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Abstract

Foundation models for biosignals, such as wearable ECG monitors, face challenges1

in resource-constrained settings due to high memory and computational demands.2

We propose an adaptive layer-wise compression framework that combines quanti-3

zation and pruning to reduce model size while preserving predictive performance.4

Layer importance, estimated via parameter contribution and weight variance, guides5

fine-grained assignment of bit-widths and pruning thresholds, balancing efficiency6

and accuracy across high- and low-sensitivity layers. Experiments on Chapman7

and CPSC ECG datasets show that our method consistently outperforms fixed8

global compression schemes, achieving up to 10.44× compression with no loss9

in performance. Our architecture-agnostic framework scales from lightweight10

residual networks to large foundation models, enabling real-time, low-resource11

ECG monitoring. By efficiently deploying foundation models on edge devices,12

this work advances scalable, physiology-aware biosignal AI for mobile health and13

clinical applications.14

1 Introduction and Related Work15

Electrocardiography (ECG) is a cornerstone of cardiac health assessment, capturing the heart’s16

electrical activity through body-surface electrodes to reveal characteristic waveforms Trobec et al.17

(2018). These signals enable detection of arrhythmias, ranging from asymptomatic to life-threatening18

conditions like sudden cardiac death Srinivasan and Schilling (2018). Traditional rule-based diag-19

nostics struggle with the scale and complexity of physiological data, driving demand for automated,20

cost-effective ECG monitoring Ebrahimi et al. (2020).21

Deep learning (DL) has transformed arrhythmia detection, with convolutional neural networks22

(CNNs) and recurrent architectures achieving high accuracy Kiranyaz et al. (2015); Alzubaidi et al.23

(2021). Recent innovations include transforming ECGs into images de Santana et al. (2021), CNN-24

LSTM hybrids Tan et al. (2018), and attention-based or transformer-based models El-Ghaish and25

Eldele (2024); Jin et al. (2021). However, these approaches often lack generalization across diverse26

populations or robustness to class imbalance Hannun et al. (2019). Foundation models, pretrained27

on large-scale unlabeled data via self-supervision, have revolutionized NLP, vision, and audio by28

enabling robust generalization across tasks and domains Radford et al. (2018); He et al. (2022);29

Hsu et al. (2021). In medicine, models like CheXzero Tiu et al. (2022), MedSAM Ma et al. (2024),30

and ECGFounder Li et al. (2024) leverage large-scale biosignal data for improved transferability.31

However, their computational complexity and reliance on supervised pretraining with limited cohorts32

hinder deployment in resource-constrained settings, such as wearable ECG devices.33
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Deploying DL models on wearables is limited by memory, energy, and latency constraints Chen34

and Ran (2019). Compression techniques like pruning Frankle and Carbin (2018), quantization35

Hubara et al. (2018); Krishnamoorthi (2018), and binarization Courbariaux et al. (2015) enable36

lightweight deployment. Quantization reduces parameter precision, acting as a regularizer that37

preserves discriminative capacity in noisy biosignals Liu et al. (2022b). Recent advances, such as38

nonuniform-to-uniform quantization (N2UQ) Liu et al. (2022b), adapt bin widths to data distributions,39

achieving near full-precision accuracy. Knowledge distillation Hinton et al. (2015) and neural40

architecture search Tan (2019) further optimize model efficiency, but their application to biosignal41

foundation models remains underexplored.42

Our contributions are:43

• The first adaptive compression framework for ECG foundation models, enabling edge deployment44

with up to 10× size reduction for both traditional and foundational models.45

• A ResNet1D achieving state-of-the-art arrhythmia classification with high compression.46

• A demonstration that compressed foundation models maintain clinical accuracy while reducing47

computational costs by an order of magnitude, advancing scalable biosignal AI.48

2 Method49

We aim to design scalable, interpretable biosignal foundation models that balance physiological50

fidelity with edge deployment efficiency. Our framework integrates morphology-aware convolu-51

tional models with self-supervised transformers, enhanced by adaptive compression to address52

heterogeneous biosignals.53

ResNet1D Architecture. The ResNet1D processes ECG signals X ∈ RC×L, where C is the54

number of leads and L is the sequence length. The initial convolution maps X to a feature space:55

