. Mathematics
of Computation, 24:647–656, 1970. doi: 10.2307/2004840. URL https://doi.org/10.
2307/2004840.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Thomas Simpson. Essays on several curious and useful subjects, in speculative and mix’d
mathematicks. Illustrated by a variety of examples. H. Woodfall, 1740.

16

https://doi.org/10.1007/s10287-023-00496-6
https://doi.org/10.1137/0330046
https://www.sciencedirect.com/science/article/pii/0041555369900615
https://www.sciencedirect.com/science/article/pii/0041555369900615
https://www.sciencedirect.com/science/article/pii/S0377221706001469
https://www.sciencedirect.com/science/article/pii/S0377221706001469
https://doi.org/10.1007/s10107-007-0143-3
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
http://www.jstor.org/stable/2236626
http://www.jstor.org/stable/2236626
https://doi.org/10.2307/2004840
https://doi.org/10.2307/2004840

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31,
2012.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes. The Journal of Machine Learning Research, 21(1):9047–9076, 2020.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

Lei Wu and Weijie J Su. The implicit regularization of dynamical stability in stochastic gradient
descent. In International Conference on Machine Learning, pp. 37656–37684. PMLR, 2023.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017. URL https://arxiv.org/abs/1708.07747.

Tian Xie and Jeffrey C Grossman. Crystal graph convolutional neural networks for an accurate and
interpretable prediction of material properties. Physical review letters, 120(14):145301, 2018.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
AdaHessian: An adaptive second order optimizer for machine learning. Proceedings of the AAAI
Conference on Artificial Intelligence, 35:10665–10673, 5 2021. doi: 10.1609/aaai.v35i12.17275.
URL https://ojs.aaai.org/index.php/AAAI/article/view/17275.

Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701, 2012.
URL http://arxiv.org/abs/1212.5701.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

Zhenxun Zhuang, Mingrui Liu, Ashok Cutkosky, and Francesco Orabona. Understanding adamw
through proximal methods and scale-freeness. arXiv preprint arXiv:2202.00089, 2022.

17

https://arxiv.org/abs/1708.07747
https://ojs.aaai.org/index.php/AAAI/article/view/17275
http://arxiv.org/abs/1212.5701

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A RELATED WORK

Second-order methods have played a crucial role in contemporary optimization since their inception
in classical works focused on root-finding algorithms by Newton (1687), Raphson (1697), Simpson
(1740), and Bennett (1916). Subsequent significant advancements in the Newton method and its
local quadratic convergence rates were made by Kantorovich (1948b;a; 1949; 1951b;a; 1956; 1957).
These methods have been extensively researched, refined, and enhanced in various works, with no-
table contributions from Moré (1977),Griewank (1981), Nesterov & Polyak (2006). Today, they
are widely employed in both industrial and scientific computing. For a comprehensive historical
overview of the Newton method, Boris T. Polyak’s paper Polyak (2007) provides more in-depth in-
sights. Compared to first-order algorithms, second-order methods typically yield faster convergence.
However, it’s important to note that the per-iteration computational cost of second-order methods is
considerably higher. An example of the classical Newton method can be expressed as follows:

xt+1 = xt −
[
∇2f(xt)

]−1∇f(xt)

It exhibits quadratic local convergence, but it becomes impractical for large-scale optimization prob-
lems due to the necessity of computing the complete Hessian and matrix inversion at each iteration.
It also lack of global convergence properties and could diverge if far from the solution.

The Cubic Regularized Newton method by Yurii Nesterov and Boris T. Polyak (Nesterov & Polyak,
2006) is one of the main approaches to globalize the Newton method. This algorithm achieves global
convergence with the convergence rate O(ε−1/2) for convex functions. Nonetheless, a notable lim-
itation of the Cubic Regularized Newton method lies in the auxiliary problem, which typically re-
quires running a separate optimization algorithm to solve it. Several research papers have proposed
regularization techniques based on the gradient norm, aiming to derive an explicit regularized New-
ton step Polyak (2009; 2017). In Mishchenko (2023); Doikov & Nesterov (2023), the convergence
rate was improved up to O(ε−1/2) for convex functions, under higher assumptions on smoothness
it accelerates up to O(ε−1/3) Doikov et al. (2024). Affine-Invariant Cubic Regularized Newton
method with local Hessian norms has the convergence rate O(ε−1/2) and the same subproblem as a
classical Newton step Hanzely et al. (2022).

B PROOFS

B.1 STOCHASTIC GRADIENT DESCENT WITH SANIA

Lemma 2

The solution w̄ of the next problem

w̄ = argmin
w∈Rd,α∈R

f(w) + τα s.t g(w) ≤ α (22)

is the same as the solution ŵ of

ŵ = argmin
w∈Rd

f(w) + τg(w), (23)

where τ > 0.

Proof. Denote the Lagrangian as L(w,α, λ) = f(w) + τα + λ(g(w) − α), where λ ≥ 0 is the
Lagrange multiplier. We know that ∂L

∂α = τ −λ should be 0, which means λ = τ > 0. According to
the complementary slackness, the condition λ(g(w)− α) = 0 should hold. Thus, α = g(w), which
means solving problem 22 is the same as solving problem 23.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Lemma 3: Stochastic Gradient Descent

Let γt > 0, then the solution to

wt+1, αt+1 = argmin
w∈Rd,α∈R

1
2∥w − wt∥22 + γtα s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ ≤ α,

(24)

is given by
wt+1 = wt − γt∇fi(wt) (25)

Proof. From Lemma B.1, we know that solving problem 24 is the same as solving the following
problem:

wt+1 = argmin
w∈Rd

1
2∥w − wt∥22 + γt(fi(wt) + ⟨∇fi(wt), w − wt⟩). (26)

By taking the derivative of the objective function, we get the solution right away.

B.2 STOCHASTIC POLYAK STEP-SIZE WITH SANIA

Lemma 4: Stochastic Polyak step-size

f∗i is the minimal value of function fi(wt). The solution to

wt+1 = argmin
w∈Rd

1
2∥w − wt∥22 s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ ≤ f∗i , (27)

is given by

wt+1 = wt −
fi(wt)− f∗i
∥∇fi(wt)∥2

∇fi(wt). (28)

Proof. Denote the Lagrangian as L(w, λ) = 1
2∥w−wt∥22 + λ(fi(wt) + ⟨∇fi(wt), w−wt⟩ − f∗i),

and we can get Karush–Kuhn–Tucker(KKT) conditions as below:

∂L
∂w = w − wt + λ∇fi(wt) = 0

λ(fi(wt) + ⟨∇fi(wt), w − wt⟩ − f∗i) = 0

fi(wt) + ⟨∇fi(wt), w − wt⟩ − f∗i ≤ 0

λ ≥ 0.

(29)

λ ∈ R+ is called Lagrange multiplier, and if λ = 0, then the constrain is not active. We consider
these two cases as following.

(i) λ = 0:
{
wt+1 = wt

fi(wt)− f∗i ≤ 0, It’s only true when they are equal.
(ii) λ > 0:

{
wt+1 = wt − λ∇fi(wt)

λ =
fi(wt)−f∗

i

∥∇fi(wt)∥2 .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B.3 PRECONDITIONED SGD WITH SANIA

Lemma 5: Preconditioned SGD

Let Bt ∈ Rd×d be a symmetric positive definite matrix. Let γt > 0, then the solution to

wt+1, αt+1 = argmin
w∈Rd,α∈R

1
2∥w − wt∥2Bt

+ γtα s.t. fi(wt) + ⟨mt, w − wt⟩ ≤ α, (30)

is given by:
wt+1 = wt − γtB−1

t mt. (31)

For AdaGrad setting, we let

mt = ∇fi(wt), Bt =

√√√√ t∑
j=1

gj ⊙ gj ;

for Adam setting,

mt =

(1− β1)
t∑

j=1

βt−j
1 gj

1− βt
1

, Bt =

√√√√√ (1− β2)
t∑

j=1

βt−j
2 gj ⊙ gj

1− βt
2

;

for KATE setting,

bt =

t∑
j=1

gj ⊙ gj , mt =

 t∑
j=1

η(gj ⊙ gj) +
gj ⊙ gj
bj ⊙ bj

 gt, Bt = diag(bt);

and for Sophia setting,

mt = β1mt−1 + (1− β1)gt, Bt = Estimator(wt).

