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Abstract
Early Exiting (EE) is a promising technique for
speeding up inference at the cost of limited per-
formance loss. It adaptively allocates compute
budget to a datapoint based on its difficulty by ex-
iting at earlier layers. In this study, we first present
a novel perspective on EE by demonstrating that
it could be used to deploy larger models in order
to achieve higher performance while maintaining
the low computational cost of small models. As
existing EE approaches rely on confidence esti-
mation at each exit point, we further study the
impact of overconfidence on the controllability
of the compute/performance trade-off. We intro-
duce PCEE (Performance Control Early Exiting),
a method that ensures a lower bound on accuracy,
hence facilitating accurate adaptation of EE meth-
ods for practical use. In our experiments with
MSDNETS and VISION TRANSFORMER archi-
tectures on CIFAR-10, CIFAR-100, and IMA-
GENET, we show that PCEE offers a simple yet
computationally efficient approach that in most
cases provides better control over performance
than standard confidence-based approaches, and,
interestingly, allows us to scale up model sizes to
yield cost reductions and performance gain.

1. Introduction
Scale, both in terms of model size and amount of data, is
the main driver of recent AI developments, as foreseen by
(Kaplan et al., 2020) and further evidenced by (Hoffmann
et al., 2022). Remarkably, even model architectures are
designed to enable scaling, such as the standard TRANS-
FORMER (Vaswani et al., 2017) which was built to maxi-
mize parallelization, facilitating the training of very large

*Equal contribution 1ServiceNow Research 2Mila-Quebec Arti-
ficial Intelligence Institute, Montreal, Canada 3Archimedes Unit,
Athena Research Center, Athens. Correspondence to: Mehrnaz
Mofakhami <mehrnaz.mofakhami@servicenow.com>.

Accepted to ICML 2024 Workshop on Efficient Systems for Foun-
dation Models (ES-FoMo-II), Vienna, Austria. Copyright 2024 by
the author(s).

Figure 1: Inference efficiency: Larger models coupled
with early exiting can achieve lower prediction errors
for the same computational budget compared to smaller
models. This plot shows prediction error (%) versus aver-
age flops used for different MSDNET sizes on CIFAR-10:
small (4 layers) and large (8 layers). Various exiting strate-
gies are compared: ours (PCEE, PCEE-WS) and Oracle
(exiting as soon as a layer’s prediction matches that of the
final layer). Each green and yellow dot corresponds to a
model seed and a threshold δ. Oracle is computed by aver-
aging over 3 seeds. We can see that the large model with
early exiting can get to a lower prediction error than the full
small model with even less compute.

models. Similarly, recent recurrent architectures such as
RWKV (Peng et al., 2023), MAMBA (Gu & Dao, 2023),
and XLSTM (Beck et al., 2024) enable scaling for the oth-
erwise inefficient legacy recurrent architectures (Greff et al.,
2016) that require sequential processing (Dehghani et al.,
2018). The improved prediction performance unlocked with
scale unfortunately comes at high memory footprint and la-
tency at inference. Several approaches have been proposed
to tackle these limitations, namely quantization (Dettmers
et al., 2022; Ma et al., 2024; Dettmers et al., 2024), knowl-
edge distillation (Hinton et al., 2015; Gu et al., 2023; Hsieh
et al., 2023) and speculative decoding (Leviathan et al.,
2023; Chen et al., 2023) (although specifically for autore-
gressive models). These methods trade performance for
reduced computational cost across all samples, irrespec-
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tive of their difficulty, with the exception of speculative
decoding which uses adaptive computation. However, the
speed-up gains from this method are bounded by the quality
of the draft model used for speculating predictions. More
discussion on related work can be found in Section A.

In this work, we focus on Early-Exiting (EE), an inference
optimization technique that allocates budget adaptively to
the test samples, based on their perceived difficulty. Early-
exit strategies (Grubb & Bagnell, 2012; Huang et al., 2017;
Elbayad et al., 2019a; Schuster et al., 2021; Chen et al.,
2023) involve establishing exit points at the intermediate
layers of a network based on the confidence levels of the pre-
dictions at each layer. The most common approach within
these strategies is to make predictions at each intermediate
layer and evaluate their confidence, allowing the model to
exit early if the confidence exceeds a predetermined thresh-
old. Figure 2 shows the potential saving in compute achiev-
able with an Oracle EE strategy that exits at the first layer
whose prediction matches that of the last layer. The dark
bars indicate the layers used for each sample and the light-
colored area shows the amount of compute that can be saved.

Figure 2: Heatmap of the layers used by an Oracle EE
strategy of a VIT on 64 random samples from IMAGENET-
1K. Light-colored area shows the amount of compute
that can be saved without losing performance.

While Early Exiting is commonly used to speed up infer-
ence at the cost of performance, in this paper we present a
novel perspective by demonstrating that we can achieve the
low computational cost of small models and the high per-
formance of large models simultaneously, by training and
applying Early Exiting on the large model. In other words,
our findings suggest that scaling up models and applying EE
is advantageous for both performance and computational
efficiency, as depicted in Figure 1. To achieve such results,
performance control is of the essence, i.e., reliably estimat-
ing the accuracy of an intermediate prediction so that the
model is not prematurely exited. Current EE methods that
rely on confidence estimates at each exit point in a multi-
layer model are however bound to fail as neural networks
are typically miscalibrated (Guo et al., 2017; Wang et al.,
2021). To address this, we introduce PCEE, Performance
Control Early Exiting, a method that ensures a lower bound
on accuracy by thresholding based not on a datapoint’s con-
fidence but on the average accuracy of its nearest samples
from a held-out validation set with similar confidences. This
approach offers a simple yet computationally efficient alter-

native that provides control over performance, facilitating
accurate adaptation of EE methods for practical use.