H0 = BN(Conv1d(X;W0)). Each residual block applies:56

Zk = σ(BN(Conv1d(Hk−1;Wk,1))) , Z′
k = σ(BN(Conv1d(Zk;Wk,2))) , (1)

with output Hk = Z′
k+S(Hk−1). The final output is ŷ = Softmax(Wf vec(HK)+bf ). ResNet1D57

captures local ECG morphology (e.g., QRS complexes), complementing the global temporal modeling58

of foundation models.59

ECG-HuBERT Architecture. The HuBERT-ECG model Coppola et al. (2024), pretrained on60

large-scale unlabeled ECG data, extracts Mel-spectrogram features: X = [x1, . . . ,xT ], xt ∈ RF .61

Clustering assigns pseudo-labels ct = argmink ∥xt − µk∥22. Masked frames are embedded by a62

convolutional encoder fconv, producing zt, contextualized by a Transformer: ht = T (zt + pt). The63

loss is:64

LHuBERT = − 1∑
t mt

T∑
t=1

mt log pθ(ct|ht). (2)

This self-supervised pretraining enables robust, generalizable representations for ECG tasks, embody-65

ing biosignal foundation model principles.66

Adaptive Model Compression. The layer-wise adaptive compression capitalizes on the heteroge-67

neous sensitivity of network layers: more critical layers are pruned and quantized conservatively,68

whereas less important layers undergo more aggressive compression Shinde (2024).69

Let a neural network M have L layers, each with a weight tensor Wl. The goal is to determine the70

bit-width bl and pruning factor pl for each layer, minimizing model size while ensuring minimal71

accuracy loss: min{bl,pl}L
l=1

Size(M) s.t. Accuracy(Mcomp) ≥ A0 − ∆, where Mcomp is the72

compressed model, A0 is the baseline accuracy, and ∆ is the allowable accuracy degradation.73

Layer Importance Estimation. To guide the compression process, we assign an importance74

score to each layer based on two factors: Parameter Density Index (PDI) reflects the proportion of75

parameters in layer l relative to the total parameters: PDIl = dim(Wl)/
∑L

k=1 dim(Wk). Parameter76
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Variability Index (PVI) captures the variability of weights within a layer, which influences its77

sensitivity to quantization. Specifically, the PVI (PV Il) is computed based on the variance of the78

weights in each layer, normalized relative to the maximum variance across all layers. This helps in79

assessing how much a layer’s weight distribution varies, affecting its ability to maintain accuracy80

after quantization.81

Combined Importance. The final importance score for layer l is a weighted sum of the PDI and the82

PVI: Il = α · PDIl + β · PV Il, where α and β are hyperparameters controlling the emphasis on83

parameter density and sensitivity to quantization.84

Quantization. Quantization reduces the model’s memory and computational requirements by85

converting continuous weights to discrete levels. In Fixed Quantization, all weights are uniformly86

quantized to a global bit-width bfixed: ŵ = Quantize(w, bfixed). Layer-wise Adaptive Quantization87

(LAQ). Bit-widths are assigned to layers based on importance scores. For layer l, the optimal bit-width88

b∗l is selected by:89

b∗l = min{bl : Accuracy(Mquant) ≥ A0 − γ · Il}, (3)
where γ is a global accuracy tolerance, and bl is selected greedily to minimize accuracy degradation.90

Pruning. Pruning removes low-magnitude weights, inducing sparsity and reducing model size. In91

Fixed Pruning, a uniform pruning factor pfixed is applied across the network. Layer-wise Adaptive92

Pruning (LAP). Pruning is performed based on layer-specific importance, with a pruning factor pl for93

each layer. For each weight:94

Ŵl,ij = { Wl,ij , if |Wl,ij | > θl, 0, otherwise. (4)

The pruning threshold θl is computed as the pl-th percentile of |Wl|, where layers with higher95

importance are pruned conservatively. This adaptive, importance-guided compression achieves a96

trade-off between model size and performance, enabling efficient deployment.97

3 Experimental Setup98

All experiments were conducted on the Kaggle platform equipped with an NVIDIA Tesla P100 GPU,99

leveraging PyTorch for deep learning operations.100

Datasets: CPSC 2018 Challenge Dataset. Contains 6,877 twelve-lead ECG recordings (6–60 seconds,101

