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Abstract

Confounders are extraneous variables that affect
both the input and the target, resulting in spuri-
ous correlations and biased predictions. There
are recent advances in dealing with or remov-
ing confounders in traditional models, such as
metadata normalization (MDN), where the distri-
bution of the learned features is adjusted based
on the study confounders. However, in the con-
text of continual learning, where a model learns
continuously from new data over time without
forgetting, learning feature representations that
are invariant to confounders remains a significant
challenge. To remove their influence from inter-
mediate feature representations, we introduce the
Recursive MDN (R-MDN) layer, which can be
integrated into any deep learning architecture, in-
cluding vision transformers, and at any model
stage. R-MDN performs statistical regression via
the recursive least squares algorithm to maintain
and continually update an internal model state
with respect to changing distributions of data and
confounding variables. Our experiments demon-
strate that R-MDN promotes equitable predictions
across population groups, both within static learn-
ing and across different stages of continual learn-
ing, by reducing catastrophic forgetting caused by
confounder effects changing over time.

1. Introduction

Confounders are study variables that influence both input
and target, resulting in spurious correlations that distort the
true underlying relationships within the data (Greenland &
Morgenstern, 2001; Ferrari et al., 2020). These spurious
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correlations introduce bias into learning algorithms, causing
the feature representations learned by deep neural networks
(DNNp5s) to be skewed (Buolamwini & Gebru, 2018; Ober-
meyer et al., 2019; Oakden-Rayner et al., 2020; Chen et al.,
2021; Seyyed-Kalantari et al., 2020).

This problem is particularly relevant in medical studies, such
as those related to brain development (Casey et al., 2018), bi-
ological and behavioral health (Petersen et al., 2010; Brown
et al., 2015), and dermatoscopic images (Tschandl et al.,
2018), which are often confounded by demographic data
such as age, sex, socioeconomic background, and by factors
like acquisition protocols and disease comorbidities. For
example, a DNN trained to diagnose neurodegenerative dis-
orders from brain MRIs could disproportionately rely on
age instead of the underlying pathology. This may occur
due to the disease causing accelerated aging or a selection
bias, i.e., having different distributions in the diseased co-
hort versus the control group. This can lead to models that
are inequitable and inaccurate for certain populations (Rao
et al., 2017; Seyyed-Kalantari et al., 2020; Zhao et al., 2020;
Adeli et al., 2020b; Lu et al., 2021; Vento et al., 2022).
Given these challenges, it is crucial to develop techniques
that enable DNNss to focus on task-relevant features while re-
maining invariant to confounders, which are often available
as auxiliary information or metadata in the dataset.

Methods such as BR-Net (Adeli et al., 2020a), MDN (Lu
et al., 2021), P-MDN (Vento et al., 2022), and RegBN
(Ghahremani Boozandani & Wachinger, 2024) have pre-
viously been proposed to address the challenges posed by
confounders when training DNNs. However, in continual
learning, where data becomes available sequentially, tra-
ditional methods fail. This is because previous adversar-
ial (BR-Net) or statistical (MDN, PMDN, etc.) methods
need to use the entire dataset (implemented in batch-level
statistics together with global memories) to estimate and
remove the distribution of the features with respect to the
confounders. In addition, because they require estimating
batch-level statistics, they are unsuitable for modern archi-
tectures like vision transformers (Vaswani et al., 2017). A
continuum of data may arise in various contexts. For exam-
ple, in a cross-sectional study (Tschandl et al., 2018), the
training process may be divided into distinct stages, each
stage featuring different data distributions. In contrast, in a
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Figure 1. Confounder-free continual representation learning. a.
A continuum of data with varying distributions of the confounder
across different training stages continually passes through a DNN.
b. An R-MDN layer removes the influence of confounders from
the intermediate feature representations.

longitudinal study (Petersen et al., 2010; Brown et al., 2015;
Casey et al., 2018), the system does not have access to all
data at the outset; instead, new data—such as patient vis-
its in a clinical study—continually arrive over an extended
period, often spanning several years. These limitations of
existing methods create a gap, as there is a need for algo-
rithms that effectively and explicitly remove the influence
of confounding variables under changing data distributions.

To this end, we propose Recursive Metadata Normalization
(R-MDN) to remove (normalize) the effects of the confound-
ing variables from the learned features of a DNN through
statistical regression. Specifically, R-MDN leverages the
recursive least squares (RLS) algorithm (Albert & Sittler,
1965), which has been widely used in adaptive filtering, con-
trol systems for reinforcement learning, and online learning
scenarios (Xu et al., 2002; Gao et al., 2020). R-MDN is a
layer that can be inserted at any stage within a DNN. The
use of statistical linear regression is motivated by its suc-
cess in de-confounding learned feature representations (Mc-
Namee, 2005; Brookhart et al., 2010; Pourhoseingholi et al.,
2012; Adeli et al., 2018). Similar to the original MDN for-
mulation, R-MDN does not assume that confounders have
to linearly influence the input image because the method
does not directly operate on images, but rather on the fea-
ture embeddings, which are non-linear abstractions of the
input. Moreover, R-MDN can be applied to feature em-
beddings at multiple layers, so overall it can effectively
remove non-linear confounding between the input and the
confounders. R-MDN operates by iteratively updating its in-

ternal parameters—consisting of regression coefficients and
an estimated inverse covariance matrix, which together form
an internal model state—based on previously computed val-
ues whenever new data are received. This state represents
the current understanding of the relationship between the
learned features and the confounders, enabling the model to
adapt dynamically as new data flows in.

R-MDN, therefore, applies to continual learning, where
each training stage consists of data drawn from different
stationary distributions. This continuum of data can be
understood as a sequence of uninterrupted examples that
a model learns from over time. Here, R-MDN does not
need to train a stage-specific network. Instead, the internal
state can be continuously updated over time as the model
progresses through successive training stages. As a result,
only a single network equipped with R-MDN layers needs to
be trained on the entire dataset, with the model being able to
generalize across stages (data or confounder distributions)—
maintaining stable performance while also removing the
effects of the confounders (see Figure 1).

In summary, we propose R-MDN—a flexible normalization
layer that is able to residualize the effects of confounding
variables from learned feature representations of a DNN by
leveraging the recursive least squares closed-form solution.
It can do so under varying data or confounder distributions,
making it an effective algorithm for continual learning. We
provide a theoretical foundation for our approach (Section 3)
and empirically validate it in different experimental setups
(Sections 4.1, 4.2, 4.3). Furthermore, we demonstrate the
applicability of R-MDN to static learning (Section C, 4.4)
and architectures that prohibit the calculation of batch-level
statistics (Sections 4.2, 4.3). We find that R-MDN helps
to make equitable predictions for population groups not
only within a single cross-sectional study (Section 4.4),
but also across different stages of training during continual
learning (Sections 4.1, 4.2, 4.3), by minimizing catastrophic
forgetting of confounder effects over time.'

2. Related Work

Widely used techniques such as batch (Ioffe, 2015), layer
(Ba et al., 2016), instance (Ulyanov, 2016), and group (Wu
& He, 2018) normalization standardize intermediate feature
representations of DNNG, i.e., they normalize them to have
zero mean and unit standard deviation across different repre-
sentational axes. They do not explicitly remove the effects
of confounding variables from these features.

Prior works have proposed methods for learning confounder-
invariant feature representations based on domain-
adversarial training (Liu et al., 2018; Wang et al., 2018;
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Sadeghi et al., 2019; Adeli et al., 2020a), closed-form sta-
tistical linear regression analysis (Lu et al., 2021), penalty
approach to gradient descent (Vento et al., 2022), regulariza-
tion (Ghahremani Boozandani & Wachinger, 2024), disen-
tanglement (Liu et al., 2021; Tartaglione et al., 2021), coun-
terfactual generative modeling (Neto, 2020; Lahiri et al.,
2022), fair inference (Baharlouei et al., 2020), and distri-
bution matching (Baktashmotlagh et al., 2016; Cao et al.,
2018). Among these, distribution matching techniques do
not specifically remove the influence of individual con-
founders from learned features. Adversarial training, on
the other hand, typically involves a confounder-prediction
network applied to pre-logits feature representations, with
an adversarial loss used to minimize the correlation between
features and confounders. However, adversarial approaches
struggle to scale effectively when faced with multiple con-
founding variables. Likewise, disentanglement, fair infer-
ence, and counterfactual generative modeling techniques
only partially remove confounder effects from a single layer
of the network (Zhao et al., 2020; Vento et al., 2022).

