
Under review as a conference paper at ICLR 2023

WALKING THE TIGHTROPE: AN INVESTIGATION OF
THE CONVOLUTIONAL AUTOENCODER BOTTLENECK

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we present an in-depth investigation of the convolutional autoencoder
(CAE) bottleneck. Autoencoders (AE), and especially their convolutional variants,
play a vital role in the current deep learning toolbox. Researchers and practitioners
employ CAEs for various tasks, ranging from outlier detection and compression
to transfer and representation learning. Despite their widespread adoption, we
have limited insight into how the bottleneck shape impacts the CAE’s emergent
properties. We demonstrate that increased bottleneck area (i.e., height × width)
drastically improves generalization in terms of reconstruction error while also
speeding up training. The number of channels in the bottleneck, on the other
hand, is of secondary importance. Furthermore, we show empirically that CAEs
do not learn an identity mapping, even when all layers have the same number of
neurons as there are pixels in the input. Besides raising important questions for
further research, our findings are directly applicable to two of the most common
use-cases for CAEs: In image compression, it is advantageous to increase the
feature map size in the bottleneck as this improves reconstruction quality greatly.
For reconstruction-based outlier detection, we recommend decreasing the feature
map size so that out-of-distribution samples will yield a higher reconstruction error.

1 INTRODUCTION

Autoencoders (AE) are an integral part of the neural network toolkit. They are a class of neural
networks that consist of an encoder and decoder part and are trained by reconstructing datapoints after
encoding them. Due to their conceptual simplicity, autoencoders often appear in teaching materials
as introductory models to the field of unsupervised deep learning. Nevertheless, autoencoders have
enabled major contributions in the application and research of the field. The main areas of application
include outlier detection Xia et al. (2015); Chen et al. (2017); Zhou & Paffenroth (2017); Baur et al.
(2019), data compression Yildirim et al. (2018); Cheng et al. (2018); Dumas et al. (2018), and image
enhancement Mao et al. (2016); Lore et al. (2017). Additionally, autoencoders can be used as catalysts
in the training of deep neural networks. The layers of the target network can be greedily pre-trained by
treating them as autoencoders with one hidden layer Bengio et al. (2007). Subsequently, Erhan et al.
(2009) demonstrated that autoencoder pre-training also benefits generalization. Currently, researchers
in the field of representation learning frequently rely on autoencoders for learning nuanced and
high-level representations of data Kingma & Welling (2013); Tretschk et al. (2019); Shu et al. (2018);
Makhzani et al. (2015); Berthelot et al. (2018).

However, despite its widespread use, we propose that the (deep) autoencoder model is not well
understood. Many papers have aimed to deepen our understanding of the autoencoder through
theoretical analysis Nguyen et al. (2018); Arora et al. (2013); Baldi (2012); Alain & Bengio (2012).
While such analyses provide valuable theoretical insight, there is a significant discrepancy between the
theoretical frameworks and actual behavior of autoencoders in practice, mainly due to the assumptions
made (e.g., weight tying, infinite depth) or the simplicity of the models under study. Others have
approached this issue from a more experimental angle Arpit et al. (2015); Bengio et al. (2013a); Le
(2013); Vincent et al. (2008); Berthelot et al. (2019); Radhakrishnan et al. (2018). Such investigations
are part of an ongoing effort to understand the behavior of autoencoders in a variety of settings.

The focus of most such investigations so far has been the traditional autoencoder setting with fully
connected layers. When working with image data, however, the default choice is to use convolutions,

1



Under review as a conference paper at ICLR 2023

as they provide a prior that is well suited to this type of data Ulyanov et al. (2018). For this reason,
Masci et al. (2011) introduced the convolutional autoencoder (CAE) by replacing the fully connected
layers in the classical AE with convolutions. In an autoencoder, the layer with the least amount of
neurons is referred to as a bottleneck. In the regular AE, this bottleneck is simply a vector (rank-1
tensor). In CAEs, however, the bottleneck assumes the shape of a multichannel image (rank-3 tensor,
height × width × channels) instead. This bottleneck shape prompts the question: What is the relative
importance of bottleneck depth (i.e., the number of channels) versus the bottleneck area (i.e., feature
map size) in determining the tightness of the CAE bottleneck? Intuitively, we might expect that only
the total number of neurons should matter since convolutions with one-hot filters can distribute values
across channels.

In this paper, we share new insights into the properties of convolutional autoencoders, which we
gained through extensive experimentation. We address the following questions:

• How do bottleneck area and depth impact

– reconstruction quality?
– generalization ability?
– knowledge transfer to downstream tasks?

• How and when do CAEs overfit?