500 Hz) with nine rhythm categories Liu et al. (2018). Chapman Clinical Dataset. Includes ∼10,000102

subjects with 10-second, twelve-lead ECGs (500 Hz), aggregated into four rhythm groups Zheng103

et al. (2020); Murat et al. (2021). CPSC and Chapman enable rigorous evaluation of benchmark104

performance and cross-domain generalization under class imbalance and noise.105

Model Architectures and Training. We evaluate: (1) ResNet1D, capturing local ECG morphology,106

and (2) HuBERT-ECG, a self-supervised transformer for global temporal dependencies. This107

pairing probes the trade-off between interpretable CNNs and scalable foundation models. Inputs108

are zero-padded to 5,120 samples. Training uses Adam (lr=10−3 for ResNet1D, 10−4 for HuBERT,109

following Kiranyaz et al. (2015)), weight decay 10−3, dropout (0.2–0.3), and ReduceLROnPlateau.110

Categorical cross-entropy loss ensures robust rhythm classification.111

4 Results and Discussion112

We conduct an ablation study to evaluate the effects of quantization and pruning on the proposed113

ResNet1D and HuBERT-ECG models. Table 1 reports classification metrics (Accuracy, Precision,114

Recall, F1) and compression ratio (CR) across various settings.115

Fixed Quantization. Uniform quantization (8-bit to 1-bit) reveals distinct sensitivities. For ResNet1D,116

4-bit quantization achieves the highest accuracy (0.9688) and F1 (0.9657) with 7.95× compression,117

likely due to quantization noise acting as implicit regularization. Analysis of weight distributions118

shows reduced variance in feature activations, mitigating overfitting on ECG waveforms. Performance119

collapses at ≤3 bits due to excessive information loss.120
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Table 1: Comparison of performance and compression ratio (CR) of the Proposed ResNet1D Model
and HuBERT ECG Model under different quantization and pruning settings. Best, second-best, and
third-best values per column are highlighted.

Method Proposed ResNet1D Model HuBERT ECG Model

Acc Prec Rec F1 CR Acc Prec Rec F1 CR

Full-Precision 0.9660 0.9632 0.9618 0.9624 1.00x 0.9712 0.9685 0.9686 0.9685 1.00x
Quantized (8-bit) 0.9660 0.9630 0.9618 0.9623 3.99x 0.9707 0.9678 0.9680 0.9678 3.98x
Quantized (7-bit) 0.9665 0.9635 0.9623 0.9629 4.56x 0.9703 0.9670 0.9677 0.9673 4.55x
Quantized (6-bit) 0.9655 0.9624 0.9612 0.9617 5.31x 0.9698 0.9668 0.9669 0.9668 5.30x
Quantized (5-bit) 0.9669 0.9641 0.9629 0.9634 6.37x 0.9693 0.9662 0.9662 0.9662 6.35x
Quantized (4-bit) 0.9688 0.9665 0.9651 0.9657 7.95x 0.9566 0.9523 0.9535 0.9524 7.91x
Quantized (3-bit) 0.9410 0.9358 0.9344 0.9341 10.58x 0.5038 0.6033 0.5508 0.4917 10.50x
Quantized (2-bit) 0.3555 0.2672 0.4175 0.2967 15.79x 0.2101 0.0525 0.2500 0.0868 15.63x
Quantized (1-bit) 0.3551 0.0888 0.2500 0.1310 31.16x 0.2101 0.0525 0.2500 0.0868 30.49x
Pruned (10%) 0.9504 0.9478 0.9450 0.9456 1.11x 0.9660 0.9627 0.9619 0.9620 1.11x
Pruned (30%) 0.4396 0.5505 0.4879 0.3964 1.43x 0.9363 0.9323 0.9274 0.9288 1.43x
Pruned (50%) 0.2158 0.0540 0.2500 0.0888 2.00x 0.3617 0.5014 0.3959 0.3130 2.00x
Pruned (70%) 0.2101 0.0525 0.2500 0.0868 3.33x 0.2342 0.1094 0.2704 0.1497 3.32x
Pruned (90%) 0.3551 0.0888 0.2500 0.1310 9.92x 0.2158 0.0539 0.2500 0.0887 9.86x
Proposed LAQ 0.9660 0.9626 0.9624 0.9625 10.44x 0.9703 0.9675 0.9667 0.9670 9.43x
Proposed LAP 0.9665 0.9639 0.9626 0.9631 1.67x 0.9717 0.9690 0.9677 0.9683 2.41x

In contrast, HuBERT-ECG is more sensitive to low-precision quantization, as its self-attention layers121

require fine-grained weight resolution to capture global temporal dependencies Vaswani et al. (2017).122