Moving from confidence thresholding to accuracy thresh-
olding has a number of advantages. Unlike confidence,
accuracy is an indicator of the actual model performance,
hence one can easily decide on to determine a threshold.
Confidence estimates can also present inconsistent behavior
throughout layers, hence requiring the selection of a differ-
ent threshold per layer, which is in itself a difficult problem
to solve. As discussed in more detail in Section 4 and empir-
ically demonstrated in Section 5, accuracy thresholds offer
a simple approach to determine the earliest exit point that
guarantees at least the desired accuracy.

Contributions Our contributions are summarized as fol-
lows:

• We introduce a post-hoc early-exit approach called
Performance Control Ealy Exiting (PCEE) to provide
control over accuracy for any model returning a confi-
dence score and a classification decision at each exit
point, regardless of how well-calibrated it is.

• Our early exit method requires the selection of one
single threshold as opposed to one per layer. More
importantly, the threshold is a simple accuracy lower
bound—based on the target accuracy level chosen by
the user—rather than an abstract confidence level unre-
lated to prediction performance.

• For the first time to our knowledge, we show that scale
can also yield inference efficiency. That is, larger mod-
els require a reduced amount of computation to attain
a certain accuracy level by exiting at very early layers,
more so than a smaller model.

2. Background and Setting
We focus on the K-way classification setting where data
instances correspond to pairs x, y ∼ X × Y , with X ⊂
Rd and Y = {1, 2, 3, ...,K}, K ∈ N. Classifiers then
parameterize data-conditional categorical distributions over
Y . That is, a given model f ∈ F : X 7→ ∆K−1 will project
data onto the probability simplex ∆K−1.

Early Exit Neural Networks Early Exit Neural Networks
enable dynamic resource allocation during model inference,
reducing computational demands by not utilizing the entire
model stack for every query. These approaches strategi-
cally determine the exit point for processing based on the
perceived difficulty of the data, allowing for a reduction in
resource use for simpler examples while allocating more
compute power to more complex cases. This is commonly
achieved through a confidence threshold δ ∈ [0, 1], where
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the decision to exit early is made if the confidence measure
ci(x) at a given layer i—often derived from simple statistics
(e.g., max(·)) of the softmax outputs—exceeds δ. While
seemingly effective, confidence thresholding is brittle, as it
is sensitive to miscalibration, and requires extensive search
on a left-out validation dataset to find optimal per-layer
thresholds. For example, without properly tuned thresholds,
overconfident exit layers result in premature predictions,
hence degraded accuracy. We provide a simple fix to this
issue in Section 4.

Calibration and Expected Calibration Error (ECE)
Calibration in multi-class classifiers measures how well the
predicted confidence levels (e.g., max softmax(·)) match the
true probabilities of correct predictions. A well-calibrated
model means that if a model assigns a 70% confidence to
a set of predictions, then about 70% of these predictions
should be correct. The Expected Calibration Error (ECE)
(Naeini et al., 2015) quantifies model calibration by calcu-
lating the weighted average discrepancy between average
confidence and accuracy across various confidence levels.
The formula divides confidence ranges into bins and com-
putes the absolute difference in accuracy and confidence per
bin, with an ECE of zero indicating perfect calibration. The
formal definition of ECE is available in Section B in the
appendix. Reliability diagrams visually assess calibration
by comparing confidence levels against actual accuracy in
a plot, where deviations from the diagonal (y = x) show
miscalibration. Overconfidence occurs when confidence
exceeds accuracy, while underconfidence happens when it
falls short. We will use these reliability diagrams to map
confidence to accuracy as discussed in Section 4.2.

3. Benefits of Increasing Model Size Coupled
with Early Exiting

Our first contribution is to show that Early Exiting does not
necessarily compromise performance for faster inference,
but can be used to run larger models at the cost of smaller
ones. Figure 1 provides compelling evidence in support of
the observation that larger models can lead to greater infer-
ence efficiency. Green and yellow dots indicate test error
and average FLOPs used by EE using the specified method.
The prediction error of each layer of the small model (with-
out early exiting) is also shown. The results demonstrate a
clear trend: larger models achieve lower prediction errors
with fewer FLOPs compared to smaller models if we use
early exiting. For instance, the large model with PCEE (our
method) achieves a prediction error of around 6% using
3 layers (approximately 26 × 106 FLOPs) on average. In
contrast, the smaller model with utilizing the same amout
of FLOPs has a higher level of prediction error. This dif-
ference highlights that larger models can make accurate
predictions earlier in the network for most samples, thus

saving computational resources on average.

Table 1: Top row shows the accuracy (%) of MSDNET
small using the full capacity of the model on three different
datasets: CIFAR-10, CIFAR-100 and IMAGENET-1K. The
bottom row shows the accuracy we can get from MSDNET
Large using our EE strategies (PCEE, PCEE-WS) with the
same or less computational cost as the full small model.

MSDNET CIFAR-10 CIFAR-100 IMAGENET-1K

Full Small model 93.04 71.24 70.7
Large Model with EE 93.88 73.06 72.13

This observation underscores a significant insight: scaling
up model size can enhance computational efficiency by en-
abling early exits in the inference process. Larger models
can leverage their deeper architecture to make correct pre-
dictions at earlier stages for easy samples, while benefiting
from later layers for hard ones, reducing the need for ex-
tensive computation across all layers for all samples. This
efficiency is crucial for practical applications, where com-
putational resources and time are often limited. Therefore,
our findings challenge the conventional view that larger
models are inherently more computationally expensive. In-
stead, we show that larger models can be more efficient in
terms of accuracy for a fixed compute budget, providing
a compelling case for scaling up models to improve infer-
ence computational efficiency while maintaining or even
enhancing prediction accuracy. Table 1 summarizes this
observation for CIFAR-10, CIFAR-100, and IMAGENET-
1K by showing that the large model with EE can achieve
higher performance at the same cost (in FLOPs) of the small
model. The inference efficiency plots for these datasets are
available in Figures 8 and 9 in the Appendix for prediction
error versus both average layers used and average FLOPs
used.