• Are CAEs capable of learning a “copy function” if the CAE is complete (i. e., when the
number of pixels in input equals the number of neurons in bottleneck)? By copy function
we are referring to a type of identity function, in which the input pixel values are transported
through the bottleneck and copied to the output. The hypothesis that AEs learn an identity
mapping is common for fully connected AEs and can sometimes be encountered for CAEs
(see Sections 4 and 5 in Masci et al. (2011).

We begin the following section by formally introducing convolutional autoencoders and explaining
the convolutional autoencoder model we used in our experiments. Additionally, we introduce our
three datasets and the motivation for choosing them. In Section 3, we outline the experiments and
their respective aims. Afterward, we present and discuss our findings in Section 4. All of our code,
results, and trained models and datasets, is published on github. We invite interested readers to take a
look and experiment with our models.

2 MATERIALS AND METHODS

2.1 AUTOENCODERS AND CONVOLUTIONAL AUTOENCODERS

The regular autoencoder, as introduced by Rumelhart et al. (1985), is a neural network that learns a
mapping from data points in the input space x ∈ Rd to a code vector in latent space h ∈ Rm and
back. Typically, unless we introduce some other constraint, m is set to be smaller than d to force the
autoencoder to learn higher-level abstractions by having to compress the data. In this context, the
encoder is the mapping f(x) : Rd → Rm and the decoder is the mapping g(h) : Rm → Rd. The
layers in both the encoder and decoder are fully connected:

li+1 = σ(W ili + bi). (1)

Here, li is the activation vector in the i-th layer, W i and bi are the trainable weights and σ is an
element-wise non-linear activation function. If necessary, we can tie weights in the encoder to the
ones in the decoder such that W i = (W n−i)T , where n is the total number of layers. Literature
refers to autoencoders with this type of encoder-decoder relation as weight-tied.

The convolutional autoencoder keeps the overall structure of the traditional autoencoder but replaces
the fully connected layers with convolutions:

Li+1 = σ(Wi ∗ Li + bi), (2)

where ∗ denotes the convolution operation and the bias bi is broadcast to match the shape of Li such
that the j-th entry in bi is added to the j-th channel in Li. Whereas before the hidden code was an
m-dimensional vector, it is now a tensor with a rank equal to the input tensor’s rank. In the case

2

https://anonymous.4open.science/r/b72d16bf-70bb-4e56-91ba-ae5ccac2b0b9/


Under review as a conference paper at ICLR 2023

of images, that rank is three (height, width, and the number of channels). CAEs generally include
pooling layers or convolutions with strides > 1 or dilation > 1 in the encoder to reduce the size of the
input. In the decoder, unpooling or transposed convolution layers Dumoulin & Visin (2016) inflate
the latent code to the size of the input.

2.2 OUR MODEL

Our model consists of five strided convolution layers in the encoder and five up-sampling convolution
layers (bilinear up-sampling followed by padded convolution) Odena et al. (2016) in the decoder. We
chose to use five such layers so that the bottleneck area would be 3x3 (input dimensions are 96 × 96).
To have a deeper model, we added two residual blocks He et al. (2016) with two convolutions each
after each strided / up-sampling convolution layer. We applied instance normalization Ulyanov et al.
(2016) and ReLU activation Nair & Hinton (2010) following every convolution in the architecture.

Our goal was to understand the effect latent code shape has on different aspects of the network.
Therefore, we wanted to change the shape of the bottleneck between experiments while keeping the
rest of the network constant. To this end, we quadrupled the number of channels with every strided
convolution si and reduced it by a factor of four with every up-sampling convolution ui. In effect,
this means that the volume (i. e., height × width × channels) of the activations is identical to that of
the input in all layers up to the bottleneck:

si(Li) ∈ R
hi
/2×wi

/2×4ni
c , for Li ∈ Rhi×wi×ni

c (3)

ui(Li) ∈ R2hi×2wi×ni
c/4 , for Li ∈ Rhi×wi×ni

c (4)

In this sense, the bottleneck is the only moving part in our experiments. The resulting models have a
number of parameters ranging from ∼ 50M to 90M, depending on the bottleneck shape. The variants
with smaller bottleneck area have more parameters due to the large number of channels needed to
achieve the same relative volume to the input as variants with a bigger area.

2.3 DATASETS

To increase the robustness of our study, we conducted experiments on three different datasets:

Chess The first dataset is a collection of synthetic images showing chess positions 1. The images are
generated by randomly sampling the board and piece icon style and the number of pieces present
on the board. Each image comes with a string of characters describing the position in FEN notation.
We convert this description into binary labels that indicate each possible piece’s presence, excluding
kings, as they are always on the board. In total, the dataset consists of 100,000 400×400 pixel images.
To keep the training time within acceptable bounds, we resized all images to be 96×96 pixels.