Among the methods listed earlier, Metadata Normalization
(MDN) (Lu et al., 2021), which uses statistical regression
analysis, is a popular technique. MDN is a layer that can
be inserted into the DNN to residualize confounder effects
from intermediate learned features. It does so through the
ordinary least squares algorithm, wherein it computes a
closed form solution for the expression z = X + r as

8= (X X ) -t X Tz, where z is the intermediate learned
feature vector, X is the confounder matrix, (§ are regression
coefficients, and 7 is the component in the learned features
invariant to the confounder. To work with minibatches of
data, MDN re-formulates the closed-form solution as 5 =
NY'E(zz), where £~ = (XTX)_1 is pre-computed
with respect to training data, with the amount being how
much is needed to estimate its distribution (ideally, the entire
dataset) at the start of training, and the expectation E(zz) is
computed using batch-level estimates during training. In the
context of continual learning where we do not have all data
at the outset of training, or where an infinite replay buffer is
not assumed, this pre-computation step prohibits effective
transfer of performance to training stages with different
data distributions. Even in static learning, employing batch-
level statistics during training precludes MDN from being
used with architectures such as vision transformers, where
computation is parallelized over individual examples.

To alleviate issues around the use of batch statistics, a
penalty approach to MDN (P-MDN) was proposed (Vento
et al., 2022). The authors of P-MDN observe that MDN
solves a bi-level nested optimization problem by having the
network learn task-relevant features while also being invari-
ant to the confounder, and instead suggest to solve a proxy
objective ming w L(v(z — X 8),y) + vL*(z; X), where
 is the non-linear computation to be performed within the

network after the current layer, y are the target labels, and
7 is a penalty parameter that trades off task learning with
confounder-free feature learning. After these modifications,
P-MDN is able to work with arbitrary batch sizes. However,
as we see in the results of this work, v becomes very difficult
to tune, and optimizing the proxy objective often leads to
non-robust results with high variance across different runs.

For continual learning, methods based on regularization
(Kirkpatrick et al., 2017), knowledge distillation (Li &
Hoiem, 2017), and architectural changes (Rusu et al., 2016;
Mallya & Lazebnik, 2018; Bayasi et al., 2024) have been
proposed to overcome catastrophic forgetting—the phe-
nomenon where DNNs forget information learned in prior
training stages when acquiring new knowledge. Some of
these methods are motivated by dealing with task (domain)
specific biases by learning task (domain) general features
(Arjovsky et al., 2019; Zhao et al., 2019; Creager et al.,
2021). Such approaches, however, do not leverage meta-
data to remove effects due to specific confounders from the
learned features. While domain-adversarial training and
P-MDN still apply to the continual learning setting, we
show in this paper that they do not perform well in many
scenarios.

3. Methodology

Consider that we have N training samples, where the in-
put matrix A € RV*9 for some dimension d, is associ-
ated with target labels y € R" and information about the
confounding variable & € R”. Let the output after a par-
ticular layer of a deep network be the features z € R¥.
Our goal is to obtain the residual r from the expression
z ::iﬁ;—l—y/gy—&—a" = X + r, where X = [Z y] and
8= [6;, By] is a set of learnable parameters. In other words,
the learned features z are first projected onto the subspace
spanned by the confounding variable and the labels, with the
term &3, corresponding to the component in z explained
by the confounder, and y 3, to that explained by the labels.
We want to remove the influence of  from z while pre-
serving the variance related to the labels. We thus compute
the composite 3 as theorized below, but obtain the residual
r=z— :ﬁﬁNx; i.e., only with respect to ﬁ; This residual
explains the components in the intermediate features that
are irrelevant to the confounder but relevant to the labels
and, thus, for the classification task.

To accomplish this, we use the recursive least squares ap-
proach. We start from the closed-form solution found for
the ordinary least squares (OLS) estimator:

N -1 /N
8= (Z XXT> (Z zX) : )
=1

i=1

where X; . is the i row of X. If we represent R(N) =
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Zij\; XL:XI: and Q(N) = Zfil 2; X ., this is equivalent
to writing 3 = R(N)~1Q(N).

Now, say that we have a new sample Ay . come in. The
confounding variable and intermediate features for this sam-

ple are Xy 41,. and zn 4 respectively. This means that we
need to compute new parameters:

B'=R(N+1)7'Q(N +1) )

= (R(N) + XN+1,:X]—\FI+1,:)_1 (Q(N) + 241X N+1,:)

Fortunately, R(N + 1)~! can be efficiently computed us-
ing the Sherman-Morrison rank-1 update rule (Sherman &
Morrison, 1950):

-1
(R(N) + XN+1,:X1—\|;+1,:)
R(N)_lXN+1$;X;+L:R(N)_1 3)

= R(N)! -
(V) 1+ Xy, RN T Xy,

With training, Q(IV) changes as the features z; learned by
the model change. In a continual learning setting, we cannot
recompute Q(N) and instead take it to be an estimate of
the true value. Empirically, we see that this is a reliable
estimate. The entire derivation is presented in Suppl. A.
Importantly, applying R-MDN does not incur significant
computational and memory overhead (a detailed analysis is
presented in Suppl. B).

3.1. Estimates produced by R-MDN

Stoica & Ahgren (2002) theorize that RLS (i.e., the linear
model constructed by R-MDN) provides an estimate that
coincides with the estimate from OLS (used by MDN) as the
amount of data N — oo. However, a careful initialization of
the inverse covariance matrix can speed up this convergence.
We thus initialize R(0)~! = eI, where ¢ > 0 is a small
scalar, as most commonly used by prior works (Haykin,
2002; Stoica & Ahgren, 2002; Liu et al., 2009; Skretting &
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Figure 2. /3 norm between estimates produced from the linear
model constructed by R-MDN and MDN on synthetically gener-
ated data when varying e. Estimates converge fairly quickly and
for a range of hyperparameter initializations.

Engan, 2010). From Figure 2, for a range of € values such
as 10, 100, and 1000, the RLS estimates approach that of
OLS quite quickly.

3.2. Mini-batch learning

So far, we have theorized R-MDN within an online learning
setting, with the system adapting to new information as
it comes in one at a time. However, we can extrapolate
this method to work with mini-batches of data. Consider
that the system receives new mini-batches of information
X € RB%4_ for some batch size B. We can adapt the
R-MDN approach by now using the Sherman-Morrison-
Woodbury formula (Woodbury, 1950):

A —1
(P+XXT)
X R oZ1 . “@
—pl_plx <I+ XTP—1X) XTp

3.3. From batch to layer statistics

Remember that one of the drawbacks of MDN is that it
has to compute and store batch-level statistics > with re-
spect to the entire training data prior to training (refer to
Section 2, 3rd paragraph). This requirement makes MDN
unsuitable for modern architectures like vision transformers,
wherein computations happen in parallel over all examples
in a mini-batch. Incorporating an MDN module will in-
herently require an aggregation step for the computation
of batch-level statistics, resulting in significant computa-
tional overhead. R-MDN, on the other hand, operates on
the level of individual examples in a minibatch. Thus, it
works in a purely online regime and can be inserted in vision
transformers to residualize intermediate learned features.

3.4. Regularization

R-MDN can adapt quickly to changing data distributions
over time due to its iterative nature. However, this iterative
nature of the method might sometimes make it too sensitive
to small changes in the data. Random fluctuations, or data
noise, can lead to unstable updates to R-MDN parameters.
Therefore, we add a regularization term A1 to P(N + B).
A is a hyperparameter that is tuned during training (ablation
in Suppl. H). This has the effect of smoothing out the
updates and stabilizing the residualization process, resulting
in some robustness to noise. Additionally, it helps to ensure
numerical stability by preventing the computation of an
inverse for a matrix that might be singular or ill-conditioned.