Sophia employes clipping, hence the update rule is slightly modified:

wt+1 = wt − γt · clip(B−1
t mt).

Proof. From Lemma B.1, we know problem 30 is equivalent to:

wt+1 = argmin
w∈Rd

1
2∥w − wt∥2Bt

+ γt(fi(wt) + ⟨mt, w − wt⟩). (32)

Take derivative of w and get solution:

wt+1 = wt − γtB−1
t mt. (33)

By plugging in mt and Bt, we get formulas for AdaGrad: wt+1 = wt − γt gt√∑t
j=1 gj⊙gj

,

and for Adam: wt+1 = wt − γt
(1−β1)

∑t
j=1 β

t−j
1 gj

1−βt
1√

(1−β2)
∑t

j=1
β
t−j
2 gj⊙gj

1−βt
2

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B.4 HUTCHINSON’S LEMMA

Lemma 6: Hutchinson

Let I ∈ Rd×d be the identity matrix. Let H ∈ Rd×d and let z ∈ Rd be a random vector with
a distribution such that

E[zzT] = I. (34)
It follows that

diagonal(H) = E[z ⊙Hz]. (35)
Furthermore if z has Rademacher or a normal distribution, then 34 holds.

Proof. Taking expectation the Hadamard product we have that

E[z ⊙Hz] = E[
∑
i

zi(
∑
j

Hijzj)ei] =
∑
i

∑
j

HijE[zjzi]ei. (36)

Since E[zjzi] = I we have that E[zjzi] = δij =

{
1 if i = j

0 if i ̸= j.

Using the above in 36 we have that

E[z ⊙Hz] =
∑
i

Hiiei (37)

which is the diagonal of the Hessian matrix.

Let z be a Rademacher random varaible. That is zi =
{
1 with probability 1

2

−1 with probability 1
2 .

Thus for i, j ∈

1, . . . , d and i ̸= j, we have that E[zi] = 0, E[z2i] = 1 and E[zizj] = 0. The same results follow for
z ∈ ℵ(0, 1).

C PROPOSED METHODS

C.1 GRADIENT REGULARIZED NEWTON METHOD WITH POLYAK STEP-SIZE

Lemma 7: Gradient regularized Newton method with Polyak step-size.

f∗i is the minimal value of function fi(wt). The solution to

wt+1 = argmin
w∈Rd

1
2∥w − wt∥22 (38)

s.t. fi(wt) + ⟨gt, w − wt⟩+ 1
2Ht[w − wt]

2 ≤ f∗i .

is given by
wt+1 = wt − (1− κt) [(1− κt)Ht + κtI]

−1
gt,

where κt = 0 if fi(wt)− f∗i > 1
2∥gt∥

2
H−1

t

, otherwise κt is a solution of the next equation

C(κ) = fi(wt)−f∗i − 1−κ
2 g⊤ [(1− κ)Ht + κI]

−1
gt−

κ(1− κ)
2

∥∥∥[(1− κ)Ht + κI]
−1
gt

∥∥∥2
2
= 0,

which can be computationally solved by segment-search for κ ∈ [0, 1]. Note, that C(1) > 0,
and C(0) < 0 if fi(wt) − f∗i ≤ 1

2∥gt∥
2
H−1

t

hence the solution exists and could be found by
bisection search.

Proof. For problem equation 38, the Lagrangian could be written as follows:

L(w, λ) = 1
2∥w − wt∥22 + λ

(
fi(wt) + ⟨gt, w − wt⟩+ 1

2Ht[w − wt]
2 − f∗i

)
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Then, we get the next KKT conditions:

∂L
∂w = I(w − wt) + λ (gt +Ht(w − wt)) = 0

λ(fi(wt) + ⟨gt, w − wt⟩+ 1
2Ht[w − wt]

2 − f∗i) = 0

fi(wt) + ⟨gt, w − wt⟩+ 1
2Ht[w − wt]

2 − f∗i ≤ 0

λ ≥ 0.

Similarly, to previous proofs, the case of inactive constraint with λ = 0 us trivial and we focus on
active constraint case.

I(w − wt) + λ (gt +Ht(w − wt)) = 0

fi(wt) + ⟨gt, w − wt⟩+ 1
2Ht[w − wt]

2 − f∗i = 0,

λ > 0.

First, we find wt+1 as

I(w − wt) + λ (gt +Ht[w − wt]) = 0

wt+1 = wt − λ [λHt + I]
−1
gt.

Now, we substitute its new form in the active constraint and get

fi(wt)− f∗i − λg⊤ [λHt + I]
−1
gt +

λ
2 g

⊤ [λHt + I]
−1
λHt [λHt + I]

−1
gt = 0

fi(wt)− f∗i − λg⊤ [λHt + I]
−1
gt +

λ
2 g

⊤ [λHt + I]
−1

(λHt + I) [λHt + I]
−1
gt − λ

2 ∥ [λHt + I]
−1
gt∥22 = 0

fi(wt)− f∗i − λ
2 g

⊤ [λHt + I]
−1
gt − λ

2 ∥ [λHt + I]
−1
gt∥22 = 0.

To simplify the line-search by λ ∈ [0,+∞], we transform it to κ = 1
1+λ , which is now κ ∈ [0, 1].

fi(wt)− f∗i − 1−κ
2 g⊤ [(1− κ)Ht + κI]

−1
gt − κ(1−κ)

2

∥∥∥[(1− κ)Ht + κI]
−1
gt

∥∥∥2
2
= 0.

To simplify the multiple computations of the inverse matrix, one can apply SVD for Ht and get the
next simplified formulation:

Ht = UtStU
⊤
t

[(1− κ)Ht + κI]
−1

=
[
(1− κ)UtStU

⊤
t + κUtIU

⊤
t

]−1
= Ut [(1− κ)St + κI]

−1
U⊤
t

fi(wt)− f∗i − 1−κ
2 g⊤Ut [(1− κ)St + κI]

−1
U⊤
t gt −

κ(1−κ)
2

∥∥∥[(1− κ)St + κI]
−1
U⊤
t gt

∥∥∥2
2
= 0

g̃t = U⊤
t gt

fi(wt)− f∗i − 1−κ
2 g̃t

⊤ [(1− κ)St + κI]
−1
g̃t − κ(1−κ)

2

∥∥∥[(1− κ)St + κI]
−1
g̃t

∥∥∥2
2
= 0,

where St is a diagonal matrix. Note, that this type of line-search is pretty common for Cubic
Newton Methods. It adds only additional logarithmic inversions O(log ε−1) compared to classical
Newton.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C.2 SANIA QUASI-NEWTON

Lemma 8: Projection Quadratic Inequality

Let B ∈ Rd×d be a symmetric positive definite matrix. Let fi(wt) ≥ 0. The solution to

wt+1 = argmin
w∈Rd

1

2
∥w − wt∥2Bt

(39)

s.t. fi(wt) + ⟨mt, w − wt⟩+
1

2
∥w − wt∥2Bt

≤ 0. (40)

is given by

wt+1 = wt −

(
1−

√
1− 2(fi(wt)− f∗i)

∥mt∥2B−1
t

)
B−1

t mt, (41)

if
2(fi(wt)− f∗i)
∥mt∥2B−1

t

≤ 1, (42)

otherwise there is no feasible solution.

Proof. First we apply a change of coordinates and abbreviate. Let x := B
1/2
t (w − wt), a :=

B
−1/2
t ∇fi(wt) and c := fi(wt). With this notation equation 39 is given by

arg argmin
x∈Rd

1

2
∥x∥2 s.t. c+ ⟨a, x⟩+ 1

2
∥x∥2︸ ︷︷ ︸

=:q(x)

≤ 0. (43)

The associated Lagrangian is given by

L(x, µ) =
1

2
∥x∥2 + µq(x),

where µ ≥ 0 is the Lagrange multiplier. Taking the derivative in x and setting to zero gives

x = − µ

1 + µ
a. (44)

Consider the case that the constraint is not active, that is µ = 0. Thus x = 0 and consequently
q(x) = c ≥ 0, which is only possible if the constraint is active thus a contradiction. Thus the
constraint must be active and µ ̸= 0.

