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ABSTRACT

Recently, patch-based models have been widely discussed in time series analysis.
However, existing pretext tasks for patch-based learning, such as masking, may
not capture essential time and channel-wise patch interdependencies in time series
data, presumed to result in subpar model performance. In this work, we introduce
Patch order-aware Pretext Task (PPT), a new self-supervised patch order learning
pretext task for time series classification. PPT exploits the intrinsic sequential
order information between patches in time and channel dimensions of time series
data, where model training is aided by channel-wise patch permutations. The per-
mutation disrupts patch order consistency across time and channel dimensions with
controlled intensity to provide supervisory signals for learning time series order
characteristics. To this end, we propose two patch order-aware learning methods:
patch order consistency learning, which quantifies patch order correctness, and
contrastive learning, which distinguishes weakly permuted patch sequences from
strongly permuted ones. With patch order learning, we observe enhanced model
performance, e.g., improving up to 7% accuracy for the supervised cardiogram
task and outperforming mask-based learning by 5% in the self-supervised human
activity recognition task. We also propose ACF-COS, an evaluation metric that
measures the importance of orderness for time series datasets, which enables
pre-examination of the efficacy of PPT in model training.

Figure 1: Motivation. Why is patch order important in time series? (A) Time Order Importance. The
aircraft handling signal task (Song et al., 2011) shows how actions can be misinterpreted if their time order
is ignored. For instance, “Fold Wings” and “Spread Wings” are distinct actions, but their time signals may
appear similar when reversed, potentially causing confusion in model training and highlighting the need for time
order awareness in classification. (B) Channel Order (Alignment) Importance. The smart shoe task (Kim
et al., 2023) shows how permuting patch orders in one channel (accelerometer) can disrupt overall channel
alignment. Peaks that were initially aligned across all channels during a stepping action (Green shaded) shift out
of alignment (Red shaded) when the top two patches from the accelerometer are permuted, misaligning signals.
Our proposed method, PPT, supervises this information during model training to address these challenges.
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Figure 2: (1) t-SNE (Van der Maaten & Hinton, 2008) visualization of patches from the smart insole task (Kim
et al., 2023). All figures are derived from self-supervised linear probing using PatchTST (Nie et al., 2022),
color-coded by patch index. (A) uses a mask-and-reconstruct pretext task (Nie et al., 2022). (B) implements
the Complementary patch contrastive learning (CL) proposed by (Lee et al., 2023). (C) uses PPT (Patch
order aware Pretext Task), where we observe a clear alignment of patch orders in latent space. (2) Feature
ablation (Kokhlikyan et al., 2020) to find patch importance in supervised training. Results on the ShapesAll
task (Dau et al., 2019) reveals high importance scores at key time segments when using PPT compared to using
cross-entropy (CE) alone. The details of the results are shown in Appendix A.

1 INTRODUCTION

Recent advances in time series have seen a notable trend toward the adoption of patch-based method-
ologies (Cao et al., 2023; Chen et al., 2023; Lee et al., 2023; Wang et al., 2023). These methods
segment the time series into “patches,” each consisting of consecutive data points, moving away
from the traditional “temporal-wise” or “point-wise” approaches that model individual time points
separately. Although the shift to using patches has generally improved model performance, current
approaches used in patch-based models often struggle to effectively incorporate order information
between time series patches. Positional encoding (Vaswani et al., 2017) and strategies such as
mask-and-reconstruct (Nie et al., 2022) or patch complementary contrastive learning (CL) (Lee et al.,
2023) still fail to fully capture the chronological and channel-specific order alignment essential in
time series (Fig. 2-(1)). Modeling this order information is important as it leverages the unique
characteristics of time series, specifically, their inherent sequential nature. By improving order
awareness across patches, a model can improve its performance, ensuring that the temporal dynamics
and channel dependencies characteristic of time series are effectively captured and utilized.

To address this gap, we propose Patch order-aware Pretext Task (PPT), the first order learning pretext
task for patch-based time series model, which creates supervising signals from the inherent order
relationship between the time series patches. This order awareness across time and channel is
achieved through channel-wise permutation of patches, where the “channel” refers to a specific
feature (e.g., sensor) in time series. The motivation of PPT comes from a critical observation:
The sequence and arrangement of time series patches, spanning both the time and channel
dimensions, represent a natural inductive bias that can be exploited in learning. This awareness
is crucial, as time series data exhibit complex interdependencies that are necessary for accurate
classifications. For instance, as shown in (Fig. 2-(2)), visualization of the attribution scores for
each patch demonstrates that incorporating PPT effectively identifies inflection points, while using
cross-entropy (CE) as a standalone loss function fails to highlight meaningful time segments. Failure
to account for these dependencies can lead to suboptimal model performance, diminishing the model’s
ability to understand the underlying data structure, and reducing accuracy and reliability in tasks
where order is crucial. We further illustrate our motivations with real-world examples in Fig. 1.

A pretext task is a “pre-designed tasks for a network to solve, where the supervising signal is generated
from the data itself” (Jing & Tian, 2020). As a pretext task, PPT is adaptable to self-supervised
learning (SSL) and supervised learning. In SSL, PPT operates independently as a standalone loss
function, while in supervised training, it supplements the standard cross-entropy (CE) minimization as
an additional learning task without relying on labeled information. PPT is a plug-in method for patch-
based time series models that encode individual patches into latent representations (e.g., PatchTST,
PITS). By integrating PPT, the model gains insight into the relationships of structural order between
patches, encompassing both the time and channel dimensions, resulting in consistent improvements
in model performance. Furthermore, we introduce ACF-COS (Autocorrelation Function with Cosine
Similarity), a metric based on autocorrelation function, to quantify the “orderness” of a time series.
Briefly, orderness is the ability of a discriminative function to distinguish a sequence from its permuted
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set, emphasizing sequence order and structural dependency (Definition 3.1). An extensive number of
experiments demonstrate a positive correlation between the ACF-COS score and the performance
enhancement brought by PPT, underlining its significance in exploiting structural data characteristics
for patch-based time series. The key contributions of our work are summarized as follows.

• We introduce Patch order-aware Pretext Task (PPT), the first order-aware pretext task for patch-
based time series models. As a self-supervised learning method, we apply and assess PPT on
two state-of-the-art patch-based time series models, i.e., Transformer-based PatchTST (Nie et al.,
2022) and linear-based PITS (Lee et al., 2023), demonstrating PPT’s effectiveness.

• We propose two patch order-aware learning methods of PPT, i.e., patch order consistency and
contrastive learning, which exploits inherent structural orders between patch sequences across
time and channel dimensions, applicable to both self-supervised and supervised training.

• We propose ACF-COS (Autocorrelation Function with Cosine Similarity), a metric for gauging
the “orderness” of a time series. It enables us to pre-examine whether a time series task could
benefit from patch order learning, enabling targeted applications of PPT where the order is critical.

2 RELATED WORKS

Self-Supervised Learning in Time Series. TS-TCC (Eldele et al., 2021) is a self-supervised
learning (SSL) method designed for non-patch-based time series, generating two views of the time
series data using weak (jittering and scaling) and strong (permuting and jittering) augmentations.
Then, an autoregressive model is used to construct a context vector for temporal contrast between
the two samples. Based on that, some semi-supervised (i.e. CA-TCC (Eldele et al., 2023)) and
graph-structured learning (i.e. TS-GAC (Wang et al., 2023)) methods have followed. Inspired by
TS-TCC, we propose PPT that introduces a channel-wise patch permutation approach with varying
strengths determined by the permutation frequency, termed ‘weak’ and ‘strong’ permutation. While
the main objective of TS-TCC is to bring the weak and strong representations closer, the objective of
PPT is the opposite, as it widens the distance between the weak and strong while placing the weak
closer to the non-permuted ‘original’ set (Sec. 3.2). Moreover, unlike TS-TCC’s random segment
permutations (Um et al., 2017) made on the fly, PPT provides control over the strength of permutation,
which enables the proposed time and channel-wise consistency and contrastive learning (Sec. 3.3).
In addition, PPT is not only efficient due to its use of the permutation bank (i.e. only the permuted
indices are stored) but also effective because it continuously exposes the model to a diverse array
of permuted samples. Thus, PPT significantly diverges from TS-TCC in its focus for contrasting,
making it a unique and effective patch-based pretext task for time series.

Patch-Based Representation of Time Series. Patch-based methods have gained significant popular-
ity across various time series applications, including time-series foundation models (Jin et al., 2023;
Zhou et al., 2024; Gao et al., 2024), forecasting (Chen et al., 2023), and classification (Cheng et al.,
2023). TimeMAE (Cheng et al., 2023) have integrated the Masked Autoencoder (He et al., 2022) archi-
tecture for time series, optimizing the reconstruction loss of randomly masked patches. PatchTST (Nie
et al., 2022), a Transformer-based model, utilizes mask reconstruction as a self-supervised pretraining
method, establishing itself as a strong baseline for various time series applications. TS-GAC (Wang
et al., 2023) is a graph-based model where patches are represented as nodes and their correlations
as edges, performing contrastive learning in both node and graph levels. PITS (Lee et al., 2023), an
MLP-based model, enhances self-supervised training by combining contrastive learning and masked
modeling of patches. As a simple yet effective self-supervised learning method, PPT is applicable to
many of those patch-based time series models.

Quantifying Time Series. Time series exhibit substantial variations in length, number of channels,
and dynamics. As such, quantifying these series into a single metric provides an interpretable tool for
understanding both the data and the behavior of models applied to it. Shannon entropy (SE) (Lin,
1991) and its temporal extension, Permutation entropy (PE) (Bandt & Pompe, 2002), are foundational
metrics used to measure the uncertainty and pattern frequency in time series. However, SE and
PE may not adequately capture the intrinsic orderness of data sequences. Addressing this gap, we
introduce the ACF-COS metric (Sec. 4), which quantifies the orderness of a time series by computing
the cosine similarity between autocorrelation functions of the original and its permuted (shuffled) set.

Extended Related Works. Appendix B discusses related works for order-aware learning tasks in
domains other than time series and SSL methodologies for time series in general.
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Figure 3: PPT employs three primary components: (1) Patch Representations., time series patches are encoded
into latent patch representations; (2) Channel-Wise Patch Permutation., permuting patch orders channel-wise
with permutation intensity governed by weak or strong criteria; (3-A) Consistency Learning., an autoregressive
approach for recognizing patch order at both time and channel levels, paired with (3-B) Contrastive Learning. to
distinguish between original/weakly permuted (positive) and strongly permuted (negative) patches of sequences.
For the negatives in contrastive learning, we use strongly permuted sequences from all channels. Best in color.

3 PPT: PATCH ORDER-AWARE PRETEXT TASK FOR TIME SERIES
CLASSIFICATION

Preliminaries. Let X ∈ RT×D be a raw time series, where T and D denote the time sequence
length and the number of channels (features), respectively. For each channel, we derive N =

⌊
T
s

⌋
non-overlapping patches, each of size s. The latent representation for the i-th patch from the d-th
channel in X is denoted by p(i,d) ∈ Rdh , where dh is the dimensionality of the embedding, obtained
via a model f(·). The sequence of patches in time order can be obtained for each channel d ∈ [1 : D]
and is represented as P(:,d) = ⟨p(1,d), . . . ,p(N,d)⟩ ∈ Rdh×N . Additionally, a sequence of patches in
channel order can be obtained for all i ∈ [1 : N ] and is represented as P(i,:) = ⟨p(i,1), . . . ,p(i,D)⟩ ∈
Rdh×D. While time order P(:,d) captures the temporal evolution within individual channels, the
channel order sequence P(i,:) represents a snapshot of patterns that appear together across all channels
at a single time point, enabling the model to learn both temporal dynamics and concurrent cross-
channel relationships. The objective of PPT is to exploit these order relationships in the time and
channel dimensions of the patches derived solely from X. Here, we define patch order as:

Definition 3.1 (Order) Let Ptime and Pchannel be domains of time and channel order patch sequences,
respectively. We define a discriminative function g(·) such that g : P → R and permute operation
Π : P → P , where P = Ptime ∪ Pchannel. An order exists in P, where P is an element of P , if the
discriminative function g1 can distinguish between P and its permuted Π(P).