Finally, note that these compute gains also translate to re-
duced latency when using dynamic batching, so that in-
ference is batchified (as for any model without EE) and
resources are used at full capacity. Indeed, techniques such
as on-the-fly batching (Neubig et al., 2017)1 enable dynamic
batching during inference, allowing the system to start pro-
cessing new requests as soon as other requests in the batch
are completed.

4. Performance Control Early Exiting
In this section, we first examine the miscalibration of Early
Exit Neural Networks, demonstrating through experiments
that they tend to be overconfident, with miscalibration es-

1NVIDIA TensorRT provides libraries to accelerate and op-
timizer inference performance of large models: https://
developer.nvidia.com/tensorrt
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calating as layer depth increases. Then we introduce PCEE
(Performance Control Early Exiting), a method that ensures
a lower bound on accuracy by thresholding not on the confi-
dence estimate of a given test example, but on the average
accuracy of samples with similar confidence from a held-out
dataset. In doing so, we address some important limitations
of standard EE approaches based on confidence thresholding
and make it so that the threshold set by the user corresponds
to an accuracy lower bound rather than an abstract confi-
dence level. Moreover, a single threshold is used for all exit
points and no costly search needs to be carried out to deter-
mine layerwise exit levels as in existing methods (Elbayad
et al., 2019b).

4.1. Checking for Miscalibration in Early Exit Neural
Networks

Figure 3: Confidence levels across different layers of a VIT
with layerwise classifiers trained on IMAGENET-1K tested
on the visually simple snake image shown on the plot. Red
bars indicate layers that made incorrect predictions, while
blue layers indicate layers that made correct predictions.
Overconfident early layers trigger a (premature) exit on
layer 5, the first layer surpassing the threshold of 0.75. The
test accuracy for each layer is also shown.

Performing EE at inference to allocate adaptive computa-
tion to unseen data requires reliable confidence estimation
at each exit point in a multi-layer model. However, this
is non-trivial to achieve as it’s well-known that neural net-
works are typically overconfident (Wang, 2023; Guo et al.,
2017). That is, simply relying on commonly used confi-
dence indicators would trigger very early exits at a high rate,
damaging overall model performance. Moreover, commonly
used confidence estimates are typically somewhat abstract
quantities, decoupled from metrics of interest such as pre-
diction accuracy, and it’s not easy to decide on confidence
thresholds that guarantee a certain performance metric of
interest. Jiang et al. (2018) highlights that the model’s re-
ported confidence, e.g. probabilities from the softmax layer,
may not be trusted especially in critical applications such as
medical diagnosis.

Table 2: MSDNET-LARGE on CIFAR-100: Accuracy and
ECE of exit points at each of the 8 layers

Layer 1 2 3 4 5 6 7 8

Accuracy (%) 65.08 66.59 69.24 71.67 73.01 74.17 74.68 74.92
ECE 0.062 0.083 0.089 0.091 0.107 0.102 0.119 0.139

Indeed, if one considers the VIT (Dosovitskiy et al., 2020)
with multiple classifiers (i.e., one classifier or exit point
per layer) trained on IMAGENET-1K (Deng et al., 2009)
illustrated in Figure 3, the overconfidence issue becomes
noticeable.2 In the simple example image displayed on the
plot, which does not contain distracting objects or a complex
background, a confidence threshold of 0.75 would result in
a premature exit since early layers are too confident even
when wrong, resulting in misclassification. This suggests
that accurate exit strategies must be designed.

We further evaluated how commonly used models behave
layerwise in terms of overconfidence. To do so, we trained
models of varying sizes on CIFAR-10 and CIFAR-100
while adding exit points at every layer. A subset of these
results is shown in the reliability diagrams in Figure 4 for
certain layers of a MSDNET-LARGE (Huang et al., 2017)
with the confidence given the maximum of the softmax
outputs at each exit point. Additional results with the VIT
architecture are shown in Appendix E. Perfectly calibrated
models would be such that the bars would hit the y =
x line. However, the evaluated model deviates from that,
especially so for deeper layers. Table 2 presents ECE for
each layer, which increases with depth as already noted
from the reliability diagrams.

Also, as discussed in E, MSDNET-LARGE demonstrates
a higher level of overconfidence than MSDNET-SMALL
which supports results by Wang (2023) showing that in-
creasing the depth of neural networks increases calibration
errors.

4.2. Performance Control Early Exiting (PCEE)

We now introduce PCEE, a method to gain control over
performance in Early Exit Neural Networks. The method
is illustrated in Figure 5. For a multi-layer model with n
layers {Li}ni=1, we incorporate exit points at the end of each
layer. At any layer i, the input representation of sample x is
processed through an exit layer block, denoted as Ei, which
determines whether the model should terminate at this stage
or continue. The exit layer Ei transforms the representation
ri = Li(x) into a vector of size corresponding to the number
of classes.