Let τ := µ
1+µ . To determine τ , and consequently µ, we substituting back x give in equation 44 into

the constraint

q(x) = c− τ∥a∥2 + τ2

2
∥a∥2 =

(
1−

√
1− 2c

∥a∥2
− τ

)(
1 +

√
1− 2c

∥a∥2
− τ

)
∥a∥2

2
= 0,

where we have factored q(x) according to its roots in τ. The above only has a solution if 1− 2c
∥a∥2 ≥=

0 ⇔ ∥a∥2 ≥ 2c. In which case either root of τ is positive, but only the root τ = 1 −
√

1− 2c
∥a∥2

gives a positive µ. Substituting this τ into equation 44 gives

x = −

(
1−

√
1− 2c

∥a∥2

)
a. (45)

Substituting back x := B
1/2
t (w − wt), a := B

−1/2
t ∇fi(wt) and c := fi(wt) gives

B
1/2
t (wt+1 − wt) = −

(
1−

√
1− 2fi(wt)

∥∇fi(wt)∥2B−1
t

)
B

−1/2
t ∇fi(wt). (46)

Right multiplying by B−1/2
t and re-arranging gives the solution.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C.3 SANIA ADAGRAD-SQR FOR QUASI-NEWTON.

The following is the explicit implementation of the Quasi-Newton algorithm when choosing
AdaGrad-SQR as preconditioning matrix. We add some insurance ϵ to avoid numerical collapse.

Algorithm 1: SANIA AdaGrad-SQR
1 Given batch size m, ϵ, initial point w ← 0;
2 for epoch = 0, 1, 2, . . . do
3 Set G0 = 0
4 for t = 1, 2, . . . do
5 Compute gradient vector gt ← 1

m∇w

∑m
i=1 fi(w)

fi(w): stochastic objective function
6 Accumulate Gt ← Gt−1 + g2t
7 Bt = diag(Gt) + ϵ
8 λt ← step-size in equation 18
9 w ← w − λtB−1

t gt
10 end
11 end

C.4 SANIA ADAM-SQR FOR QUASI-NEWTON.

The following is the explicit implementation of the Quasi-Newton algorithm when choosing Adam-
SQR as preconditioning matrix. We add some insurance ϵ to avoid numerical collapse.

Algorithm 2: SANIA Adam-SQR
1 Given batch size m, ϵ, β1, β2, initial point w ← 0;
2 for epoch = 0, 1, 2, . . . do
3 Set m0 = 0, v0 = 0
4 for t = 1, 2, . . . do
5 gt ← 1

m∇w

∑m
i=1 fi(w) Compute gradient vector

6 mt ← β1mt−1 + (1− β1)gt Accumulate 1st momentum vector
7 vt ← β2vt−1 + (1− β2)g2t Accumulate 2nd momentum vector
8 m̂t ← mt/(1− βt

1))
9 v̂t ← vt/(1− βt

2))
10 Bt = diag(v̂t) + ϵ
11 λt ← step-size in equation 18
12 w ← w − λtB−1

t m̂t

13 end
14 end

C.5 SANIA PCG FOR NEWTON METHOD ON CONVEX FUNCTIONS.

For convex setting where Hessian is positive definite, we can choose Bt in equation 18 as Hes-
sian or the approximation matrix of diagonal Hessian. We present detailed algorithm when
Bt = ∇2fi(wt)(we denote as Hk) as below.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Algorithm 3: SANIA PCG for convex setting
1 Given ϵ, γ, η, initial point w ← 0;
2 for epoch = 0, 1, 2, . . . do
3 for k = 0, 1, 2, . . . do
4 Set s = 0, r0 = ∇fk, z0 =M−1

0 r0, p0 = z0
∇fk here is the stochastic mini-batch gradient as

5 for j = 0, 1, 2, . . . do
6 αj =

rTj zj

pT
j Hkpj

7 s← s+ αjpj
8 rj+1 = rj − αjHkpj
9 if ∥rj+1∥Mk

−1 < ϵ then
10 break
11 end
12 zj+1 =M−1

k rj+1

13 βj =
rTj+1zj+1

rTj zj

14 pj+1 = zj+1 + βjpj
15 end
16 λk ← step-size in equation 18
17 w ← w − λks
18 end
19 end

In practice, we solve this matrix-vector product (∇2fi(wt))
−1∇fi(wt) using Conjugate Gradient

method. Furthermore, we can incorporate curvature information from Hessian approximation using
Hutchinson’s method, Adam or AdaGrad, which allows us to benefit from preconditioned system. In
Conjugate Gradient method preconditioning is required to ensure faster convergence and the system
can be preconditioned by a matrix M−1 that is symmetric and positive-definite. Preconditioned
Conjugate Gradient is equivalent to solving the following system:

E−1∇2fi(wt)(E
−1)TETx = E−1∇fi(wt),

where

EET =M.

If matrix Mk = Hk, then SANIA PCG is affine invariant; if Mk = diag(Hk), then this method is
scale invariant. In experiments you can choose Mk as AdaGrad-SQR20 or Adam-SQR21.

C.6 SANIA PCG FOR NEWTON METHOD ON NON-CONVEX FUNCTIONS.

For non-convex settings, we cannot use conjugate gradient method to solve this Hx = g (Hessian is
not positive definite) linear system of equations anymore. We try to combine Polyak step-size and
line searxch Newton-CG method together to get good performance. The following is our specific
implementation of the algorithm.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Algorithm 4: SANIA PCG for Non-convex setting
1 Given ϵ, γ, η, initial point w ← 0;
2 for epoch = 0, 1, 2, . . . do
3 for k = 0, 1, 2, . . . do
4 Set s0 = 0, x0, r0 = ∇fk, z0 =M−1

0 r0, p0 = z0
5 for j = 0, 1, 2, . . . do
6 if pTj Hkpj ≤ 0 then
7 sk = γxj + (1− γ)sign(∇fTk pj)pj
8 λk = min(fk

∇fT
k sk

, η)

9 break
10 end

11 αj =
rTj zj

pT
j Hkpj

12 xj+1 = xj + αjpj
13 rj+1 = rj − αjHkpj
14 zj+1 =M−1

k rj+1

15 if rTj+1zj+1 < ϵ then
16 sk = xj+1

17 λk ← step-size in equation 18
18 break
19 end

20 βj =
rTj+1zj+1

rTj zj

21 pj+1 = zj+1 + βjpj
22 end
23 w ← w − λksk
24 end
25 end

Since product B+
t ∇fi(wt) results in the same direction as (∇2fi(wt))

−1∇fi(wt) , and now the
algorithm stops once it detects negative curvature, otherwise it still takes CG steps until it hits
stopping criteria. You can choose matrix Mk to be AdaGrad-SQR20 or Adam-SQR21 to attain
the scale-invariance property and we name them as SANIA PCG AdaGrad-SQR and SANIA PCG
Adam-SQR. Notice that the names for the convex and non-convex setting are the same, but the
implementation of these methods are slightly different due to the effectiveness of conjugate gradient
methods.

D AFFINE AND SCALE INVARIANCE

D.1 AFFINE INVARIANCE

Lemma 9: Affine Invariance (Lemma 5.1.1 from (Nesterov, 2018))

Let the sequence {xk} be generated by the Newton’s method as applied to the function f:

xk+1 = xk − [∇2f(xk)]
−1∇f(xk), k ≥ 0. (47)

Consider the sequence {yk}, generated by the Newton’s method for the function ϕ:

yk+1 = yk − [∇2ϕ(yk)]
−1∇ϕ(yk), k ≥ 0, (48)

with y0 = B−1x0. Then yk = B−1xk for all k ≥ 0.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Proof. Let yk = B−1xk for some k ≥ 0. Then

yk+1 =yk − [∇2ϕ(yk)]
−1∇ϕ(yk) = yk − [BT∇2f(Byk)B]−1BT∇f(Byk)

=B−1xk −B−1[∇2f(xk)]
−1∇f(xk) = B−1xk+1.