Remark 3.1 The discriminatory power of function g suggests a non-random order or sequence
dependency in P, which is disrupted through Π(P).

3.1 STRUCTURE OVERVIEW

We provide an overview of PPT in Fig. 3, outlining a three-step process. (1) Time series are reordered
into sequences of patches, with each patch transformed into patch embeddings through encoder f .
(2) utilizing a pre-built permutation bank, patches undergo efficient channel-wise permutations within
each channel, resulting in two permuted orders of patch sequences-termed “Weak” and “Strong”
based on permutation intensity (Sec. 3.2). (3) These sequences are then applied in consistency and
contrastive learning (Sec. 3.3), where consistency learning verifies the correctness of the order of the
patch sequence, and contrastive learning pairs the Original and Weak sequences as positives against
the Strong sequence as negative. The learning occurs in both the time and channel dimensions.

1In this paper, g refers to an LSTM module for PPT training, and to the ACF-COS in ACF-COS calculation.
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3.2 CHANNEL-WISE PATCH PERMUTATION STRATEGY

Permutation Strategy. We propose a straightforward yet effective patch permutation strategy wherein
patches are permuted within each channel. Permuting within each and every channel is sufficient
to break the patch consistency in both time and channel dimensions. The permutation operator
Πγ

(
p(i,d),p(j ̸=i,d)

)
selects and permutes the order of two distinct patches, p(i,d) and p(j ̸=i,d),

within the same channel d. The hyperparameter γ regulates the frequency of permutations performed
for each channel. For instance, γ = 1 means that a single pair of patches within each channel will be
permuted. We propose and investigate three selection methods that determine which patch pairs to be
permuted, i.e., the vicinity, distant, and random pairs (See Appendix C). Our experiment shows that
the random pair selection is most effective, as it encompasses both the vicinity and distance pairs.
Consequently, we employ random pair selection for our patch permutations.

Furthermore, we define the permuted sequence of patches as “Weak” and “Strong” based on the
magnitude of γ. Selecting a small γ leads to the permutation of only a few pairs of patches within
a channel, maintaining most of the original patch sequence order. In contrast, a high value of γ
substantially disrupts the order of the original sequence in both the time and channel. We utilize
“Weak,”“Strong,” and the un-permuted “Original” sequence of patches in the training of PPT.

Permutation Time Complexity. The permutation operation is efficiently managed using a pre-built
bank of permuted indices, with each index randomly sampled to maintain diversity during minibatch
training. In theory, permuting patch positions with respect to the number of patches N only involves
reordering them, which has a time complexity of O(N) for each permutation. In practice, permuting
a batch of 512 data samples takes merely 0.018 seconds on modern GPU hardware (Appendix F).
The time complexity and the pseudo-algorithm for the permutation bank are in Appendix D.

3.3 CONSISTENCY AND CONTRASTIVE LEARNING

Time and Channel-Order Patch Consistency. PPT learns to differentiate between the “Original”
and “Strong” patch sequences in both time and channel dimensions. It is referred to as learning
“consistency” in the order of patches. The motivation for this learning objective is based on the
observations (see Fig. 1), where an intrinsic order exists among patches, and any deviation from this
order may result in patch sequences that appear to be inconsistent and/or errant. To quantify the
consistency, autoregressive models gTime and gChannel summarize the patch sequences P(i,:)i∈[1:N ]

and P(:,d)d∈[1:D] into context vectors ci∈[1:N ] ∈ Rdh and cd∈[1:D] ∈ Rdh , respectively. Here, we
employ single-layer uni-directional LSTMs that process the patch sequences. The final cell state
of each LSTM serves as the context vector, effectively summarizing the patch sequences. These
LSTM modules are trained end-to-end with the backbone model (details in Appendix F). The context
vectors are then utilized in pseudo-label training, where the learning task is to discriminate between
the context vectors of the “Original (label 1)” and “Strongly (label 0)” permuted sequences. Based on
the binary cross entropy, we define the consistency loss for time and channel-order patches as:

LCS
Time or LCS

Channel = − 1

m

m∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] . (1)

where LCS
Time with ci∈[1:N ] and LCS

Channel with cd∈[1:D], m is the number of patch sequence samples
either in time and channel, y and ŷ are the pseudo-label and predicted label, respectively. The total
consistency loss LCS

sum is then the sum of the losses from both dimensions, LCS
sum = LCS

Time +LCS
Channel.

Time and Channel-Order Patch Contrasting. The use of the consistency loss, LCS, empowers
the model to discern between the original and permuted sequences of patches in both time and
channel dimensions. To further refine the model’s ability to detect varying degrees of permutation,
we introduce an InfoNCE loss (Oord et al., 2018), denoted as LCT, to detect the degree of permutation
variations. Here, the “Original” serves as the anchor, the “Weak” as positives, and the “Strong” as
negatives. Autoregressive models are employed for contrastive learning, taking context vectors to
distinguish between degrees of permutation. We define the contrastive loss for time order LCT

Time in
Eq. (2), where D is the number of channels, c is the context vectors, τ represents the temperature
hyperparameter, and sim denotes cosine similarity. Similarly, the contrastive loss for channel
order LCT

Channel is defined as Eq. (2) by replacing D with the number of patches N . Then, the total
contrastive loss becomes the sum of the two losses as LCT

sum = LCT
Time + LCT

Channel, measured in both
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B) Patch Embeddings in Channel-LevelA) Patch Embeddings in Time-Level
PatchTST: 91.6% PatchTST + PPT: 97.4% (+ 5.8%)PatchTST + PPT: 81.5% (+ 2.9%)PatchTST : 78.6%

Accelerometer Sensors Force SensorsIndex: 1 - 4 Index: 13 - 16 Index: 27 - 30

Figure 4: t-SNE (Van der Maaten & Hinton, 2008) visualization of patch embeddings from supervised
PatchTST (Nie et al., 2022). (A) Time-Level Patch from the ECG data (Bousseljot et al., 1995) visualize
temporal patch embeddings with patch index from i = 1− 4 (Green), 13− 16 (Yellow), and 27− 30 (Purple).
(B) Channel-Level Patch from the smart insole task (Kim et al., 2023) shows the distinct embeddings for the
accelerometer channels (Blue) and force sensor channels (Red). We observe a clear distinction between time and
channel patches with the use of PPT, with performance increases detailed in Tab. 3.

time and channel dimensions.

LCT
Time = − 1

D

D∑
d=1

log

(
exp(sim(coriginal

d , cweak
d )/τ)

exp(sim(coriginal
d , cweak

d )/τ) +
∑D

k=1 exp(sim(coriginal
d , cstrong

k )/τ)

)
(2)

Although consistency and contrastive learning losses are presented here for a multivariate time series,
they can be applied to a univariate time series by removing channel losses LCS

Channel and LCT
Channel.

3.4 OVERALL LOSS SETUP

Self-Supervised Loss. In self-supervised (SSL) training, we focus on optimizing the consistency
and contrastive terms in Eq. (3). Here, λ1 and λ2 are hyperparameters. However, to avoid extensive
manual tuning, they are replaced by learnable parameters that dynamically adjust the weight of each
loss term, reflecting a strategy based on homoscedastic uncertainty for multi-task learning (Kendall
et al., 2018; Dong et al., 2024).

Supervised Loss. For supervised training, PPT works as an extra loss term along with the task-
specific supervised loss LT, the cross-entropy loss in the case of classification. For instance, Fig. 4
compares the t-SNE embeddings of patches with and without PPT in a supervised setup. The final
objective function is Eq. (3), with the hyperparameter λ replaced by learnable parameters as in SSL.

LSelf-Supervised = λ1LCS
sum + λ2LCT

sum, and LSupervised = LT + λ1LCS
sum + λ2LCT

sum (3)

4 ACF-COS METRIC: MEASURING THE IMPORTANCE OF ORDERNESS

We propose ACF-COS (Autocorrelation Function with Cosine Similarity) to measure the importance
of orderness in time series data. This score allows us to pre-assess the suitability of PPT as a
pretext task for a given dataset. For a time series x = [x1, . . . , xT ]

⊤ given the mean x, the j-th
element aj of the autocorrelation vector a = [a0, . . . , aT−1]

⊤ is defined as in Eq. (4), with j as
lag. We calculate two distinct autocorrelation vectors, a and a′, from the original time series x and
its patch-permuted counterpart x′, respectively. While the calculation of a from the original time
series x is straightforward, a′ is obtained from the patch-permuted series x′ by (1) reshaping x into a
sequence of patches, (2) randomly shuffling those patches, and (3) reassembling them into the final
series x′. The ACF-COS score is then computed by taking the cosine similarity between a and a′ as:

ACF-COS(a,a′) = 1− a · a′/∥a∥∥a′∥ , aj =
∑T−j

t=1 (xt − x)(xt+j − x)/
∑T

t=1(xt − x)2. (4)

The interpretation of ACF-COS is intuitive and aligned with the definition of patch order (Defini-
tion 3.1). A low ACF-COS score indicates that the two autocorrelation vectors are similar, meaning
that permuting the sequences does not significantly alter their autocorrelation, suggesting a weak
structural order dependency. In contrast, a high ACF-COS shows that permutation effectively disrupts
autocorrelation, indicating a strong dependence on the sequence order. Consequently, white noise has
an ACF-COS score close to zero, which means that there is no structural order dependency, whereas
the step function shows ACF-COS close to one, which implies a significant dependency. To quantify
the order characteristics of the data, we treat each channel as an independent sequence and average
the ACF-COS scores of all data samples to obtain the final ACF-COS score (Tab. 4). To mitigate the
impact of patch size variations, we calculate the ACF-COS scores over different patch sizes.
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Table 1: Self-Supervised Linear Probing Results. We compare PPT (ours) to state-of-the-art self-supervised
learning methods. The asterisk (*) denotes patch-based methods. The baselines PatchTST∗ and PITS∗ use
self-supervised training methods from their original work. The best scores are highlighted with red bold. The
full experimental result, including the MS-HAR task, is given in Appendix J.

