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ABSTRACT

Adaptive optimization methods are widely recognized as among the most popu-
lar approaches for training Deep Neural Networks (DNNs). Techniques such as
Adam, AdaGrad, and AdaHessian utilize a preconditioner that modifies the search
direction by incorporating information about the curvature of the objective func-
tion. However, despite their adaptive characteristics, these methods still require
manual fine-tuning of the step-size. This, in turn, impacts the time required to
solve a particular problem. This paper presents an optimization framework named
SANIA to tackle these challenges. Beyond eliminating the need for manual step-
size hyperparameter settings, SANIA incorporates techniques to address poorly
scaled or ill-conditioned problems. We also explore several preconditioning meth-
ods, including Hutchinson’s method, which approximates the Hessian diagonal of
the loss function. We conclude with an extensive empirical examination of the
proposed techniques across classification tasks, covering both convex and non-
convex contexts.

1 INTRODUCTION

Machine Learning (ML), especially Deep Neural Networks (DNNs), has emerged as a transforma-
tive tool, setting the stage for unprecedented advances across many disciplines, including computer
vision Krizhevsky et al. (2012); Simonyan & Zisserman (2014); He et al. (2016) and natural lan-
guage processing Wolf et al. (2020); Mikolov et al. (2013); Devlin et al. (2018); Radford et al.
(2018), as well as science Xie & Grossman (2018); Gómez-Bombarelli et al. (2018); Kaliyev et al.
and engineering Bello et al. (2016); LeCun et al. (1990) to name a few.
The enormous potential of these models is enabled through the efficacy of the optimization methods
that train them. In the domain of ML the training task can be expressed as solving the following
problem

minw∈Rdf(w) := 1
n

∑n
i=1 fi(w), (1)

where w ∈ Rd represents the weight parameter, and each fi : Rd → R is a sufficiently smooth
function. To provide a practical context, consider a dataset denoted as {(xi, yi)}ni=1, where
xi ∈ Rd is the data sample and yi ∈ R represents the label corresponding to that sample. If
fi(w) =

1
2 (xi

Tw− yi)2, this optimization problem gives rise to the well-known least squares prob-
lem. Similarly, if fi(w) = log(1 + e−yixi

Tw), we get logistic regression problem.
Stochastic Gradient Descent. To address problem equation 1, one of the fundamental techniques
employed is Stochastic Gradient Descent (SGD) Robbins & Monro (1951); Polyak (1990); Polyak
& Juditsky (1992); Nemirovski et al. (2009); Bottou et al. (2018). This method iteratively updates
the weight parameter w according to the following scheme:

wt+1 = wt − γt∇fi(wt), (2)
where γt is the step-size schedule and i ⊂ [n] := {1, 2, . . . , n} is chosen uniformly as random. Un-
fortunately, the optimal step-size1 schedule often relies on problem-specific parameters, such as the

∗SANIA is an abbreviation formed from letters of working title of this paper: ScAliNg Invariant Algorithm.
1In this work, we focus on the minimization of empirical loss equation 1. We refer to recent studies that

discuss how the step size can influence the generalization error Kaur et al. (2023); Wu & Su (2023); Ma &
Fattahi (2022); Chen & Bruna (2023).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Lipschitz-smoothness constant and the level of stochastic gradient noise, which are frequently not
accessible. Consequently, achieving an optimal step-size typically demands a substantial amount
of tuning, which can be quite costly in practical applications. Numerous methodologies have been
developed to tackle this issue. One of the first approaches that reduces the number of parame-
ters to tune is the AdaGrad method by Duchi et al. (2011); Li & Orabona (2019); Ward et al.
(2020). An additional challenge arises from the fact that using the same learning rate for each
feature j ∈ [d] might not yield the best performance. To address this, diagonal preconditioning
techniques have been employed in the SGD setting by methods such as AdaGrad by Duchi et al.
(2011), RMSProp by Tieleman et al. (2012), Adam by Kingma & Ba (2015), AMSGrad by Reddi
et al. (2018), AdamW by Loshchilov & Hutter (2019), AdaHessian by Yao et al. (2021), AdaDelta
by Zeiler (2012), and OASIS by Jahani et al. (2022). However, all of these methods still require
a considerable degree of parameter tuning to achieve optimal performance. Another approach is
associated with parameter-free regret minimization for online learning problems, as discussed in
various papers Mcmahan & Streeter (2012); McMahan & Orabona (2014); Orabona & Pál (2016);
Orabona & Tommasi (2017); Orabona (2019); Carmon & Hinder (2022); Ivgi et al. (2023); Defazio
& Mishchenko (2023); Cutkosky et al. (2023); Mishchenko & Defazio (2023). Finally, in our paper,
we explore the Stochastic Polyak step-size approach as an adaptive parameter-free method.
Stochastic Polyak step-size (SPS) Methods. Polyak step-size method was first proposed by Polyak
(1969; 1987) for non-smooth problems. Recently, stochastic Polyak step-size was proposed by Ober-
man & Prazeres (2019); Berrada et al. (2020); Loizou et al. (2021); Gower et al. (2021); Orvieto et al.
(2022). Subsequently, lots of variants of SPS have emerged, such as mSPS by D’Orazio et al. (2021)
and AdaSLS by Jiang & Stich (2023). To further relax the requirements for interpolation condition
in SPS, many attempts have been made by Gower et al. (2022); Orvieto et al. (2022); Garrigos et al.
(2023); Schaipp et al. (2023). A variant of second-order expansion for SPS was presented by Li
et al. (2023). Next we describe the main idea of Polyak step-size in more detail.
To derive the deterministic Polyak step-size, let us consider a convex function f(w) and the step
equation 2. We obtain the step-size from the following upper-bound on the distance from the current
point wt+1 to the minimum w∗:

∥wt+1 − w∗∥2 = ∥wt − w∗∥2 + ∥γt∇f(wt)∥2 − 2γt ⟨∇f(wt), wt − w∗⟩
≤ ∥wt − w∗∥2 + γ2t ∥∇f(wt)∥2 − 2γt(f(wt)− f(w∗)).

Minimizing the right hand side by γt, we get: γt =
f(wt)−f(w∗)
∥∇f(wt)∥2 . Similarly, in the stochastic case,

the Stochastic Polyak step-size (SPS) is defined as

wt+1 = wt − fi(wt)−f∗
i

∥∇fi(wt)∥2∇fi(wt), (3)

where f∗i is a minimal value of function fi(w). Another way to derive this formulation is by solving
the following optimization problem:

wt+1 = argminw∈Rd∥w − wt∥22, (4)
s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ = f∗i ,

where equation 3 is an explicit formulation of equation 4. In case where the value of f∗i is known
and set to 0 for all i (a common scenario in over-parameterized deep neural networks) we obtain this
simplified expression for equation 3: wt+1 = wt − fi(wt)

∥∇fi(wt)∥2∇fi(wt). This condition, referred to
as the ”interpolation condition”, is expressed as f∗i = 0.
Preconditioning / Feature scaling. Preconditioning is a technique used to improve the convergence
rate of algorithms applied to data that may exhibit poor scaling or ill-conditioning. Algorithms
leveraging preconditioning typically follow a generic update rule, which can be expressed as

wt+1 = wt − γtB−1
t mt, (5)

where Bt ∈ Rd×d is an invertible positive definite matrix, and mt is a gradient or its approxima-
tion. The origin of such a step is Newton method by Newton (1687); Raphson (1697); Kantorovich
(1948a;b; 1949) which uses the exact Hessian to precondition the gradient of the objective function,
i.e. Bt = ∇2f(wt) and mt = ∇fi(wt). Newton method can be very effective for minimizing
convex objectives. However, the prohibitive cost of computing and inverting the Hessian matrix, to-
gether with issues around negative eigenvalues, makes this approach impractical for machine learn-
ing tasks. To address this issue, one can use methods that never define the Hessian of the objective
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function explicitly but rather use its approximation or solve the Newton system using iterative algo-
rithms (Martens et al., 2010).
Quasi-Newton methods (QN). Methods that construct an approximation of the (inverse) Hessian
date back to the 70s such as BFGS (Broyden, 1967; Fletcher, 1970; Goldfarb, 1970; Shanno,
1970), L-BFGS (Nocedal, 1980; Liu & Nocedal, 1989), and SR-1 (Conn et al., 1991; Khalfan
et al., 1993). These optimization methods take advantage of a cheap way to build (inverse) Hes-
sian matrix estimation algorithms based on past gradient information. One of the most prominent
QN method is Symmetric Rank 1(SR-1) which recursively approximates the Hessian as follows:
Bt+1 = Bt +

(yt−Btst)(yt−Btst)
⊤

(yt−Btst)⊤st
, where st = wt+1 − wt and yt = ∇fi(wt+1) − ∇fi(wt).

Although, SR-1 update only makes a rank-1 change to the previous Hessian approximation and
evidently has a simple form, in practice it displays better convergence to the true Hessian than
other similar methods like BFGS (Nocedal & Wright, 2006, p.145). Another useful property of this
approximation is self-complementarity, which means that we can find the inverse Hessian approx-
imation B−1

t using the same vector pair st and yt: B−1
t+1 = B−1

t +
(st−B−1

t yt)(st−B−1
t yt)

⊤

(st−B−1
t yt)⊤yt

. Note,
that this approximation method does not necessarily generate a positive definite matrix.
Contributions. Before delving into the details, we outline the primary contributions of this work:
• We present the General Framework for Preconditioned and Second-order Polyak methods. This

framework covers classical optimization methods, provides valuable insights into Polyak step-size
methods, and enables the development of novel Polyak step-size methods.