While 8–7 bits maintain accuracy ≈0.97, performance drops sharply at 4-bit (0.9566), unlike the123

robust ResNet1D.124

Layer-wise Adaptive Quantization (LAQ). Our LAQ strategy achieves near-baseline accuracy with125

high compression. By allocating precision based on layer importance, LAQ preserves critical layers126

(e.g., convolutional filters capturing QRS complexes) while aggressively compressing redundant127

ones, optimizing for noisy biosignals. ResNet1D reaches 0.9660 accuracy at 10.44× CR, while128

HuBERT-ECG attains 0.9703 at 9.43×, consistently outperforming fixed quantization schemes.129

Fixed Pruning. Light pruning (10%) has minimal impact, but pruning beyond 30% rapidly degrades130

accuracy by disrupting structural connectivity essential for ECG pattern recognition. ResNet1D131

accuracy falls to 0.4396 at 30% pruning, and HuBERT-ECG shows similar degradation, confirming132

that indiscriminate weight removal is detrimental.133

Layer-wise Adaptive Pruning (LAP). LAP offers stable trade-offs. For ResNet1D, LAP retains134

0.9665 accuracy at 1.67× CR. HuBERT-ECG achieves 0.9717 accuracy with 2.41× CR, surpassing135

fixed pruning. By prioritizing layers with high importance (e.g., self-attention heads in HuBERT),136

LAP preserves expressive capacity, crucial for generalizable biosignal modeling.137

Discussion. Adaptive, layer-aware compression (LAQ/LAP) achieves Pareto-optimal trade-offs138

between accuracy and efficiency, enabling real-time ECG monitoring on edge devices. ResNet1D’s139

robustness to quantization and pruning makes it ideal for lightweight applications, while HuBERT-140

ECG benefits from adaptive strategies to preserve self-supervised features. The framework’s ability141

to generalize across datasets and handle noisy biosignals aligns with the scalability and robustness142

goals of foundation models, advancing clinical deployment of AI-driven health monitoring.143

5 Conclusion144

We present an adaptive compression framework for biosignal foundation models, enabling efficient145

ECG monitoring on edge devices with up to 10.44× compression without any loss. Layer importance146

guides conservative compression of critical layers and aggressive optimization of redundant ones. The147

framework’s architecture-agnostic design generalizes across datasets and modalities, supporting real-148

time health monitoring. Future work will explore multimodal biosignal integration (e.g., EEG, EMG),149

dynamic inference, and ethical considerations for clinical adoption, enhancing the framework’s150

impact on scalable, reliable biosignal AI.151
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Table 2: Classification performance comparisons on Chapman and CPSC 2018 datasets. Best, second-
best, and third-best values per column are highlighted.
Dataset Author Classes #Lead Method Acc. Prec. Rec. F1 CR

Chapman

Yildirim et al. (2020) 4 12 Deep neural network 96.13 95.78 95.43 95.57 –
Baygin et al. (2021) 4 1 HIT pattern SVM 97.18 97.07 96.77 96.91 –
Murat et al. (2021) 4 1 DNN + feature fusion 98.00 97.76 97.70 97.72 –
Domazetoski et al. (2022) 3 12 XGBoost 89.37 – – – –
Venkatesh et al. (2024) 5 1 1D-CNN-BiLSTM 93.97 93.96 98.49 93.95 –

ResNet1D + LAQ 4 1 Residual Network 96.60 96.26 96.24 96.25 10.44x
HuBERT ECG + LAQ 4 1 Foundational Network 97.03 96.75 96.67 96.70 9.43x

CPSC 2018

Zhang et al. (2020) 9 12 CNN+Attention+BiGRU 86.83 84.18 82.93 83.51 –
Ge et al. (2021) 9 1 SEBlock(CNN) – 83.00 82.70 82.80 –
Liu et al. (2022a) 9 12 CRT-Net 87.20 87.30 87.20 86.90 –
Li and Zhang (2023) 9 12 KNN+CNN 88.50 87.77 87.08 87.37 –
Dhyani et al. (2023) 9 12 ResNet+RNN 93.29 93.38 93.10 93.09 –
Ji et al. (2024) 9 12 Multi-scale grid transformer 87.34 85.67 86.21 85.90 –

Proposed ResNet1D 9 1 Residual Network 95.78 95.61 95.81 95.68 10.44x

A Comparison with Existing Work.152

On the Chapman dataset, ResNet1D+LAQ achieves 0.9660 accuracy with 10.44× compression, and153

