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Abstract
We present a distribution optimization framework
that significantly improves confidence bounds for
various risk measures compared to previous meth-
ods. Our framework encompasses popular risk
measures such as the entropic risk measure, condi-
tional value at risk (CVaR), spectral risk measure,
distortion risk measure, equivalent certainty, and
rank-dependent expected utility, which are well
established in risk-sensitive decision-making lit-
erature. To achieve this, we introduce two estima-
tion schemes based on concentration bounds de-
rived from the empirical distribution, specifically
using either the Wasserstein distance or the supre-
mum distance. Unlike traditional approaches that
add or subtract a confidence radius from the empir-
ical risk measures, our proposed schemes evaluate
a specific transformation of the empirical distri-
bution based on the distance. Consequently, our
confidence bounds consistently yield tighter re-
sults compared to previous methods. We further
verify the efficacy of the proposed framework by
providing tighter problem-dependent regret bound
for the CVaR bandit.

1. Introduction
The conventional machine learning literature primarily re-
lies on the expected value or mean of a random variable
as the performance metric for a given algorithm. However,
in certain critical applications such as finance or medical
treatment, the decision-maker’s focus extends beyond the
expected value and emphasizes other characteristics of the
distribution. For instance, a risk-averse portfolio manager
may place greater importance on tail behavior than expected
value. To capture this risk-aware perspective, the decision-
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maker selects a risk measure (RM) as an alternative to the
expected value, effectively representing their specific atti-
tude towards risk.

In practice, however, it is often infeasible to directly evalu-
ate the risk measure of the unknown underlying distribution.
Instead, we must rely on constructing the point estimator
based on finite samples. Consequently, the confidence in-
terval that quantifies the coverage of the true risk measure
becomes crucial in the risk-sensitive setting, as it certifies a
trustworthy range for the decision maker.

In this paper, we aim to derive confidence bounds for sev-
eral classes of risk measures: the Conditional Value at Risk
(CVaR), the spectral risk measure (SRM), the distortion
risk measure (DRM), the entropic risk measure (ERM), the
certainty equivalent (CE), and the rank-dependent expected
utility (RDEU). In safety-critical applications, such as med-
ical treatment, CVaR is widely used, which represents the
expected value within a fraction of the worst outcomes. De-
spite its practical utility, CVaR exhibits limitations in terms
of expressing various risk preferences, as it assigns equal
weight to all losses beyond a certain threshold. To address
this, the SRM offers a notable generalization by incorporat-
ing a non-constant weighting function, enhancing flexibility
in risk assessment. DRM came from insurance problems
and later applied to investment risks. It encompasses CVaR
as a special case and has gained attention in various fields.
ERM is a well-known risk measure in mathematical finance
and Markovian decision processes. Furthermore, CE serves
as a generalization of ERM by replacing the exponential
utility function with a more flexible function. This adapta-
tion enhances the model’s capability to capture a broader
range of risk preferences. RDEU contributes to understand-
ing decision-making under uncertainty and has been widely
applied in diverse domains such as finance, psychology, and
health economics 1.

In the existing literature, the confidence interval is com-
monly obtained through the concentration inequality, which
bounds the deviation between the point estimator and the
true risk with high probability. This deviation, referred to as
the confidence radius, depends on the sample size and confi-

1For more descriptions about these risk measures, please refer
to Section 2 and Appendix B.
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dence level. Conventionally, the upper or lower confidence
bound is determined by adding or subtracting the confidence
radius from the point estimator. In this paper, we present two
innovative approaches that construct confidence bounds for
risk measures without relying on concentration inequalities.
Our main contribution is summarized as follows.

(1) We propose a unified framework to obtain refined confi-
dence bounds for several classes of risk measures, specifi-
cally for bounded distributions. We recast the problem of
determining the confidence bound for risk measures based
on finite samples as a constrained optimization problem. In
particular, we optimize the value of risk measure over a
confidence ball of distributions centered around the empiri-
cal distribution function (EDF). Furthermore, we obtain the
closed-form solution that can be viewed as a transformation
of the EDF. We set the confidence bound as the optimal
solution’s risk measure value. Notably, the computational
overhead increases only marginally.

(2) We introduce a new baseline approach that leverages the
local Lipschitz constant of a risk measure over the con-
fidence ball, which may be of independent interest. In
contrast, the previous bounds rely on the global Lipschitz
constant over the entire space of bounded distributions. In
addition, we suggest a systematic way to compute the local
Lipschitz constant and show that our bounds outperform the
new baseline approach in certain scenarios.

(3) As a minor contribution, we propose a meta-algorithm
that handles generic risk measures. Specifically, the meta-
algorithm specializes in the CVaR-UCB algorithm (Tamkin
et al., 2019) for CVaR bandit problems. Interestingly,
Tamkin et al. (2019) empirically observes that CVaR-UCB
outperforms the global Lipschitz constant-based algorithm
U-UCB (Cassel et al., 2018) with an order of magnitude
improvement. Still, they only provide a regret bound that
matches that of U-UCB. We fill this gap by providing an
improved regret upper bound, quantifying the magnitude of
improvement.

1.1. Related Work

Confidence bounds of risk measures The concentration
of CVaR has been extensively explored in the literature, cf.
Brown (2007); Wang & Gao (2010); Thomas & Learned-
Miller (2019); Kolla et al. (2019); Prashanth et al. (2020);
LA & Bhat (2022). The first three references primarily
focus on the bounded distributions, while the remaining
references consider unbounded distributions, including the
sub-Gaussian, sub-exponential and heavy tail distributions.
Pandey et al. (2019); LA & Bhat (2022) provide tail bounds
for bounded, sub-Gaussian, or sub-exponential distributions.
The concentration bounds for DRM, CE, and RDEU are
presented in LA & Bhat (2022).

Lipschitz constant-based methods Kock et al. (2021);
LA & Bhat (2022) relate the estimation error to the Wasser-
stein distance between the true and empirical distributions
and then use concentration bounds for the latter. LA & Bhat
(2022) establishes concentration bounds for empirical esti-
mates for a broad class of risk measures, including CVaR,
SRM, DRM, RDEU, etc. They derive the concentration
bounds via the global Lipschitz constant of the risk measure
over the Wasserstein distance for bounded, sub-Gaussian,
and sub-exponential distributions. Our bounds only ap-
ply to bounded distributions, but we demonstrate that our
bounds are tighter than their results whenever they are valid.
The computation of the global Lipschitz constant can be
challenging, particularly for highly nonlinear risk measures.
In many cases, one may only obtain its upper bound as a
surrogate, which further loosens the resulting bounds. In
contrast, our framework does not require knowledge of the
Lipschitz constant. Kock et al. (2021) obtain the concen-
tration bounds for general functionals using the supremum
distance instead of the Wasserstein distance. While their
work primarily focuses on inequality, poverty, and welfare
measures, their methodology can be extended to encompass
the risk measures mentioned above. The resulting bounds
apply to bounded distributions and are looser than ours.
In addition, Liang & Luo (2023) focuses on risk-sensitive
reinforcement learning with dynamic risk measures and
leverages the Lipschitz property of risk measures to derive
regret upper bounds. By quantifying the Lipschitz constants,
Liang & Luo (2023) provide regret bounds that depend on
these constants.

Off-policy risk evaluation Chandak et al. (2021); Huang
et al. (2021) study the off-policy evaluation of function-
als of reward or return distribution in bandit or RL setting.
Chandak et al. (2021) formulates the problem of interval
estimation for various functionals as a constrained optimiza-
tion problem over a confidence band, which bears similarity
to Formulation 6 in our paper. Meanwhile, our work differs
from Chandak et al. (2021) in two aspects. First, Chandak
et al. (2021) focuses on various functionals and derives the
optimal solution for different functionals by a case-by-case
geometric analysis. In particular, their method applies to the
mean, variance, quantiles, inter-quantile range, CVaR, and
entropy. In contrast, our framework focuses on general risk
measures, including but not limited to ERM, CVaR, SRM,
DRM, CE, and RDEU. We leverage the intrinsic property of
risk measures, namely monotonicity, to derive closed-form
optimal solutions that are common across different risk mea-
sures. In particular, our derivation for confidence bounds
of CVaR differs from that in Chandak et al. (2021). No-
tably, our work is complementary to Chandak et al. (2021)
in terms of the applicability of functionals. Our framework
can handle arbitrary risk measures using a common optimal
solution, while Chandak et al. (2021) provides confidence
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bounds for CVaR and other functionals that are not risk
measures, where the optimal solution depends on the spe-
cific functional. Huang et al. (2021) deal with the off-policy
evaluation of Lipschitz risk measures based on their global
Lipschitz constant with respect to the supremum distance.

The rest of the paper is organized as follows. We intro-
duce some basic concepts and notations in section 2. We
present our new framework under the Wasserstein distance
and the supremum distance in section 3, and suggest the
closed-form solution in Section 4. We then provide a new
baseline method, which bridges our framework and the pre-
vious global Lipschitz constant-based method in Section
5. We validate the proposed framework by applying it to
the risk-sensitive bandit problems in Section 6, and provide
numerical experiments in Section 7. Finally, we provide the
concluding remarks in Section 8.

2. Preliminaries
We introduce some notations here. Let a < b be two real
numbers. We denote by D([a, b]) and D the space of all
cumulative distribution functions (CDFs) supported on [a, b]
and the space of all CDFs on reals respectively. For a CDF
F ∈ D , let X1, X2, · · · , Xn be n i.i.d. samples from F .
We denote by Fn the empirical distribution function corre-
sponding to these samples:

Fn(·) ≜
1

n

n∑
i=1

I{Xi ≤ ·} =
1

n

n∑
i=1

δXi
,

where I is the indicator function and δ is the Dirac measure.
We denote by F−1 : (0, 1] 7→ R is the inverse distribution
function (IDF) of F , i.e., the quantile function F−1(y) ≜
inf{x ∈ R : F (x) ≥ y}.

Supremum distance For two CDFs F,G ∈ D , the supre-
mum distance between them is defined as

∥F −G∥∞ ≜ sup
x∈R
|F (x)−G(x)| .