Thus, the Newton’s method is affine invariant with respect to affine transformations of variables.

Lemma 10: Affine Invariance for SANIA Newton

Let the sequence {xk} be generated by the SANIA Newton method as applied to the function
f:

xk+1 = xk − λk[∇2f(xk)]
−1∇f(xk), k ≥ 0. (49)

Consider the sequence {yk}, generated by the SANIA Newton method for the function ϕ:

yk+1 = yk − λ̂k[∇2ϕ(yk)]
−1∇ϕ(yk), k ≥ 0, (50)

with y0 = B−1x0. Then yk = B−1xk for all k ≥ 0.

Proof. We define

λk =

{
1−
√
1− υk, if υk ≤ 1,

1, otherwise,
(51)

where

υk =
2(fi(xk)− f∗i)

∥∇fi(xk)∥2∇2f(xk)
−1

(52)

and

λ̂k =

{
1−
√
1− υ̂k, if υ̂k ≤ 1,

1, otherwise,
(53)

where
υ̂k =

2(ϕi(yk)−ϕ∗
i)

∥∇ϕi(yk)∥2

∇2ϕ(yk)−1
. (54)

Let yk = B−1xk for some k ≥ 0. We have this condition υ̂k =
2(ϕi(yk)−ϕ∗

i)

∥∇ϕi(yk)∥2

∇2ϕ(yk)−1
=

2(fi(Byk)−f∗
i)

∥BT∇fi(Byk)∥2
[BT ∇2f(Byk)B]−1

=
2(fi(xk)−f∗

i)

∥∇fi(xk)∥2

∇2f(xk)−1
= υk holds, which means λ̂k = λk. Then

yk+1 =yk − λk[∇2ϕ(yk)]
−1∇ϕ(yk) = yk − λk[BT∇2f(Byk)B]−1BT∇f(Byk)

=B−1xk − λkB−1[∇2f(xk)]
−1∇f(xk) = B−1xk+1.

Thus, the SANIA Newton method is affine invariant with respect to affine transformations of vari-
ables.

D.2 SCALE INVARIANCE

Kempka et al. (2019); Zhuang et al. (2022) illustrate this important but overlooked property of an
optimization algorithm. It is widely recognized that the convergence rate of minimizing a twice
continuously differentiable function f through a first-order optimization algorithm depends heavily
on the condition number. To mitigate the impact of the condition number, one effective approach is
the use of preconditioners relying on Hessian of the function which yields affine invaraince. Con-
sider the Hessian cannot be easily estimated, Zhuang et al. (2022) shows that scale invariance gives
similar advantages to the use of an optimal diagonal preconditioner.

They also showed why algorithms like SGD and Adam have such excellent performances in DNNs
even though they are not scale invariant. Because they are intensively linked to the use of batch
normalization which normalizes the gradients. Without BN, using SGD with momentum and weight
decay, even a tiny learning rate will lead to divergence while training a deep neural network. But
for the upgraded version of Adam–AdamW which enjoys scale invariance outperforms Adam when
both are finely tuned.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Now, we will show the classical AdaGrad and Adam are not scale invariant but AdaGrad-SQR and
Adam-SQR enjoy this property.

Lemma 11: Scale Invariance of AdaGrad-SQR

Let the sequence {xk} be generated by the AdaGrad-SQR as applied to the function f:

xk+1 = xk − λkB−1
k mk, k ≥ 0, where mk = ∇fik(xk), Bk =

k∑
j=1

∇fij (xj)2. (55)

Consider the sequence {yk}, generated by the AdaGrad-SQR for the function ϕ:

yk+1 = yk−λ̂kB̂k
−1
m̂k, k ≥ 0, where m̂k = ∇ϕik(yk), B̂k =

k∑
j=1

∇ϕij (yj)2, (56)

with y0 = V −1x0. Then yk = V −1xk for all k ≥ 0. V is a diagonal matrix.

Proof. We define λk =

{
1−
√
1− υk, if υk ≤ 1,

1, otherwise,
where υk =

2(fi(xk)−f∗
i)

∥mk∥2

B
−1
k

, and for λ̂k, υ̂k =

2(ϕi(yk)−ϕ∗
i)

∥m̂k∥2

B̂k
−1

.

Let yk = V −1xk for some k ≥ 0. We have
B̂k =

∑k
j=1∇ϕij (yk)2 =

∑k
j=1[V

T∇fij (V yk)]2 = V T [
∑k

j=1∇fij (xk)2]V = V TBkV,

m̂k = ∇ϕij (yk) = V T∇fij (V yk) = V T∇fij (xk) = V Tmk,

υ̂k =
2(ϕi(yk)−ϕ∗

i)

∥m̂k∥2

B̂k
−1

=
2(fi(V yk)−f∗

i)

∥V Tmk∥2
(V T BkV)−1

=
2(fi(xk)−f∗

i)

∥mk∥2

B
−1
k

= υk.

Then

yk+1 =yk − λ̂kB̂k
−1
m̂k = yk − λk[V TBkV]−1V Tmk

=V −1xk − λkV −1B−1
k mk = V −1xk+1.

Thus, the AdaGrad-SQR method is scale invariant.

And for Adam-SQR setting where mk =
(1−β1)

∑k
j=1 βk−j

1 ∇fij (xk)

1−βk
1

, Bk =

(1−β2)
∑k

j=1 βk−j
2 ∇fij (xk)

2

1−βk
2

, and m̂k =
(1−β1)

∑k
j=1 βk−j

1 ∇ϕij
(yk)

1−βk
1

, B̂k =
(1−β2)

∑k
j=1 βk−j

2 ∇ϕij
(yk)

2

1−βk
2

.

Similarly, we can get B̂k = V TBkV, m̂k = V Tmk. Rest proofs are the same. From proofs
above we can know for simple AdaGrad and Adam they are not scale invariant , because
B̂k = V TBk ̸= V TBkV .

D.3 GLM

Suppose fi is the loss over a linear model with

fi(w) = ψi(x
T
i w − yi), (57)

whereψi : R→ R is the loss function, and xi is the ith data and yi is the corresponding label. Let the
sequence {wk} be generated by method as applied to the function f . Consider the sequence {ŵk},
generated by the same method but for function ϕ where ϕ(ŵk) = f(Bŵk) = ψi(x

T
i Bŵk − yi).

Take xTi B as a whole, it can be seen as we are doing linear transformation to the data. When matrix
B is badly scaled, it will lead to a ill-conditioning dataset. And it inhibits the performance of the
general algorithms, which is specifically reflected in the need for more iterations to converge, or even
diverge on the worst case. But if the algorithm enjoys affine invariant property, that is, ŵk = B−1xk.
Then we have ψi(x

T
i Bŵk − yi) = ψi(x

T
i BB

−1xk − yi) = fi(w), which means we automatically
have the same function value as the original one as every iteration goes.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Epochs