• We propose the first Stochastic Cubic Newton method with Polyak step-size.
• We introduce the new scale invariant versions of AdaGrad and Adam, which make them invariant

to some basis transformations.
• We conduct comprehensive experiments encompassing a diverse range of scenarios, including

both convex and non-convex settings.
Organisation. In this paper, we have consolidated our findings and integrated them into a compre-
hensive framework presented in Section 2. Additionally, Section 3 offers a detailed presentation of
the results from our experiments.
Notation and Assumptions. We introduce the notation used throughout the paper and state the
underlying assumptions that guide our analysis. We equip the primal space w ∈ E and the
dual space g ∈ E∗ with the conjugate norms ∥w∥ and ∥g∥∗, respectively. As a special case,
for a positive definite matrix B ∈ Rd×d, we introduce the conjugate Euclidean norms as fol-
lows: ∥w∥B = ⟨Bw,w⟩1/2 and ∥g∥B−1 =

〈
g,B−1g

〉1/2
. As an example, ∇f(w) ∈ E∗ and

∇2f(w)h ∈ E∗ for h ∈ E. We define the operator ⊙ as a component-wise product between two
vectors, also known as the Hadamard product. For the vector w, w2 and

√
w means component-wise

square and square root, respectively. We represent diag(w) as a diagonal matrix of a given vector v
and a vector diagonal(H) ∈ Rd as the diagonal of a matrix H ∈ Rd×d. For simplicity, we denote
gt = ∇fi(wt) and Ht = ∇2fi(wt) if it is not defined differently. Also, we denote an action of the
linear operator as B[h]2 = ⟨Bh, h⟩.
Interpolation Condition. The Interpolation Condition is an assumption often applied in optimiza-
tion and machine learning, particularly in the analysis of overparameterized models such as deep
neural networks. It assumes the existence of a set of model parameters w∗ such that the loss func-
tion f(w) achieves its infimum across all data points. This condition is indicative of a scenario
where the model has sufficient flexibility to perfectly fit the training data, leading to zero loss for
every data point. Such regimes are commonly encountered in overparameterized deep neural net-
works Ma et al. (2018b); Zhang et al. (2021) or non-parametric regression models Liang & Rakhlin
(2020); Belkin et al. (2019), where the model’s capacity exceeds the complexity of the data, ensur-
ing exact interpolation of the training set. This is one of the standard assumptions in analysis of
methods with the Stochastic Polyak step-size e.g. Schaipp et al. (2023); Loizou et al. (2021); Gower
et al. (2022); Li et al. (2023); Orvieto et al. (2022). Unless otherwise stated, our default assumption
is that Assumption 1 holds true.

Assumption 1: Interpolation Condition

We assume that the interpolation condition holds for a set of non-negative functions
{fi(w)}ni=1 (fi(w) ≥ 0 ∀w ∈ E), when ∃w∗ ∈ E, s.t. f(w∗) = 0. Consequently,
fi(w

∗) = 0 for all i = 1, 2, ..., n.

3
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2 SANIA – GENERAL FRAMEWORK

2.1 GENERAL FRAMEWORK

In this section, we propose a general framework equation 6 for preconditioning stochastic Polyak
step-size methods. This framework generalizes some well-known first-order, second-order, and
Quasi-Newton methods from Polyak step-size perspective. The main feature of the framework is
that it highlights some insights about SPS and provides an instrument to generalize existing methods
as Polyak step-size methods. It makes them adaptive and parameter-free in the SPS setting. The
generality of this framework makes it difficult to propose an explicit step. Therefore, we will focus
on the most promising cases and provide their explicit formulations to introduce new methods.
In the following section we will demonstrate the problem settings required to derive existing and
proposed methods using SANIA equation 6. We note that if any particular variable from the General
Framework is not mentioned explicitly it is assumed to be fixed at zero.

Definition 1: SANIA: General Framework

Let Bt ≻ 0 and Dt be symmetric matrices, and τt be sequence of numbers that is given or
can be computed for any given t ≥ 0. We consider the following minimization problem:

wt+1, αt+1 = argmin
w∈Rd,α∈R

1
2∥w − wt∥2Bt

+ τtα

s.t. fi(wt) + ⟨mt, w − wt⟩+ 1
2 ⟨Dt(w − wt), w − wt⟩ ≤ α.

(6)

Note that Bt is required be a positive definite matrix to ensure that ∥ · ∥Bt is a Euclidean
norm.

2.2 EXISTING METHODS

SGD. Let us first derive an update rule for the most frequently used variant of Stochastic Gradient
Descent (SGD) method using SANIA equation 6.

We set parameters as follows:

τt = γt, mt = ∇fi(wt), Dt = 0, Bt = I .

The explicit method equation 2 is the solution of the following implicit problem:

wt+1, αt+1 = argminw∈Rd,α∈R
1
2∥w − wt∥22 + γtα,

s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ ≤ α.
(7)

The proof is presented in Appendix B.1. Note, that normally α is an upper bound for f∗i . Hence, if
f∗i is known, we can fix α = f∗i . This leads us to the Stochastic Polyak step-size method.
Stochastic Polyak step-size (SPS). The update rule for Stochastic Gradient Descent with Polyak
step-size can be derived as follows:

We set parametersa as follows:

α = f∗i , mt = ∇fi(wt), Dt = 0, Bt = I ,

and solve the following problem:

wt+1 = argminw∈Rd
1
2∥w − wt∥22,

s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ ≤ f∗i .
(8)

aNote that in this formulation, we do not optimize over α , and therefore, the value for τ is not required.
In the subsequent text, we will omit specifying a value for this parameter wherever it is unnecessary.

We demonstrate in Appendix B.2 that equation 3 serves as an explicit formulation of equation 8.
When f∗i is known (as in the case of interpolation under Assumption 1), the method becomes both
adaptive and parameter-free. Otherwise, an estimate of f∗i must be tuned, analogous to tuning the
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step-size parameter γt in SGD. Furthermore, we show that a similar transition can be applied to
other methods.
Preconditioned SGD. Preconditioning is used to introduce curvature information into SGD equa-
tion 5. We precondition the stochastic gradient approximation, denoted as mt, with a positive def-
inite matrix Bt ≻ 0. There are many methods that fit this description, ranging from the classical
Damped Newton method and Quasi-Newton methods (like BFGS) to modern diagonal precondi-
tioning techniques such as Adam, AdaGrad, and Hutchinson method. We can derive Preconditioned
SGD from equation 6.

With 0 < γt ≤ 1 as a step-size, we choose the parameters as follows:

τt = γt, mt = gt, Dt = 0, Bt = Bt,

and solve the following problem:

wt+1, αt+1 = argminw∈Rd,α∈R
1
2∥w − wt∥2Bt

+ γtα

s.t. fi(wt) + ⟨gt, w − wt⟩ ≤ α.
(9)

We get the next explicit step: wt+1 = wt − γtB−1
t gt. Note that gt can represent either∇fi(wt) or

an alternative approximation of the gradient. This notation will also be used in the subsequent text.

Next, we describe some preconditioning methods.
AdaGrad is an adaptive optimization method that approximates the Hessian of the objective func-
tion using the cumulative squared gradient information to scale the learning rates. Accumulation of
all previous gradients in the preconditioner Bt leads to decay in the learning rate γt which increases
performance for sparse settings (non-frequent features) at the cost of degrading in case of dense
settings.

The AdaGrad preconditioning is derived by: mt = gt = ∇fi(wt), and Bt = diag
(√∑t

j=1 g
2
j

)
.

Adam is incorporating both adaptive learning rates and momentum. The update rule involves the
computation of the moving average of both the first and second moments of the gradients. The first
moment (β1) is the mean of the gradients, and the second moment (β2) is the uncentered variance
of the gradients.

The Adam preconditioning is derived by:

mt =
(1−β1)

∑t
j=1 βt−i

1 gj

1−βt
1

, Bt = diag

(√
(1−β2)

∑t
j=1 βt−j

2 g2
j

1−βt
2

)
,

where 0 < β1, β2 < 1 are two hyperparameters referred to as first and second moment coefficients.
The biased estimates are corrected by dividing them by the bias correction terms, which are powers
of the decay rates β1 and β2, respectively.

Hutchinson’s method is employed to estimate the diagonal of the Hessian matrix (Hutchinson,
1989). To achieve this, the method utilizes only a handful of Hessian-vector products, which can
be efficiently computed using backpropagation (Christianson, 1992). Specifically, the product of a
Hessian matrix∇2f(w) and a vector h can be computed through a directional derivative of the gra-
dient, given by d

dt ∇f(w + th)|t=0 = ∇2f(w)h. Hutchinson’s method leverages Hessian-vector
products to estimate the diagonal through diag(∇2f(w)) = E[h ⊙ (∇2f(w)h)], where h is a ran-
dom vector with Rademacher distribution2 or a normal distribution as discussed in (Bekas et al.,
2007) and Lemma B.4 in Appendix. Utilizing this identity, we can estimate the Hessian diagonal
by a weighted average of each iteration’s result: Bt = βBt−1 + (1 − β) diag(h ⊙ ∇2fit(wt)h),
where β ∈ (0, 1) is a momentum parameter, it is a number of a random function on the step t,
and B0 = 1

k

∑k
j=1 diag(hj ⊙ ∇2fj(w0)hj), where k is a number of functions for initialization

of the approximation. To ensure Bt remains positive definite, especially in the face of potential
non-convexities in the loss functions, we apply truncation by positive number µ and retain only the
absolute values of elements given by (Bt)j,j = max{µ, |Bt|j,j}. Some of the recent works utilizing

2hj ∈ {−1,+1} with equal probability.

5
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this method are PSPS (Abdukhakimov et al., 2023), Sophia (Liu et al., 2024), OASIS (Jahani et al.,
2022), and others (Sadiev et al., 2022; Pirau et al., 2023). .
Preconditioned SPS. Similarly to SGD and SPS, Polyak step-size could be introduced for Precon-
ditioned SGD methods. Preconditioned SPS (PSPS) was presented by Abdukhakimov et al. (2023).
It can be also derived from SANIA for Bt ≻ 0.