The DKW inequality (Dvoretzky et al., 1956; Massart, 1990)
bounds the deviation of the empirical distribution from the
true distribution in terms of the supremum distance with
high probability.
Fact 1 (Two-sided DKW inequality). Let δ ∈ (0, 1], then
the following holds with probability at least 1− δ

∥F − Fn∥∞ ≤ c
∞
n ≜

√
log(2/δ)

2n
, (1)

where c∞n is the concentration radius.

The DKW inequality holds for any distribution, including
discrete and unbounded distributions.

Wasserstein distance For CDFs F,G ∈ D , the Wasser-
stein distance between them is defined as

W1(F,G) ≜
∫ ∞

−∞
|F (x)−G(x)| dx.

W1(F,G) can be expressed as the ℓ1 norm between F
and G. Therefore we also write W1(F,G) = ∥F −G∥1.
Fournier & Guillin (2015) establishes the concentration
bounds on the Wasserstein distance between the EDF and
the underlying one without explicit constants. LA & Bhat
(2022) gives the concentration results for sub-Gaussian dis-
tributions with explicit constants. As a corollary, Fact 2
provides the concentration bound for bounded distributions.
Fact 2. Let F ∈ D([a, b]). With probability at least 1− δ,
for every n ≥ log(1/δ)

∥F − Fn∥1 ≤ c
1
n ≜

256(b− a)√
n

+ 8(b− a)
√
e log(1/δ)

n
(2)

where c1n is the concentration radius.

Risk measure In this paper, we interpret the random vari-
able as a loss instead of a reward. For two random vari-
ables X ∼ F and Y ∼ G, we say that Y dominates X
if ∀x ∈ R, F (x) ≥ G(x), and we write Y ⪰ X . A risk
measure T is defined as a functional mapping from a set
of r.v.s X to the reals that satisfy the following conditions
(Föllmer & Schied, 2010; Weber, 2006)

• Monotonicity: X ⪯ Y ⇒ T(X) ≤ T(Y )

• Translation-invariance: T(X + c) = T(X)+ c, c ∈ R

A risk measure T is said to be distribution-invariant if
T(X) = T(Y ) when X and Y follow the same distri-
bution (Acerbi, 2002; Weber, 2006). In this paper, we
only consider distribution-invariant risk measures. We write
T(F ) = T(X) for simplicity. We remark that there are
other functionals mapping a r.v. to a real number, e.g., the
inequality measures (Kock et al., 2021) that do not satisfy
the monotonicity. In this paper, we derive the confidence
bounds for several classes of risk measures. It turns out that
the monotonicity of risk measures plays an essential role in
our optimization framework.

Table 1 summarizes the relevant risk measures considered
in this paper. These risk measures are grouped into classes,
namely SRM, DRM, CE, and RDEU. CVaR and ERM be-
long to the SRM and CE classes, respectively, based on
specific choices of the weighting function ϕ and the utility
function u. The specific conditions related to the defini-
tions of these risk measures are listed below. Please refer to
Appendix B for detailed descriptions.

• SRM: ϕ : [0, 1]→ [0,∞) is increasing and satisfying∫ 1

0
ϕ(y)dy = 1.
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Table 1: List of risk measures

RM Notation Definition

SRM Mϕ(F )
∫ 1

0
ϕ(y)F−1(y)dy

DRM ρg(F )
∫∞
0
g(1− F (x))dx

CE Eu(F ) u−1
(∫

R u(x)dF (x)
)

RDEU V (F )
∫ b

a
v(x)dw(F (x))

CVaR Cα(F ) infν∈R

{
ν + 1

1−αEX∼F [(X − ν)+]
}

ERM Uβ(F )
1
β log

(∫
R exp(βx)dF (x)

)
• DRM: g : [0, 1]→ [0, 1] is a continuous, concave and

increasing function with g(0) = 0 and g(1) = 1.

• CE: u is a continuous, convex, and strictly increasing
function.

• RDEU: w : [0, 1] → [0, 1] is an increasing weight
function with w(0) = 0 and w(1) = 1; v : R → R is
an (unbounded) increasing differentiable function with
u(0) = 0.

• CVaR: an instance of SRM with ϕ(y) = 1
α I{y ≥

1− α}

• ERM: an instance of CE with u(x) = exp(βx).

It is more convenient to represent some risk measures using
IDF, e.g., SRM Mϕ(F ) =

∫ 1

0
ϕ(y)F−1(y)dy. For this

reason, we overload notation and write T(F−1) = T(F )
whenever convenient for some T.

3. Distribution Optimization Framework
3.1. Global Lipschitz Constant-based Approach

Fact 2 and Fact 1 present the concentration bound of the em-
pirical distribution in terms of the Wasserstein distance and
the supremum distance, respectively. They can be written in
a unified way: with probability at least 1− δ, we have

∥F − Fn∥p ≤ c
p
n, (3)

where p = 1 indicates the Wasserstein distance and p =∞
indicates the supremum distance. To relate the concentration
bound of EDF to that of risk measure, Kock et al. (2021);
Bhat & LA (2019) use the Lipschitz property of the risk
measure, i.e., for any two CDFs F,G ∈ D([a, b]), there
exists Lp(T) > 0 such that the risk measure T satisfies

|T(F )−T(G)| ≤ Lp(T) ∥F −G∥p . (4)

Lp(T) is called the global Lipschitz constant (GLC) of T
w.r.t. ∥·∥p since the inequality holds for all possible pairs
of CDFs. Combining Equation 3 and Equation 4, Kock

et al. (2021); Bhat & LA (2019) establish the concentration
bounds of a class of Lipschitz functionals

T(Fn)− Lp(T)cpn ≤ T(F ) ≤ T(Fn) + Lp(T)cpn.

The quality of the above bounds relies on the tightness
of Lp(T), so the finest bounds one can get fall back on
identifying the tightest GLC

Lp(T) ≜ sup
G,G′∈D([a,b])

T(G)−T(G′)

∥G−G′∥p
,

where we overload the notation of Lp(T). The GLC-based
approach suffers from several limitations. The GLC may not
be easy to compute, especially for some highly nonlinear
risk measures. In most cases, one may only obtain its upper
bound as a surrogate. Meanwhile, the concentration bounds
are far from optimal. The confidence bounds are set to be
the product of the GLC and the confidence radius. However,
the GLC is loose since it is evaluated over the whole space
of bounded distributions.

3.2. Local Lipschitz Constant-based Approach

Before introducing our framework as a remedy, we propose
a new baseline approach that improves the previous bounds.
Observe that Equation 3 together with the boundedness of
F can be written as the norm ball constraint

Bp(Fn, c
p
n) ≜

{
F | ∥F − Fn∥p ≤ c

p
n, F ∈ D([a, b])

}
.

Define the local Lipschitz constant (LLC) over Bp(Fn, c
p
n)

Lp(T;Fn, c
p
n) ≜ sup

G,G′∈Bp(Fn,c
p
n)

T(G)−T(G′)

∥G−G′∥p

≤ sup
G,G′∈D([a,b])

T(G)−T(G′)

∥G−G′∥p
= Lp(T).

For simplicity, we drop T from the Lipschitz constants.
We thus obtain the tighter upper/lower confidence bound
(UCB/LCB)

T(Fn) + (−)Lp(Fn, c
p
n)c

p
n ≤ (≥)T(Fn) + Lpc

p
n.

As sample size increases, the confidence radius cpn shrinks,
leading to smaller LLC and sharper bounds. In contrast, the
previous bounds do not adapt to the sample size.

3.3. Distribution Optimization Framework

We now propose our unified framework to derive confidence
bounds for a broad range of risk measures. The idea is
quite simple and intuitive. Given a risk measure, we maxi-
mize/minimize the risk measure value over the confidence
ball and set the maximal/minimal value as the UCB/LCB.
By recasting the problem of finding the confidence bounds
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to a constrained optimization problem, we obtain the opti-
mal bounds from Equation 3. Different choices of distances
lead to two types of frameworks:

max
G∈D([a,b])

T(G)

s.t. ∥G− Fn∥1 ≤ c1n
(5)

and
max

G∈D([a,b])
T(G)

s.t. ∥G− Fn∥∞ ≤ c∞n
(6)

We can obtain the LCB by reverting the maximization for-
mulation to a minimization formulation. Denote by F p

n (F p
n )

the optimal solution, then the UCB and LCB are set to be
T
(
F p
n

)
and T

(
F p
n

)
. In the sequel, we may drop p when

the statement holds for either p = 1 or p =∞.

To demonstrate the optimality of our framework, observe
that Fn ∈ B(Fn, cn), therefore

T
(
Fn

)
≤ T(Fn) + L(Fn, cn)cn ≤ T(Fn) + Lcn. (7)

T
(
Fn

)
is tighter than the bound derived from the tightest

LLC, our new baseline approach, which already improves
the previous bounds.

One may wonder whether Fn and Fn are easy to obtain.
Fortunately, we will show that they admit analytic form for
almost all risk measures introduced in Section 2 in the next
section. Moreover, we will use Equation 7 to quantify the
tightness of our confidence bounds in Section 5. For ease of
notation, we will omit D([a, b]).

4. Closed-form Solution
The following theorems present the closed-form solutions
to Formulation 5-6. The proofs are deferred to Appendix C.

Theorem 4.1. For any risk measure satisfying the mono-
tonicity, the optimal solution to Formulation 6 is given by

F∞
n = P∞

c∞
n
Fn, F

∞
n = N∞

c∞
n
Fn, (8)

where P∞
c /N∞

c : D([a, b]) → D([a, b]) is the posi-
tive/negative operator with coefficient c > 0 for the supre-
mum distance, which is defined as follows(

P∞
c F

)
(x) ≜ max {F (x)− cI{x < b}, 0} ,(

N∞
c F

)
(x) ≜ min {F (x) + cI{x ≥ a}, 1} .

The supremum ball B∞(Fn, c
∞
n ) consists of the CDFs

within the area sandwiched by P∞
c∞
n
Fn and N∞

c∞
n
Fn (see

Figure 1). Since any risk measure T is monotonic, and

P∞
c∞
n
Fn(x) ≤ G(x) ≤ N∞

c∞
n
Fn,∀x ∈ R,∀G ∈ B∞(Fn, c

∞
n )

then P∞
c∞
n
Fn and N∞

c∞
n
Fn are the maximizer and the min-

imizer respectively. Another interpretation is that P∞
c∞
n

𝑎 𝑏𝑋(1) 𝑋(𝑛)

𝑷𝒄𝒏∞
∞ 𝐹𝑛

𝑐𝑛
∞

1
𝑛

1

𝐹𝑛

0

𝑐𝑛
∞

𝑵𝒄𝒏
∞
∞ 𝐹𝑛

𝑐𝑛
∞

Figure 1: Fn (black), P∞
c∞
n
Fn (blue) and N∞

c∞
n
Fn (red).