Dataset Models Accuracy F1 score AUROC AUPRC Precision Recall

EMO

Mixing-up 74.48±2.93 49.30±2.53 71.80±7.11 52.22±2.71 51.66±1.81 49.36±4.01
SimCLR 74.42±4.38 44.64±6.34 72.71±7.29 48.34±6.76 47.83±7.07 47.19±8.02
TS2Vec 78.08±2.93 49.07±3.00 78.00±3.58 50.95±3.83 48.97±3.52 49.87±2.88
TF-C 77.63±6.18 53.30±6.90 82.22±5.31 54.84±7.18 56.14±8.79 56.00±9.07
TS-TCC 75.61±3.49 48.47±3.59 73.82±7.40 53.98±3.77 54.75±0.67 49.02±4.05
SimMTM 81.75±3.33 53.08±3.68 81.35±7.69 58.70±4.03 57.75±4.84 51.62±4.17
TimeMAE∗ 73.97±2.28 42.44±2.07 70.11±4.43 43.25±2.14 42.81±2.37 42.43±2.09
TS-GAC∗ 73.75±1.66 46.42±1.29 75.92±2.30 49.29±0.62 46.04±0.87 48.86±1.69
UniTS∗ 78.37±0.13 29.51±0.51 65.95±2.95 44.84±2.39 29.47±7.52 33.44±0.24

PatchTST∗ 78.70±0.73 45.81±2.07 82.60±1.39 55.23±2.21 59.40±5.32 46.35±1.31
PatchTST (+PPT)∗ 81.92±0.58 54.19±2.33 84.74±1.55 62.51±3.09 62.96±2.49 53.41±2.42

PITS∗ 69.63±2.04 43.73±1.06 68.84±2.39 43.90±1.05 44.07±0.82 45.68±1.31
PITS (+PPT)∗ 75.55±2.84 45.75±2.43 68.63±3.30 45.59±2.28 45.05±2.65 47.53±2.06

PTB

Mixing-up 82.35±0.93 88.82±0.57 89.40±2.22 95.32±1.05 81.76±0.72 97.23±0.61
SimCLR 80.41±1.14 87.89±0.62 86.03±3.24 93.84±1.71 79.30±0.99 98.57±0.21
TS2Vec 84.06±2.81 89.75±1.68 91.56±3.28 96.17±2.02 83.82±2.56 96.62±0.95
TF-C 79.58±1.22 87.25±0.85 86.55±2.64 93.95±1.50 79.35±0.47 96.91±1.78
TS-TCC 79.58±1.18 86.98±0.78 79.18±1.88 88.05±1.40 80.51±0.90 94.59±1.47
SimMTM 80.75±0.29 88.08±0.17 88.66±1.96 94.48±1.23 79.58±0.31 98.61±0.41
TimeMAE∗ 78.65±1.43 86.78±0.86 84.72±1.30 92.97±0.83 78.41±1.03 97.15±1.10
TS-GAC∗ 83.26±1.97 89.51±1.09 91.18±2.36 95.37±0.96 81.76±1.95 98.90±0.23
UniTS∗ 84.20±1.01 89.57±0.60 88.98±1.35 94.81±0.84 85.51±1.08 94.04±0.23

PatchTST∗ 79.89±1.87 87.46±1.07 81.36±4.91 88.94±3.50 79.50±1.54 97.21±1.07
PatchTST (+PPT)∗ 78.50±1.76 88.67±0.95 76.04±6.47 86.79±5.56 78.45±1.62 96.83±0.63

PITS∗ 84.61±1.21 89.96±0.61 86.53±2.48 92.75±1.58 85.03±2.00 95.55±1.32
PITS (+PPT)∗ 86.48±0.40 91.24±0.26 91.83±1.36 96.26±0.85 85.67±0.61 97.58±0.86

GL

Mixing-up 81.76±2.94 79.25±3.85 96.46±0.50 82.43±2.80 79.99±3.83 79.18±3.93
SimCLR 87.10±0.44 88.72±0.79 98.25±0.12 92.69±1.04 89.42±0.84 88.20±0.84
TS2Vec 87.79±0.66 89.92±0.68 98.35±0.12 93.93±0.10 90.12±0.97 89.86±0.42
TF-C 88.23±0.73 89.09±1.11 98.66±0.13 92.90±1.00 89.30±1.12 89.00±1.02
TS-TCC 87.98±1.28 88.53±1.32 98.60±0.22 91.86±1.03 88.82±1.45 88.36±1.27
SimMTM 82.05±0.33 83.96±0.50 97.08±0.06 88.06±0.49 84.63±0.64 83.63±0.47
TimeMAE∗ 83.44±1.09 85.26±1.74 97.81±0.11 89.84±1.09 86.10±2.06 84.77±1.58
TS-GAC∗ 92.32±0.85 92.79±0.84 99.04±0.38 96.23±0.64 92.67±0.65 93.23±0.92
UniTS∗ 84.45±0.98 83.93±1.21 98.27±0.18 90.03±0.93 84.77±1.14 83.41±1.25

PatchTST∗ 88.43±0.44 89.87±0.38 98.79±0.11 94.34±0.40 89.73±0.45 90.15±0.43
PatchTST (+PPT)∗ 92.33±0.48 93.67±0.45 99.28±0.10 96.83±0.44 93.54±0.37 93.90±0.56

PITS∗ 87.23±1.04 87.18±0.86 98.41±0.16 91.65±0.77 88.09±0.86 86.62±0.88
PITS (+PPT)∗ 92.07±0.78 92.77±0.63 99.28±0.09 96.87±0.46 92.99±0.70 92.83±0.65

5 EXPERIMENTS

This section evaluates PPT as a pretext task in both self-supervised and supervised learning, demon-
strating that enhancing patch order awareness improves model performance. In self-supervised
scenarios, we employ linear probing, semi-supervised training, and full fine-tuning (Appendix K).
In linear probing, the encoder model f is trained, followed by applying logistic regression to the
frozen representation. In semi-supervised training, self-supervised training is performed with model
f , followed by fine-tuning with a fraction of the dataset and a reduced learning rate (Dong et al.,
2024). In the supervised context, we perform an ablation study on the consistency and contrastive
learning methods, revealing their individual and combined effects on model performance.
Implementation of PPT. We apply PPT to two representative patch-based models: Transformer-
based PatchTST (Nie et al., 2022) and linear-based PITS (Lee et al., 2023). We set permutation
frequency γ = 1, 2, 3 for weak shuffle and γ = 10 or 40 for strong shuffle. As each dataset differs
in length, we adjust the patch size s so that each sequence is divided into 10 to 40 non-overlapping
patches. The detailed implementations and configurations are in Appendix D and Appendix F.
Self-Supervised Baselines. We make an extensive comparison to leading self-supervised base-
lines such as TS2Vec (Yue et al., 2022), SimCLR (Tang et al., 2020), TF-C (Zhang et al., 2022),
TS-TCC (Eldele et al., 2021), and SimMTM (Dong et al., 2024), as well as patch-based works
like TimeMAE (Cheng et al., 2023), TS-GAC (Wang et al., 2023), UniTS (Gao et al., 2024),
PatchTST (Nie et al., 2022), and PITS (Lee et al., 2023). For PatchTST, we use the mask-and-
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Table 2: Semi-Supervised Results. We perform semi-supervised training on the GL task. Models are pre-trained
on unlabeled data using self-supervised learning, then fine-tuned on 10% and 1% of labeled data. Best scores are
in red bold. Full fine-tuning and randomly initialized backbone results are in Appendix K.

Fraction Models Accuracy F1 score AUROC AUPRC Precision Recall

10%

Mixing-up 92.85±0.69 90.44±0.91 98.74±0.26 94.42±1.14 90.59±0.65 90.69±0.90
SimCLR 84.55±0.78 83.60±1.21 98.47±0.20 91.74±0.83 86.78±0.62 82.56±1.16
TS2Vec 88.12±1.58 85.51±1.13 96.46±0.78 89.37±1.87 85.86±0.69 85.97±1.71
TF-C 83.35±0.48 82.73±0.48 97.96±0.09 87.87±0.36 83.95±0.33 82.10±0.59
TS-TCC 93.69±1.05 92.11±0.84 99.41±0.19 97.36±0.76 93.69±0.38 91.83±0.83
TimeMAE 90.06±2.95 91.10±2.54 98.77±0.43 94.65±2.04 91.50±2.46 90.83±2.63
SimMTM 91.94±0.58 91.35±0.53 98.95±0.35 95.65±0.62 91.41±0.44 91.40±0.65

PatchTST 91.61±0.82 92.33±0.89 99.35±0.11 97.10±0.47 92.88±0.80 92.47±0.75
PatchTST (+PPT) 93.26±1.57 93.97±1.40 99.50±0.09 97.79±0.47 94.74±1.23 94.27±1.34

PITS 85.11±3.78 85.67±2.21 98.18±0.43 89.51±2.63 84.61±2.35 84.60±2.65
PITS (+PPT) 92.47±1.06 93.32±0.60 99.48±0.12 97.28±0.78 93.17±0.69 93.07±0.46

1%

Mixup 84.82±2.17 82.08±2.85 97.27±0.53 87.48±1.81 83.76±2.52 81.53±3.34
SimCLR 62.61±1.89 47.28±4.56 90.88±2.03 66.05±4.28 63.15±9.38 51.63±2.92
TS2Vec 77.41±1.33 75.17±2.85 96.17±0.45 82.84±1.67 79.04±1.10 74.64±3.01
TF-C 65.34±2.50 52.88±4.98 91.19±1.59 71.15±3.38 71.92±4.11 52.95±3.65
TS-TCC 85.77±1.08 83.02±1.16 97.82±0.25 89.85±1.19 86.31±2.00 83.04±1.46
TimeMAE 76.09±2.01 74.63±3.30 96.24±0.53 80.35±3.35 77.58±3.69 73.57±3.61
SimMTM 78.44±2.20 79.48±1.95 94.93±0.87 82.75±1.34 80.66±2.40 79.31±1.85

PatchTST 80.55±2.29 83.26±2.11 96.77±1.04 86.44±2.83 81.50±3.58 81.52±3.58
PatchTST (+PPT) 84.80±1.68 86.92±1.48 98.08±0.38 90.64±1.90 86.88±1.65 86.75±1.57

PITS 72.41±2.05 72.81±4.76 95.40±0.60 75.92±3.23 69.83±3.77 70.45±4.71
PITS (+PPT) 81.04±1.86 83.71±0.95 97.68±0.30 87.26±1.62 81.25±1.45 82.05±1.30

reconstruct (Mask) pretext task, and for PITS, we use both Mask and complementary contrastive
learning (CL) pretext tasks from their original works to differentiate from the use of PPT as pretext
task. We use metrics like Accuracy, F1, AUROC, AUPRC, Precision, and Recall, consistent with
previous works (Wang et al., 2024b).
Datasets. (1) EMOPain (Egede et al., 2020), from the UEA repository (Bagnall et al., 2018),
is a pain classification task using a surface electromyographic sensor (sEMG), with 30 channels
(2) PTB (Bousseljot et al., 1995) is cardiogram signals (ECG), incorporating 15 channels from 198
users. (3) Gilon (GL) is a large-scale smart insole-based human activity recognition (HAR) task (Kim
et al., 2023) with 47,647 instances with 14 channels collected from 72 users. (4) Sleep EEG (Kemp
et al., 2000) is a univariate brainwave (EEG) with 371,055 instances. (5) MS-HAR (Morris et al.,
2014) has six sensors in an armband with 14,201 instances collected from 93 users. The full details
of the datasets are in Appendix E. Here, five random seeds are used to report the results.

5.1 SELF-SUPERVISED LINEAR PROBING

Setup. In the linear probing setup, PPT is trained self-supervised, optimizing Eq. (3). Strong
performance in linear probing indicates a robust learned representation. Following self-supervised
training, logistic regression is applied to evaluate the representation (Yue et al., 2022). We used official
baseline model implementations, making necessary adjustments (e.g., adapting for multivariate series
when only univariate support was available). The hyperparameters for the baselines are in Appendix H.

Results. Partial results of three tasks (EMO, PTB, and GL) are in Tab. 1, with full results in Ap-
pendix J. Here, we observe that PPT is an effective self-supervised pretext task, providing improved
learning representation compared to leading methods. Specifically, PatchTST with PPT is the best-
performing model in EMO and GL, while PITS with PPT performs best in PTB. Furthermore, PPT
consistently outperforms or matches the original pretext methods in both PatchTST and PITS across
all tasks. In particular, PITS with PPT surpasses the original method by five percentage points in
AUROC on the PTB task. This performance gain in PTB is supported by a high ACF-COS score of
0.318, indicating that order is essential in the cardiogram data. These results underscore that learning
order information provides strong guiding signals, allowing the model to learn interdependencies
between patches from both time and channel dimensions, leading to enhanced model performance.
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Table 3: Ablation Study for Supervised Training. We perform an ablation on the LCS and LCT loss components
on GL, Sleep EEG, and PTB ECG, using the supervised cross-entropy loss as the baseline for all experiments.
The performance metrics are the accuracy on the original un-permuted test set (Original), accuracy on the
permuted test set (Permuted), and their Difference (Diff), with higher Original and Diff, and lower Permuted
values indicating better performance. A ‘✓’ indicates inclusion, and a ‘✗’ indicates exclusion of the module.
The best results are highlighted in red bold.