CelebA Our second dataset is the CelebA faces dataset Liu et al. (2015). This dataset is a collection
of 202,600 images showing celebrity faces, each with a 40-dimensional attribute vector (attributes
such as smiling/not smiling, male/female). For our purposes, we resized the images to be 96×96
pixels. The original size was 178×218 pixels.

STL-10 For our last dataset, we picked STL-10 Coates et al. (2011). This dataset consists of 96×96
pixel natural images and is divided into three splits: 5,000 training images (10 classes), 8,000 test
images (10 classes), 100,000 unlabeled images. The unlabeled images also include objects that are
not covered by the ten classes in the training and test splits.

3 EXPERIMENTS

3.1 AUTOENCODER TRAINING

The first experiment we conducted, and which forms the basis for all subsequent experiments,
consists of training of autoencoders with varying bottleneck shapes and observing the dynamics of
their training and test losses. This experiment probes the relative importance of area versus depth
in the bottleneck. Additionally, it provides insight into how and when our models overfit. We also

1https://www.kaggle.com/koryakinp/chess-positions

3



Under review as a conference paper at ICLR 2023

tested the hypothesis that autoencoders learn to “copy” the input if there is no bottleneck (i.e., the
volume of activations relative to input is always 1). To be able to observe overfitting behavior, we
used only the first 10,000 images for training and the last 2,000 images for testing in each dataset.
For STL-10, we used images from the unlabeled split.

Our CAE model, introduced in Section 2.2, yields bottleneck area A0. We obtain two additional
bottleneck areas Ai, i ∈ {1, 2} by changing the stride in the last i strided convolution layers in the
encoder from 2 to 1.

Ai =
Ain

4nl−i
i ∈ {0, 1, 2}, nl = 5 (5)

In this equation, nl = 5 is the number of strided convolution layers in the vanilla network, and Ain is
the area (height × width) of the images in the dataset. The figures in Section 4, refer to A0, A1, A2

as S, M, L (small, medium, large), which we believe to be more intuitive.

For each area setting we then fix four levels of compression cj ∈ {1/64, 1/16, 1/4, 1} and calculate
the necessary number of channels ncj according to

ncj =
cjAinncin

Ai
i ∈ {0, 1, 2}, j ∈ {1, 2, 3, 4} (6)

Here, ncin is the number of channels in the input image. When presenting our results, we use the
levels of compression, rather than the number of channels, as the latter changes based on the chosen
area for the same level of compression.

All resulting autoencoders have the same number of parameters in all layers except the convolutional
layer and residual block directly preceding and following the bottleneck. We use mean squared error
(MSE) between reconstruction and input as our loss function. After initializing all models with the
same seed, we train each for 1,000 epochs, computing the test error after every epoch. We repeat
this process for three different seeds on each dataset. Training a single model for 1000 epochs took
approximately two days on a Nvidia RTX 2080Ti using half-precision.

3.2 SCALING WITH DATASET SIZE

As described above, we limited the training data to 10,000 samples for the training of our CAEs. To
estimate the effect of the training data amount has on CAE training, we train CAE models with six
different amounts of training data. For this experiment, we use the CelebA dataset and four of the
twelve models from the first experiment (S 1/64, S 1/64, M 1/16, M 1/16). We train the models on
the first 1% (2k samples), 5% (10k samples), 10% (20, samples), 25% (50k samples), 50% (100k
samples), and 95% (190k samples) of the samples in the dataset while reserving the last 5% for
testing. Each model trains for 35,000 iterations, which translates to roughly half of the compute each
model received in the first experiment. For each split and model, we use three random seeds, which
are different from the ones used in Section 3.1.

3.3 KNOWLEDGE TRANSFER

Another goal of our investigation is to estimate the effect of the latent code shape on transferability.
Here, we train a logistic regression model on latent codes to predict the corresponding labels for each
dataset. Since logistic regression can only learn linear decision boundaries, this approach allows
us to catch a glimpse of the sort of knowledge present in the latent code and its linear separability.
Furthermore, this serves as another test for the “copying” hypothesis. If the encoder has indeed
learned to copy the input, the results of the logistic regression will be the same for the latent codes
and the input images. We perform this experiment separately for data that the CAEs saw during
training and unseen data. In the first step, we export latent codes for all 108 trained models. From
the Chess and CelebA datasets, we use the 10,000 samples in the training data and another 10,000
unseen images from the end of the dataset. Since we trained CAEs on samples from the unlabeled
split of STL-10, there are no labels available for the training data. Consequently, we only use the
8,000 images in the STL-10 test split for classification.