𝑆2
+

𝑆1
+

𝑎 𝑏𝑋(1) 𝑋(𝑛)

𝑷
𝒄𝒏
𝟏
𝟏 𝐹𝑛

𝑆𝑖+
+ − 𝑐𝑛

1

𝑋(𝑛+)

𝑏 − 𝑋(𝑛+)

𝑝(𝑛+)

𝑝𝑏

1
𝑛

1

𝐹𝑛

0

Figure 2: Fn (black) and P1
c1
n
Fn (red). P1

c1
n
Fn overlaps Fn

for x < X(n+), and it has only two jumps at X(n+) and b
for x ≥ X(n+).

transports the leftmost atoms of Fn with total mass of c∞n
to the maximally possible atom b, while P∞

c∞
n

transports the
rightmost atoms of Fn with total mass of c∞n to the mini-
mally possible atom a. Although we can explicitly represent
the optimal solutions in the PMF form, it is more convenient
to work with the CDF form. Please refer to Appendix F for
more details.
Remark 4.2. The positive operator in Equation 8 reduces to
the optimistic operator introduced in the CVaR bandit/RL
(Tamkin et al., 2019; Keramati et al., 2020). However, they
only consider the case of CVaR, and we generalize it to
arbitrary risk measures.

Theorem 4.3. For the risk measures except RDEU in Sec-
tion 2, the optimal solution to Formulation 5 is given by

F 1
n = O1

c1
n
Fn, F

1
n = P1

c1
n
Fn, (9)

where P1
c/N

1
c : D([a, b]) → D([a, b]) is called the pos-

itive/negative operator for CDF with coefficient c for the
Wasserstein distance, which is defined as follows.

Fix Fn and c1n > 0. Let X(1) ≤ X(2) · · · ≤ X(n) be the
order statistic of {Xi}. For i ∈ [n], we recursively define

S+
1 ≜

1

n

(
b−X(n)

)
, S+

i ≜ S+
i−1 +

1

n
(b−X(n+1−i)).
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The geometric interpretation of S+
i is the area sandwiched

between Fn and the horizontal line 1 − i
n (see Figure 2).

Define i+ ≜ min{i : S+
i ≥ c1n} as the first index that

S+
i exceeds c1n. Let n+ ≜ n + 1 − i+. Then P1

c1
n
Fn is a

categorical distribution with atoms
{
X(i)

}
i∈[n+]

∪{b}. The
probability mass of X(n+) and b are assigned to be

pn+ ≜
1

b−Xn+

(S+
i+ − c

1
n), pb ≜

i+

n
− pn+ ,

meanwhile the probability mass of the first n+ − 1 atoms{
X(i)

}
i∈[n+−1]

remains 1
n . To be more precise, P1

c1
n
Fn is

described by the following probability mass function (PMF)

1

n

n+−1∑
i=1

δX(i)
+ pn+ · δX(n+)

+ pb · b.

The way of transforming Fn into P1
c1
n
Fn resembles the well-

known water-filling algorithm (Telatar, 1999) in wireless
commutations in the opposite direction. Imagine that the
gravity is reversed to the upward direction, and we fill the
water of amount c1n to a tank enclosed by Fn and the vertical
line b. The water is sequentially filled in the bins from right
to left, in which the i-th bin corresponds to the X(n+1−i)

until the water is filled up at the i+ bin. By a volume
argument, the water level is n+−1

n + pn+ . We then recover
the analytic form via the shape of P1

c1
n
Fn.

Another interpretation is that P1
c1
n

replaces the probabil-
ity mass 1

n − pn+ of X(n+) and all the atoms to its right{
X(i)

}
n+<i≤n

by the upper bound b. For convenience, we
let X(0) = a. We recursively define for i ∈ [n]

S−
1 ≜

X(n) −X(n−1)

n
, S−

i ≜ S−
i−1 +

i(X(n+1−i) −X(n−i))

n
.

Now S−
i represents the area sandwiched between Fn and

the vertical line X(n−i) (see Figure 3). Define i− ≜ min{i :
S−
i ≥ c1n} as the first index that S−

i exceeds c1n. Let n− ≜
n+ 1− i−. Then N1

c1
n
Fn is a categorical distribution with

atoms
{
X(i)

}
i∈[n−−1]

∪ {b−}, where b− is given by

b− ≜ X(n−−1) +
n

i−
(S−

n − c1n).

N1
c1
n
Fn is given by the PMF

1

n

n−−1∑
i=1

δX(i)
+
i−

n
· b−.

N1
c1
n
Fn mirrors the water-filling, but we now fill the water

rightward until it is filled out with water level b−. It can also
be interpreted as replacing the atoms to the right of X(n−)

with a total mass of i−

n by a single atom b− < X(n−).

𝑎 𝑏𝑋(1) 𝑋(𝑛)

𝑆1
−

𝑆2
−𝑆𝑖−

− − 𝑐𝑛
1

1
𝑛

1

𝑖−

𝑛

𝑏− 𝑋(𝑛−)
0

𝑋(𝑛−−1)

𝑵
𝒄𝒏
𝟏
𝟏 𝐹𝑛

𝐹𝑛

Figure 3: Fn (black) and N1
c1
n
Fn (blue). N1

c1
n
Fn overlaps

Fn for x < b− and has a single jump at b− with height i−

n .

Computational issue. We present the algorithms to actual-
ize Equation 5-6 in practice in Appendix F. We demonstrate
that their computational complexity increases slightly more
than the LC-based methods.
Remark 4.4. For both distances, we only require F to be
bounded above by a known constant b to perform PcnFn,
and require F to be bounded below by a known constant a
to perform NcnFn. Thus we only require F to be bounded
on one side to obtain the one-sided confidence bound.

5. Improvement of Confidence Bounds
5.1. Derivation of the LLC

We present a systematic way of computing the LLC over
the confidence ball B(Fn, cn), which bridges our frame-
work and the GLC-based method. Define ψ(t;F,G) ≜
T((1− t)F + tG) for F,G ∈ D([a, b]) and t ∈ [0, 1]. For
simplicity, we may drop F,G and write ψ(t) if it is clear
from the context. Note that ψ(0) = T(F ), ψ(1) = T(G)
and (1 − t)F + tG ∈ D([a, b]) for all t ∈ [0, 1]. It can
be shown that ψ is continuously differentiable under some
mild conditions on T. Observe that

L(T;Fn, cn) = sup
F,G∈B(Fn,cn)

T(F )−T(G)

∥F −G∥

= sup
F,G∈Bp(Fn,cn)

ψ(1;F,G)−ψ(0;F,G)
∥F −G∥

≤ sup
F,G∈B(Fn,cn),t∈[0,1]

ψ′(t;F,G)

∥F −G∥

≤ sup
F,G∈B(Fn,cn),t∈[0,1]

υ((1− t)F + tG)

= sup
F∈B(Fn,cn)

υ(F ),

where υ is a functional that satisfies for any F,G

ψ′ (t;F,G)) ≤ υ((1− t)F + tG) ∥F −G∥ .

Note that υ implicitly depends on p and the risk measure T.
Consequently, we can obtain an upper bound on the LLC

6
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by bounding the last term. We can obtain the upper bound
on the GLC by removing the ball constraint. For interested
readers, please refer to in Table 4 in Appendix D for the
functional υ for different risk measures. We will use SRM
as an example to illustrate the procedure.

5.1.1. AN EXAMPLE: SRM

Here we consider an alternative form of SRM Mϕ(F ) =∫ b

a
ϕ(F (x))xdF (x). ψ is continuously differentiable with

derivative

ψ′(t) =
d

dt

∫ b

a

ϕ((1− t)F + tG)(x))xd((1− t)F + tG)(x)

= −
∫ b

a

(G− F )(x)ϕ((1− t)F + tG)(x))dx

≤ ∥G− F∥p ∥ϕ(F + tH)∥q .

We omit the details in the second equality and leave the full
derivations to Appendix D. Since

ψ′(t;F,G)

∥F −G∥p
≤ ∥ϕ((1− t)F + tG)∥q ,

where ∥·∥q is the dual norm of ∥·∥p, we obtain υ(F ) =
∥ϕ(F )∥q. Consider the case p = ∞. Since F∞

n ⪯ F for

F ∈ B∞(Fn, c
∞
n ), then ϕ

(
F∞
n (x)

)
≥ ϕ(F (x)), ∀F ∈

B∞(Fn, c
∞
n ), ∀x ∈ [a, b]. It holds that

max
F∈B∞(Fn,c∞n )

∥ϕ(F )∥1 = max
F∈B∞(Fn,c∞n )

∫ b

a

ϕ(F (x))dx

=

∫ b

a

ϕ(F∞
n (x))dx =

∥∥∥ϕ(F∞
n

)∥∥∥
1
.

In contrast, the GLC can be bounded by choosing F = δa

max
F∈D([a,b])

∫ b

a

ϕ(F (x))dx = (b− a) ∥ϕ∥∞ = (b− a)ϕ(1).

Following such principle, we obtain the LLCs for other risk
measures (cf. Table 2).

5.2. Improvement of Distribution Optimization
Framework

Equation 7 qualitatively establishes that the confidence
bounds derived from our framework are tighter than that
based on the LLC

T
(
Fn

)
−T(Fn) ≤ L(Fn, cn)cn.

Furthermore, we can quantitatively show the improvement

T
(
Fn

)
−T(Fn) = ψ

(
1;Fn, Fn

)
−ψ

(
0;Fn, Fn

)
≤ max

t∈[0,1]
ψ′ (t;Fn, Fn

)
≤ max

t∈[0,1]
υ
(
(1− t)Fn + t · Fn

)
cn,

where the second to the last inequality follows from the
definition of υ. The following also holds

T(Fn)−T
(
Fn

)
≤ max

t∈[0,1]
υ
(
(1− t)Fn + tFn

)
cn.