HuBERT-ECG+LAQ reaches 0.9703 with 9.43× (see Table 2 ). Unlike prior methods optimizing154

solely for accuracy Murat et al. (2021), our approach sets a new state-of-the-art by balancing clinical155

fidelity and edge deployability. On CPSC 2018, ResNet1D achieves 95.78% accuracy with 10×156

compression, outperforming baselines Dhyani et al. (2023). These results provide the first evidence157

of compact ECG models achieving superior performance while enabling real-time deployment on158

resource-constrained devices. To assess generalization, a key property of biosignal foundation models,159

we compare performance across CPSC and Chapman datasets. HuBERT-ECG’s self-supervised160

pretraining enhances robustness to Chapman’s class imbalance, achieving 0.9703 accuracy despite161

fewer training samples. ResNet1D excels on CPSC (95.78%) due to its focus on local morphology,162

but shows slightly lower generalization on Chapman’s heterogeneous clinical data. These findings163

underscore the complementary strengths of convolutional and transformer-based foundation models164

for biosignals.165

References166

L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J. Santamaría, M. A. Fadhel,167

M. Al-Amidie, and L. Farhan. Review of deep learning: concepts, cnn architectures, challenges, applications,168

future directions. Journal of big Data, 8:1–74, 2021.169

M. Baygin, T. Tuncer, S. Dogan, R.-S. Tan, and U. R. Acharya. Automated arrhythmia detection with homeo-170

morphically irreducible tree technique using more than 10,000 individual subject ecg records. Information171

Sciences, 575:323–337, 2021.172

J. Chen and X. Ran. Deep learning with edge computing: A review. Proceedings of the IEEE, 107(8):1655–1674,173

2019.174

E. Coppola, M. Savardi, M. Massussi, M. Adamo, M. Metra, and A. Signoroni. Hubert-ecg as a self-supervised175

foundation model for broad and scalable cardiac applications. medRxiv, pages 2024–11, 2024.176

M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training deep neural networks with binary weights177

during propagations. Advances in neural information processing systems, 28, 2015.178

J. R. G. de Santana, M. G. F. Costa, and C. F. F. Costa Filho. A new approach to classify cardiac arrythmias using179

2d convolutional neural networks. In 2021 43rd Annual International Conference of the IEEE Engineering in180

Medicine & Biology Society (EMBC), pages 566–570, 2021. doi: 10.1109/EMBC46164.2021.9630938.181

S. Dhyani, A. Kumar, and S. Choudhury. Arrhythmia disease classification utilizing resrnn. Biomedical Signal182

Processing and Control, 79:104160, 2023.183

V. Domazetoski, G. Gligoric, M. Marinkovic, A. Shvilkin, J. Krsic, L. Kocarev, and M. D. Ivanovic. The184

influence of atrial flutter in automated detection of atrial arrhythmias-are we ready to go into clinical185

practice?”. Computer Methods and Programs in Biomedicine, 221:106901, 2022.186

5



Z. Ebrahimi, M. Loni, M. Daneshtalab, and A. Gharehbaghi. A review on deep learning methods for ecg187

arrhythmia classification. Expert Systems with Applications: X, 7:100033, 2020.188

H. El-Ghaish and E. Eldele. Ecgtransform: Empowering adaptive ecg arrhythmia classification framework with189

bidirectional transformer. Biomedical Signal Processing and Control, 89:105714, 2024. ISSN 1746-8094.190

doi: https://doi.org/10.1016/j.bspc.2023.105714. URL https://www.sciencedirect.com/science/191

article/pii/S1746809423011473.192

J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv preprint193

arXiv:1803.03635, 2018.194

R. Ge, T. Shen, Y. Zhou, C. Liu, L. Zhang, B. Yang, Y. Yan, J.-L. Coatrieux, and Y. Chen. Convolutional195

squeeze-and-excitation network for ecg arrhythmia detection. Artificial Intelligence in Medicine, 121:102181,196

2021.197

A. Y. Hannun, P. Rajpurkar, M. Haghpanahi, G. H. Tison, C. Bourn, M. P. Turakhia, and A. Y. Ng. Cardiologist-198

level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network.199

Nature medicine, 25(1):65–69, 2019.200

K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable vision learners. In201