10 18

10 15

10 12

10 9

10 6

10 3

100

Te
st

 L
os

s

Adam t = 5.0 (original data)
Adam t = 2.0 (scaled data)
Adam t = 3.0 (scaled data)
Adam t = 5.0 (diverge) (scaled data)
SANIA AdamSQR (original data)
SANIA AdamSQR (scaled data)

mushrooms

0 20 40 60 80 100
Epochs

10 5

10 4

10 3

10 2

10 1

100

Te
st

 L
os

s

Adagrad t = 5.0 (original data)
Adagrad t = 3.0 (scaled data)
Adagrad t = 4.0 (scaled data)
Adagrad t = 5.0 (diverge) (scaled data)
SANIA AdagradSQR (original data)
SANIA AdagradSQR (scaled data)

mushrooms

0 20 40 60 80 100
Epochs

10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

101

Te
st

 L
os

s

Adam t = 0.1 (original data)
Adam t = 0.001 (scaled data)
Adam t = 0.01 (scaled data)
Adam t = 0.1 (diverge) (scaled data)
SANIA AdamSQR (original data)
SANIA AdamSQR (scaled data)

colon-cancer

0 20 40 60 80 100
Epochs

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

101

Te
st

 L
os

s

Adagrad t = 0.5 (original data)
Adagrad t = 0.05 (scaled data)
Adagrad t = 0.005 (scaled data)
Adagrad t = 0.5 (diverge) (scaled data)
SANIA AdagradSQR (original data)
SANIA AdagradSQR (scaled data)

colon-cancer

0 20 40 60 80 100
Epochs

10 16

10 13

10 10

10 7

10 4

10 1

102

Te
st

 L
os

s

Adam t = 0.035 (original data)
Adam t = 0.0035 (scaled data)
Adam t = 0.00035 (scaled data)
Adam t = 0.035 (diverge) (scaled data)
SANIA AdamSQR (original data)
SANIA AdamSQR (scaled data)

duke

0 20 40 60 80 100
Epochs

10 8

10 6

10 4

10 2

100

Te
st

 L
os

s

Adagrad t = 0.045 (original data)
Adagrad t = 0.0045 (scaled data)
Adagrad t = 0.00045 (scaled data)
Adagrad t = 0.045 (diverge) (scaled data)
SANIA AdagradSQR (original data)
SANIA AdagradSQR (scaled data)

duke

0 20 40 60 80 100
Epochs

100

101

Te
st

 L
os

s

Adam t = 1.0 (original data)
Adam t = 0.01 (scaled data)
Adam t = 0.001 (scaled data)
Adam t = 1.0 (scaled data)
SANIA AdamSQR (original data)
SANIA AdamSQR (scaled data)

sonar_scale

0 20 40 60 80 100
Epochs

100

101

Te
st

 L
os

s

Adagrad t = 1.0 (original data)
Adagrad t = 0.1 (scaled data)
Adagrad t = 0.01 (scaled data)
Adagrad t = 1.0 (scaled data)
SANIA AdagradSQR (original data)
SANIA AdagradSQR (scaled data)

sonar_scale

Figure 3: Observation of scale invariance of SANIA while minimizing logistic regression objective
function on binary classification datasets from LibSVM with scaling factor k = 4.

0 100 200 300 400 500

10 16

10 13

10 10

10 7

10 4

10 1

102

f i(
w

t)

colon-cancer

0 100 200 300 400 500

10 16

10 13

10 10

10 7

10 4

10 1

duke

0 100 200 300 400 500

10 16

10 13

10 10

10 7

10 4

10 1

leu

Adam AdaGrad Adadelta SANIA PCG AdaGrad-SQR SANIA PCG AdaGrad-SQR SANIA Adam-SQR SANIA Adam-SQR SANIA AdaGrad-SQR SANIA AdaGrad-SQR

Original data
Scaled data

epochs

Adam AdaGrad Adadelta SANIA PCG AdaGrad-SQR SANIA PCG AdaGrad-SQR SANIA Adam-SQR SANIA Adam-SQR SANIA AdaGrad-SQR SANIA AdaGrad-SQR

Figure 4: Performance of SANIA and other adaptive methods on 3 datasets (original and badly
scaled with scaling factor k = 6) with logistic regression loss.

E ADDITIONAL EXPERIMENTS AND DETAILS

All experiments were run with 5 different seeds (0, 1, 2, 3, 4) using PyTorch 2.0.1+cu118 on a com-
puting machine with AMD EPYC 7402 24-Core Processor with 2.8GHz of base clock and 1 x
NVIDIA RTX A6000 GPU unit. Default datatype in PyTorch is set to torch.float64 . LibSVM5

datasets and source code of optimizers used for the experiments are publicly available 6.

E.1 NON-LINEAR LEAST SQUARES

To show experiments for non-convex problems, we use non-linear least squares in Figure 8. Let
{(xi, yi)}ni=1 be our dataset, where xi ∈ Rd and yi ∈ {0, 1}, then Non-linear least squares problem
is given by fNLLSQ(w) =

1
n

∑n
i=1(yi −

1
(1+exp(−xT

i w))
)2.

E.2 BADLY SCALED DATASET

In order to simulate badly scaled datasets we use scaling procedure shown in equation 58.

An×d =

a1,1 a1,2 . . . a1,d
a2,1 a2,2 . . . a2,d

...
.

...
an,1 an,2 . . . an,d

 scale−−−→ Ân×d =

a1,1 × v1 a1,2 × v2 . . . a1,d × vd
a2,1 × v1 a2,2 × v2 . . . a2,d × vd

...
.

...
an,1 × v1 an,2 × v2 . . . an,d × vd

 ,

(58)
5https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
6https://anonymous.4open.science/r/SANIA-CFF5/

29

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://anonymous.4open.science/r/SANIA-CFF5/

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Epochs

3 × 10 1

4 × 10 1

6 × 10 1

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

100

4 × 10 1

6 × 10 1Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

a1a Adam, t = 0.001
Adagrad, t = 0.1
KATE, t = 0.01
SGD, t = 1.0
SANIA AdamSQR
SANIA AdagradSQR

0 20 40 60 80 100
Epochs

100

3 × 10 1

4 × 10 1

6 × 10 1

2 × 100

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

100

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

australian_scale Adam, t = 0.1
Adagrad, t = 0.5
KATE, t = 0.1
SGD, t = 1.0
SANIA AdamSQR
SANIA AdagradSQR

0 20 40 60 80 100
Epochs

10 1

100

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

10 1

100

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

breast-cancer_scale Adam, t = 0.5
Adagrad, t = 1.0
KATE, t = 0.5
SGD, t = 1.0
SANIA AdamSQR
SANIA AdagradSQR

0 20 40 60 80 100
Epochs

100

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

100

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

cod-rna Adam, t = 0.01
Adagrad, t = 0.01
KATE, t = 1.0
SGD, t = 1e 05
SANIA AdamSQR
SANIA AdagradSQR

0 20 40 60 80 100
Epochs

10 16

10 13

10 10

10 7

10 4

10 1

102

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

10 14

10 11

10 8

10 5

10 2

101

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Te
st

 A
cc

ur
ac

y

colon-cancer Adam, t = 0.1
Adagrad, t = 0.5
KATE, t = 0.1
SGD, t = 0.5
SANIA AdamSQR
SANIA AdagradSQR

0 20 40 60 80 100
Epochs

10 3

10 2

10 1

100

101

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

10 1

100
Te

st
 L

os
s

0 20 40 60 80 100
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

gisette_scale Adam, t = 0.001
Adagrad, t = 0.01
KATE, t = 0.01
SGD, t = 0.01
SANIA AdamSQR
SANIA AdagradSQR

0 20 40 60 80 100
Epochs

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

100

3 × 10 1

4 × 10 1

6 × 10 1

2 × 100

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

leu Adam, t = 0.001
Adagrad, t = 0.001
KATE, t = 0.0001
SGD, t = 0.01
SANIA AdamSQR
SANIA AdagradSQR

0 20 40 60 80 100
Epochs

100

101

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

100

101

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y
madelon Adam, t = 0.0001

Adagrad, t = 0.001
KATE, t = 0.0001
SGD, t = 1e 08
SANIA AdamSQR
SANIA AdagradSQR

0 20 40 60 80 100
Epochs

10 8

10 6

10 4

10 2

100

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

10 8

10 6

10 4

10 2

100

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 A
cc

ur
ac

y

mushrooms Adam, t = 1.0
Adagrad, t = 1.0
KATE, t = 1.0
SGD, t = 1.0
SANIA AdamSQR
SANIA AdagradSQR

Figure 5: Performance of SANIA and other first-order optimization methods on binary classification
tasks from LibSVM with logistic regression loss.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Epochs