Therefore, it is more convenient to compare T
(
Fn

)
−

T(Fn) and L(Fn, cn)cn, which is shown for the supremum
distance in Table 3. For convenience, we normalize them by
cn and state the results for general CDF F . Our UCBs are
strictly and consistently tighter than the LLC-based bounds
for the supremum distance. Due to the space limit, the re-
sults for the Wasserstein distance are shown in Appendix D.

5.3. Illustrating example: CVaR

We use CVaR to illustrate Table 2 and Table 3. Table 2
compares the LLC with GLC for different risk measures.
The second row in Table 2 shows that the LLC and GLC of
CVaR for the Wasserstein distance are identical. In addition,
the GLC of CVaR for supremum distance is b−a

α , which is

larger than its LLC b−F−1((1−α−c)+)
α .

Table 3 presents the improvement of our bound for the
supremum distance. The second column in Table 3 implies

Cα

(
F∞

)
−Cα(F )

c
=
b− F−1(1− α)

1− α

< L∞(Cα;F, c) =
b− F−1(1− α− c)

α

< L∞(Cα) =
b− a
α

.

Our upper bound is strictly tighter than the LLC-based and
GLC-based bound. The improvement depends on the distri-
bution F and α. For small α and distribution F with non-fat
upper tail, b−F−1(1−α)≪ b−a, leading to a much finer
bound. In particular, consider a uniform distribution

Cα

(
F∞

)
−Cα(F )

c
=
α(b− a)

α

< L∞(Cα;F, c) =
(α+ c)(b− a)

α

< L∞(Cα) =
b− a
α

.

Our bound for uniform distribution considerably improves
by a factor of 1/α and (α + c)/α compared to the GLC-
based and LLC-based bound, respectively.

6. Application to Risk-sensitive Bandits
Now we consider the risk-sensitive multi-armed bandit
(MAB) problems. The quality of each arm is measured
by the risk measure value of its loss distribution. The loss
distribution of the i-th arm is denoted by Fi, and the risk
value associated with T is T(Fi). The algorithm interacts

7
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Table 2: Comparison between the LLC and the GLC

RM Local (p = 1) Global (p = 1) Improvement Local (p =∞) Global (p =∞) Improvement

CVaR 1
α

1
α ✗

b−F−1
n ((1−α−c)+)

α
b−a
α ✓

SRM ϕ(1) ϕ(1) ✗
∥∥∥ϕ(F∞

n )
∥∥∥
1

(b− a)ϕ(1) ✓

DRM ∥g′∥∞ ∥g′∥∞ ✗
∥∥∥g′(1− F∞

n )
∥∥∥
1

(b− a) ∥g′∥∞ ✓

ERM exp(βb)∫ b
a
exp(βx)dF 1

n(x))
exp(β(b− a)) ✓

exp(βb)−exp(βa)

β
∫ b
a
exp(βx)dF∞

n (x))

exp(β(b−a))−1
β ✓

RDEU N/A2 ∥w′∥∞ ∥u′∥∞ N/A
∥∥∥w′(F∞

n )u′
∥∥∥
1

∥w′∥∞ ∥u′∥1 ✓

Table 3: Improvement of confidence bounds for supremum distance over LLC

RM CVaR SRM DRM ERM RDEU

L∞(T;F, c) b−F−1(1−α−c)
1−α ∥ϕ(F∞)∥1 ∥g′(1− F∞)∥1

exp(βb)−exp(βa)∫ b
a
exp(βx)dF∞(x)

∥w′(F∞)u′∥1
T(F∞)−T(F )

c
b−F−1(1−α)

1−α ∥ϕ(F )∥1 ∥g′(1− F )∥1
exp(βb)−exp(βa)

β
∫ b
a
exp(βx)dF (x)

∥w′(F )u′∥1
Improvement ✓ ✓ ✓ ✓ ✓

with a bandit instance ν = (Fi)i∈[K] for N rounds. In each
round t ∈ [N ], the algorithm π chooses an arm It ∈ [K]
and observes the loss Xt ∼ FIt . The performance of an
algorithm π is measured by the cumulative regret

Regret(π, ν,N) ≜ E

∑
t∈[N ]

T(FIt)− min
i∈[K]

T(Fi)

 .
While the UCB-type algorithms (Auer et al., 2002) are
widely applied to the risk-neutral MAB problems, they rely
on the concentration bound of the mean. We propose a
meta-algorithm (cf. Algorithm 1) to deal with generic risk
measures, where the LCB is derived from our framework.
The algorithm maintains the EDF F̂i,t for each arm i

F̂i,t ≜
1

si(t)

t−1∑
t′=1

I {Xt′ ≤ ·, It′ = i} , (10)

where si(t) ≜
∑t−1

t′=1 I{It′ = i} is the number of times of
pulling arm i up to time t. For convenience, we assume the
first arm is the optimal arm, i.e., T(F1) < T(Fi), i ̸= 1.
When specializing the risk measure to the CVaR, we obtain
a distribution-dependent regret upper bound.

Proposition 6.1. The expected regret of Algorithm 1 on a
instance ν ∈ D([a,∞]) with T = Cα is bounded as

Regret(LCB, ν,N)

≤ 4 log(
√
2N)

α2

K∑
i>1

(
b− F−1

i (1− α− 2c∗i )
)2

∆i
+ 3

K∑
i=1

∆i,

where the sub-optimality gap ∆i ≜ Cα(Fi)− Cα(F1) <

Algorithm 1 Lower Confidence Bound

1: Input: N , a
2: for round t ∈ [K] do
3: Pull arm It ← t
4: end for
5: for round t = K + 1,K + 2, · · · , N do
6: Compute F̂i,t via Equation 10

7: Set ci(t)←
√

log(2KN2)
si(t)

for all i ∈ [K]

8: Fi,t ← N∞
ci(t)

F̂i,t

9: It ← argmini∈[K] T
(
Fi,t

)
10: end for

b − a, and c∗i is a Fi-dependent constant that solves the

equation 2
b−F−1

i (1−α−2c)

α c = ∆i.

The proof is deferred to Appendix E.

Remark 6.2. The meta-algorithm for CVaR reduces to the
CVaR-UCB algorithm (Tamkin et al., 2019). Interestingly,
Tamkin et al. (2019) empirically observes that CVaR-UCB
outperforms the GLC-based algorithm U-UCB (Cassel et al.,
2018) with an order of magnitude improvement, but they
only provide a regret bound of

4 log(
√
2N)

α2

K∑
i>1

(b− a)2

∆i
+ 3

K∑
i=1

∆i,

which matches that of U-UCB. We fill this gap by quantify-
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ing the improvement in the magnitude

∑
i>1

(
b− F−1

i (1− α− 2c∗i )
)2

∆2
i

/
∑
i>1

(b− a)2

∆2
i

< 1.

Remark 6.3. Baudry et al. (2021) introduces a Thomp-
son Sampling algorithm B-CVTS for CVaR bandit with
bounded rewards, which is the first asymptotic optimal
CVaR bandit algorithm. Notably, our main contribution in
this paper is the framework to improve confidence bounds
rather than designing optimal CVaR bandit algorithms. Ad-
ditionaly, CVaR-UCB has several advantages. CVaR-UCB
can perform incremental updates to compute the CVaR val-
ues, but B-CVTS needs to maintain and sample from the
posterior of distributions. Thus the time and space complex-
ity of CVaR-UCB is quite low. Moreover, CVaR-UCB can
be applied to semi-unbounded distributions, e.g., log-normal
distribution, while B-CVTS assumes bounded rewards.

7. Numerical Experiments
To better visualize the benefits of our framework relative to
those of LLC and GLC, we conducted a series of empirical
comparisons. Details and complete figures are deferred to
Appendix G.

Confidence bounds. We consider five different beta dis-
tributions and two risk measures: CVaR and ERM. Due
to space limitations, we provide the results for one typical
beta distribution and one particular distance in Figure 4.
Our bounds are consistently tighter than LC-based ones for
various risk measures and varying sample sizes.

CVaR bandits. We compare CVaR-UCB with the
UCB algorithm using GLC (GLC-UCB) and using LLC
(LLC-UCB) in Figure 5. It shows that CVaR-UCB outper-
forms LLC-UCB and GLC-UCB.

8. Conclusion
We propose a distribution optimization framework to obtain
improved confidence bounds of several risk measures. By
viewing the solutions as certain transformations of the EDF,
we design efficient algorithms to compute the confidence
bounds. The tightness of our bounds is further illustrated
via comparisons with the new baseline method.

The major limitation is that our framework only deals with
bounded distribution in general. However, it is applicable
to semi-unbounded distributions for CVaR, SRM, DRM,
and RDEU. It would be interesting to study the distribution
optimization framework under more general assumptions,
e.g., sub-Gaussian or sub-exponential distributions. Another
promising future direction is to generalize the framework
to the multivariate setting. One may apply the multivariate
DKW inequality to the multivariate risk measures.

0 1 2 3 4 5 6 7 8 9 10

Sample Size 104

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
V

a
R

 C
I 
v
ia

 S
u
p
re

m
u
m

 D
is

ta
n
c
e

A=50,B=50

GLC-UB

LLC-UB

Opt-UB

True Value

(a) CVaR UCB via supremum
distance

0 1 2 3 4 5 6 7 8 9 10

Sample Size 104

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C
V

a
R

 C
I 
v
ia

 S
u
p
re

m
u
m

 D
is

ta
n
c
e

A=50,B=50

GLC-LB

LLC-LB

Opt-LB

True Value

(b) CVaR LCB via supremum
distance

0 1 2 3 4 5 6 7 8 9 10

Sample Size 104

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

E
R

M
 C

I 
v
ia

 W
a
s
s
e
rs

te
in

 D
is

ta
n
c
e

A=50,B=50

GLC-UB

LLC-UB

Opt-UB

True Value

(c) ERM UCB via Wasserstein
distance

0 1 2 3 4 5 6 7 8 9 10

Sample Size 104

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

E
R

M
 C

I 
v
ia

 W
a
s
s
e
rs

te
in

 D
is

ta
n
c
e

A=50,B=50

GLC-LB

LLC-LB

Opt-LB

True Value

(d) ERM LCB via Wasserstein
distance

Figure 4: Comparisons of CIs for CVaR and ERM with
varying sample sizes.
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A. Table of Notation

Symbol Explanation
D The space of all CDFs
D([a, b]) The space of all CDFs supported on [a, b]
Bp(F, c) The ∥·∥p norm ball centered at F with radius c
Fn The empirical distribution function corresponding to n samples from F
cpn The confidence radius w.r.t. ∥·∥p for n samples
T Risk measure
Lp(T) The global Lipschitz constant of T w.r.t. ∥·∥p
Lp(T;F, c) The local Lipschitz constant of T w.r.t. ∥·∥p over Bp(Fn, c

p
n)

F p
n The maximizer of Formulation 5 or 6
F p
n The minimizer of Formulation 5 or 6

P1
c The positive operator w.r.t. ∥·∥1 with coefficient c

N1
c The negative operator w.r.t. ∥·∥1 with coefficient c

P∞
c The positive operator w.r.t. ∥·∥∞ with coefficient c

N∞
c The negative operator w.r.t. ∥·∥∞ with coefficient c

ν Bandit instance
N Number of total rounds
K Number of total arms
π Bandit algorithm
si(t) The number of times of pulling arm i up to time t

B. Risk Measures
Conditional Value at Risk (CVaR) CVaR (Rockafellar et al., 2000) is a popular risk measure in financial portfolio
optimization (Krokhmal et al., 2002; Zhu & Fukushima, 2009). Formally, the CVaR value at level α ∈ (0, 1) for a
distribution F is defined as

Cα(F ) ≜ inf
ν∈R

{
ν +

1

1− α
EX∼F [(X − ν)+]

}
.