We choose the parameters as follows:

α = f∗i , mt = gt, Dt = 0, Bt = Bt,

and solve the following problem:

wt+1 = argminw∈Rd
1
2∥w − wt∥2Bt

,

s.t. fi(wt) + ⟨mt, w − wt⟩ ≤ f∗i .
(10)

We get the next explicit step:

wt+1 = wt − fi(wt)−f∗
i

∥mt∥2

B
−1
t

B−1
t mt. (11)

Theorem 1

Let fi(w) be a convex, Lmax-Lipschitz smooth function that satisfy the Interpolation Con-
dition (Assumption 1) for all i ∈ {1, . . . , n}. Assume Bt ≻ 0 is a sequence of positive
definite matrices for all t ∈ {0, . . . , T}, with mt = ∇fi(wt), and that Bt satisfies the order-
ing Bt ⪰ Bt+1 ⪰ ν for some ν > 0. Then, for the sequence wt generated by equation 11,
the average iterate ŵT = 1

T

∑T−1
t=0 wt satisfies the following convergence guarantee:

E[f(ŵT )− f∗] ≤
2Lmax∥w0 − w∗∥2B0

νT
. (12)

In PSPS, the norm in the projection is changed to a weighted norm based on the preconditioning
matrix Bt ≻ 0, it helps to improve the convergence rate in case of badly scaled/ill-conditioned
datasets.
Gradient regularized Newton method. One of the main issues of Newton method is a lack of
global convergence. To solve it with provably fast convergence, Cubic Regularized Newton method
was proposed by Nesterov & Polyak (2006). Later, to simplify subproblem solution, the gradi-
ent regularization was proposed by Mishchenko (2023); Doikov & Nesterov (2023). Next, we
present a formulation of a Stochastic Cubic Newton Method with gradient regularization from equa-
tion 6.

With L2 as a Lipschitz-continuous constant for Hessian, we choose the parameters as follows:

τt =
√

3
L2∥gt∥ , mt = gt = ∇fi(wt),

Dt = Ht = ∇2fi(wt), Bt = I ,

and solve the following problem:

wt+1, αt+1 = argmin
w∈Rd,α∈R

1
2∥w − wt∥22 + α

√
3

L2∥gt∥

s.t. fi(wt) + ⟨gt, w − wt⟩+ 1
2Ht[w − wt]

2 ≤ α.
(13)

We get the next step:

wt+1 = wt −
[
Ht + I

√
L2

3 ∥gt∥
]−1

gt.

SP2. In (Li et al., 2023), the constraint of SPS equation 3 was extended for the second-order infor-
mation, aimed at incorporating additional curvature information to accelerate the convergence rate.

6
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Next, we present the implicit formulation of SP2 under Assumption 1:

wt+1 = argmin
w∈Rd

1
2∥w − wt∥2,

s.t. fi(wt) + ⟨gt, w − wt⟩+ 1
2Ht[w − wt]

2 = 0.
(14)

The explicit formulation was presented only for generalized linear models.

In next sections, we will propose a variant of explicit solution for SP2 with connection to Cubic
Newton.

2.3 PROPOSED METHODS

Gradient regularized Newton method with Polyak step-size. Similarly to SGD and SPS, we
propose a new version of Cubic Newton method with Polyak step-size and its stochastic version. If
f∗i is known for example in case of interpolation with Assumption 1, then the method is parameter-
free. This result is new both in deterministic and stochastic cases. Similarly to SGD, we fix α = f∗i
in equation 13 and get the next method.

We choose the parameters as follows:

α = f∗i , τt =
√

3
L2∥gt∥ , mt = gt = ∇fi(wt), Dt = Ht = ∇2fi(wt), Bt = I ,

and solve the following problem:

wt+1 = argminw∈Rd
1
2∥w − wt∥22,

s.t. fi(wt) + ⟨gt, w − wt⟩+ 1
2Ht[w − wt]

2 ≤ f∗i .
(15)

The explicit step is formulated as follows:

wt+1 = wt − (1− κt) [κtI + (1− κt)Ht]
−1
gt, (16)

where κt = 0 if fi(wt) − f∗i > 1
2∥gt∥

2
H−1

t

, otherwise κt is computed by Cubic Newton-type
line-search.

SANIA Quasi-Newton for Bt ≻ 0. Similarly to PSPS equation 10, this approach covers AdaGrad,
Adam, Hutchinson’s method, Quasi-Newton methods with Bt ≻ 0, and Newton method for convex
functions with Ht ≻ 0. The method is inspired by Affine-Invariant Cubic Newton from Hanzely
et al. (2022). Note, the Hessian approximation Bt is used both in the scaling of the objective norm
and in the constraint model. We derive it from equation 6.

The parameters are chosen as follows:

α = f∗i , τt = γt, mt = gt, Dt = Bt, Bt = Bt,

and solve the following problem:

wt+1 = argminw∈Rd
1
2∥w − wt∥2Bt

, (17)

s.t. fi(wt) + ⟨mt, w − wt⟩+ 1
2Bt[w − wt]

2 ≤ f∗i .

The explicit step is:
wt+1 = wt − λtB−1

t mt, (18)

where for υt =
2(fi(wt)−f∗

i )

∥mt∥2

B
−1
t

, we define

λt =
{

1−
√
1−υt, if υt≤1,

1, otherwise. (19)

Note, that for υt > 1, there is no solution of equation 17 and we define λt = 1 as a minimum of the
constraint. The main difference between PSPS equation 11 and SANIA-Quasi-Newton equation 18
is the parameter λt. For equation 18, step-size λt ≤ 1 in equation 19, while in contrast for equa-
tion 11 λt could be much bigger than 1. For Newton method, the step-size λt is naturally bounded
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by 1, which makes SANIA-Quasi-Newton step-size safer than the step-size of PSPS. More details,
comparisons, and theoretical results are presented in Appendix.

Lemma 1

Let fi(x) be a convex function for all i ∈ [1, . . . , n] and have the same minimum w∗ (As-
sumption 1), Bt ≻ 0 are positive definite matrices for t ∈ [0, . . . , T ], and mt = ∇fi(wt).
Then for equation 18 method with the step size λt ∈ (0, υt), we have ∥wt+1 − w∗∥2Bt

<

∥wt − w∗∥2Bt
. Additionally, for λt = υt/2, we get ∥wt+1 − w∗∥2Bt

≤ ∥wt − w∗∥2Bt
−

(fi(wt)− f∗i )υt/2.

SANIA AdaGrad-SQR. We propose a new preconditioning method, called AdaGrad-SQR, by re-
moving the square root from AdaGrad update. In Section 2.4, we will prove that the improved
algorithm have ”scale invariance” property. Figure 1 shows that the proposed algorithm behaves the
same both on original and scaled versions of datasets.

We define mt, Bt, Dt for equation 18 as follows:

mt = gt, Bt = Dt = diag
(∑t

j=1 g
2
j

)
. (20)

SANIA Adam-SQR. Along with SANIA AdaGrad-SQR, we propose another ”scale-invariant”
method. Following the same idea, it removes the square root from the preconditioning matrix of
Adam.

We define mt, Bt, Dt for equation 18 as follows:

mt =
(1−β1)

∑t
j=1 βt−j

1 gj

1−βt
1

, Bt = Dt = diag

(
(1−β2)

∑t
j=1 βt−j

2 g2
j

1−βt
2

)
. (21)

SANIA PCG for Newton method for non-convex functions. In cases where the functions fi(w)
are non-convex, the Hessian matrixHt may not be positive definite but invertible. This characteristic
renders the approach not applicable, as ∥gt∥H−1

t
is no longer a norm. To address this issue, we

propose a solution based on the rank-1 SR-1 approximation.

First, let us define Bt and Dt as follows:

Bt = Dt =
yy⊤

s⊤y
, mt = gt, α = f∗i , τt = γt,

where s = H−1
t gt and y = Hts = gt.

Then, by solving the problem equation 17, we get an explicit method:

wt+1 = wt − λtB+
t ∇fi(wt),

where for υt =
2(fi(wt)−f∗

i )

∥gt∥2

B
+
t

we define λt =
{

1−
√
1−υt, if υt≤1,

1, otherwise.

Note that Bt is a rank-1 matrix, hence non-invertible, but it does have a pseudoinverse which is
given by B+

t = ss⊤

s⊤y
, hence, B+

t gt = H−1
t gt.

We present more details in Appendix 25. In practice, we solve H−1
t gt by using Conjugate Gradient

method, which allows to compute only Hessian-vector products without computing and storing the
full Hessian Ht.

2.4 AFFINE AND SCALE INVARIANCE

The family of Stochastic Gradient Methods with Polyak step-size offers an update rule that alleviates
the need of fine-tuning the learning rate of an optimizer. However, existing first-order algorithms,
whether stochastic or deterministic, perform poorly on ill-conditioned datasets. One possible rea-
son for this is their strong dependence on the chosen basis. This is why, in machine learning, it is
common practice to normalize data, as it makes the optimization space and basis more amenable. In
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the case of generalized linear models (GLM), the choice of basis is directly linked to the handling
of ill-conditioned datasets. Changing the basis leads to improvement of conditioning.
Affine invariance is one of the key features of the Newton method, which makes it basis-
independent (Nesterov & Nemirovskii, 1994; Nesterov, 2018). Let A ∈ Rd×d be a non-degenerate
matrix. We consider function ϕ(y) = f(Ay). By affine transformation, we denote f(w) →
ϕ(y) = f(Ay), w → A−1y. Now, we discuss what is affine invariant friendly and what is not.
First of all, the local Hessian norm ∥h∥∇2f(w) is affine-invariant: ∥z∥2∇2ϕ(y) =

〈
∇2ϕ(y)z, z

〉
=〈

A⊤∇2f(Ay)Az, z
〉
=
〈
∇2f(w)h, h

〉
= ∥h∥2∇2f(w). However, the norm ∥z∥2I is not affine invari-

ant. Second of all, Damped Newton method is affine invariant (Lemma 5.1.1 (Nesterov, 2018)).
It means that for the function f(w) Damped Newton method with affine invariant step-size γt
generates wt+1 = wt − γt[∇2f(wt)]

−1∇f(wt). For a function ϕ(y), Damped Newton method
generates yt+1 = yt − γt[∇2ϕ(yt)]

−1∇ϕ(yk). If y0 = A−1w0, then ∀t : yt = A−1wt. Essen-
tially, we get a bijection between yt and wt. Also, the function values during the optimization
are the same ϕ(yt) = f(wt). It means that for GLM, we will automatically get the best ba-
sis. Finally, we can show that SANIA Newton and SANIA CG are affine invariant, because the
step-size λt in equation 19 is affine-invariant friendly. All proofs are presented in Appendix D.2.
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Figure 1: Observation of scale invari-
ance of SANIA while minimizing logis-
tic regression objective function on syn-
thetic binary classification dataset with
scaling factor k = 4.