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 16000–16009,202

2022.203

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint204

arXiv:1503.02531, 2015.205

W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdinov, and A. Mohamed. Hubert: Self-supervised206

speech representation learning by masked prediction of hidden units. IEEE/ACM transactions on audio,207

speech, and language processing, 29:3451–3460, 2021.208

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Quantized neural networks: Training neural209

networks with low precision weights and activations. journal of machine learning research, 18(187):1–30,210

2018.211

C. Ji, L. Wang, J. Qin, L. Liu, Y. Han, and Z. Wang. Msgformer: A multi-scale grid transformer network for212

12-lead ecg arrhythmia detection. Biomedical Signal Processing and Control, 87:105499, 2024.213

Y. Jin, J. Liu, Y. Liu, C. Qin, Z. Li, D. Xiao, L. Zhao, and C. Liu. A novel interpretable method based on214

dual-level attentional deep neural network for actual multilabel arrhythmia detection. IEEE Transactions on215

Instrumentation and Measurement, 71:1–11, 2021.216

S. Kiranyaz, T. Ince, and M. Gabbouj. Real-time patient-specific ecg classification by 1-d convolutional neural217

networks. IEEE transactions on biomedical engineering, 63(3):664–675, 2015.218

R. Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A whitepaper. arXiv preprint219

arXiv:1806.08342, 2018.220

J. Li, A. Aguirre, J. Moura, C. Liu, L. Zhong, C. Sun, G. Clifford, B. Westover, and S. Hong. An electrocardio-221

gram foundation model built on over 10 million recordings with external evaluation across multiple domains.222

arXiv preprint arXiv:2410.04133, 2024.223

Z. Li and H. Zhang. Fusing deep metric learning with knn for 12-lead multi-labelled ecg classification.224

Biomedical Signal Processing and Control, 85:104849, 2023.225

F. Liu, C. Liu, L. Zhao, X. Zhang, X. Wu, X. Xu, Y. Liu, C. Ma, S. Wei, Z. He, et al. An open access database226

for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection. Journal of227

Medical Imaging and Health Informatics, 8(7):1368–1373, 2018.228

J. Liu, Z. Li, X. Fan, X. Hu, J. Yan, B. Li, Q. Xia, J. Zhu, and Y. Wu. Crt-net: A generalized and scalable229

framework for the computer-aided diagnosis of electrocardiogram signals. Applied Soft Computing, 128:230

109481, 2022a.231

Z. Liu, K.-T. Cheng, D. Huang, E. P. Xing, and Z. Shen. Nonuniform-to-uniform quantization: Towards accurate232

quantization via generalized straight-through estimation. In Proceedings of the IEEE/CVF conference on233

computer vision and pattern recognition, pages 4942–4952, 2022b.234

J. Ma, Y. He, F. Li, L. Han, C. You, and B. Wang. Segment anything in medical images. Nature Communications,235

15(1):654, 2024.236

6

https://www.sciencedirect.com/science/article/pii/S1746809423011473
https://www.sciencedirect.com/science/article/pii/S1746809423011473
https://www.sciencedirect.com/science/article/pii/S1746809423011473


F. Murat, O. Yildirim, M. Talo, Y. Demir, R.-S. Tan, E. J. Ciaccio, and U. R. Acharya. Exploring deep features237

and ecg attributes to detect cardiac rhythm classes. Knowledge-Based Systems, 232:107473, 2021.238

A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding by generative239

pre-training. 2018.240

T. Shinde. Adaptive quantization and pruning of deep neural networks via layer importance estimation. In241

Workshop on Machine Learning and Compression, NeurIPS 2024, 2024.242

N. T. Srinivasan and R. J. Schilling. Sudden cardiac death and arrhythmias. Arrhythmia & electrophysiology243

review, 7(2):111, 2018.244

J. H. Tan, Y. Hagiwara, W. Pang, I. Lim, S. L. Oh, M. Adam, R. San Tan, M. Chen, and U. R. Acharya.245

Application of stacked convolutional and long short-term memory network for accurate identification of cad246

ecg signals. Computers in biology and medicine, 94:19–26, 2018.247

M. Tan. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv preprint248

arXiv:1905.11946, pages 6105–6114, 2019.249

E. Tiu, E. Talius, P. Patel, C. P. Langlotz, A. Y. Ng, and P. Rajpurkar. Expert-level detection of pathologies250

from unannotated chest x-ray images via self-supervised learning. Nature biomedical engineering, 6(12):251

1399–1406, 2022.252
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