2The VIT backbone (without layerwise classifiers) used here is
vit base patch32 clip 224.laion2b ft in1k from timm (Wightman,
2019).
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Figure 4: Reliability Diagrams for Layers 1, 5, 8 of MSDNET-LARGE with 8 layers on CIFAR-100

Figure 5: PCEE: The structural overview of the PCEE
methodology. In a multi-layer model with exit points at
each layer, the input representation ri is processed through
an exit layer block Ei. The exit layer calculates a confi-
dence score ci and uses a reliability diagram (confidence-to-
accuracy mapping) to determine whether to exit or continue
processing. If the estimated accuracy from the reliability
diagram exceeds an accuracy threshold δ, the model exits
and outputs prediction predi; otherwise, it proceeds to the
next layer, passing the representation forward.

At this step, a confidence score, ci, for sample x, is com-
puted. This score can be derived either as the maximum
value or the entropy of the probability distribution obtained
after applying softmax. The decision to exit at this layer is
then based on the confidence score. As discussed, existing
methods rely only on the confidence score itself, which re-
duces control over accuracy because of the miscalibration
issue. To make this decision, we instead employ the reli-
ability diagram for layer i, which is constructed from the
validation dataset. This diagram provides an estimate of
the average accuracy for samples with a confidence level
similar to ci at layer i. Suppose ci falls into bin m of the
reliability diagram for layer i. If the accuracy corresponding
to bin m exceeds a predefined threshold δ, the model exits
at layer i, outputting the prediction derived from the exit
layer. Otherwise, the model proceeds to the next layer. The

representation passed to layer i+ 1 is ri, the one produced
at the end of layer i before it goes through Ei. The detailed
algorithm for the PCEE method is outlined in Algorithm 1.

PCEE-WS PCEE-WS is a variant of PCEE with a smooth-
ing technique applied to the reliability diagrams of the vali-
dation dataset. We observed that some bins in the reliability
diagrams could contain very few examples, leading to inac-
curate representations of the bin’s accuracy. To address this,
we smooth the accuracy of each example from a binary value
(0 or 1) to the average accuracy of its H nearest neighbors
based on confidence scores, where H is a hyperparameter.
This smoothing is performed before the binning process.
The average of these smoothed accuracies is then used to
form the bins for the reliability diagrams. Our experimental
results demonstrate that this approach can yield improve-
ments in the performance of the model during inference. We
set H = 150 in our experiments and used 50 bins for the
reliability diagrams.

Implementation and Training details In practice, we
implement the exit layers as fully-connected layers that
output logits for a softmax layer. We use the softmax maxi-
mum as the prediction and its mass as a confidence estimate
for that exit layer. Let zi ∈ ∆K−1 be the softmax out-
puts from exit layer i, Ei, for a single data instance x with
ground truth one-hot encoded label y. The cross-entropy
loss for Ei is given by: Li = −y⊤ log(zi), and the total
loss L is the average of the cross-entropy losses across all
layers: L = 1

n

∑n
i=1 −y⊤ log(zi). We jointly train the orig-

inal model architecture and the exit layers by minimizing
L using Stochastic Gradient Descent for CIFAR-10 and
CIFAR-100 and AdamW (Loshchilov & Hutter, 2017) for
IMAGENET.

5. Experiments
We evaluate PCEE and PCEE-WS on widely used image
classification benchmarks, and report performance both in
terms of accuracy, and computational efficiency. We com-
pare our methods with three baseline approaches: Oracle,
Confidence Thresholding (referred to as “Confidence” in the
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Figure 6: Performance of three MSDNET models (Small, Medium, and Large) evaluated with different thresholds. Each
model exits with one of the following methods: confidence (blue), PCEE (orange), and PCEE-WS (green). The threshold
values correspond to confidence levels that translate to target percentage accuracy. Both PCEE and PCEE-WS methods
consistently show higher accuracy than the confidence thresholding, maintaining accuracy above the set threshold. The
maximum threshold reflects the peak accuracy achievable by the full model.

tables and figures), and the Laplace approximation intro-
duced by Meronen et al. (2024). Oracle refers to a setting
with privileged information whereby exits happen as soon
as an intermediate layer’s prediction matches that of the
final layer, showing the potential compute gain of an opti-
mal exiting strategy. Confidence Thresholding checks the
confidence of the prediction; if it is above the threshold, it
exits. The Laplace approximation is a post-hoc calibration
method that does not require retraining, like our approach.
It approximates a Bayesian posterior for each exit layer
with a multi-variate Gaussian, centered on the determinis-
tic exit layer and with covariance equal to the inverse of
the exit layer Hessian. Predictions are then obtained via
a Monte Carlo estimate that we perform with sample size
equal to 1, and with temperature and prior variance set to
their default values, following the released codebase. We
use 10% of the training data for the CIFAR datasets and
4% for IMAGENET as a held-out validation set to learn the
confidence-to-accuracy mappings in reliability diagrams.
For fair comparison, we run all methods with thresholds set
to the same value for all intermediate layers.

Figure 6 reports results for models of increasing size. We
first notice that PCEE (orange) and PCEE-WS (green) show
higher controllability relative to Confidence Thresholding:
resulting accuracy is consistently higher than the threshold
for PCEE and PCEE-WS, which is by design and enables
simpler inference pipelines where one can compromise ac-
curacy for compute (or vice-versa) more easily than with
Confidence Thresholding.

Tables 3 provides a detailed comparison across methods
along with compute on CIFAR-100. For various threshold
values (δ), PCEE and PCEE-WS exhibit higher accuracy
compared to baselines. Notably, for the MSDNET-SMALL
model, PCEE and PCEE-WS achieve up to 71.77% accu-
racy at δ = 0.71, outperforming the Confidence’s 71.10%.