Scale invariance is a special case of affine invariance,
where the matrix A is a diagonal matrix. This implies
the removal of rotations from the transformations, allow-
ing only diagonal transformations. To distinguish scale
invariance from affine invariance, we denote the trans-
formation V ∈ Rd×d as a non-degenerate diagonal ma-
trix. It’s evident that the diagonal preconditioning from
AdaGrad, Adam, and Hutchinson is not affine invariant
because it does not adapt to rotations. However, they
could be scale invariant. It turns out that classical Ada-
Grad and Adam are not scale invariant, but if we remove
the square root, they become scale invariant. We propose
the new scale invariant SANIA AdaGrad-SQR in equa-
tion 20 and new scale invariant SANIA Adam-SQR in
equation 21. All proofs are presented in Appendix D.2.
Scale invariance property of SANIA Adam-SQR and SA-
NIA AdaGrad-SQR is shown in Figure 1, where SA-
NIA Adam-SQR and SANIA AdaGrad-SQR are converg-
ing identically for both original and badly scaled versions
of the datasets, while using classical Adam and AdaGrad
preconditioners result in different convergence steps. Re-
cently, scale invariant version of AdaGrad, named KATE,
was proposed by Choudhury et al. (2024).

Figure 1 illustrates that SANIA is able to become scale
invariant with various preconditioners. Note that SANIA
Bt = Id, SANIA Bt = diag((V −1)2), and SANIA
Bt = diag(H−1) are preconditioned by Identity matrix
(i.e. no preconditioning), squared inverse of the scaling
vector used to obtain the scaled version of the dataset,
and inverse of the Hessian diagonal of the objective func-
tion, respectively. One of the most noteworthy observa-
tions from this figure is that using the vector employed to
transform the dataset for scaling, as a preconditioner, re-
sults in a scale invariant method. This essentially leads to
convergence in a similar manner as non-preconditioned
SANIA applied to the original dataset. In practice, ob-
taining such information is typically unattainable and of-
ten not even approximable. However, by utilizing the
curvature of the objective function, we can achieve the
same scale invariance property. This is also demonstrated
in Figure 1 by comparing SANIA preconditioned with
the diagonal of the Hessian (SANIA diag(H−1

t )) on both the original and scaled data. This
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method results in improved convergence while maintaining scale invariance, albeit with minor nu-
merical instabilities. Nevertheless, SANIA diag(H−1

t ) is still impractical for large problems in-
volving demanding calculations of Hessian. For reference, in the same figure we display perfor-
mance of Adam with a constant step size, which deteriorates when scaled data is introduced.

3 EXPERIMENTS
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Figure 2: Performance of SANIA vari-
ants of Adam, Adagrad compared to
standard Adam, Adagrad and KATE.

We test our methods on multiclass and binary classifi-
cation problems with both linear models and neural net-
works. Considering practicality of the methods in experi-
ments we only focus on SANIA Adam-SQR and SANIA
Adagrad-SQR. For experiments with NNs we choose 5
architectures, namely LeNet5 Lecun et al. (1998), Sim-
ple Convolutional Neural Network with 2 convolutional
layers (∼ 400K parameters), DenseNet121 Huang et al.
(2018), ResNet18 He et al. (2015) and ShuffleNetV2
with 0.5x output channels Ma et al. (2018a) trained on 5
datasets, MNIST LeCun et al. (2010), Fashion-MNIST
Xiao et al. (2017), CIFAR10 and CIFAR100, Krizhevsky
et al. (2009) and SVHN Netzer et al. (2011) respectively.
For evaluations with a linear model on binary classifica-
tion problems we consider logistic regression that is de-
fined as fLogReg(w) =

1
n

∑n
i=1 log(1 + exp(−yixTi w)),

where {(xi, yi)}ni=1 is our dataset, xi ∈ Rd and yi ∈
{−1,+1}. We select small and large scale datasets from
LibSVM data repository3 and conduct additional experi-
ments to illustrate performance and scale invariance prop-
erty of out methods. To simulate badly scaled data we
introduce scaled version of each dataset where its feature
columns are multiplied by a vector e = {exp(ai)}di=1
where ai is generated from a uniform distribution on the
interval [−k, k].
All experiments are conducted with 5 initial seeds (0-4)
and learning rates for Adam and Adagrad are chosen after
multiple rounds of manual fine-tuning. Additional exper-
iments (Figures 3, 5, 6, 7), findings and other details
(synthetic dataset generation, learning rates and etc.) can
be found in Appendix E. The source code is available 4.

In Figure 2 (see also Figures 3 and 6 in appendix) we can
see that all presented variations of SANIA closely match
or outperform other adaptive optimization methods across
both under- and over-parametarized settings. Once again,
note that while other methods require step-size fine-tuning and multiple runs of experiments, SANIA
only needs one run for one set of configurations (i.e. scaling factor, batch-size, and etc.).

4 CONCLUSION

In this paper, we introduced a versatile and inclusive framework that not only encompasses classical
optimization techniques but also sheds valuable light on Polyak step-size methods. Our research
introduce the first Cubic Newton method with Polyak step-size which combines the efficiency of
stochastic methods and the robustness of Newton methods. We have presented innovative variants
of AdaGrad and Adam optimization algorithms that are scale invariant. Our proposed methods are
affine or scale invariant, and this important development ensures the invariance of these methods to
basis transformation, expanding their applicability and reliability in various scenarios. Our work is
supported by comprehensive experiments including both convex and non-convex settings.

3https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
4https://anonymous.4open.science/r/SANIA-A12E
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A RELATED WORK

Second-order methods have played a crucial role in contemporary optimization since their inception
in classical works focused on root-finding algorithms by Newton (1687), Raphson (1697), Simpson
(1740), and Bennett (1916). Subsequent significant advancements in the Newton method and its
local quadratic convergence rates were made by Kantorovich (1948b;a; 1949; 1951b;a; 1956; 1957).
These methods have been extensively researched, refined, and enhanced in various works, with no-
table contributions from Moré (1977),Griewank (1981), Nesterov & Polyak (2006). Today, they
are widely employed in both industrial and scientific computing. For a comprehensive historical
overview of the Newton method, Boris T. Polyak’s paper Polyak (2007) provides more in-depth in-
sights. Compared to first-order algorithms, second-order methods typically yield faster convergence.
However, it’s important to note that the per-iteration computational cost of second-order methods is
considerably higher. An example of the classical Newton method can be expressed as follows:

xt+1 = xt −
[
∇2f(xt)

]−1∇f(xt)

It exhibits quadratic local convergence, but it becomes impractical for large-scale optimization prob-
lems due to the necessity of computing the complete Hessian and matrix inversion at each iteration.
It also lack of global convergence properties and could diverge if far from the solution.

The Cubic Regularized Newton method by Yurii Nesterov and Boris T. Polyak (Nesterov & Polyak,
2006) is one of the main approaches to globalize the Newton method. This algorithm achieves global
convergence with the convergence rate O(ε−1/2) for convex functions. Nonetheless, a notable lim-
itation of the Cubic Regularized Newton method lies in the auxiliary problem, which typically re-
quires running a separate optimization algorithm to solve it. Several research papers have proposed
regularization techniques based on the gradient norm, aiming to derive an explicit regularized New-
ton step Polyak (2009; 2017). In Mishchenko (2023); Doikov & Nesterov (2023), the convergence
rate was improved up to O(ε−1/2) for convex functions, under higher assumptions on smoothness
it accelerates up to O(ε−1/3) Doikov et al. (2024). Affine-Invariant Cubic Regularized Newton
method with local Hessian norms has the convergence rate O(ε−1/2) and the same subproblem as a
classical Newton step Hanzely et al. (2022).

B PROOFS

B.1 STOCHASTIC GRADIENT DESCENT WITH SANIA

Lemma 2

The solution w̄ of the next problem

w̄ = argmin
w∈Rd,α∈R

f(w) + τα s.t g(w) ≤ α (22)

is the same as the solution ŵ of

ŵ = argmin
w∈Rd

f(w) + τg(w), (23)

where τ > 0.

Proof. Denote the Lagrangian as L(w,α, λ) = f(w) + τα + λ(g(w) − α), where λ ≥ 0 is the
Lagrange multiplier. We know that ∂L

∂α = τ −λ should be 0, which means λ = τ > 0. According to
the complementary slackness, the condition λ(g(w)− α) = 0 should hold. Thus, α = g(w), which
means solving problem 22 is the same as solving problem 23.
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Lemma 3: Stochastic Gradient Descent

Let γt > 0, then the solution to

wt+1, αt+1 = argmin
w∈Rd,α∈R

1
2∥w − wt∥22 + γtα s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ ≤ α,

(24)

is given by
wt+1 = wt − γt∇fi(wt) (25)

Proof. From Lemma B.1, we know that solving problem 24 is the same as solving the following
problem:

wt+1 = argmin
w∈Rd

1
2∥w − wt∥22 + γt(fi(wt) + ⟨∇fi(wt), w − wt⟩). (26)

By taking the derivative of the objective function, we get the solution right away.

B.2 STOCHASTIC POLYAK STEP-SIZE WITH SANIA

Lemma 4: Stochastic Polyak step-size

f∗i is the minimal value of function fi(wt). The solution to

wt+1 = argmin
w∈Rd

1
2∥w − wt∥22 s.t. fi(wt) + ⟨∇fi(wt), w − wt⟩ ≤ f∗i , (27)

is given by

wt+1 = wt −
fi(wt)− f∗i
∥∇fi(wt)∥2

∇fi(wt). (28)

Proof. Denote the Lagrangian as L(w, λ) = 1
2∥w−wt∥22 + λ(fi(wt) + ⟨∇fi(wt), w−wt⟩ − f∗i ),

and we can get Karush–Kuhn–Tucker(KKT) conditions as below:


∂L
∂w = w − wt + λ∇fi(wt) = 0

λ(fi(wt) + ⟨∇fi(wt), w − wt⟩ − f∗i ) = 0

fi(wt) + ⟨∇fi(wt), w − wt⟩ − f∗i ≤ 0

λ ≥ 0.