We train the classifiers with a one-cycle policy Smith (2018) and early stopping for a maximum of
100 epochs. For each classifier, we use 60% of data for training, 20% as a validation set for early
stopping, and 20% for final testing. Additionally, we train each classifier three times on different

4



Under review as a conference paper at ICLR 2023

seeds and different samples in the splits. Besides, we also train models directly on the image data for
every dataset to serve as a baseline for comparison (also with three seeds).

3.4 OUTLIER DETECTION

0.00

0.01

0.02

0.03

0.04

0.05

M
SE

Chess Training Loss Chess Test Loss

0.00

0.01

0.02

0.03

0.04

0.05

M
SE

CelebA Training Loss CelebA Test Loss

200 400 600 800 1000
Epochs

0.00

0.01

0.02

0.03

0.04

0.05

M
SE

STL-10 Training Loss

200 400 600 800 1000
Epochs

STL-10 Test Loss

S 1/64
S 1/16

S 1/4
S 1

M 1/64
M 1/16

M 1/4
M 1

L 1/64
L 1/16

L 1/4
L 1

Figure 1: Loss plots for the three datasets. Ev-
ery bottleneck configuration is shown as a dis-
tinct line. Each line is the average over three
runs. Configurations that have a common bottle-
neck area share the same color. Color intensity
represents the bottleneck depth (darker = more
channels)

Since CAEs are widely used in reconstruction-
based outlier detection, we investigate the impact
of the bottleneck shape in this setting as well. To
this end, we used the models trained on the CelebA
(all configurations and all three seeds) data calcu-
ated the reconstruction loss of 2000 samples from
the CelebA and STL-10 datasets each. We then
clip the losses to 1 and calculate the area under the
ROC curve as an indicator for the effectiveness of
the AE as an outlier detector.

3.5 AUTOENCODER
INTERPOLATION AND ITERATION

To get a more holistic (but qualitative) impression
of the differences between the different bottleneck
configurations we employ methods for visualizing
different aspects of the latent space learned by the
models on the CelebA data. The first such method
is latent-space interpolation. Here, we pick pairs
of test samples from the CelebA dataset and en-
code them. Once we have the latent codes, we
perform liner interpolation between them, recon-
structing the intermediates along the way. Visually
inspecting the resulting intermediate reconstructions is a good method for discovering qualitative
differences that hard to capture using metrics Oring et al. (2020).

The other method we use is iteration of the CAE. Starting from a test sample we repeatedly feed the
reconstructed image back into the autoencoder. Bengio et al. (2013b) showed that this can be thought
of as walking along the latent space manifold learned by the model. In our experiment we iterate
over each model 100 times. Compared to the interpolation, this method samples different portions of
the latent space, as the process is not directed.

4 RESULTS AND DISCUSSION

4.1 AUTOENCODER TRAINING

Generalization Improves with Bottleneck Area We observe that bottleneck shape critically affects
generalization (Figure 1). While bottleneck depth has almost no effect on generalization, increasing
the bottleneck area vastly improves generalization and enables the models to be trained longer before
overfitting occurs. To measure the strength of this effect, we looked at the minimal test error achieved
by each model, and the epoch at which this minimum occurred (Figure 2). Models with a larger
bottleneck area have a much lower test error than ones with a small area. Additionally, their test
error curves reach their minima at later epochs, meaning that such models start overfitting later in the
training cycle. The differences in the minimum test error were statistically significant for the different
bottleneck areas with p-values below 0.001, according to a Wilcoxon rank-sum test (Table 1 in the
Appendix). This finding is surprising, given the hypothesis that only the total amount of neurons
matters. The better generalization of models with a larger bottleneck area is also clearly visible when
inspecting reconstructions of test samples. We have added figures showing the reconstructions of
random samples in the Appendix.

This effect is relevant for many applications of CAEs. For instance, if compression or restoration is
the goal, a larger bottleneck area is helpful as we demonstrate with Figures B.1, B.2 and B.3 in the
supplementary material. On the other hand, if the CAE is intended for outlier detection, a smaller

5



Under review as a conference paper at ICLR 2023

bottleneck area is preferable, as this increases the difference in reconstruction error between valid
samples and outliers. To show this, we have plotted the difference in reconstruction error for CAEs
trained on CelebA data when reconstructing unseen samples from CelebA and STL-10 in Figure C.1

CelebA Chess STL-10

E
p

o
c
h

@
0
.0

1
 T

ra
in

in
g

 E
rr

o
r

M
in

im
a
l
Te

s
t

E
rr

o
r

x
 1

0
²

E
p

o
c
h

@
M

in
im

a
l 
Te

s
t 

E
rr

o
r

Figure 2: Plots showing the first epoch to fall
beaneath 0.01 training error, the minimal test er-
ror and the epoch at which the model achieved it
(see Section 4.1). Columns represent the results
for each dataset. Each number is the average over
three runs. Marginals show the mean and standard
deviation of the row / column. More desirable
values have brighter colors.