4. Experimental Results

We train on a continuum of data by slightly modifying the
setting described by Lopez-Paz & Ranzato (2017): A 4-
tuple (a;, z;,y;, s;) for i € [N], where a; € A is the in-
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Table 1. Quantifying metrics for the synthetic dataset in continual learning. ACCd, BWTd (x10~2), and FWTd mean and standard
deviation for different methods and datasets. A total of 5 runs were performed with different model initialization seeds. We compare
against prior works—BR-Net (Adeli et al., 2020a), MDN (Lu et al., 2021), and P-MDN (Vento et al., 2022). MDN, a CNN was trained
separately on each training stage and then evaluated against all stages. Best results in bold, second-to-best, underlined.

Method Dataset 1 Dataset 2 Dataset 3
Confounder dist. changes Main effects change Both distributions change
ACCd BWTd FWTd ACCd BWTd FWTd ACCd BWTd FWTd
CNN Baseline 0.18£0.00 0.03+0.04 0.19+0.00 0240.00 -0.05+0.13 0.21+£0.00 028 +0.00 -0.37+£0.02 0.31+0.00
BR-Net 0.04 £0.03 -1.28+1.37 0.05+0.04 0.04+0.02 -1.43+1.81 0.04+0.03 0.07+0.04 -055+0.56 0.08+0.04
Stage-specific MDN  0.25 +£0.00 162+227 0.09+0.02 0.13+0.00 122+0.57 0.02+0.01 0.13+000 11.7+148 0.02+0.01
P-MDN 0.04 £0.01 -0.61 +£1.37 0.04+0.01 0.044+0.00 -0.76+246 0.05+0.01 0.05+£001 -1.37+221 0.06+0.01
R-MDN 0.02+001 0.15+0.14 0.02+0.01 0.03+0.00 0.07+2.17 0.03+0.00 0.02+0.01 -0.04+0.78 0.02+0.00
Baseline BR-Net Stage-Specific MDN P-MDN R-MDN
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Figure 3. Effects of the presence of the confounder for task generalization. After training the different methods on data with
confounders, we evaluate them on test data with varying intensities of the confounder, from 1 (completely present) to O (completely
absent). R-MDN does not get influenced by the change in confounder distribution during inference as it maintains its prediction accuracy
(i.e., the lines are straight). This shows that it does not “cheat” by looking at the confounder and instead learns task-relevant features.

put, z; € X is the confounder, y; € Y is the label, and
s; € S is the training stage descriptor, satisfies local iid,
ie., (ai, ;i) Y Ps, (A, X,Y). Our goal is to learn a
classifier g : A x S — Y, that is able to predict the label y
associated with an unseen 2-tuple (a, s), where (a,y) ~ Ps
at any point during or after training on the S stages, in a
way such that it does not use confounder information in x.

4.1. A Continuum of Synthetic Datasets

We first use a synthetic dataset with varying distributions of
the confounding variable and main effects as a playground to
test how models behave under controlled variations in indi-
vidual variables. Specifically, we design 3 different datasets,
each with 5 stages of training that arrive sequentially. Over
time, the distributions of the confounder, the main effects,
or both change in a way that emphasizes biased learning of
a classifier that uses confounder information for discrimina-
tion. A complete description is presented in Suppl. E.

To quantify knowledge transfer, we define the Average Accu-
racy distance (ACCd), Backward Transfer distance (BWTd),

and Forward Transfer distance (FWTd) metrics. These met-
rics are adapted from ACC, BWT, and FWT defined by
Lopez-Paz & Ranzato (2017) for the setting where a model
is expected to achieve certain theoretical accuracies on data
from both past and future stages of training. Say we have a
total of S stages. Let Rz; ; denote the classification accuracy
of the model on stage s; after learning stage s;. And let
A; denote the theoretical maximum accuracy for stage s;.
Then,

S
ACCd = ;; |Rs,; — Al o)
1 S—1
BWTd = o ; |Rs: — Ai| — |Rii — Ay, (6)
1 S
FWTd = -1 ; |Ri—1, — Al @)

The smaller the metrics, the better the model. We use a con-
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Table 2. Training a 2D vision transformer on synthetic
continual data. The setup is the same as in Section 4.1. We use
dataset 3—where the distributions of both the confounder and
main effects change. Results are averaged over 5 runs of random
model initialization seeds.

Method ACCd BWTd FWTd
ViT Baseline  0.110 +0.027 -0.173 £0.024  0.306 £ 0.009
R-MDN 0.061 = 0.013 -0.111 +0.019 0.188 £ 0.015

volutional neural network backbone for each method (details
in Suppl. F). A stage-specific MDN does not perform well
on the average accuracy metric, as indicated by a high ACCd
(Table 1 and Figure 12b). While other methods are good
at backward transfer, R-MDN also improves forward trans-
fer. This means that even with changing distributions of
the confounding variable, R-MDN only “looks at” the main
effects for classification, learning features that transfer well
to later tasks while remaining invariant to the confounder
itself. Other methods make use of confounders to various
degrees, pulling their classification accuracy away from A.
This is also reflected in R-MDN consistently achieving an
accuracy close to the theoretical maximum for the test sets
of each stage, while also showing the lowest correlation
with the confounding variable (Figure 12¢). This outcome
is also reflected when starting with a vision transformer
backbone (Table 2), and when constructing a slightly more
complex synthetic setup where we vary two different axes
of possibly confounding information: position and intensity
of variables (Suppl. D).

We further quantify how different methods generalize to
unseen images where the confounder is absent (Figure 3,
Suppl. K). This issue arises in situations where, for instance,
a model is trained on data from multiple hospitals and then
tested on data from a previously-unseen one (Zech et al.,
2018). In this scenario, the base model experiences a sharp
drop in performance when the distribution of the confounder
changes in the test data. Both BR-Net and P-MDN show

Table 3. Comparing R-MDN against recent analytic continual
learning frameworks. We compare R-MDN against ACIL
(Zhuang et al., 2022) and F-OAL (Zhuang et al., 2024) under a
CNN backbone. The setup is the same as in Section 4.1. We use
dataset 3—where the distributions of both the confounder and
main effects change. Results are averaged over 3 runs of random
model initialization seeds.

Method ACCd BWTd FWTd

ACIL 029 +£0.00 -0.00 +0.00 0.30+0.00
F-OAL  0.28 £0.00 0.01 £0.00 0.28 £0.00
R-MDN  0.02 +0.01 -0.00 +0.01 0.02 £ 0.00

some resistance to the distribution shift but fail when the
confounder is entirely absent. In contrast, R-MDN main-
tains consistent performance across all distributions.

In addition to comparing with prior methods such as MDN,
BR-Net, and P-MDN that have been proposed to remove
the influence of confounders from learned features, we also
want to compare against recently proposed methods in the
continual learning setting. Analytic continual learning meth-
ods such as ACIL (Zhuang et al., 2022) and F-OAL (Zhuang
et al., 2024) share some similarities to our method in terms
of using recursive least squares, although they address an
inherently different problem that regardless is interesting
to compare against. These methods address catastrophic
forgetting and improve task accuracy, but do not explicitly
remove the influence of confounders from learned features.
R-MDN is a normalization layer, and can be integrated
with various continual learning frameworks, as we show
later in Section 4.2. In Table 3, we see that both ACIL
and F-OAL have excellent BWTd, which means that they
effectively mitigate catastrophic forgetting, as their papers
propose. However, they result in significantly worse ACCd
and FWTd, which means that they make use of confounder
information to make predictions (exhibiting large deviations
from the theoretical maximum accuracy). On the other hand,
R-MDN has better BWTd, ACCd, and FWTd, meaning that
it learns confounder-free features for making predictions,
thus approaching the theoretical accuracy.

4.2. HAM10000 Skin Lesion Classification

Next, we classify 2D dermatoscopic images of pigmented
skin lesions into seven distinct diagnostic categories with
the HAM10000 dataset (Tschandl et al., 2018). The dataset
consists of 10015 images, which we divide into five training
stages. In each stage, the age distribution—the confounding
variable (see Suppl. E)—varies, with younger populations
represented in the earlier stages and older populations in the
later stages. For each stage, we randomly allocate 80% of
the images for training and the remaining 20% for testing.