(29)

λ ∈ R+ is called Lagrange multiplier, and if λ = 0, then the constrain is not active. We consider
these two cases as following.

(i) λ = 0:
{
wt+1 = wt

fi(wt)− f∗i ≤ 0, It’s only true when they are equal.
(ii) λ > 0:

{
wt+1 = wt − λ∇fi(wt)

λ =
fi(wt)−f∗

i

∥∇fi(wt)∥2 .
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B.3 PRECONDITIONED SGD WITH SANIA

Lemma 5: Preconditioned SGD

Let Bt ∈ Rd×d be a symmetric positive definite matrix. Let γt > 0, then the solution to

wt+1, αt+1 = argmin
w∈Rd,α∈R

1
2∥w − wt∥2Bt

+ γtα s.t. fi(wt) + ⟨mt, w − wt⟩ ≤ α, (30)

is given by:
wt+1 = wt − γtB−1

t mt. (31)

For AdaGrad setting, we let

mt = ∇fi(wt), Bt =

√√√√ t∑
j=1

gj ⊙ gj ;

for Adam setting,

mt =

(1− β1)
t∑

j=1

βt−j
1 gj

1− βt
1

, Bt =

√√√√√ (1− β2)
t∑

j=1

βt−j
2 gj ⊙ gj

1− βt
2

;

for KATE setting,

bt =

t∑
j=1

gj ⊙ gj , mt =

 t∑
j=1

η(gj ⊙ gj) +
gj ⊙ gj
bj ⊙ bj

 gt, Bt = diag(bt);

and for Sophia setting,

mt = β1mt−1 + (1− β1)gt, Bt = Estimator(wt).

Sophia employes clipping, hence the update rule is slightly modified:

wt+1 = wt − γt · clip(B−1
t mt).

Proof. From Lemma B.1, we know problem 30 is equivalent to:

wt+1 = argmin
w∈Rd

1
2∥w − wt∥2Bt

+ γt(fi(wt) + ⟨mt, w − wt⟩). (32)

Take derivative of w and get solution:

wt+1 = wt − γtB−1
t mt. (33)

By plugging in mt and Bt, we get formulas for AdaGrad: wt+1 = wt − γt gt√∑t
j=1 gj⊙gj

,

and for Adam: wt+1 = wt − γt
(1−β1)

∑t
j=1 β

t−j
1 gj

1−βt
1√

(1−β2)
∑t

j=1
β
t−j
2 gj⊙gj

1−βt
2
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B.4 HUTCHINSON’S LEMMA

Lemma 6: Hutchinson

Let I ∈ Rd×d be the identity matrix. Let H ∈ Rd×d and let z ∈ Rd be a random vector with
a distribution such that

E[zzT ] = I. (34)
It follows that

diagonal(H) = E[z ⊙Hz]. (35)
Furthermore if z has Rademacher or a normal distribution, then 34 holds.

Proof. Taking expectation the Hadamard product we have that

E[z ⊙Hz] = E[
∑
i

zi(
∑
j

Hijzj)ei] =
∑
i

∑
j

HijE[zjzi]ei. (36)

Since E[zjzi] = I we have that E[zjzi] = δij =

{
1 if i = j

0 if i ̸= j.

Using the above in 36 we have that

E[z ⊙Hz] =
∑
i

Hiiei (37)

which is the diagonal of the Hessian matrix.

Let z be a Rademacher random varaible. That is zi =
{
1 with probability 1

2

−1 with probability 1
2 .

Thus for i, j ∈

1, . . . , d and i ̸= j, we have that E[zi] = 0, E[z2i ] = 1 and E[zizj ] = 0. The same results follow for
z ∈ ℵ(0, 1).

C PROPOSED METHODS

C.1 GRADIENT REGULARIZED NEWTON METHOD WITH POLYAK STEP-SIZE

Lemma 7: Gradient regularized Newton method with Polyak step-size.

f∗i is the minimal value of function fi(wt). The solution to

wt+1 = argmin
w∈Rd

1
2∥w − wt∥22 (38)

s.t. fi(wt) + ⟨gt, w − wt⟩+ 1
2Ht[w − wt]

2 ≤ f∗i .

is given by
wt+1 = wt − (1− κt) [(1− κt)Ht + κtI ]

−1
gt,

where κt = 0 if fi(wt)− f∗i > 1
2∥gt∥

2
H−1

t

, otherwise κt is a solution of the next equation

C(κ) = fi(wt)−f∗i − 1−κ
2 g⊤ [(1− κ)Ht + κI]

−1
gt−

κ(1− κ)
2

∥∥∥[(1− κ)Ht + κI]
−1
gt

∥∥∥2
2
= 0,

which can be computationally solved by segment-search for κ ∈ [0, 1]. Note, that C(1) > 0,
and C(0) < 0 if fi(wt) − f∗i ≤ 1

2∥gt∥
2
H−1

t

hence the solution exists and could be found by
bisection search.

Proof. For problem equation 38, the Lagrangian could be written as follows:

L(w, λ) = 1
2∥w − wt∥22 + λ

(
fi(wt) + ⟨gt, w − wt⟩+ 1

2Ht[w − wt]
2 − f∗i

)
.
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Then, we get the next KKT conditions:


∂L
∂w = I(w − wt) + λ (gt +Ht(w − wt)) = 0

λ(fi(wt) + ⟨gt, w − wt⟩+ 1
2Ht[w − wt]

2 − f∗i ) = 0

fi(wt) + ⟨gt, w − wt⟩+ 1
2Ht[w − wt]

2 − f∗i ≤ 0

λ ≥ 0.

Similarly, to previous proofs, the case of inactive constraint with λ = 0 us trivial and we focus on
active constraint case.


I(w − wt) + λ (gt +Ht(w − wt)) = 0

fi(wt) + ⟨gt, w − wt⟩+ 1
2Ht[w − wt]

2 − f∗i = 0,

λ > 0.

First, we find wt+1 as

I(w − wt) + λ (gt +Ht[w − wt]) = 0

wt+1 = wt − λ [λHt + I]
−1
gt.

Now, we substitute its new form in the active constraint and get

fi(wt)− f∗i − λg⊤ [λHt + I]
−1
gt +

λ
2 g

⊤ [λHt + I]
−1
λHt [λHt + I]

−1
gt = 0

fi(wt)− f∗i − λg⊤ [λHt + I]
−1
gt +

λ
2 g

⊤ [λHt + I]
−1

(λHt + I) [λHt + I]
−1
gt − λ

2 ∥ [λHt + I]
−1
gt∥22 = 0

fi(wt)− f∗i − λ
2 g

⊤ [λHt + I]
−1
gt − λ

2 ∥ [λHt + I]
−1
gt∥22 = 0.

To simplify the line-search by λ ∈ [0,+∞], we transform it to κ = 1
1+λ , which is now κ ∈ [0, 1].

fi(wt)− f∗i − 1−κ
2 g⊤ [(1− κ)Ht + κI]

−1
gt − κ(1−κ)

2

∥∥∥[(1− κ)Ht + κI]
−1
gt

∥∥∥2
2
= 0.

To simplify the multiple computations of the inverse matrix, one can apply SVD for Ht and get the
next simplified formulation:

Ht = UtStU
⊤
t

[(1− κ)Ht + κI]
−1

=
[
(1− κ)UtStU

⊤
t + κUtIU

⊤
t

]−1
= Ut [(1− κ)St + κI]

−1
U⊤
t

fi(wt)− f∗i − 1−κ
2 g⊤Ut [(1− κ)St + κI]

−1
U⊤
t gt −

κ(1−κ)
2

∥∥∥[(1− κ)St + κI]
−1
U⊤
t gt

∥∥∥2
2
= 0

g̃t = U⊤
t gt

fi(wt)− f∗i − 1−κ
2 g̃t

⊤ [(1− κ)St + κI]
−1
g̃t − κ(1−κ)

2

∥∥∥[(1− κ)St + κI]
−1
g̃t

∥∥∥2
2
= 0,

where St is a diagonal matrix. Note, that this type of line-search is pretty common for Cubic
Newton Methods. It adds only additional logarithmic inversions O(log ε−1) compared to classical
Newton.
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C.2 SANIA QUASI-NEWTON

Lemma 8: Projection Quadratic Inequality

Let B ∈ Rd×d be a symmetric positive definite matrix. Let fi(wt) ≥ 0. The solution to

wt+1 = argmin
w∈Rd

1

2
∥w − wt∥2Bt

(39)

s.t. fi(wt) + ⟨mt, w − wt⟩+
1

2
∥w − wt∥2Bt

≤ 0. (40)

is given by

wt+1 = wt −

(
1−

√
1− 2(fi(wt)− f∗i )

∥mt∥2B−1
t

)
B−1

t mt, (41)

if
2(fi(wt)− f∗i )
∥mt∥2B−1

t

≤ 1, (42)

otherwise there is no feasible solution.

Proof. First we apply a change of coordinates and abbreviate. Let x := B
1/2
t (w − wt), a :=

B
−1/2
t ∇fi(wt) and c := fi(wt). With this notation equation 39 is given by

arg argmin
x∈Rd

1

2
∥x∥2 s.t. c+ ⟨a, x⟩+ 1

2
∥x∥2︸ ︷︷ ︸

=:q(x)

≤ 0. (43)

The associated Lagrangian is given by

L(x, µ) =
1

2
∥x∥2 + µq(x),

where µ ≥ 0 is the Lagrange multiplier. Taking the derivative in x and setting to zero gives

x = − µ

1 + µ
a. (44)

Consider the case that the constraint is not active, that is µ = 0. Thus x = 0 and consequently
q(x) = c ≥ 0, which is only possible if the constraint is active thus a contradiction. Thus the
constraint must be active and µ ̸= 0.