Dataset Name GL HAR SleepEEG PTB ECG

Models LCS LCT Original ↑ Permuted ↓ Diff ↑ Original ↑ Permuted ↓ Diff ↑ Original ↑ Permuted ↓ Diff ↑

PatchTST
(2022)

✗ ✗ 91.6±3.35 88.8±6.01 2.76 61.6±1.57 58.5±1.51 3.03 78.6±2.16 76.3±2.79 2.28
✗ ✓ 96.6±1.00 89.2±2.76 7.33 61.8±1.18 58.0±1.03 3.79 78.8±2.79 73.7±1.38 5.17
✓ ✗ 97.2±0.40 89.0±4.13 8.17 61.5±0.61 57.9±0.94 3.56 81.8±2.48 73.5±2.29 8.33
✓ ✓ 97.4±0.46 88.7±2.59 8.65 63.5±0.79 58.7±0.59 4.69 81.4±2.51 72.7±0.91 8.71

PITS
(2023)

✗ ✗ 91.6±3.32 85.3±3.34 6.30 55.4±1.87 55.1±1.85 0.32 82.0±6.67 71.6±0.66 10.4
✗ ✓ 92.8±4.63 81.0±8.30 11.8 56.3±2.34 55.6±2.55 0.65 85.1±2.98 68.9±6.02 16.2
✓ ✗ 94.0±0.68 87.6±5.15 6.40 57.4±1.22 56.8±1.10 0.66 84.0±5.61 71.3±0.69 12.7
✓ ✓ 96.3±1.19 73.0±5.29 23.3 59.3±0.87 57.3±1.03 1.95 89.5±1.96 65.0±6.46 24.6

5.2 SEMI-SUPERVISED TRAINING

Setup. We evaluated the downstream performance of a self-supervised model through semi-
supervised training. This involves pre-training the encoder with unlabeled samples, then adding a
fully connected layer, and fine-tuning all parameters using cross-entropy loss (Wang et al., 2024b)
with limited labeled training data: 10%, and 1%. We also provide the full fine-tuning results (using
100%) in Appendix K, where we also compare our work with a randomly initialized backbone.
Results. Table 2 is the results of semi-supervised training on the GL task. PPT demonstrates
superior performance, ranking as the top or second-best model in 10 out of 12 metrics. Given
GL’s imbalanced nature, metrics beyond accuracy provide more meaningful insights. In both 10%
and 1% labeled data scenarios, utilizing PPT as the pretext task leads to substantial performance
improvements for PatchTST and PITS compared to their original pretext tasks (mask reconstruction
and contrastive learning, respectively). Notably, in the 1% labeled data setup, F1 scores improve by
up to 3 percentage points for PatchTST and 11 percentage points for PITS. We hypothesize that PPT
pretraining initializes the model in a more order-aware embedding space, enabling it to benefit from
self-supervised pretraining even with limited supervised training data.

5.3 SUPERVISED TRAINING

Setup. We also highlight that PPT can improve supervised training performance as an additional
pretext task, with the results in Tab. 3. Here, we selectively add the patch order consistency and
contrastive loss terms in Eq. (3) to the cross-entropy loss as the base loss. We evaluated the model
using Original, Permuted, and Diff metrics. The Original (↑) metric measures classification accuracy
on the standard test set, aiming for higher values. The Permuted (↓) metric assesses accuracy on
a previously unseen, strongly permuted (γ = 40) test set, with lower scores indicating that the
model considers order in its decision-making. This method of assessing order awareness through
performance degradation has been explored in the time series (Zeng et al., 2023) and video (Yun et al.,
2022) domains. Finally, the Diff (↑) represents the difference between the Original and Permuted
metric, with more differences signifying more effective learning of order dependencies.

Results. The results in Tab. 3 show that incorporating PPT improves model performance (Original)
across all six cases, with gains of up to seven percentage points in the PTB task for PITS. Additionally,
performance on the Permuted sets decreases in all instances, indicating enhanced patch-order aware-
ness provided by PPT. Notably, the performance drop occurs even when the proposed consistency
and contrastive loss terms do not directly penalize logits for permuted patches, unlike methods that
optimize to increase uncertainty in out-of-distribution sets (Lee et al., 2017; Yun et al., 2022). The
Diff metric also shows increased scores with the addition of each loss, suggesting a synergistic effect
when both losses are used. Furthermore, performance drop on the Permuted set is more pronounced
in the linear model compared to the Transformer-based model (PatchTST), aligned with findings of
existing work (Zeng et al., 2023).

5.4 ACF-COS METRIC FOR TIME SERIES DATASETS

We hypothesize that PPT performs optimally with time series tasks that exhibit ordered information.
To test it, we conducted a supervised experiment with PatchTST on tasks from the UEA repository,
comparing the performance enhancement of PatchTST+PPT against the baseline of PatchTST that
only applies cross-entropy (CE) minimization. As time series models are known to be sensitive to hy-
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UEA Datasets ACF-CoS ↑ Acc. Win% (Wins) ↑ Max CE / Max PPT (Acc) ↑

Step Function (Order ↑) 0.902 - -

Cricket 0.418 75.9% (123/162) 69.4 / 72.7
EigenWorms 0.289 61.1% (99/162) 47.1 / 54.5
NATOPS 0.216 75.3% (122/162) 70.0 / 71.7
LargeKitchen. 0.190 54.3% (88/162) 64.1 / 65.0
GestureMidAirD1 0.186 48.1% (78/162) 26.2 / 31.3
GestureMidAirD3 0.060 37.7% (61/162) 18.2 / 16.9

White Noise (Order ↓) 0.001 - -

Table 4: The ACF-COS scores for 24 tasks from the UEA Repository:
Results for six subsets are shown here. "Acc. Win(%)" is the ratio
of the count at which PPT enhances model performance compared to
cross-entropy (CE) at various hyperparameter setups. "Max PPT/ Max
CE (Acc)." denotes the best accuracy for PPT and CE in all hyperparam-
eters (best in bold). Here, an increase in ACF-COS leads to an improved
likelihood of PPT being beneficial. Full results in Appendix L.

Figure 5: The scatter plot for
the ACF-COS score against "Acc.
Win". Ordinary Least Square (OLS)
and Robust Linear Method (RLM)
are fitted to show their correlation

.

perparameters (Jin et al., 2024), we systematically conduct experiments with various hyperparameter
setups; evaluations are carried out with 162 different hyperparameter configurations, each with three
random seeds. To gauge the effectiveness of PPT, we measure the count in which PPT significantly
outperforms CE (cross-entropy), achieving a performance gain exceeding ≥1% (expressed as a
proportion, not percentage points) of accuracy. The summarized results of 978 experiments (162
configurations × 3 seeds × 2 for both CE and PPT) for each task are in Tab. 4 and Fig. 5, along with
the ACF-COS scores averaged with various patch lengths. The relationship between ACF-COS
scores and performance gains is explored with the Ordinary Least Squares (OLS) (Montgomery
et al., 2021) and Robust Linear Model (RLM) using Huber regression (Huber, 1973), resulting in
slope coefficients of +0.47 for OLS and +0.37 for RLM, both statistically significant. These findings
show a positive correlation between the ACF-COS score and PPT’s capacity to provide additional
supervisory signals, which enhances model performance. We discuss our full results in Appendix L.

5.5 ADDITIONAL EXPERIMENTS

Patch Selection Strategy. We compare various patch permutation strategies under both weak and
strong permutations in Appendix C, showing that the random permutation is the most effective.
Hyperparameter Sensitivity Analysis. We evaluate the performance of PPT with varying patch
sizes, s, and permutation frequencies, γ in both self-supervised and supervised training in Appendix G.
PPT with Time Series Foundation Models. We applied PPT to GPT4TS (Zhou et al., 2024), a
time series foundation model which fine tunes GPT2 for time series (Appendix M). We show that
under our patched setup, PPT can enhance performance for time series-based foundation models.

6 LIMITATIONS AND DISCUSSIONS

We recognize and discuss several limitations of PPT. First, as detailed in Sec. 5.4, PPT does
not enhance performance for tasks where the classification of time series is independent of order
information. However, ACF-COS can help identify such tasks. Second, the credibility of ACF-COS
is influenced by the size of the patch s. Although we mitigated it by averaging the ACF-COS scores
in different patch sizes, a more robust metric is needed. Lastly, attempts to apply PPT to time series
forecasting tasks tend to yield minimal gains, likely because permuting patches disrupt trend patterns,
which are key features in forecasting (Liu et al., 2023; Wu et al., 2021). Designing a universal pretext
task for time series is our next research topic.

7 CONCLUSION

In this paper, we introduce PPT, a patch order-aware pretext task designed for time series classification
models that utilize patch-based representations. We first introduce several strategies to improve patch
order awareness in the model by proposing channel-wise patch permutations with varying permutation
strength, assisted with consistency and contrastive loss. We show that each loss component plays
an important role in enhancing patch order awareness, leading to enhanced model performance. To
extend beyond this gain, we develop the novel ACF-COS metric to identify tasks where PPT can be
beneficial, quantifying the importance of order information in a time series. The contribution of this
work is a timely response to the growing prevalence of patch-based time series work, addressing the
critical challenge of integrating order awareness for improved classification models.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea(NRF) grant funded by
the Korea government(MSIT)(RS-2023-00277383) and Institute of Information & communications
Technology Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No.RS2020-
II201336, Artificial Intelligence Graduate School Program(UNIST)). The authors are grateful to
Seok-Ju Hahn and Yoontae Hwang for their helpful discussions during the initial ideation phase.
Special thanks go to Hyunwoo Seo, Yeonjoo Kim, Gyeongho Kim, Isu Jeong, Kyu Hwan Lee,
Ahin Lee, and the EAI Lab members for their feedback on the manuscript. The authors thank the
anonymous reviewers for their constructive feedback during the discussion phase.

REFERENCES

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. arXiv
preprint arXiv:1811.00075, 2018. 8, 19

Christoph Bandt and Bernd Pompe. Permutation entropy: a natural complexity measure for time
series. Physical review letters, 88(17):174102, 2002. 3, 30

Ralf Bousseljot, Dieter Kreiseler, and Allard Schnabel. Nutzung der ekg-signaldatenbank cardiodat
der ptb über das internet. 1995. 6, 8, 19

Ruichu Cai, Jiawei Chen, Zijian Li, Wei Chen, Keli Zhang, Junjian Ye, Zhuozhang Li, Xiaoyan Yang,
and Zhenjie Zhang. Time series domain adaptation via sparse associative structure alignment. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 6859–6867, 2021.
16

Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu. Tempo:
Prompt-based generative pre-trained transformer for time series forecasting. arXiv preprint
arXiv:2310.04948, 2023. 2

Peng Chen, Yingying Zhang, Yunyao Cheng, Yang Shu, Yihang Wang, Qingsong Wen, Bin Yang,
and Chenjuan Guo. Multi-scale transformers with adaptive pathways for time series forecasting.
In The Twelfth International Conference on Learning Representations, 2023. 2, 3

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning, pp.
1597–1607. PMLR, 2020. 25

Mingyue Cheng, Qi Liu, Zhiding Liu, Hao Zhang, Rujiao Zhang, and Enhong Chen. Timemae:
Self-supervised representations of time series with decoupled masked autoencoders. arXiv preprint
arXiv:2303.00320, 2023. 3, 7, 26

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive.
IEEE/CAA Journal of Automatica Sinica, 6(6):1293–1305, 2019. 2

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. 16

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation learning by
context prediction. In Proceedings of the IEEE international conference on computer vision, pp.
1422–1430, 2015. 16

Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang, and Mingsheng Long. Simmtm:
A simple pre-training framework for masked time-series modeling. Advances in Neural Information
Processing Systems, 36, 2024. 6, 7, 16, 26

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 16

11



Published as a conference paper at ICLR 2025

Joy O Egede, Siyang Song, Temitayo A Olugbade, Chongyang Wang, C De C Amanda, Hongying
Meng, Min Aung, Nicholas D Lane, Michel Valstar, and Nadia Bianchi-Berthouze. Emopain
challenge 2020: Multimodal pain evaluation from facial and bodily expressions. In 2020 15th IEEE
International Conference on Automatic Face and Gesture Recognition (FG 2020), pp. 849–856.
IEEE, 2020. 8, 19