In this experiment, we utilize a vision transformer as the
base architecture and as the encoder for BR-Net. For R-
MDN, we explore three different variants: (A) inserting the
R-MDN layer after the self-attention layer in every trans-
former block, as well as after the pre-logits layer; (B) in-
serting it at the end of every transformer block and after the
pre-logits layer; and (C) inserting it only after the pre-logits
layer. For P-MDN, we place the P-MDN layer right after the
pre-logits layer. Additionally, we compare to three continual
learning methods as baselines: elastic weight consolidation
(EWC) (Kirkpatrick et al., 2017) as a regularization method,
learning without forgetting (LwF) (Li & Hoiem, 2017) for
knowledge distillation, and PackNet (Mallya & Lazebnik,
2018), an architectural method that applies iterative pruning.
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Table 4. HAM10K skin lesion classification results for continual learning. Results shown as the mean and standard deviation over test
sets of different stages of training for the model after being trained on the last training stage. Best and second-to-best results shown in
bold and underlined respectively. Our metrics of interest are dcor?, BWT, and FWT. A higher accuracy in our case does not equate to a
better model as it might be “cheating” by looking at the confounder for prediction.

Method Accuracy Average dcor? BWT FWT

ViT Baseline 0.7095 £+ 0.0626 0.0864 + 0.0336 0.0278 £ 0.0446 0.5125 + 0.0705
BR-Net (Adeli et al., 2020a) 0.7247 + 0.0627 0.0544 + 0.0534 -0.0207 £ 0.0166 0.5592 + 0.0897
P-MDN (Vento et al., 2022) 0.6750 4+ 0.0945 0.2595 4+ 0.0620 0.0706 4+ 0.0622 0.4391 4+ 0.0372
R-MDN (A) 0.5503 + 0.0541 0.0928 £+ 0.0630 -0.0268 + 0.0248 0.4130 + 0.0709
R-MDN (B) 0.5288 + 0.0571 0.0739 4+ 0.0555 0.0571 + 0.0693 0.3362 + 0.0881
R-MDN (C) 0.6919 + 0.0723 0.0475 + 0.0247 0.1246 + 0.2123 0.3997 + 0.1555
EWC (Kirkpatrick et al., 2017) 0.6437 4+ 0.0586 0.0938 £ 0.0506 0.0698 + 0.0238 0.4457 + 0.0620
EWC + R-MDN (C) 0.6739 + 0.0686 0.0592 4+ 0.0488 0.0754 + 0.1614 0.4404 + 0.1305
LwF (Li & Hoiem, 2017) 0.7356 + 0.0757 0.0512 4+ 0.0407 0.0387 4+ 0.0390 0.5277 + 0.0605
LwF + R-MDN (C) 0.7186 + 0.0736 0.0354 £+ 0.0210 0.1348 4+ 0.1994 0.4434 + 0.1403
PackNet (Mallya & Lazebnik, 2018) 0.6849 + 0.0745 0.0470 £+ 0.0304 0.0538 4+ 0.0670 0.4965 + 0.0611
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Figure 4. Visualizing learned features for HAM10K skin lesion classification. t-SNE representation of the learned features after
training a model with and without R-MDN on all stages of continual learning. Without R-MDN, the model drives fine-grained separation
of feature clusters based on category labels, especially for stage 5, which roughly overlap with confounder distributions for that training
stage. By looking at the confounder for fine-grained discrimination, the baseline fails to generalize to previous data. R-MDN, on the other
hand, does not seem to be using confounder information to drive fine-grained feature separation, leading to better backward transfer.

Results are summarized in Table 4 and visualized in Fig-
ure 14. While the base model performs decently on the
classification task, it exhibits significantly lower backward
transfer in earlier stages of training. In contrast, R-MDN not
only effectively removes the confounder’s influence from
the features, as indicated by a low dcor? value, but also
demonstrates significantly better backward transfer than
the base model. We explore this effect by observing the
t-SNE visualizations of their features (Figure 4). When the
base model is trained in the final stage, it learns to clearly
separate feature clusters from each of the seven diagnostic
categories, especially after being trained on stage 5 (Figure
4b). However, it is possible that this separation is influenced
by the stage-specific distribution of the confounding vari-
able (Figure 4a), leading to spurious correlations driving
cluster separation and, thus, poor transfer to previous data.
On the other hand, R-MDN—which relies on task-relevant
information—also forms feature clusters for the different

categories but without introducing the same level of sepa-
ration possible by looking at the confounder. R-MDN is
able to apply the knowledge learned in the current stage to
previous stages of training, improving its overall backward
transfer performance.

Of the three R-MDN variants, R-MDN (C) performs the best.
Moreover, applying R-MDN to classic continual learning
frameworks such as EWC and LwF still drives the corre-
lation with the confounder significantly down. In contrast,
other methods, such as BR-Net and P-MDN, do not perform
as well. BR-Net catastrophically forgets past information,
and P-MDN fails to effectively remove confounder effects.

4.3. ADNI Diagnostic Classification

Finally, we move from a cross-sectional dataset to a lon-
gitudinal study. The Alzheimer’s Disease Neuroimaging
Initiative is a multi-center observational study that collects
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Table 5. ADNI diagnostic classification for continual learning.
Average squared distance correlation after training on the last
training stage for different groups across different methods
(Baseline ViT, P-MDN (Vento et al., 2022), and R-MDN). Note
that we do not train BR-Net as adversarial training does not scale
well to more than one confounder (Zhao et al., 2020).

Method dcor®> (MCI)  dcor? (CN)  dcor? (AD)
ViT Baseline 0.20 £0.09 0.20£0.14 0.25 £0.22
P-MDN 0.06 £0.05 0.08+0.05 0.24+£0.16
R-MDN 0.08 £0.06 0.05=+0.04 0.09 £ 0.07
Acquisition Year:
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Figure 5. Visualizations for ADNI diagnostic classification. a.
Average accuracy and b. squared distance correlation for each
participant group for different stages of training. The baseline and
P-MDN have a poor forward transfer for the first acquisition year,
as they use confounder information to overfit to that training stage.
R-MDN has a significantly better performance on future training
stages as it does not look at the confounder, as indicated by a lower
dcor? for all diagnostic groups.

neuroimaging data from participants that fall into different
diagnostic groups over several years (Mueller et al., 2005;
Petersen et al., 2010). We pose a diagnostic classification
task—Alzheimer’s Disease (AD), Mild Cognitive Impair-
ment (MCI), and Control (CN)— from T1w MRIs under
changing distributions of age and sex, the two confounders
for the experiment (additional details provided in Suppl. E).
We train a 3D vision transformer as the base architecture.

Similar to previous experiments, applying R-MDN results
in a lower squared distance correlation, implying that it does
not take into account confounders when making predictions
(Table 5, Figure 5b). P-MDN does the same only to some
extent, as it is not able to drive correlation down for all three
participant groups. This leads to the baseline and P-MDN
models “cheating” by using discriminatory cues from the
confounders to better classify inputs and demonstrating a
slightly higher average accuracy (Figure 5a). This occurs at
the expense of not being able to generalize to future stages
of training, as, for example, seen by a roughly monoton-
ically decreasing accuracy curve for the acquisition year
<2010 (Figure 5a). R-MDN learns task-relevant cues, char-
acterizing model performance in the absence of “cheating”.

4.4. Static Learning

R-MDN is not only helpful in continual settings, but also
an effective regularizer for static training. To demonstrate
this, we explore a setting where the system only receives
data from a single stationary distribution. Experiments were
conducted on a proof-of-principle synthetic dataset (Suppl.
C) and a neuroimaging dataset.

ABCD Sex Classification: We used T1w MRIs from the
ABCD (Adolescent Brain Cognitive Development) study
(Casey et al., 2018) for the task of binary sex classification.
Within a cross-sectional study setting, we take 10686 base-
line (i.e., first visit) MRIs, confounded by scores from the
Pubertal Development Scale (PDS)—a validated measure
of pubertal stage identified through self-assessment. PDS
is a confounder because it is significantly (Suppl. E) larger
in girls (2.175 4+ 0.9) than in boys (1.367 + 0.6) (Adeli
et al., 2020b). PDS categorizes participants as either (1)
pre-pubertal, (2) early-pubertal, (3) mid-pubertal, (4) late-
pubertal, or (5) post-pubertal (Carskadon & Acebo, 1993).

We start with a 3D CNN as the base architecture consisting
of three stacks of convolutional layers, each followed by
ReLU non-linearity and max pooling, and ending with two
fully connected layers. We insert a residualization module
after every layer except the last one. In addition to this
approach, we establish two additional baselines—one where
we use BR-Net, and adversarial training framework, with
the same base model as the encoder, and another where we
pre-process the input images prior to training by regressing
out the influence of confounders directly from the pixel
space (hereafter referred to as Pixel-Space MDN). We set
the batch size to 128, which is the largest that can be fit in
GPU memory (see additional details in Suppl. F).