0.00
0.01
0.02
0.03
0.04
0.05

M
SE

S 1/64 Training M 1/64 Training

0.00
0.01
0.02
0.03
0.04
0.05

M
SE

S 1/64 Test M 1/64 Test

0.00
0.01
0.02
0.03
0.04
0.05

M
SE

S 1/16 Training M 1/16 Training

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Steps 1e4

0.00
0.01
0.02
0.03
0.04
0.05

M
SE

S 1/16 Test

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Steps 1e4

M 1/16 Test

1% 5% 10% 25% 50% 95%

Figure 3: Loss plots for the scaling experiment
(see Section 3.2) averaged over three runs. Each
quadrant shows training and test losses from one
model. Colors correspond to the fraction of data
used for training, as shown in the legend at the top.
Brighter means more training data.

Training Speed Increases with Bottleneck
Area Although all bottleneck configurations re-
sult in similar final training errors, a bigger bot-
tleneck area accelerates the model training. This
effect is apparent in the loss curves in Figure
1. Loss curves from models with a bigger bot-
tleneck area reach lower training and test error
sooner than their counterparts. We have quan-
tified the effect by looking at the first epoch
to reach a training error below 0.01 (Figure 2).
We find that only the bottleneck area is strongly
correlated with convergence speed, while bot-
tleneck depth does not seem to affect it. A
Wilcoxon rank-sum test shows that the epoch at
which the training loss falls beneath 0.01 is sig-
nificantly different for the bottleneck areas, with
all p-values being below 0.001, except in two
cases, where they were 0.02 and 0.08. (Table 1
in the Appendix). The transition from a small
to a medium area yielded the largest speed up in
our experiments.

CAEs without Bottleneck Do Not Learn an
Identity Mapping CAEs, where the total num-
ber of neurons in the bottleneck is the same as
the number of pixels in the input, do not show
signs of simply copying images. If the CAEs
would indeed copy images, the test error would
go to zero, yet we do not observe this case in
any of the datasets.

What is more, these complete CAEs follow the
same pattern as the under-complete ones and
often converge to similar values. In essence,
it suggests that even complete CAEs learn ab-
stractions from data, and raises the question:
What prevents the CAE from simply copying its
input? We believe that the answer to this ques-
tion could potentially lead to new autoencoder
designs that exploit this limitation to learn bet-
ter representations. Hence, we argue that it is
an exciting direction for future research. Addi-
tionally, the trends we derive from our results
suggest that this finding likely extends to over-
complete CAEs as well. However, experiments
with over-complete CAEs are required to test
this intuition.

4.2 SCALING WITH DATASET SIZE

We present the results of the dataset scaling ex-
periment from Section 3.2 in Fig. 3. Train-
ing with more data unsurprisingly results in bet-
ter generalization but with diminishing returns.
When using more than 25% of the full datasets
(≈ 50,000 samples), the test error does not improve significantly, as it converges to the training error.

6



Under review as a conference paper at ICLR 2023

These models did not plateau after 35,000 training iterations, meaning that differences could arise if
we trained the models longer.

C
e
le
b
A

C
h
e
s
s

S
T
L
-1
0

Unseen Seen

Figure 4: Results linear probes. AUROC
for Chess and CelebA,macro F1 for STL-10.
Marginals show the mean and standard devia-
tion. Red signifies improvement over baseline.

S 1
.56

%

S 6
.25

%
S 2

5%
S 1

00
%

M 1.
56

%

M 6.
25

%
M 25

%

M 10
0%

L 1
.56

%

L 6
.25

%
L 2

5%
L 1

00
%

Bottleneck Shape

0.000

0.005

0.010

0.015

0.020

0.025

0.030

 M
SE

Figure 5: Difference in the average MSE on both
datasets in the outlier detection experiment.

11/161/41/64

L

M

S

0.568

0.685

0.697

0.557

0.625

0.714

0.551

0.466

0.705

0.506

0.512

0.655

0.0

0.5

0.0 0.5

Figure 6: AUROC organized into a grid of area
x number of channels

We can confirm our observation from Section 4.1
that a bigger bottleneck area results in faster train-
ing. As can be seen from the scaling experiment,
this effect is independent of the training set size.

The effect of the bottleneck area on generalization,
which we discovered in the first experiment, is
present for all fractions of the training data. Ad-
ditionally, we find the decrease in test error to be
more pronounced if we train the model on fewer
samples.