Let τ := µ
1+µ . To determine τ , and consequently µ, we substituting back x give in equation 44 into

the constraint

q(x) = c− τ∥a∥2 + τ2

2
∥a∥2 =

(
1−

√
1− 2c

∥a∥2
− τ

)(
1 +

√
1− 2c

∥a∥2
− τ

)
∥a∥2

2
= 0,

where we have factored q(x) according to its roots in τ. The above only has a solution if 1− 2c
∥a∥2 ≥=

0 ⇔ ∥a∥2 ≥ 2c. In which case either root of τ is positive, but only the root τ = 1 −
√

1− 2c
∥a∥2

gives a positive µ. Substituting this τ into equation 44 gives

x = −

(
1−

√
1− 2c

∥a∥2

)
a. (45)

Substituting back x := B
1/2
t (w − wt), a := B

−1/2
t ∇fi(wt) and c := fi(wt) gives

B
1/2
t (wt+1 − wt) = −

(
1−

√
1− 2fi(wt)

∥∇fi(wt)∥2B−1
t

)
B

−1/2
t ∇fi(wt). (46)

Right multiplying by B−1/2
t and re-arranging gives the solution.
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C.3 SANIA ADAGRAD-SQR FOR QUASI-NEWTON.

The following is the explicit implementation of the Quasi-Newton algorithm when choosing
AdaGrad-SQR as preconditioning matrix. We add some insurance ϵ to avoid numerical collapse.

Algorithm 1: SANIA AdaGrad-SQR
1 Given batch size m, ϵ, initial point w ← 0;
2 for epoch = 0, 1, 2, . . . do
3 Set G0 = 0
4 for t = 1, 2, . . . do
5 Compute gradient vector gt ← 1

m∇w

∑m
i=1 fi(w)

fi(w): stochastic objective function
6 Accumulate Gt ← Gt−1 + g2t
7 Bt = diag(Gt) + ϵ
8 λt ← step-size in equation 18
9 w ← w − λtB−1

t gt
10 end
11 end

C.4 SANIA ADAM-SQR FOR QUASI-NEWTON.

The following is the explicit implementation of the Quasi-Newton algorithm when choosing Adam-
SQR as preconditioning matrix. We add some insurance ϵ to avoid numerical collapse.

Algorithm 2: SANIA Adam-SQR
1 Given batch size m, ϵ, β1, β2, initial point w ← 0;
2 for epoch = 0, 1, 2, . . . do
3 Set m0 = 0, v0 = 0
4 for t = 1, 2, . . . do
5 gt ← 1

m∇w

∑m
i=1 fi(w) Compute gradient vector

6 mt ← β1mt−1 + (1− β1)gt Accumulate 1st momentum vector
7 vt ← β2vt−1 + (1− β2)g2t Accumulate 2nd momentum vector
8 m̂t ← mt/(1− βt

1))
9 v̂t ← vt/(1− βt

2))
10 Bt = diag(v̂t) + ϵ
11 λt ← step-size in equation 18
12 w ← w − λtB−1

t m̂t

13 end
14 end

C.5 SANIA PCG FOR NEWTON METHOD ON CONVEX FUNCTIONS.

For convex setting where Hessian is positive definite, we can choose Bt in equation 18 as Hes-
sian or the approximation matrix of diagonal Hessian. We present detailed algorithm when
Bt = ∇2fi(wt)(we denote as Hk) as below.
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Algorithm 3: SANIA PCG for convex setting
1 Given ϵ, γ, η, initial point w ← 0;
2 for epoch = 0, 1, 2, . . . do
3 for k = 0, 1, 2, . . . do
4 Set s = 0, r0 = ∇fk, z0 =M−1

0 r0, p0 = z0
∇fk here is the stochastic mini-batch gradient as

5 for j = 0, 1, 2, . . . do
6 αj =

rTj zj

pT
j Hkpj

7 s← s+ αjpj
8 rj+1 = rj − αjHkpj
9 if ∥rj+1∥Mk

−1 < ϵ then
10 break
11 end
12 zj+1 =M−1

k rj+1

13 βj =
rTj+1zj+1

rTj zj

14 pj+1 = zj+1 + βjpj
15 end
16 λk ← step-size in equation 18
17 w ← w − λks
18 end
19 end

In practice, we solve this matrix-vector product (∇2fi(wt))
−1∇fi(wt) using Conjugate Gradient

method. Furthermore, we can incorporate curvature information from Hessian approximation using
Hutchinson’s method, Adam or AdaGrad, which allows us to benefit from preconditioned system. In
Conjugate Gradient method preconditioning is required to ensure faster convergence and the system
can be preconditioned by a matrix M−1 that is symmetric and positive-definite. Preconditioned
Conjugate Gradient is equivalent to solving the following system:

E−1∇2fi(wt)(E
−1)TETx = E−1∇fi(wt),

where

EET =M.

If matrix Mk = Hk, then SANIA PCG is affine invariant; if Mk = diag(Hk), then this method is
scale invariant. In experiments you can choose Mk as AdaGrad-SQR20 or Adam-SQR21.

C.6 SANIA PCG FOR NEWTON METHOD ON NON-CONVEX FUNCTIONS.

For non-convex settings, we cannot use conjugate gradient method to solve this Hx = g (Hessian is
not positive definite) linear system of equations anymore. We try to combine Polyak step-size and
line searxch Newton-CG method together to get good performance. The following is our specific
implementation of the algorithm.
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Algorithm 4: SANIA PCG for Non-convex setting
1 Given ϵ, γ, η, initial point w ← 0;
2 for epoch = 0, 1, 2, . . . do
3 for k = 0, 1, 2, . . . do
4 Set s0 = 0, x0, r0 = ∇fk, z0 =M−1

0 r0, p0 = z0
5 for j = 0, 1, 2, . . . do
6 if pTj Hkpj ≤ 0 then
7 sk = γxj + (1− γ)sign(∇fTk pj)pj
8 λk = min( fk

∇fT
k sk

, η)

9 break
10 end

11 αj =
rTj zj

pT
j Hkpj

12 xj+1 = xj + αjpj
13 rj+1 = rj − αjHkpj
14 zj+1 =M−1

k rj+1

15 if rTj+1zj+1 < ϵ then
16 sk = xj+1

17 λk ← step-size in equation 18
18 break
19 end

20 βj =
rTj+1zj+1

rTj zj

21 pj+1 = zj+1 + βjpj
22 end
23 w ← w − λksk
24 end
25 end

Since product B+
t ∇fi(wt) results in the same direction as (∇2fi(wt))

−1∇fi(wt) , and now the
algorithm stops once it detects negative curvature, otherwise it still takes CG steps until it hits
stopping criteria. You can choose matrix Mk to be AdaGrad-SQR20 or Adam-SQR21 to attain
the scale-invariance property and we name them as SANIA PCG AdaGrad-SQR and SANIA PCG
Adam-SQR. Notice that the names for the convex and non-convex setting are the same, but the
implementation of these methods are slightly different due to the effectiveness of conjugate gradient
methods.

D AFFINE AND SCALE INVARIANCE

D.1 AFFINE INVARIANCE

Lemma 9: Affine Invariance (Lemma 5.1.1 from (Nesterov, 2018))

Let the sequence {xk} be generated by the Newton’s method as applied to the function f:

xk+1 = xk − [∇2f(xk)]
−1∇f(xk), k ≥ 0. (47)

Consider the sequence {yk}, generated by the Newton’s method for the function ϕ:

yk+1 = yk − [∇2ϕ(yk)]
−1∇ϕ(yk), k ≥ 0, (48)

with y0 = B−1x0. Then yk = B−1xk for all k ≥ 0.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Proof. Let yk = B−1xk for some k ≥ 0. Then

yk+1 =yk − [∇2ϕ(yk)]
−1∇ϕ(yk) = yk − [BT∇2f(Byk)B]−1BT∇f(Byk)

=B−1xk −B−1[∇2f(xk)]
−1∇f(xk) = B−1xk+1.

Thus, the Newton’s method is affine invariant with respect to affine transformations of variables.

Lemma 10: Affine Invariance for SANIA Newton

Let the sequence {xk} be generated by the SANIA Newton method as applied to the function
f:

xk+1 = xk − λk[∇2f(xk)]
−1∇f(xk), k ≥ 0. (49)

Consider the sequence {yk}, generated by the SANIA Newton method for the function ϕ:

yk+1 = yk − λ̂k[∇2ϕ(yk)]
−1∇ϕ(yk), k ≥ 0, (50)

with y0 = B−1x0. Then yk = B−1xk for all k ≥ 0.

Proof. We define

λk =

{
1−
√
1− υk, if υk ≤ 1,

1, otherwise,
(51)

where

υk =
2(fi(xk)− f∗i )

∥∇fi(xk)∥2∇2f(xk)
−1

(52)

and

λ̂k =

{
1−
√
1− υ̂k, if υ̂k ≤ 1,

1, otherwise,
(53)

where
υ̂k =

2(ϕi(yk)−ϕ∗
i )

∥∇ϕi(yk)∥2

∇2ϕ(yk)−1
. (54)

Let yk = B−1xk for some k ≥ 0. We have this condition υ̂k =
2(ϕi(yk)−ϕ∗

i )

∥∇ϕi(yk)∥2

∇2ϕ(yk)−1
=

2(fi(Byk)−f∗
i )

∥BT∇fi(Byk)∥2
[BT ∇2f(Byk)B]−1

=
2(fi(xk)−f∗

i )

∥∇fi(xk)∥2

∇2f(xk)−1
= υk holds, which means λ̂k = λk. Then

yk+1 =yk − λk[∇2ϕ(yk)]
−1∇ϕ(yk) = yk − λk[BT∇2f(Byk)B]−1BT∇f(Byk)

=B−1xk − λkB−1[∇2f(xk)]
−1∇f(xk) = B−1xk+1.

Thus, the SANIA Newton method is affine invariant with respect to affine transformations of vari-
ables.

D.2 SCALE INVARIANCE

Kempka et al. (2019); Zhuang et al. (2022) illustrate this important but overlooked property of an
optimization algorithm. It is widely recognized that the convergence rate of minimizing a twice
continuously differentiable function f through a first-order optimization algorithm depends heavily
on the condition number. To mitigate the impact of the condition number, one effective approach is
the use of preconditioners relying on Hessian of the function which yields affine invaraince. Con-
sider the Hessian cannot be easily estimated, Zhuang et al. (2022) shows that scale invariance gives
similar advantages to the use of an optimal diagonal preconditioner.