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, and
Cuntai Guan. Time-series representation learning via temporal and contextual contrasting. arXiv
preprint arXiv:2106.14112, 2021. 3, 7, 16, 25

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee-Keong Kwoh, Xiaoli Li, and
Cuntai Guan. Self-supervised contrastive representation learning for semi-supervised time-series
classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023. 3, 16

Shanghua Gao, Teddy Koker, Owen Queen, Thomas Hartvigsen, Theodoros Tsiligkaridis, and
Marinka Zitnik. Units: Building a unified time series model. arXiv preprint arXiv:2403.00131,
2024. 3, 7

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728, 2018. 16

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022. 3

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997. 21

Peter J Huber. Robust regression: asymptotics, conjectures and monte carlo. The annals of statistics,
pp. 799–821, 1973. 10

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
uan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-llm: Time series forecasting by reprogramming
large language models. In The Twelfth International Conference on Learning Representations,
2023. 3

Ming Jin, Yifan Zhang, Wei Chen, Kexin Zhang, Yuxuan Liang, Bin Yang, Jindong Wang, Shirui
Pan, and Qingsong Wen. Position paper: What can large language models tell us about time series
analysis, 2024. 10

Longlong Jing and Yingli Tian. Self-supervised visual feature learning with deep neural networks: A
survey. IEEE transactions on pattern analysis and machine intelligence, 43(11):4037–4058, 2020.
2

Bob Kemp, Aeilko H Zwinderman, Bert Tuk, Hilbert AC Kamphuisen, and Josefien JL Oberye.
Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the eeg.
IEEE Transactions on Biomedical Engineering, 47(9):1185–1194, 2000. 8, 19

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 7482–7491, 2018. 6

Jaeho Kim, Hyewon Kang, Jaewan Yang, Haneul Jung, Seulki Lee, and Junghye Lee. Multi-task deep
learning for human activity, speed, and body weight estimation using commercial smart insoles.
IEEE Internet of Things Journal, 2023. 1, 2, 6, 8, 19

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2021. 25

Dani Kiyasseh, Tingting Zhu, and David A Clifton. Clocs: Contrastive learning of cardiac signals
across space, time, and patients. In International Conference on Machine Learning, pp. 5606–5615.
PMLR, 2021. 16

12



Published as a conference paper at ICLR 2025

Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh, Jonathan
Reynolds, Alexander Melnikov, Natalia Kliushkina, Carlos Araya, Siqi Yan, et al. Captum: A uni-
fied and generic model interpretability library for pytorch. arxiv. arXiv preprint arXiv:2009.07896,
2020. 2

Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-calibrated classifiers for
detecting out-of-distribution samples. arXiv preprint arXiv:1711.09325, 2017. 9, 23

Seunghan Lee, Taeyoung Park, and Kibok Lee. Learning to embed time series patches independently.
In The Twelfth International Conference on Learning Representations, 2023. 2, 3, 7, 9, 21, 25

Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Transactions on Information
theory, 37(1):145–151, 1991. 3

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023. 10

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781, 2013. 16

Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining. Introduction to linear regression
analysis. John Wiley & Sons, 2021. 10

Dan Morris, T Scott Saponas, Andrew Guillory, and Ilya Kelner. Recofit: using a wearable sensor
to find, recognize, and count repetitive exercises. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 3225–3234, 2014. 8, 19

Muhammad Muzammal Naseer, Kanchana Ranasinghe, Salman H Khan, Munawar Hayat, Fahad
Shahbaz Khan, and Ming-Hsuan Yang. Intriguing properties of vision transformers. Advances in
Neural Information Processing Systems, 34:23296–23308, 2021. 16

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. In The Eleventh International Conference on
Learning Representations, 2022. 2, 3, 6, 7, 9, 21, 25

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In European conference on computer vision, pp. 69–84. Springer, 2016. 16

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018. 5

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. 32

Yale Song, David Demirdjian, and Randall Davis. Tracking body and hands for gesture recognition:
Natops aircraft handling signals database. In 2011 IEEE International Conference on Automatic
Face & Gesture Recognition (FG), pp. 500–506. IEEE, 2011. 1

Chi Ian Tang, Ignacio Perez-Pozuelo, Dimitris Spathis, and Cecilia Mascolo. Exploring contrastive
learning in human activity recognition for healthcare. arXiv preprint arXiv:2011.11542, 2020. 7,
25

Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised representation learning for
time series with temporal neighborhood coding. arXiv preprint arXiv:2106.00750, 2021. 16

Terry T Um, Franz MJ Pfister, Daniel Pichler, Satoshi Endo, Muriel Lang, Sandra Hirche, Urban
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A FEATURE ABLATION

Figure 6: The figure presents ten randomly selected attribution results from the ShapesAll task under supervised
training conditions. We compare two approaches: (1) the baseline method that uses only cross-entropy (CE) loss,
and (2) our proposed method that combined PPT with cross-entropy loss. We applied the FeatureAblation method
to assess the importance of patches in model performance. The ShapesAll task was chosen for visualization
due to its high ACF-COS score, indicating that temporal order is important in this dataset. Higher ACF-COS
scores suggest that order information is crucial for the task. We observe that incorporating PPT leads to better
attribution scores in meaningful time segments of the data compared to using CE alone. For instance, in Sample 4,
we observe that the attributions are evenly distributed and the scores are high at the inflection points for PPT,
while the baseline only focuses on a single time segment.

1We used the Captum (https://captum.ai/) library for FeatureAblation.
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B EXTENDED RELATED WORKS

Order-Aware Self-Supervised Learning. Taking advantage of inherent order information within
various data modalities has proven to be an effective pretext task, enhancing model performance
across domains. In the vision domain, structured data like pixels or patches has led to the development
of order-aware tasks, such as relative position prediction Doersch et al. (2015), jigsaw puzzle Noroozi
& Favaro (2016), and rotation Gidaris et al. (2018) for convolutional networks. More recently,
Vision Transformer (ViT) models Dosovitskiy et al. (2020), which segment images into a grid of
patches, have shown to be effective in modeling long-range dependencies but fail to incorporate order
dependency between patches Naseer et al. (2021). As such, for ViTs, predicting the absolute positions
of image patches by masking Zhai et al. (2022) and reconstructing positions of patches Wang et al.
(2024a) have been proposed. Similarly, in video analysis, leveraging the temporal sequence of
frames is crucial, as it encourages models to grasp frame dynamics over static features Yun et al.
(2022). Similarly, in natural language processing, the core assumption behind masked language
modeling is that the sequential order of words in a sentence contains critical cues for language
understanding Devlin et al. (2018); Mikolov et al. (2013). Thus, utilizing structural order is key to
designing meaningful pretext tasks across various data modalities.

Structure-Aware Learning in Time Series. In time series analysis, several methods have their
design principle based on the structural relationship within time sequences. SASA Cai et al. (2021),
in time series domain adaptation, focuses on extracting domain invariant representations by analyzing
the causal structure among time and channel dimensions. In self-supervised learning for time
series, TNC Tonekaboni et al. (2021) addresses the temporal consistency of clinical time series by
defining a neighborhood function to extract positive samples for contrastive learning. Similarly,
CLOCS Kiyasseh et al. (2021) deals with the temporal and spatial (channel) invariance of ECG
applications based on the assumption that the information from the same temporal events is conserved
in different time sequences and channels. TS2Vec Yue et al. (2022) is an universal time series
representation method emphasizing contextual consistency. TF-C Zhang et al. (2022) utilizes both the
time and frequency domain and proposes time-frequency consistency architectures. SimMTM Dong
et al. (2024) constructs multiple masked series, where they consider these series as close neighbors
of the original time series. TS-TCC Eldele et al. (2021) focuses on transformation consistency,
generating two views of the time series data using weak (jittering and scaling) and strong (permuting
and jittering) augmentations. Then, an autoregressive model is used to construct a context vector for
temporal contrasting between the two samples. This concept was expanded into semi-supervised
learning (i.e. CA-TCC Eldele et al. (2023)) and graph-structured learning (i.e. TS-GAC Wang et al.
(2023)). Inspired by TS-TCC, PPT introduces a channel-wise patch permutation approach with
varying strengths determined by the permutation frequency, termed ‘weak’ and ‘strong’ permutation.
However, while the main objective of TS-TCC is to bring the weak and strong representations closer,
our objective is the opposite, which is to widen the distance between weak and strong, while placing
the weak closer to the non-permuted ‘original’ set (Sec. 3.2). Moreover, unlike TS-TCC’s random
segment permutations Um et al. (2017) made on the fly, PPT gives more control over the strength of
permutation, which enables a time and feature-wise consistency and contrasting mechanism (Sec. 3.3).
In addition, PPT is efficient due to its use of a permutation bank (i.e. only the permuted indices
are stored) and effective because it continuously exposes the model to a diverse array of permuted
samples. As such, while PPT utilizes a similar augmentation strategy from TS-TCC, it significantly
diverges in its focus for contrasting, making it a novel and effective patch-based pretext task for time
series.
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C COMPARISON BETWEEN PATCH SELECTION STRATEGY

Figure 7: The figure illustrates the patch selection strategy utilized in the channel-wise patch permutation
strategy, where two patches are selected from the same channel, and their positions are swapped. The selection
method varies according to the strategy adopted, which is quantified by the distance d between the patch pairs.
(A) Vicinity Pairs (d = 1): The adjacent patches with distance d = 1 are swapped. (B) Distant Pairs (d ≥ 3):
Patches separated by at least three patches are swapped. (C) Random Pairs (d ≥ 1): This strategy includes a
combination of both vicinity and distant pairs.

Figure 8: We present visualizations of the results obtained from permuting a step function using various
permutation strategies: Vicinity, Farthest, and Random. The permutation frequency hyperparameter, γ, was set
to γ = 10 for the first row and γ = 40 for the second row.

Gilon HAR PTB

Strong Weak PatchTST ↑ PITS ↑ PatchTST ↑ PITS ↑ Average Rank ↓

Vicinity Vicinity 97.2±0.55 96.0±0.76 80.2±2.89 86.2±2.19 5.25
Vicinity Distant 97.5±0.51 96.1±1.16 79.0±3.29 85.8±1.40 5.25
Vicinity Random 97.3±0.57 96.4±0.82 78.4±1.86 86.9±1.57 4.75

Distant Vicinity 96.7±0.84 95.7±1.01 83.1±4.79 86.1±2.00 6.00
Distant Distant 96.7±0.69 96.6±0.52 78.4±3.45 88.6±0.93 5.00
Distant Random 96.5±1.72 96.7±0.41 80.6±3.27 84.7±4.22 5.75

Random Vicinity 96.9±1.07 96.0±0.71 79.6±3.83 87.8±1.64 5.50
Random Distant 97.0±0.90 96.8±0.61 78.2±3.95 86.3±2.52 5.00
Random Random 97.4±0.46 96.3±1.19 81.4±2.51 89.5±1.96 2.50

Table 5: The classification accuracy from a supervised experiment with varying permutation strategies are
given. Here, the strong permutations were implemented using γ = 40, while weak permutations used γ = 1.
The highest performing value is in red bold, and the second highest in black bold. We calculated the rank for
each dataset and model and averaged those ranks to obtain Average Rank, where a lower score indicates better
performance. Overall, the Random-Random combination yielded the best results.
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D CHANNEL-WISE PATCH PERMUTATION

Algorithm 1 Pseudocode of Channel-Independent Patch Permutation in PyTorch style.