Similarly, PCEE and PCEE-WS reach up to 73.97% ac-
curacy at δ = 0.73 for MSDNET-LARGE, surpassing the
Confidence’s 72.72% that does not meet the desired thresh-
old. We also highlight that, despite the increase in aver-
age number of used layers, PCEE and PCEE-WS achieve
higher performance, potentially justifying the computational
trade-offs in situations where accuracy is of priority. For
example, at δ = 0.73, the MSDNET-LARGE model with
PCEE-WS uses 3.02 layers on average, compared to the
Confidence’s 2.43, reflecting a balance between computa-
tional resources and accuracy gains. Similarly, Laplace falls
below the threshold for most of δ values, although using the
least average layers.

More notably, to demonstrate the greater benefit of early
exiting with large models, we show the best accuracy among
the thresholds and its corresponding average layers for each
method in the first row of table 3. Interestingly, for MSD-
NET LARGE, PCEE-WS can achieve an even higher accu-
racy than the Oracle (75.23 versus 74.9) with using less than
50% of the layers on average. This can happen sometimes
when intermediate layers predict the correct label while the
last layer does not, known as destructive overthinking (Kaya
et al., 2018). This observation supports the insight of using
large models for early exiting, allowing us to leverage both
accuracy and compute efficiency.

Additional results on CIFAR-10 (Figure 12 and Table 6) and
IMAGENET (Table 7) are provided in the appendix, along
with additional metrics. Section C provides the implementa-
tion details of the MSDNET and VIT architectures we use
for the experiments throughout the paper.

6. Discussions and Future Work
We have presented a computationally efficient method for
reliably early exiting and showed that we can achieve the
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Table 3: Comparison of EE strategies for MSDNet Small and Large on CIFAR-100. Both PCEE and PCEE-WS consistently
show higher accuracy than the other methods, maintaining accuracy above the set threshold, enabling performance control.
Accuracies are averaged over 3 seeds with the standard deviations (std) shown in front of them. Accuracies below the
threshold (without considering std) are shown in red. For the large model, PCEE-WS surpasses the oracle accuracy even if
using less than 50% of the available layers on average.

δ MSDNET SMALL (4 LAYERS) Oracle PCEE (ours) PCEE-WS (ours) Confidence Laplace

best ACC ↑ 71.28 72.73 72.62 72.59 66.3
Avg Layers ↓ 1.65 2.26 2.40 2.18 1.38

0.65
ACC ↑ - 71.22 ±0.75 71.27 ±0.94 70.57 ±0.56 64.90 ±0.49
Avg Layers ↓ - 1.90 ±0.04 1.89 ±0.07 1.64 ±0.01 1.31 ±0.05

0.68
ACC ↑ - 71.51 ±0.79 71.53 ±0.64 70.83 ±0.68 64.17 ±0.38
Avg Layers ↓ - 2.03 ±0.06 2.05 ±0.05 1.72 ±0.01 1.29 ±0.05

0.71
ACC ↑ - 71.66 ±0.71 71.77 ±0.55 71.10 ±0.67 63.26 ±0.48
Avg Layers ↓ - 2.11 ±0.05 2.14 ±0.03 1.79 ±0.01 1.27 ±0.05

δ MSDNET LARGE (8 LAYERS)

best ACC ↑ 74.9 75.21 75.23 74.85 69.82
Avg Layers ↓ 2.09 3.93 3.89 3.15 1.90

0.67
ACC ↑ - 73.05 ±0.38 72.97 ±0.37 71.70 ±0.34 69.41 ±0.39
Avg Layers ↓ - 2.64 ±0.05 2.62 ±0.06 2.16 ±0.01 1.94 ±0.08

0.7
ACC ↑ - 73.46 ±0.37 73.48 ±0.41 72.21 ±0.33 69.18 ±0.51
Avg Layers ↓ - 2.80 ±0.07 2.82 ±0.07 2.29 ±0.02 1.98 ±0.06

0.73
ACC ↑ - 73.85 ±0.58 73.97 ±0.46 72.72 ±0.32 68.80 ±0.77
Avg Layers ↓ - 2.99 ±0.09 3.02 ±0.11 2.43 ±0.01 2.00 ±0.06

accuracy of large models with a fraction of the compute
required even by small ones. Our method makes use of a
held-out validation set to estimate the mapping from confi-
dence to accuracy in intermediate layers. This provides the
user with better control over the model to match a desired
accuracy target and simplifies the threshold selection proce-
dure. Compared to confidence thresholding, we have shown
that our method consistently improves the final accuracy
when applied to models that are overconfident, as typically
observed in the literature. We note however that this be-
havior is not necessarily true for underconfident models,
as reported in Appendix F.4. Finally, like when running
the original model without EE, our method does not handle
out-of-distribution data well and suffers from discrepancies
between the validation and test sets. A common solution to
this problem is to add an ”I don’t know” class to make the
model more robust to distribution shifts (see for instance
Liu et al. (2019)). Studying the compatibility of such a trick
with EE is the subject of future work.
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A. Related Work
Inference Efficiency Inference efficiency has been tackled in many different ways. For instance, quantization ap-
proaches (Dettmers et al., 2022; Ma et al., 2024; Dettmers et al., 2024) reduce the numerical precision of either model
parameters or data, although typically at the expense of accuracy. Knowledge distillation approaches (Hinton et al., 2015;
Gu et al., 2023; Hsieh et al., 2023) were also introduced with the aim of accelerating inference by training a small model to
imitate a large one. While yielding improvements in inference speed, distilled models may miss certain capabilities that
only manifest at scale (Wei et al., 2022). A recent line of work, called speculative decoding (Leviathan et al., 2023; Chen
et al., 2023), uses instead a small model for drafting a proposal prediction but keeps the large one for scoring and deciding
whether to accept or reject it. Although exact, speculative decoding speed-up relies on the quality of the small model used
for drafting, as a better drafter results in higher token acceptance rates and longer speculated sequences. Moreover, such
techniques are not suited to non-autoregressive models, such as classifiers.