We observe that the base model has high accuracy, but at the
cost of being significantly biased towards girls—its feature
representations have a larger dcor? with the confounder for
girls than boys, and a higher true negative rate (Table 6).
This is because the base model makes use of the pubertal
development to drive its predictions. On the other hand,
R-MDN incurs a modest decrease in performance but sig-
nificantly drives down the correlation between the learned
features and the confounder for both boys and girls. More-
over, it has the lowest mean difference between the true
positive and true negative rates among all evaluated meth-
ods (quantified in Table 6, visualized in Figure 13a,b,c),
signifying that it is not biased toward children of either sex.
Other methods such as MDN and P-MDN have a higher pre-
diction accuracy but either fail to drive down the correlation
between the features and the confounder due to requiring
relatively larger batch sizes or remain biased towards girls
despite driving the correlation down. As the authors of the
MDN paper hypothesize, batch-level statistics could be ag-
gregated over several batches to virtually increase the batch
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Table 6. ABCD sex classification results for static learning. Accuracy, true positive (TPR) and negative rates (TNR), difference between
TPR and TNR, and squared distance correlation for both boys and girls for different methods. Results are shown as the mean and standard
deviation over 5 folds of 5-fold cross-validation, with data split by subject and site ID. Our metrics of interest are (TPR - TNR) and
dcor?. A higher accuracy in our case does not equate to a better model as it might be “cheating” by looking at the confounder for prediction.

Method Accuracy TPR TNR TPR - TNR dcor? (boys) dcor? (girls)

CNN Baseline 86.86 + 0.354 85.41 £0.781 88.32 £0.770 -0.029 +£0.016 0.0127 +0.0022 0.0218 £ 0.0029
Pixel-Space 84.91 4+ 0.447 83.04 £2.900 86.77 £2.352 -0.037 £0.059 0.0168 +0.0041 0.0239 + 0.0083
BR-Net (Adeli et al., 2020a) 81.63 + 0.499 80.26 +0.388  83.01 £0.908 -0.027 £0.011 0.0127 £ 0.0006 0.0148 + 0.0002
MDN (Lu et al., 2021) 87.55 +0.6630 87.43 +3.301 87.66 £4.277 -0.002 +0.084 0.0329 +0.0140 0.0624 + 0.0283
P-MDN (Vento et al., 2022)  86.41 £ 0.876 84.25 +1.651 88.57 £1.540 -0.043 +0.030 0.0031 £+ 0.0009 0.0108 + 0.0017
R-MDN 85.08 + 0.591 8498 +0.842 85.18 £ 1.125 -0.002 + 0.018 0.0099 £ 0.0029  0.0090 + 0.0027
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Figure 6. Visualizing ROIs for ABCD sex classification. The top 10 most relevant regions for distinguishing sex as determined by
a model trained a. without and b. with R-MDN, respectively. One of the ROIs identified by the baseline is the cerebellum, which is
implicated in driving sex differences in preadolescence and is the region mostly affected by the confounder for this study. R-MDN does

not use the cerebellum for sex classification.

size (Lu et al., 2021), and thus the performance of MDN,
but this is a research question orthogonal to our paper.

Further validation of R-MDN in learning confounder-free
feature representations is revealed when the model does not
use the cerebellum—which is the region mostly confounded
by PDS (Adeli et al., 2020b)—for distinguishing sex, while
the base model does (Figure 6a,b). These regions are in
line with findings in the neuroscience literature about sex
differences in preadolescence (Chung et al., 2005; Tiemeier
et al., 2010; Fan et al., 2010).

5. Conclusion

In this work, we presented Recursive Metadata Normal-
ization (R-MDN)—a flexible layer that can be inserted at
any stage within deep neural networks to remove the influ-
ence of confounding variables from feature representations.
R-MDN leverages the recursive least squares algorithm to
operate at the level of individual examples, enabling it to
adapt to changing data and confounder distributions in con-
tinual learning. It also promotes equitable outcomes across
population groups and mitigates catastrophic forgetting of
confounder effects over time. As a direction for future work,
R-MDN should be explored beyond medical contexts, such
as video streams and audio signals, where confounding vari-
ables like environmental noise, lighting conditions, camera

angles, or speaker accents might introduce spurious correla-
tions in the data and bias the learning algorithm.
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A. Deriving Parameter Updates for R-MDN

To derive parameter updates for R-MDN, which builds a regression model based on the recursive least squares (RLS)
method, we begin from the closed-form solution of ordinary least squares (OLS)-

N -1 /N
B = <Z Xi,:XiT;> <Z ZiXi,:> = R(N)'Q(N) 8)

Firstly,
QIN+1)=Q(N)+ 2nv+1X N1, 9

Additionally, using the Sherman-Morrison rank-1 update rule,

1 R(N) ' Xny1. X741 R(N)™!

RIN+1)=(R(N)+ Xni1.X%q ) =R(N)™' - 10
( + ) ( ( ) + N+1,: N+17.) ( ) 1+ XE_,,_L:R(N)_lXNJ,_L; ( )
Let
P(N+1)=R(N+1)"'=P(N) - K(N+1)X\,,.P(N), (11)
where the Kalman Gain PINX
K(N+1) = = (™) ML (12)
14+ X3, RIN) " Xy,
Rewriting eq. 12,
K(N+1) [14 X 1. P(N)Xni1.] = P(N) X w1,
K(N+1)+ KN +1)X3 1. P(N)Xni1: = P(N) XN, a3

K(N+1)=[P(N) = K(N+ )X 1 .P(N)] Xn1,:
K(N+1)=P(N+1)Xn+1, [usingeq. 11]

Finally,
B(N +1)=P(N+1)Q(N +1)
=P(N+1)Q(N)+ P(N + 1)zy41Xn+1,: [using eq. 9]
= [P(N) = K(N + 1) X411, P(N)] Q(N) + P(N +1)zn41 XN 1, [using eq. 11]
= [P(N) = K(N 4+ 1)X} 1. P(N)] Q(N) + K(N + 1)zy1 [using eq. 12] (14)
= P(N)Q(N) + K(N +1) [zn41 — Xn41,P(N)Q(N)] [using eq. 12]
=B(N)+ K(N +1) [z2n41 — X341 . B(N)] [using eq. 8]
= B(N)+ K(N +1)e(N + 1),

where e(N + 1) = zy41 — X ]T, 1.8 (N), the a priori error computed before we update residual model parameters (3.
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B. Computational and Memory Complexity

MDN, P-MDN, and R-MDN each have their tradeoffs in terms of computational complexity, memory complexity, and the
extent to which the influence of the confounder is removed from the learned feature representations. As demonstrated in this
work, R-MDN empirically works better than both MDN and P-MDN. The asymptotic complexity of each is presented here.

Say there are NV training examples, broken into batches of size B. Let the confounder matrix X have a shape IV x p, where p
is associated with the number of confounders, the target, and a bias of 1, and the intermediate learned feature representations
have a size of N x h.

Firstly, MDN internally uses the linear least squares estimator, which requires pre-computing the matrix ¥ = X ' X in
O(Np?) steps. Inverting this p x p matrix further requires O(p®) steps. Then, for every batch of information during training,

a batch level estimate X | % is produced, where the (-) operation refers to a batch instead of the entire training data. This
takes O(Bph) steps. Post-multiplying this p x h matrix with ¥ ~! requires O(p?h) steps. If computations over batches
of information occur F times, the total computational complexity becomes O(p* + Np? + E(p?h + Bph)). In terms of
memory complexity, a p x p ¥~! needs to be stored, along with the residual model parameters /3 of size p x h.

For R-MDN, computations only occur over batches of information. In memory, residual model parameters 3 of size
p X h and an estimate of the inverse covariance matrix P of size p X p are required. For every processing iteration,
computing the Kalman gain K requires O(Bp?) steps for PX ", O(B?p + Bp?) steps for XPX ", O(B?) for inverting
this latter matrix, and O(B?p) steps for multiplying the matrices together. Updating P using K X requires O(B?p) steps.
And finally, updating 3 requires computing Ke in O(Bph) steps. The total computational complexity turns out to be
O(E(B? + B?p + Bp? + Bph)) steps. Empirically, R-MDN works best with small batch sizes B, showing very fast
convergence rates, and having a computational complexity that is independent of the size of the training dataset. This
becomes important for continual learning, especially longitudinal studies, where data collected over several years or decades
can prohibit the use of MDN.