1 # B: batch size; C: channel number; T: Original Time Length
2 # PD: Patch Dimension; PN: Patch Numbers (Number of Patches);
3

4 # Print original shape of X
5 print(X.shape) # -> (B, C, T)
6

7 # Reorder X into non-overlapping patches.
8 X = rearrange(X, "B C (PD PN) -> B PD C PN")
9

10 # Sample a random value (key)
11 key = torch.randint(0, 1000, (1,))
12

13 # Permute Bank is a dictionary containing permuted indexes.
14 shuffled_idx = permute_bank[key]
15

16 # Print shuffled_idx.
17 print(shuffled_idx) # -> (C, PN)
18

19 # Expand the shape of idx to match the shape of X
20 expanded_shuffled_idx = shuffled_idx.expand(B PD C PN)
21

22 # Rearrange original patch based on expanded_shuffled_idx
23 X_shuffled = torch.gather(X, 3 expanded_shuffled_idx)
24

25 # Print X_shuffled shape
26 print(X_shuffled.shape) # (B PD C PN)
27

28 # Rearrange shape back to its original
29 X_shuffled = rearrange(X, "B PD C PN -> B C PD PN")
30

31 return X_shuffled

rearrange: rearrange elements of a tensor according to a pattern; torch.gather: gather values along an axis specified by index;
expand: repeat the tensor along specified dimensions to match the given shape.

Implementation. The channel-wise patch permutation strategy is efficiently implemented, as outlined
in the PyTorch-style pseudocode in Algorithm 1. Prior to model training, a permutation bank is
constructed, which is a dictionary storing permuted patch indices. For example, in the case of a
32-patch permutation, instead of retaining the actual time series data for the patches, only the indices
of these patches are stored. 1000 different variations of these permuted indices are stored to provide a
wide range of permutations during model training. During model runtime, a random key is generated,
and the matching permuted indices is retrieved and the patches are repositioned accordingly.

Time. Building such a dictionary for a task with 14 channels, 32 patches, permutation fre-
quency γ = 40, with 1000 possible variations takes only 2.6 seconds on an Intel(R) Xeon(R)
Gold 6226R CPU @ 2.90GHz. Permuting a batch of 512 instances from this task takes merely 0.018
seconds on modern GPU hardware like the NVIDIA RTX A6000. This approach ensures that during
training, the model is exposed to a broad spectrum of permuted orders of the dataset, while being fast,
light-weight, and efficient.

Weak and Strong Permute Strategy. For our implementation of PPT, we built multiple permutation
dictionaries with varying permutation frequency γ to support both weak and strong permutation
strategies. For weak permutations, we built three dictionaries for γ = 1, 2, 3. For strong permutations,
we select a lower bound γ = l and construct dictionaries for γ = l, l + 1, l + 2. For each training
batch, one of these dictionaries from both weak and strong is randomly selected for use. This method
further enhances the variety of permutations the model encounters during training.
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E DATASETS

Dataset Task Type #Samples Time #Users # Channels # Class

MS HAR 14,201 200 93 6 10
Gilon HAR 47,647 160 72 14 7
EMOPain sEMG 1,143 200 30 30 3
PTB ECG 62,370 300 198 15 2
Sleep EEG 371,055 178 82 1 5

Table 6: Details of the datasets used in our main experiments

E.1 RATIONALE FOR DATASET SELECTION

The selection of the five datasets used in our main experiment was based on three major reasons:
(1) public accessibility, (2) a sufficient number of samples for generalization, and (3) a diverse
representation of time series tasks. All datasets utilized in our experiments are freely accessible,
except for the Gilon task, which is available upon request and only for research purposes. Moreover,
each time series task in our study includes more than 1,000 samples, with four datasets containing
more than 10,000 instances each, supporting effective generalization. In addition, the chosen tasks
span a range of applications in time series analysis, including Human Activity Recognition (HAR),
Electroencephalography (EEG) for brain wave analysis, electrocardiography (ECG) for cardiogram
monitoring, and Surface Electromyography (sEMG) for muscle activity. This diversity demonstrates
the applicability of PPT to a wide range of tasks. We believe that our work would be particularly
beneficial in fields where sequence order is crucial, such as in biosignal analysis.

E.2 DATASET DESCRIPTION

MS HAR (Morris et al., 2014). The MS HAR task is a human activity recognition (HAR) dataset
using data collected from 114 users who performed 72 different gym activities, measured with a smart
armband. The armband incorporates six sensor channels: three accelerometers (x, y, z axes) and three
gyroscopes (x, y, z axes). To address data imbalance among the classes, we selected 10 activities from
the original 72 classes. These include Bicep Curl (0), Biceps Curl with Band (1), Jump Rope (2),
Plank (3), Pushups (4), Squat (5), Squat with Hands Behind Head (6), Squat Jump (7), Walk (8), and
Walking Lunge (9). The raw dataset is available for access at (https://github.com/microsoft/Exercise-
Recognition-from-Wearable-Sensors). We will provide the preprocessed dataset through GitHub.

Gilon HAR (Kim et al., 2023). The Gilon dataset is developed for HAR and includes data collected
from 72 participants performing seven different gym activities. The data was gathered using a smart
insole that features 14 sensor channels, including accelerometers (x, y, z axes) and four force-sensitive
resistors (FSRs) for each foot (right and left). We used the original five-fold split given in the original
paper. The dataset can be accessed with request (https://github.com/Gilon-Inc/GILON-MULTITASK-
DATASET) and is publicly available for research purposes.

EMOPain (EMG) (Egede et al., 2020). EMOPain is a pain classification task using surface
electromyographic (sEMG) sensor to classify different pain levels (0: Healthy, 1: Low-level pain, 2:
High-level pain). There are total of 30 sensor channels positioned at strategic anatomical positions.
The dataset can be accessed through the UEA time series classification repository (Bagnall et al.,
2018).

PTB (ECG) (Bousseljot et al., 1995). The PTB ECG dataset comprises cardiogram signals from 294
patients, including healthy subjects. We utilized a preprocessed subset of this dataset from the study
by (Wang et al., 2024b), which includes data from 198 patients. This subset redefines the original
task into a binary classification problem, distinguishing between Myocardial Infarction and healthy
controls. We adopted the same data splits as specified in their study. The preprocessed dataset can be
accessed from (https://github.com/DL4mHealth/COMET).

Sleep (EEG) (Kemp et al., 2000). The Sleep EEG is a univariate brainwave signal from Electroen-
cephalography (EEG) recordings, where the task is to classify one out of five sleeping patterns: Wake,
Non-rapid eye movement (N1, N2, N3) and rapid eye movement (REM). We utilized the preprocessed
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dataset from (Zhang et al., 2022) and the dataset can be accessed from (https://github.com/mims-
harvard/TFC-pretraining).

F IMPLEMENTATION OF PPT

F.1 HARDWARE AND SOFTWARE

All experiments were conducted on two types of GPU: NVIDIA RTX 3090-24GB and NVIDIA RTX
A6000-48GB. We used the PyTorch 2.0.1 and PyTorch Lightning 2.1.2 frameworks. All experiments
can be completed on a single GPU mentioned above.

F.2 TIME AND MEMORY COST OF PPT

We conducted additional experiments to measure the time and memory complexity of PPT in model
training. Specifically, we conducted experiments on the PTB task for self-supervised linear probing
and have compared our method against mask-based and contrastive-based approaches using the same
backbone model (e.g. PatchTST).

In summary, PPT employs additional auto-regressive models for constructing context vectors in the
training process, which is the main overhead in speed and memory consumption compared to previous
pretext task methods. However, in the inference stage, these auto-regressive models can be discarded.
In terms of time complexity, mask-based approaches took 70.3 seconds for the whole training,
contrastive-based approaches took 92.9 seconds, while PPT took 139.5 seconds. This increased
training time is due to the additional computations required for auto-regressive models constructing
context vectors. Regarding memory complexity, the mask-based approach had a total of 79.7K
parameters, the contrastive-based approach had 79.3K parameters, and PPT had 212K parameters.
The higher number of parameters in PPT is primarily attributed to the use of auto-regressive models.

Despite the increased computational overhead, we believe that the improved performance achieved by
PPT, as demonstrated in our experimental results, justifies the use of this technique. We acknowledge
that the current implementation of PPT has room for optimization, and we propose that exploring more
efficient model designs for constructing context vectors (e.g., reducing representation dimensions,
and re-using the auto-regressive models) would mitigate the computation burden.

F.3 AUTO-REGRESSIVE MODELS

To generate the context vectors in consistency and contrastive learning, we used a single-layer
unidirectional LSTM that takes the patch sequences as input. The final cell state of the LSTM serves
as the context vector, effectively summarizing the sequence of patches.

For consistency learning, we assigned pseudo labels: 1 for sequences of patches from the original
sequence and 0 for sequences of patches from a strongly shuffled sequence. Initially, the LSTM is
unable to recognize the correct ordered sequence. However, through end-to-end training alongside the
backbone patch model, the model learns to discriminate between the original and strongly shuffled
patch sequences. Consistency learning is applied along both the time and channel dimensions. For
the time dimension, the module learns to recognize the correct temporal order of patches. For the
channel dimension, the module learns the cross-channel relationships of patches. As shown in Fig. 1,
distinct patterns co-occur along the channel dimension, and learning this cross-channel relationship
has been shown to enhance model performance.

For contrastive learning, we collected the context vectors from the original, weakly permuted, and
strongly permuted patch sequences. Intuitively, the weakly permuted sequence should have high
similarity with the original sequence, while the strongly permuted sequence should be far from
both the original and weakly permuted sequences in the representation space. To achieve this, we
employed the InfoNCE loss for contrastive training.

The combination of consistency and contrastive learning allows the model to capture both the
temporal and cross-channel relationships of patches, leading to improved performance in time series
classification tasks. By learning to recognize the correct order and relationships between patches, the
model can better understand the underlying patterns and structure of the time series data.
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F.4 SEQUENTIAL REPRESENTATION OF PATCHES AND HEAD TYPE

The latent data representation for patch-based models consists of encoded patch representations,
differing from models that provide instance-wise representations. Previous studies have processed
these representations by flattening (Nie et al., 2022) or averaging Lee et al. (2023) them to form an
instance-wise format. However, these methods may not adequately capture the sequential depen-
dencies between patches. To better capture these dependencies, we utilized a single layer LSTM
model (Hochreiter & Schmidhuber, 1997) to generate instance-wise or sequential representations from
patches. The patch representation is specified as RC×PD×PN , where C is the number of channels,
PD(dh) is the dimension size of the patch, and PN is the number of patches per channel. Initially,
we averaged across the channel dimension to produce a patch representation of shape RPD×PN . This
averaged representation serves as the input to the LSTM model, treating PN as the sequence length.
In all experiments, we employ the context vector from the LSTM as the instance-wise representation.

F.5 HYPERPARAMETERS FOR SUPERVISED LEARNING

The hyperparameter configurations for supervised training are in Tab. 7. We utilized the official
implementations of both PatchTST and PITS, adopting the channel-independent configuration as
outlined in its respective studies. For PatchTST, three layers of transformer encoders were used. A
slightly high learning rate was found to improve the performance in PITS. Patch sizes were determined
task specifically, with the aim of 10 to 40 patches per channel. No learning rate scheduling or weight
averaging techniques were used for PPT. The training was terminated when the validation loss did
not decrease for more than two epochs. The temperature τ for InfoNCE was set to 0.1.

Model Task Batch Size Permutation γ Learning Rate Patch Size dh nheads

PatchTST Gilon 128 10 0.002 5 128 4
PatchTST SleepEEG 256 10 0.002 5 128 8
PatchTST PTB 128 10 0.002 10 128 8

PITS Gilon 128 10 0.02 10 128 -
PITS SleepEEG 256 10 0.02 5 256 -
PITS PTB 256 10 0.02 10 256 -

Table 7: Supervised Training Hyperparameter Configurations.

F.6 HYPERPARAMETERS FOR SELF-SUPERVISED LEARNING

The hyperparameter configuration for self-supervised linear probing is in Tab. 8. For full fine-tuning,
the hyperparameters are identical except for the learning rate, which is reduced to one-tenth of that
used in linear probing. In self-supervised training, we do not use a separate validation set; instead, the
model is trained for a predetermined number of steps. Subsequently, we fitted a logistic regression
model using the methodology from TS2Vec (Yue et al., 2022).