Acerbi & Tasche (2002) showed that when F is a continuous distribution, Cα(F ) = EX∼F [X|X ≥ F−1(1− α)].

Spectral risk measure (SRM) SRM is a generalization of CVaR that adopts a non-constant weighting function (Acerbi,
2002). The SRM of F is defined as

Sϕ(F ) ≜
∫ 1

0

ϕ(y)F−1(y)dy,

where ϕ : [0, 1]→ [0,∞) is weighting function. ϕ is said to be admissible if it is increasing and satisfies that
∫ 1

0
ϕ(y)dy = 1.

Acerbi (2002) showed that Sϕ(F ) is a coherent risk measure if ϕ is admissible. SRM can be viewed as a weighted average
of the quantiles F−1, with weight specified by ϕ(y). In fact, Sϕ(F ) specializes in Cα(F ) for ϕ(y) = 1

1−α I{y ≥ 1− α}.

Distortion risk measure (DRM) DRM is originally from the insurance problems and later applied to investment risks
(Wang, 1996; 2004). For a distribution F ∈ D([0,∞)), the DRM ρg(F ) is defined as

ρg(F ) ≜
∫ ∞

0

g(1− F (x))dx,

where g : [0, 1] → [0, 1] is a continuous increasing function with g(0) = 0 and g(1) = 1. We refer to g as the distortion
function. Similar to SRM, DRM can also recover CVaR by setting g(y) = min

(
x

1−α , 1
)

.

Entropic risk measure (ERM) ERM is a well-known risk measure in risk-sensitive decision-making, including mathe-
matical finance (Föllmer & Schied, 2016), Markovian decision processes (Bäuerle & Rieder, 2014). The ERM value of F

12
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with coefficient β ̸= 0 is defined as

Uβ(F ) ≜
1

β
log(EX∼F [exp(βX)]) =

1

β
log

(∫
R
exp(βx)dF (x)

)
.

Certainty equivalent Certainty equivalent can be viewed as a generalization of ERM, which replace the exponential
utility function with a more general function. Let u be a continuous and strictly increasing function such that its inverse u−1

exists, then the certainty equivalent Cu(F ) of F associated with a function u is given by

Cu(F ) ≜ u−1(EX∼F [u(X)]) = u−1

(∫
R
u(x)dF (x)

)
.

It is trivial that the certainty equivalent Cu(F ) reduces to the ERM when u(x) = exp(βx).

Rank dependent expected utility (RDEU) RDEU value (Quiggin, 2012) of F ∈ D([a, b]) is defined as

V (F ) ≜
∫ b

a

v(x)dw(F (x)),

where w : [0, 1] → [0, 1] is an increasing weight function such that w(0) = 0 and w(1) = 1, and v : R → R be an
(unbounded) increasing differentiable function with v(0) = 0.

C. Proof of Theorems
For CDFs F,G ∈ D , the Wasserstein distance between them can be represented by their IDFs

W1(F,G) =

∫ ∞

−∞
|F (x)−G(x)| dx =

∫ 1

0

∣∣F−1(y)−G−1(y)
∣∣ dy,

With slight abuse of notation, we write W1(F,G) =
∥∥F−1 −G−1

∥∥
1
. We will prove the theorems for the more general

formulations in the following.
max

G∈D([a,b])
T(G)

s.t. ∥G− F∥1 ≤ c
(11)

and
max

G∈D([a,b])
T(G)

s.t. ∥G− F∥∞ ≤ c
(12)

Observe that ∥G− F∥1 =
∥∥G−1 − F−1

∥∥
1
, thus we can recast Formulation 5 as

max
G∈D([a,b])

T(G−1)

s.t.
∥∥G−1 − F−1

∥∥
1
≤ c

(13)

Proposition C.1. For risk measures ERM and CE defined in Section 2, the optimal solution to Formulation 11 is given by

F 1 = P1
cF, F

1 = N1
cF, (14)

where P1
c/N

1
c : D([a, b])→ D([a, b]) is the positive/negative operator for CDF for the Wasserstein distance, which defined

as follows.

Define S+(F, x) ≜
∫ b

x
(F (z)− F (x)) dz. Its geometric meaning is the area sandwiched between F and a constant

F (x) from x (see Figure 4 (a)). Notice that S+ may be discontinuous w.r.t. x since F can be discontinuous w.r.t. x
(S+(x) < S+(x−)). For c > 0, we define g+(F, c) ≜ max{x ≥ a : S+(F, x) ≤ c} ∈ [a, b). For simplicity, we drop F
from the notations if it is clear from the context. Given F ∈ D([a, b]) as input, O1

c outputs a CDF

(
P1

cF
)
(x) ≜

{
F (g+(c))− c−S+(g+(c))

b−g+(c) , x ∈ [g+(c), b),

F (x), otherwise.

13
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Analogously, we define S−(F, x) ≜
∫ b

x
(1− F (z)) dz and g−(F, c) ≜ max{x ≥ a : S−(F, x) ≤ c} ∈ [a, b). We omit F

for simplicity. Note that S− is continuous w.r.t. x. Hence g−(c) = {x : S−(x) = c}. For F ∈ D([a, b]), N1
c outputs a

CDF (
N1

cF
)
(x) ≜

{
1, x ∈ [g−(c), b),

F (x), otherwise.

Proposition C.2. For risk measures CVaR, SRM and DRM defined in Section 2, the optimal solution to 13 is given by(
F 1

−1
)
= P1

cF
−1,

(
F 1
)−1

= N1
cF

−1, (15)

where we overload notations to denote by P1
c/N

1
c : (D([a, b]))−1 → (D([a, b]))−1 the positive/negative operator for IDF

for the Wasserstein distance.

We overload notations and define S+(F−1, y) ≜
∫ 1

y

(
b− F−1(z)

)
dz. For c > 0, we define g+(F−1, c) ≜ min{y :

S+(F−1, y) ≥ c} ∈ (0, 1). For simplicity, we drop F from the notations if it is clear from the context. Given F−1 ∈
D([a, b])−1 as input, P1

c outputs a IDF

(
P1

cF
−1
)
(y) ≜

{
1, y ∈ (g+(c), 1],

F−1(y), otherwise.

Analogously, we define S−(F−1, y) ≜
∫ 1

y

(
F−1(z)− F−1(y)

)
dz and g−(F−1, c) ≜ min{y : S−(F−1, y) ≥ c} ∈ (0, 1)

for c > 0. Notice that S− may be discontinuous w.r.t. y (S−(y+) < S−(y)). Given F−1 ∈ D([a, b])−1 as input, N1
c

outputs a IDF (
N1

cF
−1
)
(y) ≜

{
F−1(g−(c)) + S−1(g−1(c))−c

1−g−(c) , y ∈ (g−(c), 1],

F−1(y), otherwise.

Proposition C.3. For any risk measure, the optimal solution to Formulation 12 is given by

F∞ = P∞
c F, F∞ = N∞

c F, (16)

where P∞
c /N∞

c : D([a, b])→ D([a, b]) is the positive/negative operator with coefficient c > 0 for the supremum distance,
which is defined as follows (

P∞
c F

)
(x) ≜ max {F (x)− cI{x ∈ [a, b), 0} ,(

N∞
c F

)
(x) ≜ min {F (x) + cI{x ∈ [a, b), 1} .

Figure 4 illustrates how the operators defined in Proposition C.1-C.3 transforms a typical continuous CDF F ∈ D([a, b]).

C.1. Proof of Proposition C.1

We only provide the proof for CE because ERM is a special case of CE by choosing u(x) = exp(βx). For simplicity, we
write the optimization problem as

max
G∈D([a,b])

Cu(G)

s.t. ∥G− F∥1 ≤ c

Proof. We consider the maximization problem first. The objective function can be written as

Cu(G) = u−1

(∫ b

a

u(x)dG(x)

)
= u−1

(
u(b)−

∫ b

a

G(x)u′(x)dx

)
.

Since u−1 is monotonically increasing, we can reformulate the original optimization problem as

min
G

∫ b

a
G(x)u′(x)dx

s.t. G ∈ B1(F, c)

14
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The fact that the ball constraint G ∈ B1(F, c) is symmetric about F implies G∗(x) ≤ F (x),∀x ∈ [a, b]. Suppose
G∗(y) > F (y) for y in a set that is a union of disjoint intervals ∪iIi = ∪i(ai, bi), and G∗(y) ≤ F (y) otherwise. We can
choose

H(y) =

{
max{2F (y)−G∗(y), F (ai)}, y ∈ Ii,
G∗(y), otherwise,

which satisfies the ball constraint. However, Cu(H) > Cu(G
∗) since

∫
Ii
H(x)u′(x)dx ≤

∫
Ii
F (x)u′(x)dx <∫

Ii
G∗(x) exp(βx)dx, which leads to a contradiction. Hence we have G∗(x) ≤ F (x),∀x ∈ [a, b]. Define

G̃(x) ≜
(
P1

cF
)
(x) =

{
F (g+(c))− c−S+(g+(c))

b−g+(c) , x ∈ [g+(c), b),

F (x), otherwise.