4.3 KNOWLEDGE TRANSFER

If we look at the results of our knowledge transfer
experiments (Fig. 4), we find further evidence that
contradicts the identity mapping hypothesis. Al-
though the loss curves and reconstructions already
indicate that the CAE does not copy its input, the
possibility remains that the encoder distributes the
input pixels along the channels, but the decoder is
unable to reassemble the image. Here, we see that
the results from the linear model trained on latent
codes of complete CAEs perform better than those
trained directly on the inputs (marked “baseline”
in the figure). As such, it is implausible to assume
that the encoder copied the input to the bottleneck.

Overall, we find that bottleneck shape only slightly
affects knowledge transfer with linear classifiers.
Interestingly, the number of channels in the code
seems to improve the performance of the classifi-
cation slightly. It is not clear, however, whether
this effect is due to the structure of the codes or
their high dimensionality. Perhaps projecting the
representations to have the same dimensionality
(using PCA or UMAP) before classification could
answer this question. Additionally, we find that
the classifiers’ performance is almost the same
on seen and unseen data. Given the differences
in overfitting between the different models, we
would expect otherwise. This may suggest that
encoder and decoder exhibit different degrees of
overfitting. One possible explanation would be
that overfitting happens mostly in the decoder,
while the encoder retains most of its generality.
We believe that this question warrants further in-
vestigation, especially in light of the widespread
use of transfer learning methods.

4.4 OUTLIER DETECTION

Calculating the difference between the average
MSE in both the CelebA and STL-10 samples
shows that models with a larger bottleneck area
perform significantly better due to their improved generalization capabilities. This poses an issue
for reconstruction-based outlier detection however, as can be seen in the results for the calculated

7



Under review as a conference paper at ICLR 2023

AUROC values (see Fig. 6). In conclusion one can observe, that for outlier detection tasks a smaller
bottleneck area is preferable. It appears that the outlier detection performance also decreases with
increasing number of channels, although this effect is much weaker and not as clear.

4.5 AUTOENCODER INTERPOLATION AND ITERATION

Figure 7: Results of the autoencoder interpola-
tion. Images are grouped by area and increasing
with number of channels.

Figure 8: Results of the iteration experiment.
Each column shows the reconstruction after 8
iterations.

Looking at the results of the interpolation and it-
eration experiments (see Figures 8 and 7) we find
that smaller the bottleneck areas encourage the
learning of "concepts". We can see this e.g. in
the iteration results, where the models with the
smallest bottleneck area still show faces after 100
iterations, while the images of the larger ones dis-
solve into indistinguishable patterns. Similarly,
the iteration from the larger-area models seem to
more closely resemble aplha-blending, whereas
the models with smaller area show a gradual mor-
phological change of their contents.

5 CONCLUSION

In this paper, we presented the findings of our in-
depth investigation of the CAE bottleneck. We
could not confirm the intuitive assumption that
the total number of neurons sufficiently charac-
terizes the CAE bottleneck. We demonstrate that
the height and width of the feature maps in the
bottleneck define its tightness, while the number
of channels plays a secondary role. Larger bot-
tleneck area (i.e., height × width) is also critical
in achieving lower test errors, while simultane-
ously speeding up training. These insights are
directly transferable to the two main areas of ap-
plication for CAEs, outlier detection and compres-
sion/denoising: In the case of outlier detection,
the model should yield a high reconstruction error
on out-of-distribution samples. Using smaller bot-
tleneck sizes to limit generalization proves useful
in this scenario. On the other hand, compression
and denoising tasks seek to preserve image details
while reducing file size and discarding unneces-
sary information, respectively. In this case, a big-
ger bottleneck size is preferable, as it increases
reconstruction quality at the same level of com-
pression. Furthermore, we could not confirm the
hypothesis that complete CAE (i. e., CAEs with
the same number of neurons in the bottleneck as
pixels in the input) will learn an identity mapping. On the contrary, even complete CAEs appear to
follow the same bottleneck size dynamics, as stated above.

In knowledge transfer experiments, we have also shown that CAEs that overfit retain good predictive
power in the latent codes, even on unseen samples. An interesting question that follows from these
experiments is how overfitting manifests itself in CAEs. Does it occur mainly in the encoder or
decoder or equally in both?

8



Under review as a conference paper at ICLR 2023

REFERENCES

Guillaume Alain and Yoshua Bengio. What Regularized Auto-Encoders Learn from the Data
Generating Distribution. arXiv e-prints, art. arXiv:1211.4246, Nov 2012.

Sanjeev Arora, Aditya Bhaskara, Rong Ge, and Tengyu Ma. Provable bounds for learning some deep
representations. CoRR, abs/1310.6343, 2013. URL http://arxiv.org/abs/1310.6343.

