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Abstract

Foundation models for biosignals, such as wearable ECG monitors, face challenges
in resource-constrained settings due to high memory and computational demands.
We propose an adaptive layer-wise compression framework that combines quanti-
zation and pruning to reduce model size while preserving predictive performance.
Layer importance, estimated via parameter contribution and weight variance, guides
fine-grained assignment of bit-widths and pruning thresholds, balancing efficiency
and accuracy across high- and low-sensitivity layers. Experiments on Chapman
and CPSC ECG datasets show that our method consistently outperforms fixed
global compression schemes, achieving up to 10.44 x compression with no loss
in performance. Our architecture-agnostic framework scales from lightweight
residual networks to large foundation models, enabling real-time, low-resource
ECG monitoring. By efficiently deploying foundation models on edge devices,
this work advances scalable, physiology-aware biosignal Al for mobile health and
clinical applications.

1 Introduction and Related Work

Electrocardiography (ECG) is a cornerstone of cardiac health assessment, capturing the heart’s
electrical activity through body-surface electrodes to reveal characteristic waveforms |Trobec et al.
(2018)). These signals enable detection of arrhythmias, ranging from asymptomatic to life-threatening
conditions like sudden cardiac death [Srinivasan and Schilling|(2018)). Traditional rule-based diag-
nostics struggle with the scale and complexity of physiological data, driving demand for automated,
cost-effective ECG monitoring [Ebrahimi et al.[ (2020).

Deep learning (DL) has transformed arrhythmia detection, with convolutional neural networks
(CNNs5) and recurrent architectures achieving high accuracy [Kiranyaz et al.[(2015); |Alzubaidi et al.
(2021). Recent innovations include transforming ECGs into images de Santana et al.|(2021)), CNN-
LSTM hybrids [Tan et al.| (2018)), and attention-based or transformer-based models [EI-Ghaish and
Eldele (2024); Jin et al.| (2021). However, these approaches often lack generalization across diverse
populations or robustness to class imbalance [Hannun et al.|(2019). Foundation models, pretrained
on large-scale unlabeled data via self-supervision, have revolutionized NLP, vision, and audio by
enabling robust generalization across tasks and domains |[Radford et al.| (2018)); He et al.| (2022);
Hsu et al.|(2021). In medicine, models like CheXzero [T1u et al.| (2022), MedSAM Ma et al.| (2024},
and ECGFounder [Li et al.|(2024])) leverage large-scale biosignal data for improved transferability.
However, their computational complexity and reliance on supervised pretraining with limited cohorts
hinder deployment in resource-constrained settings, such as wearable ECG devices.
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Deploying DL models on wearables is limited by memory, energy, and latency constraints (Chen
and Ran| (2019). Compression techniques like pruning [Frankle and Carbin| (2018]), quantization
Hubara et al.| (2018)); Krishnamoorthi| (2018)), and binarization |(Courbariaux et al. (2015) enable
lightweight deployment. Quantization reduces parameter precision, acting as a regularizer that
preserves discriminative capacity in noisy biosignals|Liu et al.|(2022b)). Recent advances, such as
nonuniform-to-uniform quantization (N2UQ) Liu et al.[(2022b), adapt bin widths to data distributions,
achieving near full-precision accuracy. Knowledge distillation Hinton et al.| (2015) and neural
architecture search [Tan| (2019) further optimize model efficiency, but their application to biosignal
foundation models remains underexplored.

Our contributions are:

* The first adaptive compression framework for ECG foundation models, enabling edge deployment
with up to 10x size reduction for both traditional and foundational models.

» A ResNetlD achieving state-of-the-art arrhythmia classification with high compression.

* A demonstration that compressed foundation models maintain clinical accuracy while reducing
computational costs by an order of magnitude, advancing scalable biosignal Al

2 Method

We aim to design scalable, interpretable biosignal foundation models that balance physiological
fidelity with edge deployment efficiency. Our framework integrates morphology-aware convolu-
tional models with self-supervised transformers, enhanced by adaptive compression to address
heterogeneous biosignals.

ResNet1D Architecture. The ResNet1D processes ECG signals X € RY*E, where C is the
number of leads and L is the sequence length. The initial convolution maps X to a feature space:
H, = BN(Conv1d(X; W))). Each residual block applies:

Zy, = o(BN(Convld(Hy_1; Wi 1)), % = 0(BN(Convld(Zy; Wi 2))), D

with output Hy, = Z) +S(Hj_1). The final output is y = Softmax(Wy vec(Hg )+ by). ResNet1D
captures local ECG morphology (e.g., QRS complexes), complementing the global temporal modeling
of foundation models.