They also showed why algorithms like SGD and Adam have such excellent performances in DNNs
even though they are not scale invariant. Because they are intensively linked to the use of batch
normalization which normalizes the gradients. Without BN, using SGD with momentum and weight
decay, even a tiny learning rate will lead to divergence while training a deep neural network. But
for the upgraded version of Adam–AdamW which enjoys scale invariance outperforms Adam when
both are finely tuned.
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Now, we will show the classical AdaGrad and Adam are not scale invariant but AdaGrad-SQR and
Adam-SQR enjoy this property.

Lemma 11: Scale Invariance of AdaGrad-SQR

Let the sequence {xk} be generated by the AdaGrad-SQR as applied to the function f:

xk+1 = xk − λkB−1
k mk, k ≥ 0, where mk = ∇fik(xk), Bk =

k∑
j=1

∇fij (xj)2. (55)

Consider the sequence {yk}, generated by the AdaGrad-SQR for the function ϕ:

yk+1 = yk−λ̂kB̂k
−1
m̂k, k ≥ 0, where m̂k = ∇ϕik(yk), B̂k =

k∑
j=1

∇ϕij (yj)2, (56)

with y0 = V −1x0. Then yk = V −1xk for all k ≥ 0. V is a diagonal matrix.

Proof. We define λk =

{
1−
√
1− υk, if υk ≤ 1,

1, otherwise,
where υk =

2(fi(xk)−f∗
i )

∥mk∥2

B
−1
k

, and for λ̂k, υ̂k =

2(ϕi(yk)−ϕ∗
i )

∥m̂k∥2

B̂k
−1

.

Let yk = V −1xk for some k ≥ 0. We have
B̂k =

∑k
j=1∇ϕij (yk)2 =

∑k
j=1[V

T∇fij (V yk)]2 = V T [
∑k

j=1∇fij (xk)2]V = V TBkV,

m̂k = ∇ϕij (yk) = V T∇fij (V yk) = V T∇fij (xk) = V Tmk,

υ̂k =
2(ϕi(yk)−ϕ∗

i )

∥m̂k∥2

B̂k
−1

=
2(fi(V yk)−f∗

i )

∥V Tmk∥2
(V T BkV )−1

=
2(fi(xk)−f∗

i )

∥mk∥2

B
−1
k

= υk.

Then

yk+1 =yk − λ̂kB̂k
−1
m̂k = yk − λk[V TBkV ]−1V Tmk

=V −1xk − λkV −1B−1
k mk = V −1xk+1.

Thus, the AdaGrad-SQR method is scale invariant.

And for Adam-SQR setting where mk =
(1−β1)

∑k
j=1 βk−j

1 ∇fij (xk)

1−βk
1

, Bk =

(1−β2)
∑k

j=1 βk−j
2 ∇fij (xk)

2

1−βk
2

, and m̂k =
(1−β1)

∑k
j=1 βk−j

1 ∇ϕij
(yk)

1−βk
1

, B̂k =
(1−β2)

∑k
j=1 βk−j

2 ∇ϕij
(yk)

2

1−βk
2

.

Similarly, we can get B̂k = V TBkV, m̂k = V Tmk. Rest proofs are the same. From proofs
above we can know for simple AdaGrad and Adam they are not scale invariant , because
B̂k = V TBk ̸= V TBkV .

D.3 GLM

Suppose fi is the loss over a linear model with

fi(w) = ψi(x
T
i w − yi), (57)

whereψi : R→ R is the loss function, and xi is the ith data and yi is the corresponding label. Let the
sequence {wk} be generated by method as applied to the function f . Consider the sequence {ŵk},
generated by the same method but for function ϕ where ϕ(ŵk) = f(Bŵk) = ψi(x

T
i Bŵk − yi).

Take xTi B as a whole, it can be seen as we are doing linear transformation to the data. When matrix
B is badly scaled, it will lead to a ill-conditioning dataset. And it inhibits the performance of the
general algorithms, which is specifically reflected in the need for more iterations to converge, or even
diverge on the worst case. But if the algorithm enjoys affine invariant property, that is, ŵk = B−1xk.
Then we have ψi(x

T
i Bŵk − yi) = ψi(x

T
i BB

−1xk − yi) = fi(w), which means we automatically
have the same function value as the original one as every iteration goes.
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Figure 3: Observation of scale invariance of SANIA while minimizing logistic regression objective
function on binary classification datasets from LibSVM with scaling factor k = 4.
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Figure 4: Performance of SANIA and other adaptive methods on 3 datasets (original and badly
scaled with scaling factor k = 6) with logistic regression loss.

E ADDITIONAL EXPERIMENTS AND DETAILS

All experiments were run with 5 different seeds (0, 1, 2, 3, 4) using PyTorch 2.0.1+cu118 on a com-
puting machine with AMD EPYC 7402 24-Core Processor with 2.8GHz of base clock and 1 x
NVIDIA RTX A6000 GPU unit. Default datatype in PyTorch is set to torch.float64 . LibSVM5

datasets and source code of optimizers used for the experiments are publicly available 6.

E.1 NON-LINEAR LEAST SQUARES

To show experiments for non-convex problems, we use non-linear least squares in Figure 8. Let
{(xi, yi)}ni=1 be our dataset, where xi ∈ Rd and yi ∈ {0, 1}, then Non-linear least squares problem
is given by fNLLSQ(w) =

1
n

∑n
i=1(yi −

1
(1+exp(−xT

i w))
)2.

E.2 BADLY SCALED DATASET

In order to simulate badly scaled datasets we use scaling procedure shown in equation 58.

An×d =


a1,1 a1,2 . . . a1,d
a2,1 a2,2 . . . a2,d

...
. . . . . .

...
an,1 an,2 . . . an,d

 scale−−−→ Ân×d =


a1,1 × v1 a1,2 × v2 . . . a1,d × vd
a2,1 × v1 a2,2 × v2 . . . a2,d × vd

...
. . . . . .

...
an,1 × v1 an,2 × v2 . . . an,d × vd

 ,

(58)
5https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
6https://anonymous.4open.science/r/SANIA-CFF5/
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Figure 5: Performance of SANIA and other first-order optimization methods on binary classification
tasks from LibSVM with logistic regression loss.
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Figure 6: Large-scale binary classification experiments on datasets from LibSVM.
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Figure 7: Performance of SANIA and other methods on multiple classification problems and neural
networks.
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Figure 8: Performance of SANIA and other adaptive methods on 2 LibSVM datasets (original and
badly scaled with scaling factor k = 6) with non-linear least squares loss.
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Figure 9: SANIA CG and SP2 GLM generate identical steps on logistic regression problem with
batch size = 1.

where vi = ebj , bj ∈ Uniform[−k, k].

E.3 LEARNING RATES

Learning rates of algorithms used for experiments are not chosen randomly. To avoid overopti-
mized learning rates obtained using special algorithms and at the same time to adhere to some
fairness of the results we conducted experiments with a series of learning rates γ = 2n where
n ∈ range(−2,−16, 2). Next, we used the best performing step size as the main result for certain
optimizer.

E.4 MORE FINDINGS

In Figure 9 we can see that proposed SANIA CG and SP2 for Generalized Linear Models presented
in Li et al. (2023) generate identical steps towards the minimum given the exact same set of obser-
vations xi. However, disadvantage of SP2 in this case is that it has a closed form solution only for
GLMs.

Figure 11 shows that unlike other classical adaptive methods, SANIA with Newton step is scal-
ing invariant. The same behaviour can be observed in Figure 12 where SANIA AdaGrad-SQR
is not only scaling invariant but also displays significantly better performance compared to Adam,
AdaGrad and Adadelta with a constant learning rate.

In Figure 10 we show how step-sizes of SANIA AdamSQR and SANIA AdagradSQR change
during training on synthetic binary classification problem over 5 runs. Interestingly, evolution of
step-sizes of SANIA AdamSQR closely resemble ”warm-up” technique often used in practice, that
is known to prevent instability in the beginning of training.
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Figure 10: Evolution of metrics and step-sizes in SANIA, fine-tuned methods and learning rate
schedules.
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Figure 11: SANIA Newton compared to other adaptive methods on original and badly scaled (k = 5)
synthetic binary classification dataset (batch size = 100) with logistic regression objective function.
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Figure 12: SANIA AdaGrad-SQR compared to other adaptive methods on original and badly scaled
(k = 10) mushrooms dataset (batch size = 256) with non-linear least squares objective function.

E.5 EXPERIMENTS WITH CUBIC NEWTON WITH POLYAK STEP-SIZE

In this subsection, we present results for Cubic Newton with Polyak step-size from equation 16. In
Figure 13, we compare classical Cubic Newton from (Nesterov & Polyak, 2006), Gradient Regu-
larized Newton from (Mishchenko, 2023; Doikov & Nesterov, 2023) and our Cubic Newton with
Polyak step-size on full-batch logistic regression with µ

2 ∥w∥
2
2-regularization, where µ = 1e− 4. To

show globalization properties, we choose the starting point far from the solution x0 = 3e, where e is
a vector of all ones. We present Cubic Newton with theoretical parameter L2 = 0.1, with fine-tuned
parameter L2 = 0.0004; Gradient Regularized Newton with fine-tuned parameter L2 = 0.0004.
There is a huge difference between fine-tuned and theoretical choice. It means that the method is
pretty sensitive to the choice of the parameter L2. For Cubic Newton with Polyak step-size, we
denote approximate f∗ as f̂ . Then, we present the precise approximation f̂ = f∗ = 0.3361, close
lower approximation f̂ = 0.3, and the very simple and naive lower bound f̂ = 0. For all three
cases, the convergence is almost the same. It also shows that Cubic Newton with Polyak step-size is
very robust to the parameter f̂ , where even the most naive choice works perfectly fine. Finally, we
highlight that Cubic Newton with Polyak step-size significantly overperform other Cubic methods
even with fine-tuned parameters.