P-MDN does not use a closed-form solution to linear statistical regression. Instead it uses gradient descent to optimize a
proxy objective. Thus, the only memory complexity stems from storing 5 parameters of size p x h. The computational
complexity is dominated by the number of iterations required to navigate the proxy loss landscape, with results that are not
often robust with high variance across runs.
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C. Synthetic Dataset for Static Learning
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Figure 7. A sample from the synthetic dataset used for static learning.

We construct this dataset, following Adeli et al. (2020a) and Lu et al. (2021), by generating 2048 images of size 32x32,
equally divided between two groups (categories). Each image consists of 3 Gaussian kernels: two on the main diagonal, i.e.,
quadrants 2 and 4, whose magnitudes are controlled by parameter o 4, and one on the off-diagonal, i.e., quadrant 3, whose
magnitude is controlled by o (see Figure 7). Differences in the distributions of o 4 between the two groups are associated
with the main effects (true discrimination cues) that should be learned by the system, whereas o is a confounding variable.
An unbiased system will only use information from the main effects for categorization. Both 0 4 and o are sampled from
the distribution ¢/ (1, 4) for group 1, and ¢/(3, 6) for group 2. Since there is an overlap in the sampling range of the main
effects between the two groups, the theoretical maximum accuracy that the system can achieve, were it to not depend on the
confounding variable to make discrimination choices, would be 1 — (3) Ploa € U(3,4)] =1 — (3) (3) = 0.833.

We use a 2D convolutional neural network comprising of 2 stacks of convolutions and ReLU non-linearity, followed by 2
fully-connected layers. We apply residualization modules (either MDN, P-MDN, or R-MDN) after every convolution and
pre-logits layers (other placement choices explored in Suppl. I). During and after training, we quantify the high-dimensional
non-linear correlation between the learned features from the pre-logits layer of the system and the confounding variable
through the squared distance correlation (dcor?) metric (Székely et al., 2007). A dcor? = 0 implies statistical independence
between the two distributions.

Our results are summarized in Table 7. We observe that R-MDN consistently reaches the theoretically optimal accuracy and

Table 7. Synthetic dataset results for static learning. Absolute deviation from the theoretical accuracy |bAcc — A| ({) and squared
distance correlation ({) for various methods and batch sizes. Results are shown over 100 runs of random model initialization seeds
with a 95% confidence interval. Best results for each batch size are in bold. There is significant difference in all metrics across all
batch sizes for different methods (one-way ANOVA p < 107°%). Our method has a significantly better squared distance correlation
than MDN for batch sizes less than 128 (post-hoc Tukey’s HSD p < 0.05) and than P-MDN for batch sizes 2, 64, 256, and 1024 (p < 0.05).

Method  Metric Batch size
2 16 64 256 1024

Baseline  |bAcc — A| 10.49 £ 0.037 10.49 £0.025 10.50 +0.023 10.52 +0.022 10.55 & 0.029
deor? (group 1)  0.408 £0.002 0.420 £0.001 0.421 £0.001 0.416 £ 0.001  0.310 £ 0.005
dcor? (group 2) 0.388 £0.003 0.397 +0.001  0.394 +0.001 0.391 = 0.001 0.281 & 0.005

MDN [bAcc — A| 8.13 +1.203 4.93 +0.424 3.21 £0.532 0.52 +0.335 0.95+0.335
dcor? (group 1)  0.977 £0.010 0.142 4+ 0.016 0.086 £ 0.010 0.014 & 0.002  0.003 & 0.000
deor? (group 2)  0.999 £0.001  0.046 £ 0.009 0.024 £+ 0.003  0.000 + 0.001  0.000 + 0.000

P-MDN  |bAcc — A| 4.65 +0.448 3.49 4+ 0.373 1.85 + 1.151 0.23 + 1.361 1.58 4+ 1.983
deor? (group 1)  0.042 £0.013  0.022 £0.003  0.050 £ 0.007 0.048 £ 0.007 0.098 + 0.020
deor? (group2) 0.060 £0.021 0.013 £0.005 0.015+0.002 0.027 £0.004 0.091 + 0.026

R-MDN  |bAcc — A4| 0.28 £ 0414  0.04 £ 0.213 0.13 + 0.088 1.19 £ 0.215 0.19 £ 0.296
deor? (group 1) 0.019 £ 0.003  0.014 + 0.002  0.006 + 0.001  0.013 + 0.002 0.015 + 0.020
dcor? (group 2)  0.005 £ 0.001  0.001 & 0.000 0.000 + 0.000 0.001 & 0.000 0.008 & 0.017
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a lower dcor? across all batch sizes. The baseline “cheats” by making use of information from the confounding variable,
resulting in a higher balanced accuracy and dcor?. MDN is successful only for large batch sizes like 1024, while being
significantly worse for small ones (Lu et al., 2021). While P-MDN is also able to remove the effects of the confounding
variable from the learned features to a large extent across all batch sizes (as shown through a smaller dcor?), the large
variance across different seed runs suggests that the results are not consistent or robust.

A t-SNE visualization (Van der Maaten & Hinton, 2008) of the learned feature representations shows that the distribution
overlap U(3, 4) for R-MDN is not separable from the two groups for all batch sizes, which means that the system does not
use information from the confounding variable for categorization (Figure 8a). In terms of convergence speed, R-MDN
does significantly better than both MDN and P-MDN in removing the effects of the confounding variable from the learned
features very quickly, especially for small batch sizes (Figure 8b). This effect is attributable to fast convergence properties
of the underlying RLS algorithm (Hayes, 1996; Haykin, 2002), and will be advantageous in a continual learning setting

when we might not want to train a system until convergence on each training stage, but only for a single or few epochs (read
Suppl. L).

Baseline MDN P-MDN  R-MDN (Ours) Baseline MDN P-MDN R-MDN (Ours)

WY o =) ) =
I S
@ e— " | ]

T L T T T L T
Group 1 Group 2 Distribution overlap 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

(=2

Figure 8. Learned features and squared distance correlation. a. t-SNE visualization of feature representations for different methods
across batch sizes of 2, 16, and 1024. The more separable the distribution overlap ¢/(3, 4) is in the feature space, the more the method
relied on the confounder for discriminating between the groups. b. Squared distance correlation across batch sizes for different methods.

Each curve represents a different batch size (ranging from 2 to 1024, in increments of powers of 2). Results are shown as the average over
100 runs of random model initialization seeds.
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D. A Second Synthetic Continual Learning Dataset

pos: 0.879, int: 4.441 pos: 0.637, int: 3.052 pos: 0.395, int: 4.416 pos: 0.152, int: 4.094
pos: 0.879, int: 4.858 pos: 0.637, int: 4.648 pos: 0.395, int: 5.917 pos: 0.152, int: 4.718

Figure 9. Synthetic continual dataset #2: changing intensities and positions of the confounding variable. Here we construct a second
synthetic dataset for validating our method. We show the change in the distribution of position and intensity of the confounding variable
over 4 training stages (moving from left to right on the plot). Similar to Section 4.1, main effects are present on the main diagonal.

While we explore a synthetically generated environment in Section 4.1 to theoretically quantify the influence of confounding
variables and the deviation of the model from achieving an un-confounded performance, here we construct a slightly more
complex setup wherein we vary two different axes of possibly confounding information: position and intensity. More
specifically, we generate 1024 3232 images that are implicitly broken down into 16 8 x8 grids. The top left and bottom
right grids contain Gaussian kernels of intensity o 4, denoting the main effects. The confounder is represented by a Gaussian
kernel of intensity o5, whose position varies from the bottom left to top right of the image over 4 different training stages.
Both 04 and o are sampled from the distribution ¢/(3, 5) for group 1, and U/ (4, 6) for group 2. A fair classifier should
remain unaffected by confounder information, irrespective of its position within the image. Such a setup also allows us
to compute theoretical maximum accuracy achievable for each training stage that we can validate methods against. Table
8 presents the results of the experiment, where we can see that R-MDN again allows the model to learn confounder-free
features.