3 × 10 1

4 × 10 1

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 A
cc

ur
ac

y

news20.binary Adam t = 0.125
SANIA AdamSQR

0 20 40 60 80 100
Epochs

10 2

10 1

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

10 1

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 A
cc

ur
ac

y

news20.binary Adagrad t = 0.225
SANIA AdagradSQR

0 10 20 30 40 50
Epochs

10 1

Tr
ai

n
Lo

ss

0 10 20 30 40 50
Epochs

10 1

Te
st

 L
os

s

0 10 20 30 40 50
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

webspam Adam t = 0.001
SANIA AdamSQR

0 10 20 30 40 50
Epochs

10 1

2 × 10 1

3 × 10 1

4 × 10 1

Tr
ai

n
Lo

ss

0 10 20 30 40 50
Epochs

10 1

Te
st

 L
os

s

0 10 20 30 40 50
Epochs

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 A
cc

ur
ac

y

webspam Adagrad t = 0.005
SANIA AdagradSQR

0 10 20 30 40 50
Epochs

10 1

4 × 10 2

6 × 10 2

2 × 10 1

Tr
ai

n
Lo

ss

0 10 20 30 40 50
Epochs

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
os

s

0 10 20 30 40 50
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

rcv1.binary Adam t = 0.1
SANIA AdamSQR

0 10 20 30 40 50
Epochs

10 1

4 × 10 2

6 × 10 2

2 × 10 1

Tr
ai

n
Lo

ss

0 10 20 30 40 50
Epochs

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
os

s

0 10 20 30 40 50
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

rcv1.binary Adagrad t = 1.0
SANIA AdagradSQR

0 10 20 30 40 50
Epochs

10 1

7 × 10 2

8 × 10 2

9 × 10 2

Tr
ai

n
Lo

ss

0 10 20 30 40 50
Epochs

10 1

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
os

s

0 10 20 30 40 50
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

real-sim Adam t = 0.1
SANIA AdamSQR

0 10 20 30 40 50
Epochs

10 1

6 × 10 2

Tr
ai

n
Lo

ss

0 10 20 30 40 50
Epochs

10 1

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
os

s

0 10 20 30 40 50
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

real-sim Adagrad t = 1.0
SANIA AdagradSQR

0 10 20 30 40 50
Epochs

4 × 10 1

5 × 10 1

Tr
ai

n
Lo

ss

0 10 20 30 40 50
Epochs

4 × 10 1

5 × 10 1

6 × 10 1

7 × 10 1

Te
st

 L
os

s

0 10 20 30 40 50
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

a9a Adam t = 0.05
SANIA AdamSQR

0 10 20 30 40 50
Epochs

4 × 10 1

5 × 10 1

6 × 10 1

Tr
ai

n
Lo

ss

0 10 20 30 40 50
Epochs

4 × 10 1

5 × 10 1

6 × 10 1

7 × 10 1

Te
st

 L
os

s

0 10 20 30 40 50
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

a9a Adagrad t = 1.0
SANIA AdagradSQR

0 10 20 30 40 50
Epochs

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Tr
ai

n
Lo

ss

0 10 20 30 40 50
Epochs

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
os

s

0 10 20 30 40 50
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

w8a Adam t = 0.05
SANIA AdamSQR

0 10 20 30 40 50
Epochs

1.2 × 10 1

1.4 × 10 1

1.6 × 10 1

1.8 × 10 1

2 × 10 1

2.2 × 10 1

2.4 × 10 1
2.6 × 10 1

Tr
ai

n
Lo

ss

0 10 20 30 40 50
Epochs

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Te
st

 L
os

s

0 10 20 30 40 50
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

w8a Adagrad t = 1.0
SANIA AdagradSQR

Figure 6: Large-scale binary classification experiments on datasets from LibSVM.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Te
st

 L
os

s
0 20 40 60 80 100

Epochs
0.970

0.975

0.980

0.985

0.990

0.995

1.000

Te
st

 A
cc

ur
ac

y

MNIST (LeNet5) Adam t = 0.001
SANIA AdamSQR
Adagrad t = 0.01
SANIA AdagradSQR
KATE t = 0.001

0 20 40 60 80 100
Epochs

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

0.15

0.20

0.25

0.30

0.35

0.40

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Te
st

 A
cc

ur
ac

y

FashionMNIST (SimpleConvNet) Adam t = 0.001
SANIA AdamSQR
Adagrad t = 0.01
SANIA AdagradSQR
KATE t = 0.001

0 25 50 75 100 125 150 175 200
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ai

n
Lo

ss

0 25 50 75 100 125 150 175 200
Epochs

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Te
st

 L
os

s

0 25 50 75 100 125 150 175 200
Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

CIFAR10 (DenseNet121) Adam t = 0.001
SANIA AdamSQR
Adagrad t = 0.025
SANIA AdagradSQR
KATE t = 0.0001

0 20 40 60 80 100
Epochs

2.0

2.5

3.0

3.5

4.0

4.5

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

2

3

4

5

6

7

8

9

10

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

 To
p-

3
Ac

cu
ra

cy

CIFAR100 (ResNet18) Adam t = 0.01
SANIA AdamSQR
Adagrad t = 0.01
SANIA AdagradSQR
KATE t = 0.0001

0 25 50 75 100 125 150 175 200
Epochs

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Tr
ai

n
Lo

ss

0 25 50 75 100 125 150 175 200
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 L
os

s

0 25 50 75 100 125 150 175 200
Epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 A
cc

ur
ac

y

SVHN (ShuffleNetV2x0_5) Adam t = 0.01
SANIA AdamSQR
Adagrad t = 0.1
SANIA AdagradSQR
KATE t = 0.1

Figure 7: Performance of SANIA and other methods on multiple classification problems and neural
networks.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500

10 19

10 16

10 13

10 10

10 7

10 4

10 1

f i(
w

t)

duke

0 100 200 300 400 500

10 28

10 24

10 20

10 16

10 12

10 8

10 4

100

leu

Adam
AdaGrad
Adadelta
SANIA PCG AdaGrad-SQR
SANIA PCG AdaGrad-SQR
SANIA PCG diag(H0) 1

SANIA PCG diag(H0) 1

Original data
Scaled data

epochs

Adam
AdaGrad
Adadelta
SANIA PCG AdaGrad-SQR
SANIA PCG AdaGrad-SQR
SANIA PCG diag(H0) 1

SANIA PCG diag(H0) 1

Original data
Scaled data

Figure 8: Performance of SANIA and other adaptive methods on 2 LibSVM datasets (original and
badly scaled with scaling factor k = 6) with non-linear least squares loss.

0 20 40 60 80 100
steps

10 6

10 5

10 4

10 3

10 2

10 1

f i(
w

t) colon-cancer

synthetic

SANIA CG
SP2 GLM

Figure 9: SANIA CG and SP2 GLM generate identical steps on logistic regression problem with
batch size = 1.

where vi = ebj , bj ∈ Uniform[−k, k].

E.3 LEARNING RATES

Learning rates of algorithms used for experiments are not chosen randomly. To avoid overopti-
mized learning rates obtained using special algorithms and at the same time to adhere to some
fairness of the results we conducted experiments with a series of learning rates γ = 2n where
n ∈ range(−2,−16, 2). Next, we used the best performing step size as the main result for certain
optimizer.

E.4 MORE FINDINGS

In Figure 9 we can see that proposed SANIA CG and SP2 for Generalized Linear Models presented
in Li et al. (2023) generate identical steps towards the minimum given the exact same set of obser-
vations xi. However, disadvantage of SP2 in this case is that it has a closed form solution only for
GLMs.

Figure 11 shows that unlike other classical adaptive methods, SANIA with Newton step is scal-
ing invariant. The same behaviour can be observed in Figure 12 where SANIA AdaGrad-SQR
is not only scaling invariant but also displays significantly better performance compared to Adam,
AdaGrad and Adadelta with a constant learning rate.