ECG-HuBERT Architecture. The HuBERT-ECG model |Coppola et al.| (2024), pretrained on
large-scale unlabeled ECG data, extracts Mel-spectrogram features: X = [x1,...,x7]|, x; € RF,
Clustering assigns pseudo-labels ¢; = argminy, [|x; — p 3. Masked frames are embedded by a
convolutional encoder f.qny, producing z;, contextualized by a Transformer: h; = 7 (z; + p;). The
loss is:

T
1

Lyupert = — S Z m¢ log pg(c[hy). (2)
¢

S t=1

This self-supervised pretraining enables robust, generalizable representations for ECG tasks, embody-
ing biosignal foundation model principles.

Adaptive Model Compression. The layer-wise adaptive compression capitalizes on the heteroge-
neous sensitivity of network layers: more critical layers are pruned and quantized conservatively,
whereas less important layers undergo more aggressive compression [Shinde|(2024).

Let a neural network M have L layers, each with a weight tensor W;. The goal is to determine the
bit-width b; and pruning factor p; for each layer, minimizing model size while ensuring minimal
accuracy loss: ming,, PIE Size(M) s.t.  Accuracy(Mcomp) > Ao — A, where Mconp is the
compressed model, Ay is the baseline accuracy, and A is the allowable accuracy degradation.

Layer Importance Estimation. To guide the compression process, we assign an importance
score to each layer based on two factors: Parameter Density Index (PDI) reflects the proportion of
parameters in layer [ relative to the total parameters: PDI; = dim(W;)/ 25:1 dim(W},). Parameter
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Variability Index (PVI) captures the variability of weights within a layer, which influences its
sensitivity to quantization. Specifically, the PVI (PV I;) is computed based on the variance of the
weights in each layer, normalized relative to the maximum variance across all layers. This helps in
assessing how much a layer’s weight distribution varies, affecting its ability to maintain accuracy
after quantization.

Combined Importance. The final importance score for layer [ is a weighted sum of the PDI and the
PVL: I, = - PDI; + 8 - PV, where a and 3 are hyperparameters controlling the emphasis on
parameter density and sensitivity to quantization.

Quantization. Quantization reduces the model’s memory and computational requirements by
converting continuous weights to discrete levels. In Fixed Quantization, all weights are uniformly
quantized to a global bit-width bfxeq: @ = Quantize(w, bgxeq). Layer-wise Adaptive Quantization
(LAQ). Bit-widths are assigned to layers based on importance scores. For layer [, the optimal bit-width
b is selected by:

by = min{b; : Accuracy(Mguant) > Ao — v - I1}, 3)

where -y is a global accuracy tolerance, and b; is selected greedily to minimize accuracy degradation.

Pruning. Pruning removes low-magnitude weights, inducing sparsity and reducing model size. In
Fixed Pruning, a uniform pruning factor pfyeq is applied across the network. Layer-wise Adaptive
Pruning (LAP). Pruning is performed based on layer-specific importance, with a pruning factor p; for
each layer. For each weight:

ij = { VVl,ij, lf|Wl,”‘ > 0[, 0, otherwise. “4)
The pruning threshold 6; is computed as the p;-th percentile of |W;|, where layers with higher

importance are pruned conservatively. This adaptive, importance-guided compression achieves a
trade-off between model size and performance, enabling efficient deployment.

3 Experimental Setup

All experiments were conducted on the Kaggle platform equipped with an NVIDIA Tesla P100 GPU,
leveraging PyTorch for deep learning operations.

Datasets: CPSC 2018 Challenge Dataset. Contains 6,877 twelve-lead ECG recordings (660 seconds,
500 Hz) with nine rhythm categories|Liu et al.|(2018). Chapman Clinical Dataset. Includes ~10,000
subjects with 10-second, twelve-lead ECGs (500 Hz), aggregated into four rhythm groups Zheng
et al.| (2020); Murat et al.[(2021). CPSC and Chapman enable rigorous evaluation of benchmark
performance and cross-domain generalization under class imbalance and noise.

Model Architectures and Training. We evaluate: (1) ResNet1D, capturing local ECG morphology,
and (2) HuBERT-ECG, a self-supervised transformer for global temporal dependencies. This
pairing probes the trade-off between interpretable CNNs and scalable foundation models. Inputs
are zero-padded to 5,120 samples. Training uses Adam (Ir=10"3 for ResNet1D, 10~* for HuBERT,
following Kiranyaz et al.|(2015)), weight decay 103, dropout (0.2-0.3), and ReduceLROnPlateau.
Categorical cross-entropy loss ensures robust rhythm classification.