Devansh Arpit, Yingbo Zhou, Hung Ngo, and Venu Govindaraju. Why Regularized Auto-Encoders
learn Sparse Representation? arXiv e-prints, art. arXiv:1505.05561, May 2015.

Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures. In Isabelle Guyon, Gideon
Dror, Vincent Lemaire, Graham Taylor, and Daniel Silver (eds.), Proceedings of ICML Workshop
on Unsupervised and Transfer Learning, volume 27 of Proceedings of Machine Learning Research,
pp. 37–49, Bellevue, Washington, USA, 02 Jul 2012. PMLR. URL http://proceedings.
mlr.press/v27/baldi12a.html.

Christoph Baur, Benedikt Wiestler, Shadi Albarqouni, and Nassir Navab. Deep autoencoding models
for unsupervised anomaly segmentation in brain mr images. In Alessandro Crimi, Spyridon Bakas,
Hugo Kuijf, Farahani Keyvan, Mauricio Reyes, and Theo van Walsum (eds.), Brainlesion: Glioma,
Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pp. 161–169, Cham, 2019. Springer
International Publishing. ISBN 978-3-030-11723-8.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of
deep networks. In B. Schölkopf, J. C. Platt, and T. Hoffman (eds.), Advances in Neural Information
Processing Systems 19, pp. 153–160. MIT Press, 2007. URL http://papers.nips.cc/
paper/3048-greedy-layer-wise-training-of-deep-networks.pdf.

Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized denoising auto-encoders
as generative models. CoRR, abs/1305.6663, 2013a. URL http://arxiv.org/abs/1305.
6663.

Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized Denoising Auto-Encoders
as Generative Models. pp. 1–9, 2013b. ISSN 10495258. URL http://arxiv.org/abs/
1305.6663. arXiv: 1305.6663 ISBN: 10495258.

David Berthelot, Colin Raffel, Aurko Roy, and Ian Goodfellow. Understanding and improving
interpolation in autoencoders via an adversarial regularizer. arXiv preprint arXiv:1807.07543,
2018.

David Berthelot, Colin Raffel, Aurko Roy, and Ian Goodfellow. Improving interpolation in autoen-
coders. 2019. URL https://openreview.net/pdf?id=S1fQSiCcYm.

Jinghui Chen, Saket Sathe, Charu Aggarwal, and Deepak Turaga. Outlier Detection with Autoencoder
Ensembles, pp. 90–98. 2017. doi: 10.1137/1.9781611974973.11. URL https://epubs.
siam.org/doi/abs/10.1137/1.9781611974973.11.

Z. Cheng, H. Sun, M. Takeuchi, and J. Katto. Deep convolutional autoencoder-based lossy image
compression. In 2018 Picture Coding Symposium (PCS), pp. 253–257, June 2018. doi: 10.1109/
PCS.2018.8456308.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelligence
and statistics, pp. 215–223, 2011.

T. Dumas, A. Roumy, and C. Guillemot. Autoencoder based image compression: Can the learning
be quantization independent? In 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 1188–1192, April 2018. doi: 10.1109/ICASSP.2018.8462263.

Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning. arXiv
preprint arXiv:1603.07285, 2016.

9

http://arxiv.org/abs/1310.6343
http://proceedings.mlr.press/v27/baldi12a.html
http://proceedings.mlr.press/v27/baldi12a.html
http://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf
http://papers.nips.cc/paper/3048-greedy-layer-wise-training-of-deep-networks.pdf
http://arxiv.org/abs/1305.6663
http://arxiv.org/abs/1305.6663
http://arxiv.org/abs/1305.6663
http://arxiv.org/abs/1305.6663
https://openreview.net/pdf?id=S1fQSiCcYm
https://epubs.siam.org/doi/abs/10.1137/1.9781611974973.11
https://epubs.siam.org/doi/abs/10.1137/1.9781611974973.11


Under review as a conference paper at ICLR 2023

Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Bengio, Samy Bengio, and Pascal Vincent. The
difficulty of training deep architectures and the effect of unsupervised pre-training. In David van
Dyk and Max Welling (eds.), Proceedings of the Twelth International Conference on Artificial
Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research, pp. 153–160,
Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, 16–18 Apr 2009. PMLR. URL
http://proceedings.mlr.press/v5/erhan09a.html.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. arXiv e-prints, art.
arXiv:1312.6114, Dec 2013.