Early Exit Neural Networks The first instance of EE was introduced by Teerapittayanon et al. (2016) where exit classifiers
are placed after several layers, operating on top of intermediate representations. At training time, the joint likelihood
is maximized for all exit points, while at inference the decision of whether or not to exit at each exit point is made by
thresholding the entropy of the predicted categorical. This approach suffers from the overconfidence of neural networks,
which triggers premature exits. While there exist approaches aimed at improving overconfidence such as nonparametrical
TRUST SCORES (Jiang et al., 2018) or simply improving the accuracy of the underlying classifier (Vaze et al., 2021; Feng
et al., 2022), those wouldn’t scale to the early-exit setting that requires overconfidence to be tackled for every exit point.
Recent work (Meronen et al., 2024) also tackles the overconfidence issue by better estimating uncertainty via a post-hoc
Bayesian approach and leveraging model-internal ensembles. This approach is specific to linear exit layers and adds a
significant overhead, as it requires estimating for each exit layer its Hessian to approximate a Bayesian posterior and sample
from it. Görmez et al. (2021) propose instead an architecture variation that leverages prototypical classifiers (Papernot
& McDaniel, 2018) at every layer to avoid training early exit classifiers, at the cost of having to threshold on unbounded
distances.

Even for well-calibrated models, challenges persist as they require careful tuning of a threshold per exit point, which is far
from trivial and involves mapping abstract confidence measures such as entropy to some performance metric of interest.
Ilhan et al. (2024) propose training a separate model parameterizing a policy that decides on exit points. Alternatively, we
seek to do so with an efficient non-parametric approach that thresholds on target accuracy levels. We would go as far as to
speculate that the difficulty in selecting thresholds yielding a certain level of performance is the main reason why early exit
approaches are not currently widely used in practical applications. Extensions to the sequence setting were also proposed
recently, such as Schuster et al. (2022), but as with any other existing approach, a threshold needs to be picked for every
layer, and it’s difficult to anticipate the downstream performance for a given choice of the set of thresholds.

Model Calibration Confidence estimation plays a central role in EE approaches since calibrated models enable deciding
when to early exit by simply comparing confidence levels with user-specified thresholds. However, recent work (Guo et al.,
2017) pointed out that neural networks tend to be poorly calibrated despite having high predictive power and achieving
high accuracy, and larger models tend to be primarily overconfident (Carrell et al., 2022; Hebbalaguppe et al., 2022;
Wang, 2023). Calibrating models is a complex challenge due to the interplay of multiple architectural and hyperparameter
factors (Hebbalaguppe et al., 2022). Indeed, recent work showed that the depth, width, weight decay, batch normalization,
choice of optimizers and activation functions, and even the datasets themselves significantly influence model calibration
(Guo et al., 2017; Hein et al., 2018).

B. ECE formal definition
As discussed in the Background Section 2, calibration of a multi-class classifier refers to how well the predicted confidence
levels (e.g., max softmax(·)) match the actual probabilities of correct predictions. In other words, a model is considered
well-calibrated if, for any given confidence level, the predicted probability of correctness closely matches the observed
frequency of correctness. For example, if a model assigns a 70% confidence to a set of predictions, ideally, approximately
70% of those predictions should be correct. The Expected Calibration Error (ECE) (Naeini et al., 2015) is often used to
quantify the calibration of a model since it measures the weighted average difference between the average confidence and
accuracy, across multiple confidence levels. More formally, ECE is defined as follows if we split the range of confidences
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observed by f ∈ F from a sample of data points X into M bins:

ECE(f,X) =

M∑
m=1

|Bm|
n

|acc(Bm, f)− conf(Bm, f)| (1)

where Bm is the set of data instances whose predicted confidence scores fall into the m-th bin, acc(Bm, f) is the accuracy
of the model measured within Bm, and conf(Bm, f) is the average confidence of predictions in Bm, assuming measures of
confidence within the unit interval. An ECE of 0 would indicate a perfectly calibrated f on X . Reliability diagrams are
visual tools used to evaluate calibration by plotting confidence bins against accuracy. Deviations from the y = x diagonal
line in a reliability diagram indicate miscalibration, with overconfidence and underconfidence representing predictions
where the model’s confidence consistently exceeds or falls short of the actual accuracy, respectively.

C. Implementation details
MSDNets MSDNets, proposed by (Huang et al., 2017), serve as a benchmark for EENNs (Jazbec et al., 2023; Laskaridis
et al., 2021; Han et al., 2022) known for their overconfidence issues (Meronen et al., 2024). MSDNet’s architectural design
addresses significant challenges in incorporating intermediate exits into Convolutional Neural Networks (CNNs). One major
challenge is the lack of coarse features in the early layers, which are essential for effective classification. Capturing essential
coarse features, such as shape, is critical in the early layers, as classifying based on shape is easier and more robust than
using edges or colors. Another challenge is the conflict of gradients arising from multiple sources of loss from the exit
layers, which hinders the transmission of rich information to the end of the network. To tackle these challenges, MSDNet
incorporates vertical convolutional layers—also known as scales—that transform finer features into coarse features at every
layer and introduce dense connectivity between the layers and scales across the network, effectively reducing the impact of
conflicting gradients. MSDNets used throughout the paper are in 3 different sizes: Small, Medium, and Large. For CIFAR
datasets, they only differ in the number of layers, 4 layers for Small, 6 layers for Medium, and 8 layers for Large. For
ImageNet, they all have 5 layers but the base is 4, 6, 7 respectively. For the arguments specific to MSDNets and the learning
rate scheduler, we followed the code in this repository: https://github.com/AaltoML/calibrated-dnn. To
train the models, we used an SGD optimizer with a training batch size of 64, an initial learning rate of 0.01, a momentum of
0.9, and a weight decay of 1e-4 for CIFAR datasets and AdamW with an initial learning rate of 0.4, a weight decay of 1e-4
and batch size of 1024 for ImageNet.