4 Results and Discussion

We conduct an ablation study to evaluate the effects of quantization and pruning on the proposed
ResNet1D and HuBERT-ECG models. Table E]reports classification metrics (Accuracy, Precision,
Recall, F1) and compression ratio (CR) across various settings.

Fixed Quantization. Uniform quantization (8-bit to 1-bit) reveals distinct sensitivities. For ResNet1D,
4-bit quantization achieves the highest accuracy (0.9688) and F1 (0.9657) with 7.95x compression,
likely due to quantization noise acting as implicit regularization. Analysis of weight distributions
shows reduced variance in feature activations, mitigating overfitting on ECG waveforms. Performance
collapses at <3 bits due to excessive information loss.
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Table 1: Comparison of performance and compression ratio (CR) of the Proposed ResNet1D Model
and HuBERT ECG Model under different quantization and pruning settings. Best, second-best, and
third-best values per column are highlighted.

Method | Proposed ResNet1D Model | HuBERT ECG Model
| Acc Prec Rec F1 CR | Acc Prec Rec F1 CR
Full-Precision 0.9660 0.9632 0.9618 0.9624 1.00x 0.9712 0.9685 0.9686 0.9685 1.00x

Quantized (8-bit) | 0.9660  0.9630  0.9618  0.9623 3.99x | 0.9707  0.9678  0.9680  0.9678 3.98x
Quantized (7-bit) | 0.9665  0.9635  0.9623  0.9629 4.56x | 09703  0.9670  0.9677  0.9673 4.55x
Quantized (6-bit) | 0.9655  0.9624  0.9612  0.9617 531x | 09698 09668  0.9669  0.9668 5.30x
Quantized (5-bit) | 0.9669  0.9641  0.9629  0.9634 6.37x | 09693 09662  0.9662  0.9662 6.35x
Quantized (4-bit) | 0.9688  0.9665  0.9651  0.9657 7.95x | 09566 09523 09535  0.9524 7.91x
Quantized (3-bit) | 0.9410  0.9358  0.9344  0.9341 10.58x | 0.5038  0.6033  0.5508  0.4917 10.50x
Quantized (2-bit) | 0.3555  0.2672 04175  0.2967 15.79x | 0.2101 0.0525  0.2500  0.0868 15.63x
Quantized (1-bit) | 0.3551 0.0888  0.2500  0.1310 | 31.16x | 0.2101 0.0525  0.2500  0.0868 | 30.49x

Pruned (10%) 0.9504  0.9478  0.9450  0.9456 LIIx | 09660 09627  0.9619  0.9620 I.11x
Pruned (30%) 0.4396  0.5505  0.4879  0.3964 1.43x | 09363 09323 09274  0.9288 1.43x
Pruned (50%) 0.2158  0.0540  0.2500  0.0888 2.00x | 03617 05014  0.3959  0.3130 2.00x
Pruned (70%) 0.2101 0.0525  0.2500  0.0868 3.33x | 02342 0.1094  0.2704  0.1497 3.32x
Pruned (90%) 0.3551 0.0888  0.2500  0.1310 9.92x | 02158 0.0539  0.2500  0.0887 9.86x
Proposed LAQ 0.9660  0.9626  0.9624 09625 10.44x | 0.9703  0.9675  0.9667  0.9670 9.43x
Proposed LAP 0.9665 09639  0.9626  0.9631 1.67x | 09717 09690 0.9677  0.9683 2.41x

In contrast, HuBERT-ECG is more sensitive to low-precision quantization, as its self-attention layers
require fine-grained weight resolution to capture global temporal dependencies |Vaswani et al.| (2017).
While 8-7 bits maintain accuracy ~0.97, performance drops sharply at 4-bit (0.9566), unlike the
robust ResNet1D.

Layer-wise Adaptive Quantization (LAQ). Our LAQ strategy achieves near-baseline accuracy with
high compression. By allocating precision based on layer importance, LAQ preserves critical layers
(e.g., convolutional filters capturing QRS complexes) while aggressively compressing redundant
ones, optimizing for noisy biosignals. ResNetlD reaches 0.9660 accuracy at 10.44x CR, while
HuBERT-ECG attains 0.9703 at 9.43 x, consistently outperforming fixed quantization schemes.

Fixed Pruning. Light pruning (10%) has minimal impact, but pruning beyond 30% rapidly degrades
accuracy by disrupting structural connectivity essential for ECG pattern recognition. ResNet1D
accuracy falls to 0.4396 at 30% pruning, and HuBERT-ECG shows similar degradation, confirming
that indiscriminate weight removal is detrimental.