Table 8. Results on synthetic continual dataset #2. The theoretical maximum accuracy for every stage of training is 0.75, which is what
an unbiased classifier should achieve. The off-diagonal kernel intensity is taken as the confounder. Results are averaged over 3 runs of
random model initialization seeds.

Method ACCd BWTd FWTd
CNN Baseline 0.124 +£0.002  -0.001 £ 0.001  0.250 £ 0.000
R-MDN 0.046 = 0.031  0.0006 £ 0.0009 0.238 + 0.014
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E. Additional Details on Datasets
E.1. A Continuum of Synthetic Datasets

This dataset is an extension of the dataset introduced in Suppl. C. For stage 1 across the 3 datasets, we start with the
parameter controlling the main effects o4 € U(3,5) for group 1, and € U(4, 6) for group 2. We use the same distributions
for o (which controls the magnitude of the confounding variable). This means that prediction kernels (i.e., those associated
with true discrimination cues) are more “intense” (have a higher magnitude) for images in group 2 than in group 1.

Dataset 1: Confounding variable distribution changes. We keep the distribution of main effects constant but vary that of
the confounding variable across different stages. With every new stage, we decrease the entire range of o by 0.125 for
group 1, and increase it by the same amount for group 2. For an unbiased classifier that uses short-cut learning by focusing
on the confounder distribution, the problem becomes easier with “time” and performance will likely increase. This is what
we observe with the baseline model, which has the same architecture as that in Section C (see Figure 12c).

Dataset 2: Distribution of main effects changes. Next, we keep the distribution of the confounding variable constant and
vary that of the main effects across different stages instead. In contrast to the above, with every new stage, we increase
the entire range of o 4 by 0.125 for group 1, and decrease it by the same amount for group 2. This results in the problem
becoming more difficult with “time”. Performance for an unbiased classifier should drop for later tasks during learning.

Dataset 3: Distributions of both the confounding variable and main effects change. This dataset is a combination of
the above two, with the difference in the distribution of the confounding variable across the two groups becoming more
pronounced with “time”, while that of the main effects starting to become more similar.

E.2. HAM10000 Dataset
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Figure 10. Distribution of dermatoscopic images across different diagnostic categories for various age brackets in the HAM 10000 dataset.

The Human Against Machine with 10000 training images (HAM10000) dataset (Tschandl et al., 2018) is a multi-source
collection of 10015 dermatoscopic images for diagnosis of common pigmented skin lesions. These images have been
collected from different populations through different modalities. Diagnostic categories include:

« akiec: actinic keratoses and intraepithelial carcinoma or Bowen’s disease
* bcc: basal cell carcinoma
* bkl: benign keratosis-like lesions (solar lentigines or seborrheic keratoses and lichen-planus like keratoses)

e df: dermatofibroma
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* mel: melanoma

* nv: melanocytic nevi

* vasc: vascular lesions (angiomas, angiokeratomas, pyogenic granulomas and hemorrhage)
Lesions were confirmed either through histopathology, follow-up examinations, expert consensus, or in-vivo confocal
microscopy.

Figure 10 shows the distribution of age for various diagnostic categories. The change in the age distribution is significant.
Age is a confounder for this dataset because it affects both the target categories (certain categories like melanoma mostly
occur in older patients) and the input images (skin appearance might change with age).

E.3. ADNI Dataset

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) (adni. loni.usc.edu) was launched in 2003 with the goal
to test whether serial MRI, PET, other biological markers, and clinical and neurophysiological assessments can be used to
measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD) (Mueller et al., 2005;
Petersen et al., 2010). There are a total of 3880 T1w MRIs from 573 participants across years 2006 through 2017.

The distribution of age and sex across subjects diagnosed with MCI or AD, and the control group (CN) is shown in Figure
11 and Table 9.

95
Group
I MCl
I CN
= AD
&
< 751
55 4 B

<=2010 2011 2012 2013 >=2014

Acquisition Year

Figure 11. Distribution of age across different participant groups in the ADNI dataset.

Table 9. Sex distribution across different groups in the ADNI study. Differences are statistically significant, as measured via a x>-test.

Group Sex Year
2010 2011 2012 2013 2014
AD Male 2 52 214 125 20

Female 4 26 110 95 16

CN Male 71 238 410 208 206
Female 81 222 402 221 197

MCI Male 117 145 140 81 98
Female 82 84 106 55 52

E.4. ABCD Study

The Adolescent Brain Cognitive Development (ABCD) study (https://abcdstudy.org) is a multisite, longitudinal
study. More than 10,000 boys and girls from the U.S. between the ages of 9-10 were recruited that were diverse in
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terms of race/ethnicity, education and income levels, and living environments (Thompson et al., 2019). Garavan et al.
(2018) provide a more detailed account of the population neuroscience approach to recruitment and inclusion/exclusion
criteria. Appropriate consent was requested before participation in the ABCD study. Data is anonymized and curated,
and is released annually to the research community through the NIMH Data Archive (see data sharing information at
https://abcdstudy.org/scientists/data-sharing/). The ABCD data repository grows and changes over
time. The ABCD data used in this report came from release 5.0, with DOI 10.15154/8873-27365.

Table 10 shows the distribution of participants (boys and girls) in the study with respect to age, pubertal development score
(PDS), and race. PDS is significantly larger for girls than boys, and thus serves as a confounder for this study.

Table 10. Variable distributions across boys and girls in the ABCD study. Mean and standard deviation for age and pubertal
development scale (PDS), and the number of subjects of each race in the study across boys and girls. PDS is an integer between 1-5.
Differences are significant across boys and girls for age and PDS (measured using a two-sample t-test) but not race. Girls have a higher
PDS than boys in the study. All values are for the first visit of each subject.

Boys Girls p-value
Age (in months) 119.17 £7.563 118.81 +£7.520 <0.001
PDS 1.367 £0.615  2.175+0.904 <0.001
White 5954 5370
Black 1510 1558
Race/ethnicity Hispanic 2186 2084 >0.001
Asian 214 232
Other 1162 1090
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F. Additional Details on Methods

All experiments were run on a single NVIDIA GeForce RTX 2080 Ti with 11GB memory size and 8 workers on an internal
cluster.

F.1. Synthetic Dataset for Static Learning

The base model was a CNN consisting of two convolutional layers followed by two fully connected layers. The first
convolutional layer had 16 output channels and a kernel size of 5, the second had 32 output channels and a kernel size of 5,
and the pre-logits fully connected layer had a hidden size of 84. Models were trained for 100 epochs with different batch
sizes. Parameters of the R-MDN model were optimized using Adam (Kingma & Ba, 2014), with a learning rate initialization
of 0.0001 that decayed by 0.8 times every 20 epochs. The regularization parameter for R-MDN was set to 0.0001.

F.2. ABCD Sex Classification

Raw MRI images were downloaded, skull-stripped, and affinely registered to the MNI 152 template (Mazziotta et al., 1995;
2001a;b). Data augmentation involved removing MRIs for all subjects that did not have an associated PDS score recorded.
We downscaled all MRIs to 64 x64 x64 volumes, performed random one voxel shift and one degree rotation in all three
Cartesian directions, and random left-right flip (since sex affects the brain bilaterally (Hill et al., 2014; Hirnstein et al.,
2019)) for training images. To evaluate the models, we perform 5 runs of 5-fold cross validation across different model
initialization seeds, with images split by subject and site ID, and having approximately an equal number of boys and girls in
each fold.

The base model was a CNN consisting of three convolutional layers, each followed by max pooling, and two fully connected
layers. The first convolutional layer had 8 output channels with a kernel size of 3, the second had 16 output channels with a
kernel size of 3, and the third had 32 output channels with a kernel size of 3. The pre-logits fully connected layer had a
hidden size of 32. For max pooling, the first and second layers used a kernel size of 2 with a stride of 2, while the third layer
had a kernel size of 4 with a stride of 4. Models were trained for 50 epochs with a batch size of 128. Parameters of the
R-MDN model were optimized using Adam, with a learning rate initialization of 0.0005 that decayed by 0.7 times every 4
epochs. The regularization parameter for R-MDN was set to 0.