ViT The ViT (Dosovitskiy et al., 2020) model we used for the experiments on CIFAR datasets is a 12-layer self-attentive
encoder with 8 heads, trained with AdamW with a learning rate of 1e-3, a weight decay of 5e-5, a cosine annealing learning
rate scheduler and a training batch size of 64. The Vit Small model in Table 8 has the same architecture as the 12-layer larger
model but has 6 layers. The evolution of train and test errors through epochs of the last layer of the ViT trained on CIFAR-10
in Figure 10b is plotted in Figure 7. The reliability diagrams were plotted at an epoch where the model demonstrated good
generalization performance, characterized by low train error and stabilized test error.

Most of our experiments can be carried out in single-gpu settings with gpus with at most 16 Gb of memory, under less than
a day. For ImageNet, training was carried out with data parallelism over 4 32 Gb gpus, which took less than two days.

D. PCEE Algorithm
Algorithm 1 shows our methodology for performance controllability.

E. Additional results evaluating overconfidence
In this section, we provide more experimental details and results to complement those of Section 4.1. Figure 10 shows
the reliability diagrams for MSDNet Large on CIFAR-100 and VIT on CIFAR-10 through different exit layers. The
confidence measure here is the maximum softmax output. Results led to the two following observations:

• Effect of depth: Calibration degrades and models become overconfident for deeper layers. Table 4 presents ECE for
each layer, which increases with depth in both architectures.

• Effect of model size: MSDNET-LARGE demonstrates a higher level of overconfidence than MSDNet Small, particu-
larly towards the later layers, which supports the claim in Wang (2023) empirically that increasing the depth of neural

12

https://github.com/AaltoML/calibrated-dnn


Submission and Formatting Instructions for ICML 2024

Figure 7: The evolution of train and test errors for ViT on CIFAR-10. The vertical dashed line is where we plotted the
reliability diagrams in Fig 10b.

Algorithm 1 Inference with PCEE

1: Require: Model A with n layers, accuracy threshold δ, reliability diagrams D
2: for each layer i = 1 to n− 1 in A do
3: Process input by Li, then pass its output ri to Ei

4: Compute confidence score ci from ri
5: Obtain accuracy acci from reliability diagram Di for ci
6: if acci ≥ δ then
7: exit and output prediction predi
8: else
9: Pass ri to the next layer Li+1

10: end if
11: end for
12: Output prediction predn from the last exit En

networks increases calibration errors (see Figure 11 and Table 5).

For VIT on CIFAR-10 we compare our plots with Carrell et al. (2022). While Carrell et al. (2022) does not provide code
for their plots, our results align well with theirs in terms of the reliability diagram for the last layer and the test error.

F. Further experimental results
F.1. CIFAR-10

For the results of MSDNet on CIFAR-10, refer to Figure 12 and table 6. All methods perform well on this relatively simple
dataset, achieving top-1 accuracies above the threshold.

F.2. IMAGENET

In Table 7, we report results for MSDNet Large on ImageNet where our method consistenly achieves accuracy higher than
the target ones (as indicated by the chosen threshold). Interestingly, in this setting the Confidence baseline also satisfies the
control property, and generally results in higher accuracy at the cost of higher compute.

F.3. Benefits of using a larger model coupled with EE

Table 8 on CIFAR-10 and CIFAR-100 shows that by using a large VIT model with EE, we can get a better performance than
the full small VIT with the same or less computational cost.
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(a) CIFAR-10 (b) CIFAR-100 (c) IMAGENET-1K

Figure 8: Effect of model size on inference efficiency for MSDNet on three datasets: Prediction error (%) vs. average layers
used.

(a) CIFAR-10 (b) CIFAR-100 (c) IMAGENET-1K

Figure 9: Effect of model size on inference efficiency for MSDNet on three datasets: Prediction error (%) vs. average
FLOPs used.

F.4. Results on an Underconfident Model

The models we tested so far where generally overconfident, which is a typical characteristic of deep learning models. We
here report results for a pre-trained ViT model3, that we observe to be underconfident for most of its layers on ImageNet
as shown in Figure 13. In this setting, we observe that the final accuracy of our method is still above the target one, as
reported in Figure 14. However, thresholding on confidence achieves higher performance in this particular case, even
though consuming more compute. When analyzing the accuracy/compute trade-off in Figure 15, the gap between our
method and the baseline are not noticeable, indicating that our method does not degrade performance at the very least. One
noticeable difference is the lack of low accuracy/low compute points for the confidence thresholding baseline. Indeed using
a confidence estimate that is lower than the actual accuracy (underconfidence) makes the model use more layers to meet the
threshold. In contrast, our methods check the accuracy of the bin where the threshold falls and can exit early because its
accuracy estimate meets the threshold. Therefore, in Figure 15, we see that our methods can output low accuracies (i.e.,
higher prediction errors) and show the controllability over low accuracy region that would not be achievable with only
confidence thresholding. This confirms the intuition that miscalibration causes different types of problems for early exiting,
even in underconfidence scenarios, which are typically not seen.