Notice that the (new) minimization problem has a linear objective and convex ball constraint. Thus, the optimal solution
exists in the boundary of the ball constraint. It suffices to consider the following optimization problem

min
G

∫ b

a
G(x)u′(x)dx

s.t. ∥F −G∥1 = c,
G ⪰ F.

It is easy to check that G̃ satisfies the constraints. It remains to show that
∫ b

a
G̃(x)u′(x)dx ≤

∫ b

a
G(x)u′(x)dx for any

feasibleG. Consider a feasibleG ̸= G̃. It is obvious thatG(b−) ≥ G̃(g+(c)), otherwise ∥F −G∥1 =
∫ b

a
F (x)−G(x)dx >∫ b

a
F (x) − G̃(x)dx = c, which contradicts with G ∈ B1(F, c). If G(b−) = G̃(g+(c)), then we again have G = G̃.

Otherwise ∥F −G∥1 > c. Therefore it holds that G(b−) > G̃(g+(c)). We have G(g+(c)) < G̃(g+(c)), since otherwise

∥F −G∥1 <
∥∥∥F − G̃∥∥∥

1
= c. Since G is monotonically increasing and right continuous, there exists g′(c) ∈ (g+(c), b)

such that G(x) < G̃(x) = G̃(g+(c)) for x ∈ [g+(c), g′(c)) and G(x) > G̃(x) = G̃(g+(c)) for x ∈ (g′(c), b). Moreover,
G(x) ≤ G̃(x) = F (x) for x ∈ [a, g+(c)). It follows that∫ b

a

G(x)u′(x)dx−
∫ b

a

G̃(x)u′(x)dx

=

∫ g′(c)

a

(G(x)− G̃(x))u′(x)dx+

∫ b

g′(c)

(G(x)− G̃(x))u′(x)dx

≥ u′(g′(c))
∫ b

g′(c)

(G(x)− G̃(x))dx− u′(g′(c))
∫ g′(c)

a

(G̃(x)−G(x))dx

= 0.

The last equality follows from that ∥F −G∥1 −
∥∥∥F − G̃∥∥∥

1
=
∫ b

a
F (x) − G(x)dx −

∫ b

a
F (x) − G̃(x)dx =

∫ b

a
G̃(x) −

G(x)dx = 0.

Similarly, we can prove that the optimal solution to the minimization problem is given by

(
N1

cF
−1
)
(y) ≜

{
F−1(g−(c)) + S−1(g−1(c))−c

1−g−(c) , y ∈ (g−(c), 1],

F−1(y), otherwise.

C.2. Proof of Proposition C.2

We only provide proof for SRM and DRM because CVaR is a special case of SRM or DRM.

C.2.1. PROOF FOR SRM

Proof. The objective function is given by

Mϕ(G) =

∫ 1

0

ϕ(y)G−1(y)dy,

15
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Table 4: υ(F )

RM υ(F )

CVaR 1
α ∥I{F (·) ≥ 1− α}∥q

SRM ∥ϕ(F )∥q
DRM ∥g′(1− F )∥q
ERM

∥exp(β·)∥q∫ b
a
u(x)dF (x)

CE ∥u′∥q (u−1)′(
∫ b

a
u(x)dF (x))

RDEU ∥w′(F )u′∥q

which is linear in G−1. Meanwhile, the constraint
∥∥G−1 − F−1

∥∥
1
≤ c is also a convex ball constraint w.r.t. G−1.

Furthermore, ϕ(y) is an increasing function. Using analogous arguments to the proof of Theorem 4.3 completes the
proof.

C.2.2. PROOF FOR DRM

Proof. By a change of variable y = F (x), the DRM can be represented as

ρg(G) =

∫ 1

0

g(1− y)dG−1(y) = g(1− y)F−1(y)|10 −
∫ 1

0

G−1(y)dg(1− y)

= −a+
∫ 1

0

G−1(y)g′(1− y)dy.

Again, the objective function is linear in G−1, and the constraint is also a convex ball constraint. Besides, g′(1 − y) is
increasing in y since g is concave. Using analogous arguments to the proof of Theorem 4.3 completes the proof.

C.3. Proof of Proposition C.3

It is easy to verify that P∞
c F ∈ B∞(F, c). Consider an arbitrary F ∈ D([a, b]) and c > 0. For x ∈ [a, b), we have(

P∞
c F

)
(x) = max{F (x)− c, 0} ≤ G(x), ∀G ∈ B∞(F, c).

Besides,
(
P∞

c F
)
(b) = G(b) = 1 for any G ∈ B∞(F, c). Therefore G ⪯ P∞

c F for any G ∈ B∞(F, c). The result follows
from the monotonicity of T.

D. Derivations of Results in Section 5
D.1. Identification of ν

We list functional ν for different risk measures in Table 4. The functional ν is crucial to compute the LLC and to show the
tightness of our method. We provide detailed derivations of ν in the following. Since the CVaR (ERM) is a special case of
SRM (CE), we omit the derivation of CVaR and ERM. Recall that υ((1− t)F + tG, p) is a functional satisfying that for any
F,G

ψ′ (t;F,G)) ≤ υ((1− t)F + tG, p) ∥F −G∥p .

D.1.1. SRM

Consider Mϕ in the form of

Mϕ(F ) =

∫ b

a

ϕ(F (x))xdF (x),

16
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where ϕ is increasing and integrates to 1. ψ is continuously differentiable with derivative

ψ′(t;F,G) =
d

dt

∫ b

a

ϕ((1− t)F + tG)(x))xd((1− t)F + tG)(x)

=
d

dt

[∫ b

a

ϕ((1− t)F + tG)(x))xdF (x) + t

∫ b

a

ϕ((1− t)F + tG)(x))xd(G− F )(x)

]

=

∫ b

a

ϕ′((1− t)F + tG)(x))(G(x)− F (x))xdF (x)︸ ︷︷ ︸
(a)

+

∫ b

a

ϕ((1− t)F + tG)(x))xd(G− F )(x)︸ ︷︷ ︸
(b)

+ t

∫ b

a

ϕ′((1− t)F + tG)(x))(G(x)− F (x))xd(G− F )(x)︸ ︷︷ ︸
(c)

.

Since

(b) = ϕ((1− t)F + tG)(x))x(G− F )(x)|ba −
∫ b

a

(G− F )(x)d [ϕ((1− t)F + tG)(x))x]

= −
∫ b

a

(G− F )(x)d [ϕ((1− t)F + tG)(x))x]

and

(c) =

∫ b

a

(G− F )(x)xdϕ((1− t)F + tG)(x))−
∫ b

a

ϕ′((1− t)F + tG)(x))(G(x)− F (x))xdF (x)

We have

ψ′(t) = (a) + (b) + (c) = −
∫ b

a

(G− F )(x)ϕ((1− t)F + tG)(x))dx = ⟨G− F,−ϕ((1− t)F + tG)⟩

≤ ∥G− F∥p ∥ϕ((1− t)F + tG)∥q .

Hence we can choose υ(F, p) = ∥ϕ(F )∥q .

D.1.2. DRM

A distortion risk measure associated with distortion function g for a distribution F is

ρg(F ) =

∫ b

a

g(1− F (x))dx,

where g : [0, 1] → [0, 1] is a non-decreasing function with g(0) = 0 and g(1) = 1. Thus g′ is non-negative. ψ is
continuously differentiable with derivative

ψ′(t;F,G) =
d

dt

∫ b

a

g(1− (1− t)F (x)− tG(x))dx =

∫ b

a

g′(1− (1− t)F (x)− tG(x))(F (x)−G(x))dx

= ⟨F −G, g′(1− (1− t)F − tG)⟩
≤ ∥F −G∥p ∥g

′(1− (1− t)F − tG)∥q .

Hence we can choose υ(F, p) = ∥g′(1− F )∥q .

D.1.3. CE

For a CE Cu, we define Eu(F ) ≜
∫
u(x)dF (x). Notice that Eu is a linear functional, i.e.,

Eu((1− t)F + tG) = (1− t)Eu(F ) + tEu(G)

17
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for any F,G ∈ D([a, b]). ψ for Eu is continuously differentiable with derivative

ψ′(t;F,G) =
d

dt
Eu((1− t)F + tG) =

d

dt
(1− t)Eu(F ) + tEu(G)

= Eu(G)− Eu(F )

=

∫ b

a

u(x)dG(x)−
∫ b

a

u(x)dF (x)

= u(x)G(x)|ba −
∫ b

a

G(x)du(x)− u(x)F (x)|ba +
∫ b

a

F (x)du(x)

=

∫ b

a

F (x)−G(x)du(x)

= ⟨F −G, u′⟩

where the last equality follows from that F (b) = G(b) = 1 and F (a) = G(a) = 0. The certainty equivalent of a distribution
F with utility function u is defined as Cu(F ) = u−1(Eu(F )). It follows that

ψ′(t;F,G) =
(
u−1

)′
(Eu((1− t)F + tG)) · ⟨F −G, u′⟩

≤
(
u−1

)′
(Eu((1− t)F + tG)) · ∥F −G∥p , ∥u

′∥q

Hence we can choose υ(F, p) =
(
u−1

)′
(Eu(F )) ∥u′∥q .

D.1.4. RDEU

Let w : [0, 1] → [0, 1] be an increasing weight function such that w(0) = 0 and w(1) = 1. Let u : R → R be an
(unbounded) increasing differentiable function with u(0) = 0. The RDEU value of F ∈ D([a, b]) is given by

V (F ) =

∫ b

a

u(x)dw(F (x))

= u(x)w(F (x))|ba −
∫ b

a

w(F (x))du(x)

= u(b)−
∫ b

a

w(F (x))u′(x)dx.