F.3. A Continuum of Synthetic Datasets

Model architecture used is the same as that for the static learning setting. Models were trained for 100 epochs with a batch
size of 128. Parameters of the R-MDN model were optimized using Adam, with a learning rate initialization of 0.0005 that
decayed by 0.8 times every 20 epochs. The regularization parameter for R-MDN was set to 0.0001.

F.4. HAM10000 Skin Lesion Classification

The dataset was first downsampled to 64 x64 x 64 and then divided into five training stages based on age groups: < 20,
[20, 40), [40, 50), [50, 60), and > 60.

Stage 1: 50% of the images came from < 20, 30% from [20, 40), 10% from [40, 50), 5% from [50, 60), and 5% from
> 60.

* Stage 2: 5% from < 20, 50% from [20, 40), 30% from [40, 50), 10% from [50, 60), and 5% from > 60.

Stage 3: 5% from < 20, 5% from [20, 40), 50% from [40, 50), 30% from [50, 60), and 10% from > 60.

Stage 4: 10% from < 20, 5% from [20, 40), 5% from [40, 50), 50% from [50, 60), and 30% from > 60.

Stage 5: 30% from < 20, 10% from [20, 40), 5% from [40, 50), 5% from [50, 60), and 50% from > 60.

The base model was a ViT with a patch size of 8, 12 hidden layers, 12 heads, a hidden dimension of 384, an MLP
dimension of 1536, and the hidden size for the pre-logits layer as 96. Models were trained for 30 epochs with a batch size of
128. Parameters of the R-MDN model were optimized using AdamW (Loshchilov & Hutter, 2017), with a learning rate
initialization of 0.0005 that decayed by 0.8 times every 5 epochs. We imposed a weight decay of 0.001. The regularization
parameter for R-MDN was set to 0.00001.
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F.5. ADNI Diagnostic Classification

The dataset was first downsampled to 64 x 64 x 64 and then divided into five training stages based on acquisition year bins:
<2010, 2011, 2012, 2013, and >2014.

The base model was a 3d ViT with a patch size of 16, 6 hidden layers, 8 heads, a hidden dimension of 384, an MLP
dimension of 1536, and the hidden size for the pre-logits layer as 768. Models were trained for 50 epochs with a batch size
of 128. Parameters of the R-MDN model were optimized using AdamW, with a learning rate initialization of le-05 that

decayed according to a cosine annealing scheduler. We imposed a weight decay of 1e-06. The regularization parameter for
R-MDN was set to 0.
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G. Visualizing Results for Continual and Static Learning

Here we visualize the results we present through tables in Sections 4.1, 4.2, and 4.4.
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Figure 12. Synthetic dataset results for continual learning. a. Samples from the synthetic datasets used for continual learning. We
annotate main effects and confounders with boundaries of different widths to visually aid in distinguishing between their magnitudes.
b. BWTd and FWTd mean and standard deviation for different methods and datasets. The closer the bar to 0, the better the model. A
total of 5 runs were performed with different model initialization seeds. A post-hoc Conover’s test with Bonferroni adjustment was
performed between those groups of methods where a Kruskal-Wallis test showed significant differences (p < 0.05). ¢. Accuracy and
squared distance correlation for different methods and datasets. For each stage that the model is trained on, it is evaluated against the test
sets of all 5 stages (shown through solid curves). Less opaque markers represent earlier stages, while more opaque markers represent later
stages being evaluated on. Dotted red lines of various transparency values show the theoretical maximum accuracy that an unbiased model
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Figure 13. Visualizing different metrics for the ABCD dataset. a. Accuracy, b. difference between True Positive Rate (TPR) and True
Negative Rate (TNR), and c. dcor? between learned features and PDS for boys and girls for different methods. Results shown over 5 folds
of 5-fold cross validation, with data split by subject and site ID. Statistically significant differences between R-MDN and other methods
are measured first using Kruskal-Wallis and then a post-hoc Conover’s test with Bonferroni adjustment.
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Figure 14. Visualizing different metrics for HAM10K skin lesion classification. Accuracy, squared distance correlation, backward
transfer, and forward transfer for different methods. Results are shown after training each model on the final training stage.
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H. Effect of Regularization Hyperparameter
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Figure 15. Accuracy and squared distance correlation when the regularization hyperparameter for the R-MDN module is varied. Results
are computed for the synthetic dataset described in Section C, and we show the mean and 95% CI over 100 runs of random model
initialization seeds.

In Figure 15, we systematically vary the regularization hyperparameter A to assess how sensitive model performance and the
ability to learn confounder-independent feature representations are to its value. We observe that model performance remains
consistently robust across different values of A. However, we find that the capacity to residualize the confounder’s effects
improves with higher values of A, probably due of it stabilizing the residualization process.
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I. R-MDN Module Placement Choice
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Figure 16. Accuracy and squared distance correlation when the R-MDN module is inserted at various locations in a convolutional neural
network. Results are computed for the synthetic dataset described in Section C, and we show the mean and 95% CI over 100 runs of
random model initialization seeds.

In Figure I, we vary the placement of the R-MDN layers within a deep convolutional neural network to observe the effects
on model performance and correlation of the learned features with the confounder. We find that while model performance
seems to be sensitive to the placement, the ability to remove the influence of the confounder from the feature representations
is, overall, consistently high. For such an architecture, adding an R-MDN layer after every convolutional layer and the
pre-logits layer seems to provide the best trade-off between model performance and residualization (as also observed by Lu
et al. (2021)).
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J. Glass Brain Visualizations for ABCD Sex Classification
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Figure 17. The top 10 regions identified as being relevant for distinguishing sex by a. the base model, and b. the same model trained with
R-MDN.

To identify the top 10 most relevant regions for distinguishing sex (Figure J), we first generate 3D saliency maps based on
the test set images, highlighting areas in the input image that most activate the model. A threshold of 0.05 is applied to
focus on the most salient regions. A 5x5x5 smoothing filter is applied, replacing each voxel’s value with the average of its
neighboring voxels. These regions are then visualized using the Harvard atlas.
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K. Quantifying Sensitivity To Confounders
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Figure 18. Accuracy for various methods get in a continual learning setting when evaluated on test sets with various distributions of
the confounding variable. Each row represents a different method, each column the stage that the model is trained on after which it is
evaluated, and each hue of the curve the stage that the model is evaluated on. A § = 0 implies that that input does not contain a confounder.
Results are evaluated on the synthetic dataset from Section 4.1 where we change the distributions for both the confounding variable and
main effets. We show the mean and 95% CI over 3 runs of random model initialization seeds.

In Figure 18, we provide additional plots for the experiment visualized in Figure 3d. We vary the intensity of the confounder
by applying a multiplier 6 € [0, 1].
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L. Effect of Training Protocol for Continual Learning
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Figure 19. Accuracy and squared distance correlation for different methods and number of training epochs per stage. We used the synthetic
dataset where the distributions for both the confounding variable and main effects change. For each stage that the model is trained on, it is
evaluated against the test sets of all 5 stages (shown through solid curves). Less opaque markers represent earlier stages, while more
opaque markers represent later stages being evaluated on. Dotted red lines show the theoretical maximum accuracy that an unbiased
model will get for each of the different stages. Results shown as the mean and 95% CI over 5 runs.

Here, we quantify how task performance and the ability to learn confounder-free feature representations change with different
number of training epochs per stage; i.e., with the number of times every example from the training data is presented to
the system. We observe that R-MDN is the only method that is able to remove the influence of the confounder from the
learned features for smaller number of training epochs. This is perhaps because of R-MDN’s fast convergence abilities
(Hayes, 1996; Haykin, 2002)—a property that gradient- and adversarial-based methods are not able to demonstrate (Figure
19). This is further reinforced by R-MDN having a better forward transfer on future stages of training for both small and
large numbers of training epochs (Figure 20). Both BR-Net and P-MDN are decent methods for continual learning, but they
require the same training examples to be seen multiple times in order to drive high prediction scores and remove confounder
influence from learned features.
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Figure 20. BWT and FWT mean and standard deviation for different methods and number of training epochs per task. We used the
synthetic dataset where the distributions of both the confounding variable and main effects change. The closer the bar to 0, the better the
model. A total of 5 runs were performed with different model initialization seeds. A post-hoc Conover’s test with Bonferroni adjustment
was performed between those groups of methods where a Kruskal-Wallis test showed significant differences (p < 0.05).
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