Model Task Batch Size γ Learning Rate Patch Size dh Train Steps

PatchTST Gilon 32 40 0.002 5 128 1000
PatchTST EMO 32 40 0.002 10 256 1000
PatchTST PTB 32 40 0.001 6 64 4000
PatchTST MS 32 40 0.001 4 256 1000

PITS Gilon 32 40 0.002 10 128 4000
PITS EMO 32 40 0.01 10 128 1000
PITS PTB 32 40 0.01 6 512 4000
PITS MS 32 40 0.002 4 512 4000

Table 8: Self-Supervised Learning Hyperparameter Configurations. We fixed the temperature τ to 0.1
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G HYPERPARAMETER SENSITIVITY

G.1 SUPERVISED LEARNING SENSITIVITY ANALYSIS

We performed a hyperparameter sensitivity analysis in both supervised and self-supervised learning.
Specifically, we are interested in how the size of patches and the frequency of permutations affect the
performance of the model in supervised learning. We report the results for the Gilon task in Fig. 9.
Here, Gilon task has a time length of 160, as such we used patch lengths of 5, 10, 16, and 20. We set
the strong permutation frequency between 5, 10, 20, and 40. We observe that the patch size is a key
hyperparameter in obtaining optimal performance for PatchTST in the supervised setup, where as
PITS was robust across various patch sizes. In general, increasing the permutation frequency tends to
enhance model performance. However, a high permutation frequency does not guarantee improved
performance in all cases. We hypothesize that, beyond a certain threshold, further permutations do
not significantly alter the outcome.

Figure 9: A sensitivity analysis of two hyperparameters on supervised Gilon task were conducted: patch length
and permute frequency. The x-axis indicates the patch length and the y-axis represents the intensity of the
permutation frequency. For PatchTST, we observe an increase in performance with a smaller patch size. In
contrast, PITS displays mixed results, maintaining consistent performance across different hyperparameters.

G.2 SELF-SUPERVISED LEARNING HYPERPARAMETER SENSITIVITY ANALYSIS

We conducted a hyperparameter sensitivity analysis for the PTB (ECG) task within a self-supervised
learning setup, with the results in Fig. 10. Unlike in supervised learning, PITS demonstrated a greater
sensitivity to patch size than PatchTST. Based on these observations, we conjecture that the sensitivity
to patch size and permutation frequency depend on the specific learning setup and the type of task to
which it is applied.

G.3 TEST ON PERMUTED DATASET

We evaluated the performance degradation of the supervised PITS model on a permuted test set
(PTB task), detailed in Fig. 11. This figure expands upon Tab. 3, which presented results for a
test set permuted at a frequency of γ = 40. Here, we provide comprehensive results for test sets
permuted at frequencies γ = 5, 10, 20, 40. Additionally, γ = 0 represents the unaltered original test
set. The figure shows results for the three distinct permutation strategies—farthest, random, and
vicinity—with each strategy described in Appendix C. For example, the farthest permuted set is the
test set that has been permuted with the “farthest” strategy.

In general, we observe that incorporating PPT enhances model performance on the original unaltered
test set (γ = 0), while having a degraded performance on the permuted test sets (γ = 5, 10, 20, 40).
We also observe that the extent of degradation varies with the permutation strategy, being more
pronounced under the farthest and random strategies. This variation is intuitive, as the vicinity
permutation strategy maintains more of the original sequential information, as illustrated in Fig. 8.
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Figure 10: A sensitivity analysis on self-supervised PTB (ECG) task were conducted. Unlike the supervised
setup, we now observe that PITS is more sensitive to patch size.

Figure 11: We trained PPT with Random-Random permutation strategy with the strong permutation frequency
set to γ = 40. The model trained with PPT and without PPT was evaluated on a permuted test set, where the
permutation of the test set was set to γ = 5, 10, 20, 40.

A note on the drop in performance for permuted test sets. For first viewers, it is possible that
the drop in model performance on the permuted test set seems trivial or insignificant. However, we
emphasize that such a drop occurred even though there was no direct penalization of the logits from
the permuted patches, unlike related works that directly penalize logits for uncertain samples (Lee
et al., 2017) in out of distribution detection problems. During the training of PPT, the permuted sets
were used to calculate the consistency and contrastive losses, but no logits from the patch sequences
were directly penalized. As such, the degradation in model performance is solely due to the learned
representation, which can be considered significant.
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G.4 LEARNABLE AND FIXED LAMBDA

PatchTST PITS

Rank F1 LCS LCT F1 LCS LCT

- 88.67±0.95 learned learned 91.24±0.72 learned learned
0 88.57±0.78 1 0.1 91.20±0.66 0.1 1
1 88.39±0.81 0.5 0.1 91.00±0.79 0.1 0.1
2 87.63±2.30 0.5 1 90.99±0.46 2 0.1
3 87.50±1.02 1 0.2 90.99±1.03 0.5 0.2
4 87.46±1.58 0.2 0.2 90.98±0.54 0.1 2
5 87.32±0.62 2 0.5 90.89±0.86 1 1
6 87.19±1.63 0.1 0.2 90.84±1.21 1 0.2
7 87.16±1.23 0.5 2 90.82±0.48 0.2 0.1
8 87.08±1.93 0.1 1 90.80±1.04 0.5 2
9 87.04±0.70 0.2 0.1 90.78±0.36 2 0.5
10 86.96±1.71 0.2 1 90.76±1.18 1 2
11 86.91±0.66 2 0.1 90.68±0.66 2 2
12 86.88±1.94 0.2 2 90.66±0.27 0.2 0.5
13 86.83±0.81 0.5 0.5 90.63±0.42 0.1 0.2
14 86.76±1.28 1 2 90.54±0.75 0.2 1
15 86.68±1.84 0.1 2 90.51±0.23 0.5 0.5
16 86.55±0.97 2 2 90.48±0.71 0.5 1
17 86.54±1.68 1 1 90.45±0.54 0.5 0.1
18 86.53±0.72 1 0.5 90.43±0.96 1 0.5
19 86.27±1.22 0.2 0.5 90.28±0.82 1 0.1
20 86.16±0.98 2 0.2 90.04±0.46 0.2 2
21 86.10±0.53 0.5 0.2 90.02±1.05 2 1
22 86.07±0.33 2 1 90.02±1.14 2 0.2
23 86.07±1.72 0.1 0.5 89.95±1.01 0.2 0.2
24 85.61±1.22 0.1 0.1 89.23±1.38 0.1 0.5

Table 9: Performance comparison between PITS and PatchTST based on fixed loss coefficient

Figure 12: We visualized how the learnable parameters for LCS and LCT changes over the course of training.

To demonstrate the effectiveness of using a learnable λ instead of a fixed λ, we conducted multiple
fixed-λ experiments and compared them with the results of the learnable λ. Briefly, we show that the
learned λs are the best performing compared to the fixed hyperparameter setup.

We conducted a grid search between LCS = 0.1, 0.2, 0.5, 1.0, 2.0 and LCT = 0.1, 0.2, 0.5, 1.0, 2.0,
resulting in 25 different combinations. We performed our experiments on the PatchTST (Transformer)
and PITS (Linear) model with the PTB dataset, and reported the results in Tab. 9.

We show that the learnable hyperparameters are comparable to the best performing fixed-
hyperparameters that are manually searched, showcasing that the learnable hyperparameter setup can
significantly reduce hyperparameter tuning while leading to optimal performance.
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H BASELINE IMPLEMENTATIONS FOR SELF-SUPERVISED LEARNING

For all baseline experiments in self-supervised linear probing, we standardized the batch size to
32. We conducted a grid search to determine the optimal learning rate, exploring values between
[0.001, 0.002], and for the maximum number of steps, ranging between [1000, 4000], and reported
the best outcomes. During full fine-tuning, we lowered the learning rate to the one-tenth of the
learning rate used in linear probing. Here, we did not implement learning rate scheduling in any part
of our study. For patch-based methodologies (PatchTST, PITS, TimeMAE, TS-GAC), we aimed to
set a patch size that ensured the number of patches per sequence fall in between 10 to 40.
PatchTST (Nie et al., 2022) is an early work utilizing patch representations in time series forecasting,
employing a basic transformer architecture. We selected PatchTST as our main encoder backbone,
expecting that PPT could be generalized to other transformer variants. Specifically, the work proposes
to use a channel-independent encoder transformer network. We used channel-independent encoder
architecture with sine-cosine positional encoding from the original implementation. Across the study,
we employed three transformer layers. The RevIN normalization (Kim et al., 2021) used in the
original paper was not used as our focus was on time series classification. For supervised training,
we utilized the representations from the last transformer layer, inputting them into an LSTM-based
classifier head to generate instance-wise representations. In the self-supervised training, we averaged
the representations from all transformer layers and used a single-layered, non-bidirectional LSTM
to process the patch representations. Patches were averaged along the channel dimension, where
the patch indexes were considered as sequences. The final context vector was then employed in our
analyses. In self-supervised training, we used patch size of 4 for MS HAR, 5 for Gilon, 6 for PTB,
and 10 for EMOPain. We used a batch size of 32 and learning rate of 0.002 for self-supervised linear
probing and 0.0002 for full fine-tuning. For the mask and reconstruction pretext task, we employed
the original implementation from (https://github.com/yuqinie98/PatchTST).
PITS (Lee et al., 2023). A major discussion in the time series domain is the use of MLP
based models instead of the transformer architectures. Surprisingly, simple MLP based models
tend to outperform transformer architectures, which has been actively discussed in (Zeng et al.,
2023). We employed the MLP-based PITS architecture, following the official implementation
(https://github.com/seunghan96/pits), to demonstrate that PPT is also effective with MLP models.
For self-supervised training, we used the following patch sizes: 4 for MS HAR, 10 for Gilon, 6 for
PTB, and 10 for EMOPain. Similarly to PatchTST, we implemented an LSTM-based classifier head
to obtain instance-wise representations.
Mixing-up (Wickstrøm et al., 2022) is a contrastive learning-based method for time series inspired
by the mixup (Zhang et al., 2017) data augmentation strategy. This approach blends two different
mini-batch samples to create an augmented sample. A contrastive loss is applied to the augmented
sample, with each mini-batch treated as a positive sample weighted by the mixing coefficient. We
used the official implementation from (https://github.com/Wickstrom/MixupContrastiveLearning)
and set the hidden dimension to 64.
SimCLR (Tang et al., 2020) is an adaptation of the visual domain’s SimCLR (Chen et al., 2020) to
time series analysis. This method applies two augmentations (e.g., rotation, negation) to a time series
instance, aiming to maximize the agreement between latent representations from the same instances
and minimize it for different ones. Instead of using the official Tensorflow-based implementation, we
developed a custom version using a ResNet-1D encoder (Wang et al., 2017). This encoder includes
three blocks consisting of Conv1D, BatchNorm, and Maxpool1D operations, with filter sizes set
to [32, 64, 128]. An average pooling layer on the final block generates a 128-dimensional latent
representation for each instance.
TS2Vec (Yue et al., 2022) is a task-agnostic time series representation model widely recognized as a
competitive baseline in numerous self-supervised studies. The model begins by randomly cropping
time series to extract overlapping window segments. These segments are then projected using a linear
layer, followed by random masking of the latent representations. Subsequently, both temporal and
instance-wise contrastive loss is employed, where the loss is subsequently employed in a hierarchcial
manner. Following the work of (Zhang et al., 2022), we employ two layers of TS2Vec modules, with
hidden dimension of size 64 and output dimension of 128.
TS-TCC (Eldele et al., 2021) While we have outlined the difference between PPT and TS-TCC
in Sec. 2, we provide further details of the TS-TCC implemention. TS-TCC begins by applying weak
and strong augmentations to the input time series, generating two distinct views for the raw time series.
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These views are then processed by the encoder layer, which produces latent representations of the
time series. These representations are treated as sequences, and a context vector is constructed using
a transformer model. Temporal and contextual contrasting losses are applied using this context vector.
We implemented TS-TCC using the official source from (https://github.com/emadeldeen24/TS-TCC),
with the following hyperparameters: kernel size=8, stride=1, timestep=10, and hidden dimensions of
64. Additionally, we used a jitter ratio of 0.8 and a jitter scale ratio of 1.1.
SimMTM (Dong et al., 2024) is a self-supervised pretraining framework that employs a multiple
masked modeling strategy. Instead of creating a single masked series, the framework utilizes several
masked versions of the time series for a reconstruction pretext task. The primary objective of this
paper was to introduce a pretraining framework, with the work primarily evaluated in transfer learning
scenarios. We utilized the official implementation available at (https://github.com/thuml/SimMTM),
setting the hyperparameters as follows: kernel size 10, stride 5, masking ratio 0.3, masked numbers 3,
and final output representation channels of 128. A significant drawback, however, is the substantial
increase in computational demand proportional to the number of masked samples. As such, we tested
only on three masked samples. The CNN output channels were manually adjusted based on the task,
with settings of 6 for Gilon, 10 for PTB, 7 for MS HAR, and EMOPain.
TimeMAE (Cheng et al., 2023) is a patch-based self-supervised learning model for time series
data, inspired by the masked autoencoder (MAE) approach in computer vision. The model uti-
lizes transformer architectures with two pretext tasks: masked codeword classification and masked
reconstruction of patches. We set the hidden dimension of the model to 64. The patch length is
chosen task-specifically, ensuring the number of patches falls within the range of 15 to 40 for optimal
performance.
TS-GAC (Wang et al., 2023) is an extension of TS-TCC model to graph neural network (GNN),
utilizing patch representations for graph construction. The graphs are constructed by using patches
as node features and patch correlations as edges, where they proposes to use a node and edge
augmentation method for contrastive learning. Multiple graphs are formed within an instance, and
these graph representations are considered as sequences. These sequences are then summarized
using an autoregressive model (i.e. transformer) to construct a context vector for temporal con-
trasting. Additionally, the model employs wavelet-based augmentation, differentiating the intensity
between weak and strong augmentations. We implemented TS-GAC using the official code from
(https://github.com/Frank-Wang-oss/TS-GAC), setting the patch length to 5 for Gilon and 10 for PTB,
EMO, and MS HAR, with a kernel size of 3 and stride of 1.
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I TIME SERIES CLUSTERING