3vit base patch32 clip 224.laion2b ft in1k from timm (Wightman, 2019)
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(a) Reliability Diagrams for Layers 1, 5, 8 of MSDNet-Large with 8 layers on CIFAR-100

(b) Reliability Diagrams for layers 1, 6, and 12 of ViT with 12 layers on CIFAR-10

Figure 10: Reliability diagrams for MSDNet-Large and ViT on CIFAR datasets

Table 4: ECE for different layers of the models shown in Figure 10

(a) MSDNet-Large on CIFAR-100: Accuracy and ECE for each of the 8 layers

Layer 1 2 3 4 5 6 7 8

Accuracy (%) 65.08 66.59 69.24 71.67 73.01 74.17 74.68 74.92
ECE 0.062 0.083 0.089 0.091 0.107 0.102 0.119 0.139

(b) ViT on CIFAR-10: Accuracy and ECE of each of the 12 layers

Layer 1 2 3 4 5 6 7 8 9 10 11 12

Accuracy (%) 62.14 72.33 75.76 77.79 78.29 78.37 78.77 78.94 79.06 79.10 79.15 79.25
ECE 0.051 0.143 0.191 0.231 0.254 0.269 0.277 0.282 0.282 0.286 0.294 0.299
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(a) Reliability Diagrams for all layers of MSDNet-Small on CIFAR-100

(b) Reliability Diagrams for layers 1, 5, and 8 of MSDNet-Large on CIFAR-100

Figure 11: Reliability diagrams for MSDNet Small and Large on CIFAR-100

Table 5: MSDNet-Small and Large on CIFAR-100: per-layer Expected Calibration Errors

(a) MSDNet-Small with 4 layers

Layer 1 2 3 4

Accuracy (%) 64.61 69.02 70.92 71.40
ECE 0.093 0.099 0.104 0.1173

(b) MSDNet-Large with 8 layers

Layer 1 2 3 4 5 6 7 8

Accuracy (%) 65.08 66.59 69.24 71.67 73.01 74.17 74.68 74.92
ECE 0.062 0.083 0.089 0.091 0.107 0.102 0.119 0.139
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Figure 12: The plot shows the performance of MSDNet Small and Large evaluated with different threshold values on
CIFAR-10. Each model’s performance is represented by three methods: Confidence baseline (blue), PCEE (orange), and
PCEE-WS (green). The threshold values correspond to confidence levels that translate directly to accuracy (accuracy =
100 × threshold). Both PCEE and PCEE-WS methods consistently show higher accuracy than the Confidence baseline,
maintaining accuracy above the set threshold. The maximum threshold reflects the peak accuracy achievable by the full
model.

Table 6: This table compares PCEE and PCEE-WS with the Confidence baseline for MSDNet Small and Large on CIFAR-10.
Both PCEE and PCEE-WS consistently show higher accuracy than the other methods, maintaining accuracy above the set
threshold that fulfills our claim of more controllability on the accuracy.

ACC ↑ Top 5 Acc ↑ Avg Layers ↓ FLOPs (106) ↓
Small
MSDNet (Oracle) 92.94 1.13

δ = 0.75
- PCEE (ours) 92.32 99.70 1.34 10.13
- PCEE-WS (ours) 92.26 99.69 1.33 9.99
- Confidence 91.86 99.68 1.13 7.98

δ = 0.85
- PCEE (ours) 92.69 99.73 1.47 11.42
- PCEE-WS (ours) 92.71 99.74 1.49 11.53
- Confidence 92.30 99.69 1.20 8.73

δ = 0.92
- PCEE (ours) 92.93 99.73 1.63 12.98
- PCEE-WS (ours) 92.91 99.73 1.62 12.85
- Confidence 92.61 99.72 1.31 9.74
Large
MSDNet (Oracle) 94.04 1.21

δ = 0.75
- PCEE (ours) 92.31 99.74 1.34 11.88
- PCEE-WS (ours) 92.46 99.74 1.35 12.16
- Confidence 91.69 99.72 1.18 9.22

δ = 0.85
- PCEE (ours) 93.11 99.78 1.57 17.00
- PCEE-WS (ours) 93.19 99.77 1.60 17.65
- Confidence 92.55 99.75 1.32 11.72

δ = 0.93
- PCEE (ours) 93.75 99.79 1.95 25.30
- PCEE-WS (ours) 93.77 99.78 1.96 25.63
- Confidence 93.20 99.77 1.54 16.36
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Table 7: Comparison of EE strategies for MSDNet Large on ImageNet.

δ MSDNET LARGE Oracle PCEE (ours) PCEE-WS (ours) Confidence

best ACC ↑ 75.51 75.25 75.25 75.41
Avg Layers ↓ 1.63 3.03 3.03 3.23

0.71
ACC ↑ - 74.20 74.19 74.90
Avg Layers ↓ - 2.48 2.48 2.71

0.74
ACC ↑ - 74.39 74.36 75.08
Avg Layers ↓ - 2.56 2.55 2.82

Table 8: Top row shows the accuracy (%) of VIT Small using the full capacity of the model on CIFAR-10 and CIFAR-100.
The bottom row shows the accuracy we can get from VIT Large using our EE strategies (PCEE, PCEE-WS) with the same
or less computational cost as the full small model.

Model Size CIFAR-10 CIFAR-100

VIT Full Small model 88.15 62.94
Large Model with EE 90.16 63.38

Figure 13: Reliability Diagrams for Layers 1, 5, 9, 12 of ViT with 12 layers on IMAGENET. Early layers are underconfident,
and the model smoothly becomes more confident as depth increases, turning overconfident past layer 9.

Figure 14: Performance of pre-trained ViT on ImageNet as a function of the selected threshold.
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Figure 15: Accuracy/compute trade-off for pre-trained ViT on ImageNet, averaged over 5 runs and with points on the Pareto
front circled in black.
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