0 5 10 15 20 25 30
Iterations, t

10 5

10 4

10 3

10 2

10 1

100

101

f(x
t)

f(x
*)

a9a, Logistic Regression, = 1e 4
Cubic Newton (theory), L2 = 0.1
Cubic Newton (tuned), L2 = 0.0004
Gradient Regularized Newton, L2 = 0.0004
Polyak Cubic Newton (tuned+theory), f = f * = 0.3361
Polyak Cubic Newton (approx), f = 0.3
Polyak Cubic Newton (naive), f = 0.0

Figure 13: Gradient regularized(Cubic) Newton with Polyak step-size vs Cubic Newton methods
for µ
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2-regularized logistic regression
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Figure 14: The comparison of step sizes λPSPS
t (blue dashed line) from equation 61 and λSANIA

t
(orange dashed line) from equation 62.

F CONVERGENCE ANALYSIS

In this section, we prove the theoretical convergence results for SANIA Quasi-Newton and Pre-
conditioned SPS (PSPS). These two methods are very close. Both of these methods have the next
explicit form:

wt+1 = wt − λtB−1
t mt (59)

The difference is the step size. We introduce an additional parameter

υt =
2(fi(wt)−f∗

i )

∥mt∥2

B
−1
t

. (60)

For PSPS, the step size is

λPSPS
t =

fi(wt)− f∗i
∥mt∥2B−1

t

=
υt
2
. (61)

For SANIA Quasi-Newton, the step size is

λSANIA
t =

{
1−
√
1− υt, if υt ≤ 1,

1, otherwise.
(62)

Let us show the relation between them. For υt ≤ 2, SANIA step size is bigger but very close to
PSPS, 2λPSPS

t ≤ λSANIA
t ≥ λPSPS

t . However, for υt > 2, the PSPS becomes more aggressive
and λPSPS

t > 1, which is quite big for Newton-type methods and could be an issue when f∗i was
chosen not accurate enough. We plot both of the step sizes to visualize the difference between them
in Figure 14. Next, we provide the proofs for both step sizes inspired by proofs from (Schaipp et al.,
2023).

Lemma 12

Let fi(x) be a convex function for all i ∈ [1, . . . , n] and have the same minimum w∗ (As-
sumption 1), Bt ≻ 0 are positive definite matrices for t ∈ [0, . . . , T ], mt = ∇fi(wt), and
υt =

2(fi(wt)−f∗
i )

∥∇fi(wt)∥2

B
−1
t

. Then for equation 59 method with the step size λt ∈ (0, υt), we have

∥wt+1 − w∗∥2Bt
< ∥wt − w∗∥2Bt

. (63)

Additionally, for λt =
fi(wt)−f∗

i

∥∇fi(wt)∥2

B
−1
t

, we get

∥wt+1 − w∗∥2Bt
≤ ∥wt − w∗∥2Bt

− (fi(wt)− f∗i )2

∥∇fi(wt)∥2B−1
t

. (64)
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Proof. We start with the Polyak-step upper bound of the distance to the solution.

∥wt+1 − w∗∥2Bt

equation 18
= ∥wt − γtB−1

t ∇fi(wt)− w∗∥2Bt

= ∥wt − w∗∥2Bt
− 2λt ⟨∇fi(wt), wt − w∗⟩+ λ2t∥∇fi(wt)∥2B−1

t

≤ ∥wt − w∗∥2Bt
− 2λt (fi(wt)− f∗i ) + λ2t∥∇fi(wt)∥2B−1

t
,

where in the last inequality we used the convexity of fi(x).

For λt ∈ (0, υt) from equation 60, the right hand side is negative −2λt (fi(wt)− f∗i ) +
λ2t∥∇fi(wt)∥2B−1

t

< 0, hence

∥wt+1 − w∗∥2Bt
< ∥wt − w∗∥2Bt

Next, if we optimize the right hand side by λt, we get the optimal λt = λPSPS
t = υ

2 and

∥wt+1 − w∗∥2Bt
≤ ∥wt − w∗∥2Bt

− 2λt (fi(wt)− f∗i ) + λ2t∥∇fi(wt)∥2B−1
t

≤ ∥wt − w∗∥2Bt
− (fi(wt)− f∗i )2

∥∇fi(wt)∥2B−1
t

Next, we show the convergence theorem for the equation 59 method with the step size λt =
fi(wt)−f∗

i

∥∇fi(wt)∥2

B
−1
t

. Additionally, we assume that the preconditioning is not expanding Bt ⪰ Bt+1 ⪰ ν.

It helps to work with the changing Bt-Euclidean norm. This assumption is satisfied for Bt = I and
for some Quasi-Newton updates.

Theorem 2

Let fi(x) be a convex Lmax-Lipschitz smooth function for all i ∈ [1, . . . , n] and have the
same minimum w∗ (Assumption 1), Bt ≻ 0 are positive definite matrices for t ∈ [0, . . . , T ],
mt = ∇fi(wt), and Bt ⪰ Bt+1 ⪰ ν. Then for equation 59 method with the step size
λt =

fi(wt)−f∗
i

∥∇fi(wt)∥2

B
−1
t

, we get

E[f(ŵT )− f∗] ≤
2Lmax∥w0 − w∗∥2B0

νT
, (65)

where

ŵT =
1

T

T−1∑
t=0

wt (66)

Proof. From equation 64 and the assumption that Bt ⪰ Bt+1 ⪰ ν, we get:

∥wt+1 − w∗∥2Bt+1
≤ ∥wt+1 − w∗∥2Bt

equation 64

≤ ∥wt − w∗∥2Bt
− (fi(wt)− f∗i )2

∥∇fi(wt)∥2B−1
t

≤ ∥wt − w∗∥2Bt
− ν(fi(wt)− f∗i )2

∥∇fi(wt)∥2
= ∥wt − w∗∥2Bt

− ν(fi(wt)− f∗i )
(fi(wt)− f∗i )
∥∇fi(wt)∥2

≤ ∥wt − w∗∥2Bt
− ν(fi(wt)− f∗i )

2Lmax
,

where the last inequality is coming from the Lipschitz-smoothness of fi: 1
2Lmax

≤ (fi(wt)−f∗
i )

∥∇fi(wt)∥2 .
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Now, by taking the expectation and summing the previous inequality for t = 0, . . . , T − 1, we get

E[∥wt+1 − w∗∥2BT
] ≤ E[∥w0 − w∗∥2B0

]−
T−1∑
t=0

ν

2Lmax
E[(fi(wt)− f∗i )].

Finally, by applying convexity to the average point ŵT , we get the convergence rate

E[f(ŵT )− f∗] ≤
1

T

T−1∑
t=0

E[f(wt)− f∗]

≤ 2Lmax

Tν
E
[
∥w0 − w∗∥2B0

− ∥wT − w∗∥2BT

]
≤

2Lmax∥w0 − w∗∥2B0

νT
.

Theorem 3

Let fi(x) be a convex function for all i ∈ [1, . . . , n] and have the same minimum w∗ (As-
sumption 1), Bt ≻ 0 are positive definite matrices for t ∈ [0, . . . , T ], mt = ∇fi(wt),
Bt ⪰ Bt+1 ⪰ ν, and E[∥∇fi(wt)∥2B−1

t

] ≤ G2. Then for equation 59 method with the step

size λt =
fi(wt)−f∗

i

∥∇fi(wt)∥2

B
−1
t

, we get

min
t=0,...,T−1

E[(f(wt)− f∗)] ≤
G∥w0 − w∗∥B0√

T
. (67)

Proof. From equation 64 and the assumption that Bt ⪰ Bt+1 ⪰ ν, we get

∥wt+1 − w∗∥2Bt+1
≤ ∥wt − w∗∥2Bt

− (fi(wt)− f∗i )2

∥∇fi∥2B−1
t

(68)

(69)
By taking the expectation on both sides, we get

E[∥wt+1 − w∗∥2Bt+1
] ≤ E[∥wt − w∗∥2Bt

]− E

[
(fi(wt)− f∗i )2

∥∇fi∥2B−1
t

]

≤ E[∥wt − w∗∥2Bt
]− E[(fi(wt)− f∗i )2]

E[∥∇fi∥2B−1
t

]

= E[∥wt − w∗∥2Bt
]− (f(wt)− f∗)2

E[∥∇fi∥2B−1
t

]

≤ E[∥wt − w∗∥2Bt
]− (f(wt)− f∗)2

G2

We sum up and rearrange:

1

T

T−1∑
t=0

E[(f(wt)− f∗)2] ≤ G2 1

T

T−1∑
t=0

(
E[∥wt − w∗∥2Bt

]− ∥wt+1 − w∗∥2Bt+1
]
)

(70)

≤ G2

T

E[∥w0 − w∗∥2B0
]− E[∥wT − w∗∥2BT

]︸ ︷︷ ︸
>0

 (71)

≤ G2

T
∥w0 − w∗∥2B0

(72)

(73)
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Due to Jensen’s inequality E[X2] ≥ E[X]2 and concavity of square root:

E[(f(wt)− f∗)2] ≥ E[(f(wt)− f∗)]2 (74)

1

T

T−1∑
t=0

E[(f(wt)− f∗)] ≤

√√√√ 1

T

T−1∑
t=0

E[(f(wt)− f∗)]2 (75)

Using the above, we obtain:

min
t=0,...,T−1

E[(f(wt)− f∗)] ≤
1

T

T−1∑
t=0

E[(f(wt)− f∗)] ≤
G∥w0 − w∗∥B0√

T
. (76)

Remark 1. The convergence proofs for the Gradient regularized Newton method with Polyak step-
size equation 15 are presented in SP2 paper Li et al. (2023). Our main contribution in this part is
deriving the explicit formula for general functions equation 16 and finding its connection to Cubic
Regularized Newton.

Remark 2. The presented proofs do not cover all proposed methods and all step sizes. For example,
from the current proofs λPSPS

t is better than λSANIA
t There are still open theoretical problems for

us:
1) The convergence for expanding Euclidean norms, where Bt+1 ⪰ Bt.
2) Better convergence rates for Gradient regularized Newton method with Polyak step-size compa-
rable to Cubic Newton convergence rates O(T−2).
3) Better convergence rates for λSANIA

t step-size in equation 59.
4) Extend the proofs to general mt.
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