In Figure 10 we show how step-sizes of SANIA AdamSQR and SANIA AdagradSQR change
during training on synthetic binary classification problem over 5 runs. Interestingly, evolution of
step-sizes of SANIA AdamSQR closely resemble ”warm-up” technique often used in practice, that
is known to prevent instability in the beginning of training.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Epochs

10 2

10 1

100

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

10 1

100

101
Te

st
 L

os
s

0 20 40 60 80 100
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0 500 1000 1500
Steps

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

St
ep

siz
e

Logistic Regression, synthetic-interpolation, n = 2, 000, d = 200 SANIA_AdamSQR
Adam, t = 0.001
Adam, t = 0.01
Adam, t = 0.1

0 20 40 60 80 100
Epochs

10 2

10 1

100

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

10 1

100

101

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
Ac

cu
ra

cy

0 500 1000 1500
Steps

0.00

0.02

0.04

0.06

0.08

0.10

St
ep

siz
e

Logistic Regression, synthetic-interpolation, n = 2, 000, d = 200 SANIA_AdamSQR
Adam, OneCycleLR
Adam, CosineAnnealingLR
Adam, ExpDecayLR

0 20 40 60 80 100
Epochs

10 2

10 1

100

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

10 1

100

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

0 500 1000 1500
Steps

0.0

0.2

0.4

0.6

0.8

1.0
St

ep
siz

e

Logistic Regression, synthetic-interpolation, n = 2, 000, d = 200 SANIA_AdagradSQR
Adagrad, t = 0.01
Adagrad, t = 0.1
Adagrad, t = 1.0

0 20 40 60 80 100
Epochs

10 2

10 1

100

Tr
ai

n
Lo

ss

0 20 40 60 80 100
Epochs

10 1

100

Te
st

 L
os

s

0 20 40 60 80 100
Epochs

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

0 500 1000 1500
Steps

0.0

0.2

0.4

0.6

0.8

1.0

St
ep

siz
e

Logistic Regression, synthetic-interpolation, n = 2, 000, d = 200 SANIA_AdagradSQR
Adagrad, OneCycleLR
Adagrad, CosineAnnealingLR
Adagrad, ExpDecayLR

Figure 10: Evolution of metrics and step-sizes in SANIA, fine-tuned methods and learning rate
schedules.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

0 100 200 300 400 500
10 3

10 2

10 1

100

f i(
w

t)

0 100 200 300 400 500
10 5

10 3

10 1

101

103

f i(
w

t)
2

Adam lr=0.01
AdaGrad lr=0.01
Adadelta lr=0.01
SANIA Newton
SANIA Newton

Original data
Scaled data

epochs

Adam lr=0.01
AdaGrad lr=0.01
Adadelta lr=0.01
SANIA Newton
SANIA Newton

Original data
Scaled data

Figure 11: SANIA Newton compared to other adaptive methods on original and badly scaled (k = 5)
synthetic binary classification dataset (batch size = 100) with logistic regression objective function.

0 100 200 300 400 500
10 7

10 6

10 5

10 4

10 3

10 2

10 1

f i(
w

t)

0 100 200 300 400 500

10 12

10 9

10 6

10 3

100

103

106

f i(
w

t)
2

Adam lr=0.001
AdaGrad lr=0.001
Adadelta lr=0.001
SANIA AdaGrad-SQR

Original data
Scaled data

epochs

Adam lr=0.001
AdaGrad lr=0.001
Adadelta lr=0.001
SANIA AdaGrad-SQR

Original data
Scaled data

Figure 12: SANIA AdaGrad-SQR compared to other adaptive methods on original and badly scaled
(k = 10) mushrooms dataset (batch size = 256) with non-linear least squares objective function.

E.5 EXPERIMENTS WITH CUBIC NEWTON WITH POLYAK STEP-SIZE

In this subsection, we present results for Cubic Newton with Polyak step-size from equation 16. In
Figure 13, we compare classical Cubic Newton from (Nesterov & Polyak, 2006), Gradient Regu-
larized Newton from (Mishchenko, 2023; Doikov & Nesterov, 2023) and our Cubic Newton with
Polyak step-size on full-batch logistic regression with µ

2 ∥w∥
2
2-regularization, where µ = 1e− 4. To

show globalization properties, we choose the starting point far from the solution x0 = 3e, where e is
a vector of all ones. We present Cubic Newton with theoretical parameter L2 = 0.1, with fine-tuned
parameter L2 = 0.0004; Gradient Regularized Newton with fine-tuned parameter L2 = 0.0004.
There is a huge difference between fine-tuned and theoretical choice. It means that the method is
pretty sensitive to the choice of the parameter L2. For Cubic Newton with Polyak step-size, we
denote approximate f∗ as f̂ . Then, we present the precise approximation f̂ = f∗ = 0.3361, close
lower approximation f̂ = 0.3, and the very simple and naive lower bound f̂ = 0. For all three
cases, the convergence is almost the same. It also shows that Cubic Newton with Polyak step-size is
very robust to the parameter f̂ , where even the most naive choice works perfectly fine. Finally, we
highlight that Cubic Newton with Polyak step-size significantly overperform other Cubic methods
even with fine-tuned parameters.

0 5 10 15 20 25 30
Iterations, t

10 5

10 4

10 3

10 2

10 1

100

101

f(x
t)

f(x
*)

a9a, Logistic Regression, = 1e 4
Cubic Newton (theory), L2 = 0.1
Cubic Newton (tuned), L2 = 0.0004
Gradient Regularized Newton, L2 = 0.0004
Polyak Cubic Newton (tuned+theory), f = f * = 0.3361
Polyak Cubic Newton (approx), f = 0.3
Polyak Cubic Newton (naive), f = 0.0

Figure 13: Gradient regularized(Cubic) Newton with Polyak step-size vs Cubic Newton methods
for µ

2 ∥w∥
2-regularized logistic regression

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
vt

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

t

t = vt / 2
t = 1 1 vt

Figure 14: The comparison of step sizes λPSPS
t (blue dashed line) from equation 61 and λSANIA

t
(orange dashed line) from equation 62.

F CONVERGENCE ANALYSIS

In this section, we prove the theoretical convergence results for SANIA Quasi-Newton and Pre-
conditioned SPS (PSPS). These two methods are very close. Both of these methods have the next
explicit form:

wt+1 = wt − λtB−1
t mt (59)

The difference is the step size. We introduce an additional parameter

υt =
2(fi(wt)−f∗

i)

∥mt∥2

B
−1
t

. (60)

For PSPS, the step size is

λPSPS
t =

fi(wt)− f∗i
∥mt∥2B−1

t

=
υt
2
. (61)

For SANIA Quasi-Newton, the step size is

λSANIA
t =

{
1−
√
1− υt, if υt ≤ 1,

1, otherwise.
(62)

Let us show the relation between them. For υt ≤ 2, SANIA step size is bigger but very close to
PSPS, 2λPSPS

t ≤ λSANIA
t ≥ λPSPS

t . However, for υt > 2, the PSPS becomes more aggressive
and λPSPS

t > 1, which is quite big for Newton-type methods and could be an issue when f∗i was
chosen not accurate enough. We plot both of the step sizes to visualize the difference between them
in Figure 14. Next, we provide the proofs for both step sizes inspired by proofs from (Schaipp et al.,
2023).

Lemma 12

Let fi(x) be a convex function for all i ∈ [1, . . . , n] and have the same minimum w∗ (As-
sumption 1), Bt ≻ 0 are positive definite matrices for t ∈ [0, . . . , T], mt = ∇fi(wt), and
υt =

2(fi(wt)−f∗
i)

∥∇fi(wt)∥2

B
−1
t

. Then for equation 59 method with the step size λt ∈ (0, υt), we have

∥wt+1 − w∗∥2Bt
< ∥wt − w∗∥2Bt

. (63)

Additionally, for λt =
fi(wt)−f∗

i

∥∇fi(wt)∥2

B
−1
t

, we get

∥wt+1 − w∗∥2Bt
≤ ∥wt − w∗∥2Bt

− (fi(wt)− f∗i)2

∥∇fi(wt)∥2B−1
t

. (64)

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Proof. We start with the Polyak-step upper bound of the distance to the solution.