Quoc V. Le. Building high-level features using large scale unsupervised learning. 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, pp. 8595–8598, 2013. ISSN
1520-6149. doi: 10.1109/ICASSP.2013.6639343. URL http://ieeexplore.ieee.org/
document/6639343/.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Kin Gwn Lore, Adedotun Akintayo, and Soumik Sarkar. Llnet: A deep autoencoder approach to natu-
ral low-light image enhancement. Pattern Recognition, 61:650 – 662, 2017. ISSN 0031-3203. doi:
https://doi.org/10.1016/j.patcog.2016.06.008. URL http://www.sciencedirect.com/
science/article/pii/S003132031630125X.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian J. Goodfellow. Adversarial autoencoders.
CoRR, abs/1511.05644, 2015. URL http://arxiv.org/abs/1511.05644.

Xiao-Jiao Mao, Chunhua Shen, and Yu-Bin Yang. Image Restoration Using Convolutional Auto-
encoders with Symmetric Skip Connections. arXiv e-prints, art. arXiv:1606.08921, Jun 2016.

Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. Stacked convolutional auto-
encoders for hierarchical feature extraction. In International Conference on Artificial Neural
Networks, pp. 52–59. Springer, 2011.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Thanh V. Nguyen, Raymond K. W. Wong, and Chinmay Hegde. Autoencoders Learn Generative
Linear Models. arXiv e-prints, art. arXiv:1806.00572, Jun 2018.

Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard arti-
facts. Distill, 2016. doi: 10.23915/distill.00003. URL http://distill.pub/2016/
deconv-checkerboard.

Alon Oring, Zohar Yakhini, and Yacov Hel-Or. Autoencoder image interpolation by shaping the
latent space. arXiv preprint arXiv:2008.01487, 2020.

Adityanarayanan Radhakrishnan, Karren Yang, Mikhail Belkin, and Caroline Uhler. Memorization
in Overparameterized Autoencoders. 2018. URL http://arxiv.org/abs/1810.10333.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations by
error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive Science,
1985.

Zhixin Shu, Mihir Sahasrabudhe, Riza Alp Guler, Dimitris Samaras, Nikos Paragios, and Iasonas
Kokkinos. Deforming autoencoders: Unsupervised disentangling of shape and appearance. In The
European Conference on Computer Vision (ECCV), September 2018.

Leslie N Smith. A disciplined approach to neural network hyper-parameters: Part 1–learning rate,
batch size, momentum, and weight decay. arXiv preprint arXiv:1803.09820, 2018.

10

http://proceedings.mlr.press/v5/erhan09a.html
http://ieeexplore.ieee.org/document/6639343/
http://ieeexplore.ieee.org/document/6639343/
http://www.sciencedirect.com/science/article/pii/S003132031630125X
http://www.sciencedirect.com/science/article/pii/S003132031630125X
http://arxiv.org/abs/1511.05644
http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard
http://arxiv.org/abs/1810.10333


Under review as a conference paper at ICLR 2023

Edgar Tretschk, Ayush Tewari, Michael Zollhöfer, Vladislav Golyanik, and Christian Theobalt.
DEMEA: deep mesh autoencoders for non-rigidly deforming objects. CoRR, abs/1905.10290,
2019. URL http://arxiv.org/abs/1905.10290.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454, 2018.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pp. 1096–1103. ACM, 2008.

Yan Xia, Xudong Cao, Fang Wen, Gang Hua, and Jian Sun. Learning discriminative reconstructions
for unsupervised outlier removal. In The IEEE International Conference on Computer Vision
(ICCV), December 2015.

Ozal Yildirim, Ru San Tan, and U. Rajendra Acharya. An efficient compression of ecg sig-
nals using deep convolutional autoencoders. Cognitive Systems Research, 52:198 – 211,
2018. ISSN 1389-0417. doi: https://doi.org/10.1016/j.cogsys.2018.07.004. URL http:
//www.sciencedirect.com/science/article/pii/S1389041718302730.

Chong Zhou and Randy C. Paffenroth. Anomaly detection with robust deep autoencoders. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’17, pp. 665–674, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4887-
4. doi: 10.1145/3097983.3098052. URL http://doi.acm.org/10.1145/3097983.
3098052.

11

http://arxiv.org/abs/1905.10290
http://www.sciencedirect.com/science/article/pii/S1389041718302730
http://www.sciencedirect.com/science/article/pii/S1389041718302730
http://doi.acm.org/10.1145/3097983.3098052
http://doi.acm.org/10.1145/3097983.3098052

	Introduction
	Materials and Methods
	Autoencoders and Convolutional Autoencoders
	Our Model
	Datasets

	Experiments
	Autoencoder Training
	Scaling with Dataset Size
	Knowledge Transfer
	Outlier Detection
	Autoencoder interpolation and iteration

	Results and Discussion
	Autoencoder Training
	Scaling with Dataset Size
	Knowledge Transfer
	Outlier Detection
	Autoencoder interpolation and iteration

	Conclusion