Layer-wise Adaptive Pruning (LAP). LAP offers stable trade-offs. For ResNet1D, LAP retains
0.9665 accuracy at 1.67x CR. HUBERT-ECG achieves 0.9717 accuracy with 2.41x CR, surpassing
fixed pruning. By prioritizing layers with high importance (e.g., self-attention heads in HuBERT)),
LAP preserves expressive capacity, crucial for generalizable biosignal modeling.

Discussion. Adaptive, layer-aware compression (LAQ/LAP) achieves Pareto-optimal trade-offs
between accuracy and efficiency, enabling real-time ECG monitoring on edge devices. ResNet1D’s
robustness to quantization and pruning makes it ideal for lightweight applications, while HuBERT-
ECG benefits from adaptive strategies to preserve self-supervised features. The framework’s ability
to generalize across datasets and handle noisy biosignals aligns with the scalability and robustness
goals of foundation models, advancing clinical deployment of Al-driven health monitoring.

5 Conclusion

We present an adaptive compression framework for biosignal foundation models, enabling efficient
ECG monitoring on edge devices with up to 10.44 x compression without any loss. Layer importance
guides conservative compression of critical layers and aggressive optimization of redundant ones. The
framework’s architecture-agnostic design generalizes across datasets and modalities, supporting real-
time health monitoring. Future work will explore multimodal biosignal integration (e.g., EEG, EMG),
dynamic inference, and ethical considerations for clinical adoption, enhancing the framework’s
impact on scalable, reliable biosignal Al
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Table 2: Classification performance comparisons on Chapman and CPSC 2018 datasets. Best, second-
best, and third-best values per column are highlighted.

Dataset Author Classes #Lead  Method Acc. Prec. Rec. F1 CR
Yildirim et al.|(2020) 4 12 Deep neural network 96.13 95.78 95.43 95.57
Baygin et al.[(2021) 4 1 HIT pattern SVM 97.18 97.07 96.77 9691 -

Chapman Murat et al.[(2021) 4 1 DNN + feature fusion 98.00 97.76 97.70 97.72
Domazetoski et al.| (2022) 3 12 XGBoost 89.37 - - - -
Venkatesh et al.[(2024) 5 1 1D-CNN-BIiLSTM 9397 9396 9849 9395 -
ResNet1D + LAQ 4 1 Residual Network 96.60  96.26  96.24  96.25 | 10.44x
HuBERT ECG + LAQ 4 1 Foundational Network 97.03  96.75  96.67  96.70 9.43x
Zhang et al.|(2020) 9 12 CNN+Attention+BiGRU 86.83  84.18 8293 83.51 -
Ge et al.[(2021) 9 1 SEBlock(CNN) - 83.00 8270  82.80 -

CPSC 2018 Liu et al.{(2022a) 9 12 CRT-Net 8720 8730 8720  86.90 -
Li and Zhang|(2023) 9 12 KNN+CNN 8850 87.77  87.08  87.37 -
Dhyani et al.[(2023) 9 12 ResNet+RNN 9329 9338 93.10 93.09 -
Jietal|(2024) 9 12 Multi-scale grid transformer  87.34 85.67 86.21 85.90 -
Proposed ResNet1D 9 1 Residual Network 95.78 9561 9581 95.68  10.44x

A Comparison with Existing Work.

On the Chapman dataset, ResNet1D+LAQ achieves 0.9660 accuracy with 10.44 x compression, and
HuBERT-ECG+LAQ reaches 0.9703 with 9.43x (see Table[2]). Unlike prior methods optimizing
solely for accuracy Murat et al.|(2021]), our approach sets a new state-of-the-art by balancing clinical
fidelity and edge deployability. On CPSC 2018, ResNet1D achieves 95.78% accuracy with 10x
compression, outperforming baselines Dhyanti et al.| (2023). These results provide the first evidence
of compact ECG models achieving superior performance while enabling real-time deployment on
resource-constrained devices. To assess generalization, a key property of biosignal foundation models,
we compare performance across CPSC and Chapman datasets. HuBERT-ECG’s self-supervised
pretraining enhances robustness to Chapman’s class imbalance, achieving 0.9703 accuracy despite
fewer training samples. ResNet1D excels on CPSC (95.78%) due to its focus on local morphology,
but shows slightly lower generalization on Chapman’s heterogeneous clinical data. These findings
underscore the complementary strengths of convolutional and transformer-based foundation models
for biosignals.
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