∥wt+1 − w∗∥2Bt

equation 18
= ∥wt − γtB−1

t ∇fi(wt)− w∗∥2Bt

= ∥wt − w∗∥2Bt
− 2λt ⟨∇fi(wt), wt − w∗⟩+ λ2t∥∇fi(wt)∥2B−1

t

≤ ∥wt − w∗∥2Bt
− 2λt (fi(wt)− f∗i) + λ2t∥∇fi(wt)∥2B−1

t
,

where in the last inequality we used the convexity of fi(x).

For λt ∈ (0, υt) from equation 60, the right hand side is negative −2λt (fi(wt)− f∗i) +
λ2t∥∇fi(wt)∥2B−1

t

< 0, hence

∥wt+1 − w∗∥2Bt
< ∥wt − w∗∥2Bt

Next, if we optimize the right hand side by λt, we get the optimal λt = λPSPS
t = υ

2 and

∥wt+1 − w∗∥2Bt
≤ ∥wt − w∗∥2Bt

− 2λt (fi(wt)− f∗i) + λ2t∥∇fi(wt)∥2B−1
t

≤ ∥wt − w∗∥2Bt
− (fi(wt)− f∗i)2

∥∇fi(wt)∥2B−1
t

Next, we show the convergence theorem for the equation 59 method with the step size λt =
fi(wt)−f∗

i

∥∇fi(wt)∥2

B
−1
t

. Additionally, we assume that the preconditioning is not expanding Bt ⪰ Bt+1 ⪰ ν.

It helps to work with the changing Bt-Euclidean norm. This assumption is satisfied for Bt = I and
for some Quasi-Newton updates.

Theorem 2

Let fi(x) be a convex Lmax-Lipschitz smooth function for all i ∈ [1, . . . , n] and have the
same minimum w∗ (Assumption 1), Bt ≻ 0 are positive definite matrices for t ∈ [0, . . . , T],
mt = ∇fi(wt), and Bt ⪰ Bt+1 ⪰ ν. Then for equation 59 method with the step size
λt =

fi(wt)−f∗
i

∥∇fi(wt)∥2

B
−1
t

, we get

E[f(ŵT)− f∗] ≤
2Lmax∥w0 − w∗∥2B0

νT
, (65)

where

ŵT =
1

T

T−1∑
t=0

wt (66)

Proof. From equation 64 and the assumption that Bt ⪰ Bt+1 ⪰ ν, we get:

∥wt+1 − w∗∥2Bt+1
≤ ∥wt+1 − w∗∥2Bt

equation 64

≤ ∥wt − w∗∥2Bt
− (fi(wt)− f∗i)2

∥∇fi(wt)∥2B−1
t

≤ ∥wt − w∗∥2Bt
− ν(fi(wt)− f∗i)2

∥∇fi(wt)∥2
= ∥wt − w∗∥2Bt

− ν(fi(wt)− f∗i)
(fi(wt)− f∗i)
∥∇fi(wt)∥2

≤ ∥wt − w∗∥2Bt
− ν(fi(wt)− f∗i)

2Lmax
,

where the last inequality is coming from the Lipschitz-smoothness of fi: 1
2Lmax

≤ (fi(wt)−f∗
i)

∥∇fi(wt)∥2 .

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Now, by taking the expectation and summing the previous inequality for t = 0, . . . , T − 1, we get

E[∥wt+1 − w∗∥2BT
] ≤ E[∥w0 − w∗∥2B0

]−
T−1∑
t=0

ν

2Lmax
E[(fi(wt)− f∗i)].

Finally, by applying convexity to the average point ŵT , we get the convergence rate

E[f(ŵT)− f∗] ≤
1

T

T−1∑
t=0

E[f(wt)− f∗]

≤ 2Lmax

Tν
E
[
∥w0 − w∗∥2B0

− ∥wT − w∗∥2BT

]
≤

2Lmax∥w0 − w∗∥2B0

νT
.

Theorem 3

Let fi(x) be a convex function for all i ∈ [1, . . . , n] and have the same minimum w∗ (As-
sumption 1), Bt ≻ 0 are positive definite matrices for t ∈ [0, . . . , T], mt = ∇fi(wt),
Bt ⪰ Bt+1 ⪰ ν, and E[∥∇fi(wt)∥2B−1

t

] ≤ G2. Then for equation 59 method with the step

size λt =
fi(wt)−f∗

i

∥∇fi(wt)∥2

B
−1
t

, we get

min
t=0,...,T−1

E[(f(wt)− f∗)] ≤
G∥w0 − w∗∥B0√

T
. (67)

Proof. From equation 64 and the assumption that Bt ⪰ Bt+1 ⪰ ν, we get

∥wt+1 − w∗∥2Bt+1
≤ ∥wt − w∗∥2Bt

− (fi(wt)− f∗i)2

∥∇fi∥2B−1
t

(68)

(69)
By taking the expectation on both sides, we get

E[∥wt+1 − w∗∥2Bt+1
] ≤ E[∥wt − w∗∥2Bt

]− E

[
(fi(wt)− f∗i)2

∥∇fi∥2B−1
t

]

≤ E[∥wt − w∗∥2Bt
]− E[(fi(wt)− f∗i)2]

E[∥∇fi∥2B−1
t

]

= E[∥wt − w∗∥2Bt
]− (f(wt)− f∗)2

E[∥∇fi∥2B−1
t

]

≤ E[∥wt − w∗∥2Bt
]− (f(wt)− f∗)2

G2

We sum up and rearrange:

1

T

T−1∑
t=0

E[(f(wt)− f∗)2] ≤ G2 1

T

T−1∑
t=0

(
E[∥wt − w∗∥2Bt

]− ∥wt+1 − w∗∥2Bt+1
]
)

(70)

≤ G2

T

E[∥w0 − w∗∥2B0
]− E[∥wT − w∗∥2BT

]︸ ︷︷ ︸
>0

 (71)

≤ G2

T
∥w0 − w∗∥2B0

(72)

(73)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Due to Jensen’s inequality E[X2] ≥ E[X]2 and concavity of square root:

E[(f(wt)− f∗)2] ≥ E[(f(wt)− f∗)]2 (74)

1

T

T−1∑
t=0

E[(f(wt)− f∗)] ≤

√√√√ 1

T

T−1∑
t=0

E[(f(wt)− f∗)]2 (75)

Using the above, we obtain:

min
t=0,...,T−1

E[(f(wt)− f∗)] ≤
1

T

T−1∑
t=0

E[(f(wt)− f∗)] ≤
G∥w0 − w∗∥B0√

T
. (76)

Remark 1. The convergence proofs for the Gradient regularized Newton method with Polyak step-
size equation 15 are presented in SP2 paper Li et al. (2023). Our main contribution in this part is
deriving the explicit formula for general functions equation 16 and finding its connection to Cubic
Regularized Newton.

Remark 2. The presented proofs do not cover all proposed methods and all step sizes. For example,
from the current proofs λPSPS

t is better than λSANIA
t There are still open theoretical problems for

us:
1) The convergence for expanding Euclidean norms, where Bt+1 ⪰ Bt.
2) Better convergence rates for Gradient regularized Newton method with Polyak step-size compa-
rable to Cubic Newton convergence rates O(T−2).
3) Better convergence rates for λSANIA

t step-size in equation 59.
4) Extend the proofs to general mt.

39

	Introduction
	SANIA – general framework
	General framework
	Existing methods
	Proposed methods
	Affine and scale invariance

	Experiments
	Conclusion
	RELATED WORK
	Proofs
	Stochastic Gradient Descent with SANIA
	Stochastic Polyak step-size with SANIA
	Preconditioned SGD with SANIA
	Hutchinson's Lemma

	Proposed methods
	Gradient regularized Newton method with Polyak step-size
	SANIA Quasi-Newton
	SANIA AdaGrad-SQR for Quasi-Newton.
	SANIA Adam-SQR for Quasi-Newton.
	SANIA PCG for Newton method on convex functions.
	SANIA PCG for Newton method on non-convex functions.

	Affine and Scale Invariance
	Affine Invariance
	Scale Invariance
	GLM

	Additional Experiments and Details
	Non-linear least squares
	Badly scaled dataset
	Learning rates
	More findings
	Experiments with Cubic Newton with Polyak step-size

	Convergence Analysis