We have

ψ′(t;F,G) =
d

dt

[
u(b)−

∫ b

a

w((1− t)F (x) + tG(x))u′(x)dx

]

= −
∫ b

a

w′((1− t)F (x) + tG(x))(G(x)− F (x))u′(x)dx

= ⟨F −G,w′((1− t)F + tG)u′⟩
≤ ∥F −G∥p ∥w

′((1− t)F + tG)u′∥q

Hence we can choose υ(F, p) = ∥w′(F )u′∥q .
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D.2. Derivation of the LLC

In Section 5.1, we have shown that

Lp(T;Fn, c
p
n) = sup

F,G∈Bp(Fn,c
p
n)

T(F )−T(G)

∥F −G∥p

= sup
F,G∈Bp(Fn,c

p
n)

ψ(1;F,G)− ψ(0;F,G)
∥F −G∥p

≤ sup
F,G∈Bp(Fn,c

p
n),t∈[0,1]

ψ′(t;F,G)

∥F −G∥p
≤ sup

F,G∈Bp(Fn,c
p
n),t∈[0,1]

υ((1− t)F + tG, p)

= sup
F∈Bp(Fn,c

p
n)

υ(F, p).

We have derived the υ function in the previous subsection, which enables us to obtain an upper bound on Lp(T;F, c). We
only provide the derivations for DRM, CE, and RDEU here because SRM is presented as an illustrating example in Section
5.1. We first give a useful fact to deal with the Wasserstein distance.
Fact 3. Fix real numbers a < b. For any G ∈ D([a, b]) and any c, there exists a continuous and monotonically increasing
distribution F ∈ D([a, b]) such that ∥F − Fn∥1 ≤ c.

D.2.1. DRM

For DRM, υ(F, p) = ∥g′(1− F )∥q . Since g is concave, g′ is monotonically decreasing.

Case p = 1. By Fact 3, there exists a continuous CDF F ∈ B1(Fn, r
1
n). Such F attains all possible value in [0, 1], hence

max
F∈B1(Fn,c1n)

∥g′(1− F )∥∞ = max
F∈B1(Fn,c1n)

max
x∈R

g′(1− F (x)) = max
y∈[0,1]

g′(y) = ∥g′∥∞ .

Case p =∞. Since

max
F∈B∞(Fn,c∞n )

∥g′(1− F )∥1 = max
F∈B∞(Fn,c∞n )

∫ b

a

g′(1− F (x))dx,

it follows that

max
F∈B∞(Fn,c∞n )

∫ b

a

g′(1− F (x))dx =
∥∥∥g′(1−N∞

c∞n
Fn)
∥∥∥
1

D.2.2. CE

For CE, υ(F, p) =
(
u−1

)′
(Eu(F )) ∥u′∥q . Since u is convex,

(
u−1

)′
is a decreasing function. It follows that

sup
F∈Bp(Fn,c

p
n)

(
u−1

)′
(Eu(F )) ∥u′∥q = (u−1)′(Eu(N

p
cpn
Fn)) ∥u′∥q .

D.2.3. RDEU

For RDEU, υ(F, p) = ∥w′(F )u′∥q. Recall that w : [0, 1] → [0, 1] is an increasing weight function with w(0) = 0 and
w(1) = 1, and v : R→ R is an (unbounded) increasing differentiable function with u(0) = 0. We further assume that w is
convex so that w′ is an increasing function.

Case p = 1. By Fact 3, there exists a continuous CDF F ∈ B1(Fn, r
1
n). Such F attains all possible value in [0, 1], hence

max
F∈B1(Fn,c1n)

∥w′(F )u′∥∞ = max
F∈B1(Fn,c1n)

max
x∈R

w′(F (x))u′(x),

which might not admit closed form in general. Meanwhile, the GLC (holds without monotonicity)

L1 = max
F∈D([a,b])

∥w′(F )u′∥∞ = ∥w′∥∞ ∥u
′∥∞ .
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Case p =∞. The following holds

max
F∈B∞(Fn,c∞n )

∥w′(F )u′∥1 = max
F∈B∞(Fn,c∞n )

∫ b

a

w′(F (x))u′(x)dx

=
∥∥∥w′(N∞

c∞n
F )u′

∥∥∥
1
.

The global Lipschitz constant (holds without monotonicity)

L∞ = max
F∈D([a,b])

∥w′(F )u′∥1 = ∥w′∥∞ ∥u
′∥1 .

The last equality uses that for any d ∈ [0, 1], F (x) = d for any x ∈ (a, b) if F = dψa + (1− d)ψb (shifted Bernoulli).

D.3. Improved Confidence Bound

In Section 5.2, we established that

T
(
Pp
cpn
Fn

)
−T(Fn) = ψ

(
1;Fn,P

p
cpn
Fn

)
− ψ

(
0;Fn,P

p
cpn
Fn

)
≤ max

t∈[0,1]
ψ′
(
t;Fn,P

p
cpn
Fn

)
≤ max

t∈[0,1]
υ
(
(1− t)Fn + tPp

cpn
Fn, p

)
cpn

as well as

T(Fn)−T
(
Np

cpn
Fn

)
≤ max

t∈[0,1]
υ
(
(1− t)Np

cpn
Fn + tFn, p

)
cpn.

The above inequalities lead to the following bounds.

D.3.1. SUPREMUM DISTANCE

Proposition D.1 (CE). For F ∈ D([a, b]), it holds that (assume β > 0)

Cu(P
∞
c F )− Cu(F ) ≤ ∥u′∥1 (u

−1)′

(∫ b

a

u(x)dF (x)

)
· c

≤ ∥u′∥1 (u
−1)′

(∫ b

a

u(x)dN∞
c F (x)

)
· c,

Cu(F )− Cu(N
∞
c F ) ≤ ∥u′∥1 (u

−1)′

(∫ b

a

u(x)dN∞
c F (x)

)
· c.

Corollary D.2 (ERM). For F ∈ D([a, b]), it holds that (assume u convex)

Uβ(P
∞
c F )− Uβ(F ) ≤

exp(βb)− exp(βa)

β
∫ b

a
exp(βx)dF (x)

· c ≤ L∞(Uβ)c∫ b

a
exp(βx)dN∞

c F (x)
,

Uβ(F )− Uβ(P
∞
c F ) ≤

L∞(Uβ)c∫ b

a
exp(βx)dN∞

c F (x)
.

Proposition D.3 (SRM). For F ∈ D([a, b]), it holds that (assume ϕ increasing)

Mϕ(P
∞
c F )−Mϕ(F ) ≤

∫ b

a

ϕ(F (x))dx · c ≤
∫ b

a

ϕ(N∞
c F (x))dx · c = L∞(Mϕ;F, c)c

Mϕ(F )−Mϕ(N
∞
c F ) ≤

∫ b

a

ϕ(N∞
c F (x))dx · c = L∞(Mϕ;F, c)c.

20



A Distribution Optimization Framework for Confidence Bounds of Risk Measures

Proposition D.4 (DRM). For F ∈ D([a, b]), it holds that (assume g concave)

ρg(P
∞
c F )− ρg(F ) ≤

∫ b

a

g′(1− F (x))dx · c ≤
∫ b

a

g′(1−N∞
c F (x))dx · c = L∞(ρg;F, c)c,

ρg(F )− ρg(N∞
c F ) ≤

∫ b

a

g′(1−N∞
c F (x))dx · c = L∞(ρg;F, c)c.

Corollary D.5 (CVaR). For F ∈ D([a, b]), it holds that

Cα(P
∞
c F )− Cα(F ) ≤

b− F−1(1− α)
α

c ≤ b− F−1(1− α− c)
α

c = L∞(Cα;F, c)c,

Cα(F )− Cα(N
∞
c F ) ≤

b− F−1(1− α− c)
α

c = L∞(Cα;F, c)c.

Proposition D.6 (RDEU). For F ∈ D([a, b]), it holds that (assume w convex)

V (P∞
c F )− V (F ) ≤

∫ b

a

w′(F (x))u′(x)dx · c ≤
∫ b

a

w′(N∞
c F (x))u

′(x)dx · c = L∞(V ;F, c)c,

V (F )− V (N∞
c F ) ≤

∫ b

a

w′(N∞
c F (x))u

′(x)dx · c.

D.3.2. WASSERSTEIN DISTANCE

Proposition D.7 (SRM). For F ∈ D([a, b]), it holds that

Mϕ(P
1
cF )−Mϕ(F ) =

∫ 1

g+(c)

(P1
cF

−1(y)− F−1(y))ϕ(y)dy ≤ ϕ(1)c = L1(Mϕ;F, c)c

Mϕ(F )−Mϕ(N
1
cF ) =

∫ 1

g−(c)

(F−1(y)−N1
cF

−1(y))ϕ(y)dy ≤ ϕ(1)c.

Proposition D.8 (DRM). For F ∈ D([a, b]), it holds that

ρg(P
1
cF )− ρg(F ) =

∫ 1

g+(c)

(P1
cF

−1(y)− F−1(y))g′(1− y)dy ≤ g′(0)c = L1(ρg;F, c)c

ρg(F )− ρg(N1
cF ) =

∫ 1

g−(c)

(F−1(y)−N1
cF

−1(y))g′(1− y)dy ≤ g′(0)c.

Corollary D.9 (CVaR). For F ∈ D([a, b]), it holds that

Cα(P
1
cF )− Cα(F ) =

c

α
= L1(Cα;F, c)c,

Cα(F )− Cα(N
1
cF ) =

c

α
= L1(Cα;F, c)c.

Proposition D.10 (CE). For F ∈ D([a, b]), it holds that

Cu(P
1
cF )− Cu(F ) ≤ ∥u′∥∞ (u−1)′

(∫ b

a

u(x)dF (x)

)
· c

≤ ∥u′∥∞ (u−1)′

(∫ b

a

u(x)dN1
cF (x)

)
· c,

Cu(F )− Cu(N
1
cF ) ≤ ∥u′∥∞ (u−1)′

(∫ b

a

u(x)dN1
cF (x)

)
· c.
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Corollary D.11 (ERM). For F ∈ D([a, b]), it holds that (assume β > 0)

Uβ(P
1
cF )− Uβ(F ) ≤

exp(βb)∫ b

a
exp(βx)dF (x)

· c ≤ L∞(Uβ)c∫ b

a
exp(βx)dN1

cF (x)
,

Uβ(F )− Uβ(N
1
cF ) ≤

L∞(Uβ)c∫ b

a
exp(βx)dN1

cF (x)
.

E. Proof of Proposition 6.1

Proof. Observe that the regret decomposes as Regret(LCB, ν, T ) =
∑K

i=1 ∆iE[Ni(T )]. We will bound E[Ni(T )] for each
suboptimal arm i ̸= 1. Recall that F i,t = N∞

ci(t)
F̂i,t. Denote by F̂ s

i the empirical CDF corresponding to arm i after

observing s samples, therefore we have F̂i,t = F̂
Ni(t)
i . Without loss of generality, we assume the first arm is the optimal

arm, i.e.,
Cα(F1) ≤ Cα(Fi), ∀i ∈ [K].

Define the good event for arm i as

Gi = {Cα(F1) > max
t∈[T ]

Cα(F 1,t)} ∩ {Cα(N
∞√

log(2/δ)
2ui

F̂ui
i ) > Cα(F1)}.

We claim that if Gi occurs, then Ni(T ) ≤ ui. The proof follows from a contradiction. Suppose Ni(T ) > ui, then there
exists some round t ∈ [T ] such that Ni(t) = ui and It = i. It follows that

Cα(F i,t) = Cα(N
∞
ci(t)

F̂i,t)

= Cα(N
∞√

log(2/δ)
2ui

F̂ui
i )

> Cα(F1)

> Cα(F 1,t),

where the inequalities come from the definition ofGi. Hence It = argmini∈[K] Cα(F i,t) ̸= i, which leads to a contradiction.
Using the tower property,

E[Ni(T )] = E[Ni(T )|Gi]P(Gi) + E[Ni(T )|Gc
i ]P(Gc

i ) ≤ ui + TP(Gc
i ).

Next, we show that P(Gc
i ) is small. By using union bound, we have

P(Gc
i ) ≤ P

(
Cα(F1) ≤ max

t∈[T ]
Cα(F̃1,t)

)
+ P

(
Cα

(
N∞√

log(2/δ)
2ui

F̂ui
i

)
≤ Cα(F1)

)
.

By Theorem 4.1, for any t ∈ [T ], if F1 ∈ B(F̂1,t, c1(t)) then F 1,t = N∞
c1(t)

F̂1,t ⪰ F1, and Cα(F 1,t) ≤ Cα(F1). Hence
the first term on the r.h.s. can be bounded as

P
(
Cα(F1) ≤ max

t∈[T ]
Cα(F̃1,t)

)
= P

(
∃t ∈ [T ] : Cα(F1) ≤ Cα(F 1,t)

)
≤ P

(
∃t ∈ [T ] :

∥∥∥F1 − F̂1,t

∥∥∥ ≥√ log(2/δ)

2Ni(t)

)

≤ P

(
∪s∈[T ]

{∥∥∥F1 − F̂ s
1

∥∥∥ ≥√ log(2/δ)

2s

})
≤ Tδ,

where the last inequality follows from a union bound and the DKW inequality. Denote by ci ≜
√

log(2/δ)
2ui

. By Corollary

D.5, we have that Cα(F )− Cα(N
∞
c F ) ≤

b−F−1(1−α−c)
α c. If the event

{∥∥∥F̂ui
i − Fi

∥∥∥
∞
< ci

}
occurs, then

Cα(F̂
ui
i )− Cα

(
N∞

ci F̂
ui
i

)
≤ 1− (F̂ui

i )−1(1− α− ci)
α

ci
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and

Cα(Fi)− Cα(F̂
ui
i ) ≤ Cα(P

∞
ci F̂

ui
i )− Cα(F̂

ui
i ) ≤

b− (P∞
ci F̂

ui
i )−1(1− α− ci)

α
ci.

Combining these inequalities,

Cα

(
Pci F̂

ui
i

)
− Cα(Fi) ≤

(
b− (F̂ui

i )−1(1− α− ci)
α

+
b− (Nci F̂

ui
i )−1(1− α− ci)

α

)
ci

≤ 2
b− (F̂ui

i )−1(1− α− ci)
α

ci

≤ 2
b− F−1

i (1− α− 2ci)

α
ci

We choose ui such that ∆i = Cα(Fi)− Cα(F1) ≥ 2
b−F−1

i (1−α−2ci)

α ci, then the second term on the r.h.s. can be bounded
as

P
(
Cα

(
N∞

ci F̂
ui
i

)
≤ Cα(F1)

)
= P

(
Cα(Fi)− Cα

(
N∞

ci F̂
ui
i

)
≥ ∆i

)
≤ P

(
Cα(Fi)− Cα

(
N∞

ci F̂
ui
i

)
≥ 2

b− F−1
i (1− α− 2ci)

α
ci

)
≤ P

(∥∥∥F̂ui
i − Fi

∥∥∥
∞
≥ ci

)
≤ δ.

Hence, the probability of Gc
i is bounded as P(Gc

i ) ≤ (T + 1)δ. It follows that

E[Ni(T )] ≤ ui + T (T + 1)δ.

Define hi(c) ≜ 2
b−F−1

i (1−α−2c)

α c. Let c∗i ≜ h−1
i (∆i) be the solution to the equation

hi(c) = 2
b− F−1

i (1− α− 2c)

α
c = ∆i.

Note that c∗i is a distribution-dependent constant. We let ui :=
⌈
log(2/δ)
2(c∗i )

2

⌉
and let δ = 1

T 2 :

E[Ni(T )] ≤
⌈
log(2T 2)

2(c∗i )
2

⌉
+ 2 ≤ log(

√
2T )

(c∗i )
2

+ 3.

Substituting it into the regret decomposition, we get

K∑
i=1

∆iE[Ni(T )] ≤ log(
√
2T )

K∑
i=2

∆i

(c∗i )
2
+ 3

K∑
i=1

∆i

=
4 log(

√
2T )

α2

K∑
i>1

(
b− F−1

i (1− α− 2c∗i )
)2

∆i
+ 3

K∑
i=1

∆i.

F. Algorithms
We present several comprehensive algorithms that output the confidence bounds for a given risk measure when given n i.i.d.
samples and confidence radius as input. Algorithm 2 and Algorithm 3 compute the UCB and LCB of a risk measure via
Wasserstein distance respectively. Meanwhile, Algorithm 4 and Algorithm 5 compute the UCB and LCB of a risk measure
via supremum distance respectively.
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Algorithm 2 Wasserstein upper confidence bound

1: Input: b, samplesX = X1, X2, · · · , Xn, risk measure T, c > 0
2: Sort the n samples in ascent order X(1) ≤ X(2) · · · ≤ X(n)

3: Initialize S1 =
b−X(n)

n
4: for i = 1 : n do
5: if Si ≤ c then
6: Si+1 = Si +

1
n (b−X(n−i))

7: else
8: n′ = n+ 1− i
9: break

10: end if
11: end for
12: pn′ = Si−c

b−X(n′)
, pb = i

n − pn′

13: F 1
n = 1

n

∑n′−1
i I{X(i) ≤ ·}+ pn′I{X(n′) ≤ ·}+ pbI{b ≤ ·}

14: Output: T
(
F 1
n

)

Algorithm 3 Wasserstein lower confidence bound

1: Input: a, samplesX = X1, X2, · · · , Xn, risk measure T, c > 0
2: Sort the n samples in ascent order X(1) ≤ X(2) · · · ≤ X(n)

3: Initialize S1 =
X(n)−X(n−1)

n
4: for i = 1 : n− 1 do
5: if Si ≤ c then
6: Si+1 = Si +

i+1
n (X(n−i) −X(n−1−i))

7: else
8: n′ = n+ 1− i
9: break

10: end if
11: end for
12: b− = X(n′−1) +

n(Si−c)
i

13: F 1
n = 1

n

∑n′−1
i I{Xi ≤ ·}+ i

n I{b
− ≤ ·}

14: Output: T
(
F 1
n

)

F.1. Time Complexity

We start with Algorithm 2. The sorting of n samples incurs O(n log n). The for-loop costs O(n) since the cost in each
iteration isO(1). Therefore the total time complexity isO(n log n+ logn). The time complexity of Algorithm 3-Algorithm
5 is O(n log n+ log n).

F.2. Space Complexity

Consider Algorithm 2. The space complexity of storing the samples is O(n). In addition, storing Si, pn′ , and pb costs O(n).
The total space complexity is O(n). It is easy to check that the time complexity of Algorithm 3-Algorithm 5 is O(n).

G. Experiments
G.1. Confidence Bounds

We consider five beta distributions with different parameters. The specific parameters (A,B) is shown above in each figure.
Unless otherwise specified, we always use N = 105 samples, α = 0.05, β = 1, and δ = 0.05. For convenience, we use
c1n = (b− a)c∞n . We plot the CIs for ERM and CVaR for varying sample size and varying risk parameter in Figure 6-13.
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Algorithm 4 Supremum upper confidence bound

1: Input: b, samplesX = X1, X2, · · · , Xn, risk measure T, c > 0
2: Sort the n samples in ascent order X(1) ≤ X(2) · · · ≤ X(n)

3: Initialize i = 1
4: while i

n ≤ c do
5: i = i+ 1
6: l = i
7: end while
8: F∞

n = ( l
n − c)I{X(l) ≤ ·}+ 1

n

∑n
i=l+1 I{X(i) ≤ ·}+ cI{b ≤ ·}

9: Output: T
(
F∞
n

)
Algorithm 5 Supremum lower confidence bound

1: Input: a, samplesX = X1, X2, · · · , Xn, risk measure T, c > 0
2: Sort the n samples in ascent order X(1) ≤ X(2) · · · ≤ X(n)

3: Initialize i = n
4: while i

n + c ≥ 1 do
5: i = i− 1
6: l = i
7: end while
8: F∞

n = cI{a ≤ ·}+ 1
n

∑l
i=1 I{X(i) ≤ ·}+ (1− l

n − c)I{X(l+1) ≤ ·}
9: Output: T

(
F∞
n

)

G.2. CVaR Bandit

We adopt the same bandit instances as Tamkin et al. (2019). The parameters of these distributions are given in Table 1 in
Tamkin et al. (2019). The left, middle, and right part of Figure 14 plots the results for easy bandit instance with α = 0.25,
hard bandit instance with α = 0.25, and hard bandit instance with α = 0.05. As expected, CVaR-UCB consistently
outperforms LLC-UCB and GLC-UCB.
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Figure 6: CVaR UCB with varying sample size
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Figure 7: CVaR LCB with varying sample size
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Figure 8: CVaR UCB with varying α
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Figure 9: CVaR LCB with varying α
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Figure 10: ERM CI with varying sample size
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Figure 11: ERM CI with varying β
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Figure 12: ERM CI with varying sample size
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Figure 13: ERM CI with varying β
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Figure 14: CVaR bandit
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