We performed time series clustering task with the learned time series representation from self-
supervised linear probing as in the works of (Zhang et al., 2022; Wang et al., 2024b). We fitted
K-means clustering on top of the pre-trained representations of the GL HAR task, which consists of 7
classes. The experiments were performed with 5 different random seeds to ensure robustness. We
report the Silhouette Score, Normalized Mutual Information (NMI), and Adjusted Rand Index (ARI)
scores to evaluate the clustering performance. We also compared our works to SOTA works such as
SimCLR, TS2Vec, TF-C, TimeMAE, UniTS, and other pretext task based methods such as mask and
reconstruct, and contrastive learning based method.

Model Silhouette Score NMI ARI

SimCLR 0.128±0.037 0.472±0.025 0.289±0.021

TS2Vec 0.128±0.037 0.607±0.029 0.405±0.024

TF-C 0.143±0.020 0.585±0.035 0.429±0.026

TimeMAE 0.141±0.023 0.556±0.017 0.429±0.022

UniTS 0.308±0.057 0.610±0.105 0.475±0.119

PatchTST (Mask) 0.338±0.007 0.548±0.016 0.384±0.018

PatchTST (CL) 0.253±0.009 0.444±0.007 0.275±0.021

PatchTST (PPT) 0.263±0.023 0.644±0.048 0.481±0.050

Table 10: Comparison of clustering metrics in GL task

In Tab. 10, we show that PPT achieves the best performance in NMI and ARI scores, demonstrating
its effectiveness in generating meaningful representations in clustering tasks. Here, NMI and ARI
measure the agreement between the predicted clusters and the ground truth labels. A higher NMI and
ARI score suggests that the clustering assignment is close to the ground truth. While we acknowledge
that the mask-based pretext task used in PatchTST outperforms PPT in terms of the Silhouette Score,
it is important to note that the Silhouette Score is an internal evaluation metric that measures the
compactness of clusters without requiring ground truth labels. A higher Silhouette Score indicates
that the clusters are well-separated and compact, but it does not necessarily imply that the clustering
results align with the true class labels.

The result that PPT outperforms other SOTA methods in terms of NMI and ARI scores highlights
its ability to capture the internal temporal structure and order relationships within the time series,
leading to clustering results that align well with the true class labels. In summary, we show that PPT
demonstrates its effectiveness in generating meaningful and informative representations for clustering
tasks.

27



Published as a conference paper at ICLR 2025

J MORE LINEAR-PROBING RESULTS

Table 11: Linear-Probing Results. We compare our methods to several self-supervised methods. The asterisk
(*) denotes patch based methods. The Best and second best scores are in red and black bold.

Dataset Models Accuracy AUROC AUPRC F1 score Precision Recall

EMO

Mixing-up 74.48±2.93 71.80±7.11 52.22±2.71 49.30±2.53 51.66±1.81 49.36±4.01
SimCLR 74.42±4.38 72.71±7.29 48.34±6.76 44.64±6.34 47.83±7.07 47.19±8.02
TS2Vec 78.08±2.93 78.00±3.58 50.95±3.83 49.07±3.00 48.97±3.52 49.87±2.88
TF-C 77.63±6.18 82.22±5.31 54.84±7.18 53.30±6.90 56.14±8.79 56.00±9.07
TS-TCC 75.61±3.49 73.82±7.40 53.98±3.77 48.47±3.59 54.75±0.67 49.02±4.05
SimMTM 81.75±3.33 81.35±7.69 58.70±4.03 53.08±3.68 57.75±4.84 51.62±4.17
TimeMAE∗ 73.97±2.28 70.11±4.43 43.25±2.14 42.44±2.07 42.81±2.37 42.43±2.09
TS-GAC∗ 73.75±1.66 75.92±2.30 49.29±0.62 46.42±1.29 46.04±0.87 48.86±1.69
PatchTST(Mask)∗ 78.70±0.73 82.60±1.39 55.23±2.21 45.81±2.07 59.40±5.32 46.35±1.31
PITS (Mask)∗ 68.00±0.81 63.61±1.20 43.69±0.59 43.84±0.87 44.77±0.59 46.83±1.50

PatchTST (Ours)∗ 81.92±0.58 84.74±1.55 62.51±3.09 54.19±2.33 62.96±2.49 53.41±2.42
PITS (Ours)∗ 75.55±2.84 68.63±3.30 45.59±2.28 45.75±2.43 45.05±2.65 47.53±2.06

MS HAR

Mixing-up 83.89±1.78 97.59±0.62 84.60±3.14 78.99±2.30 81.16±2.67 79.00±2.17
SimCLR 83.86±0.92 97.87±0.25 85.02±1.28 78.58±1.38 80.98±0.88 78.34±1.11
TS2Vec 82.76±0.57 96.86±0.32 83.10±1.41 77.72±0.67 80.24±0.84 77.30±0.92
TF-C 85.02±2.71 98.10±0.24 86.10±1.73 80.34±3.59 82.51±2.93 80.06±3.50
TS-TCC 86.67±2.62 98.61±0.30 88.24±1.74 83.48±2.95 85.56±2.42 82.88±3.12
SimMTM 75.07±1.13 95.96±0.07 72.55±0.95 67.76±1.61 70.51±1.64 67.75±1.59
TimeMAE∗ 80.03±0.42 96.04±0.88 80.20±1.36 75.06±1.03 76.58±1.70 75.62±0.81
TS-GAC∗ 88.81±1.10 99.01±0.21 92.88±0.81 86.12±1.37 88.03±1.11 85.34±1.47
PatchTST(Mask)∗ 69.96±3.77 93.11±1.42 64.04±5.83 60.47±5.41 65.35±4.30 60.94±5.16
PITS (Mask)∗ 84.89±1.66 98.21±0.22 88.08±1.33 80.95±2.26 83.71±2.18 80.43±2.21

PatchTST (Ours)∗ 84.96±2.08 98.01±0.25 86.76±2.08 80.71±2.86 82.66±2.83 80.43±2.39
PITS (Ours)∗ 89.33±0.86 98.58±0.38 91.09±1.00 86.54±1.05 88.76±1.06 85.70±1.07

PTB

Mixing-up 82.35±0.93 89.40±2.22 95.32±1.05 88.82±0.57 81.76±0.72 97.23±0.61
SimCLR 80.41±1.14 86.03±3.24 93.84±1.71 87.89±0.62 79.30±0.99 98.57±0.21
TS2Vec 84.06±2.81 91.56±3.28 96.17±2.02 89.75±1.68 83.82±2.56 96.62±0.95
TF-C 79.58±1.22 86.55±2.64 93.95±1.50 87.25±0.85 79.35±0.47 96.91±1.78
TS-TCC 79.58±1.18 79.18±1.88 88.05±1.40 86.98±0.78 80.51±0.90 94.59±1.47
SimMTM 80.75±0.29 88.66±1.96 94.48±1.23 88.08±0.17 79.58±0.31 98.61±0.41
TimeMAE∗ 78.65±1.43 84.72±1.30 92.97±0.83 86.78±0.86 78.41±1.03 97.15±1.10
TS-GAC∗ 83.26±1.97 91.18±2.36 95.37±0.96 89.51±1.09 81.76±1.95 98.90±0.23
PatchTST(Mask)∗ 79.89±1.87 81.36±4.91 88.94±3.50 87.46±1.07 79.50±1.54 97.21±1.07
PITS (Mask)∗ 81.48±1.50 81.98±3.18 90.77±1.79 88.22±0.87 81.53±1.40 96.13±0.82

PatchTST (Ours)∗ 78.50±1.76 76.04±6.47 86.79±5.56 88.67±0.95 78.45±1.62 96.83±0.63
PITS (Ours)∗ 86.48±0.40 91.83±1.36 96.26±0.85 91.24±0.26 85.67±0.61 97.58±0.86

GL

Mixing-up 81.76±2.94 96.46±0.50 82.43±2.80 79.25±3.85 79.99±3.83 79.18±3.93
SimCLR 87.10±0.44 98.25±0.12 92.69±1.04 88.72±0.79 89.42±0.84 88.20±0.84
TS2Vec 87.79±0.66 98.35±0.12 93.93±0.10 89.92±0.68 90.12±0.97 89.86±0.42
TF-C 88.23±0.73 98.66±0.13 92.90±1.00 89.09±1.11 89.30±1.12 89.00±1.02
TS-TCC 87.98±1.28 98.60±0.22 91.86±1.03 88.53±1.32 88.82±1.45 88.36±1.27
SimMTM 82.05±0.33 97.08±0.06 88.06±0.49 83.96±0.50 84.63±0.64 83.63±0.47
TimeMAE∗ 83.44±1.09 97.81±0.11 89.84±1.09 85.26±1.74 86.10±2.06 84.77±1.58
TS-GAC∗ 92.32±0.85 99.04±0.38 96.23±0.64 92.79±0.84 92.67±0.65 93.23±0.92
PatchTST(Mask)∗ 88.43±0.44 98.79±0.11 94.34±0.40 89.87±0.38 89.73±0.45 90.15±0.43
PITS (Mask)∗ 89.29±0.76 98.79±0.11 93.62±0.45 89.04±0.40 89.72±0.50 88.75±0.38

PatchTST (Ours)∗ 92.33±0.48 99.28±0.10 96.83±0.44 93.67±0.45 93.54±0.37 93.90±0.56
PITS (Ours)∗ 92.07±0.78 99.28±0.09 96.87±0.46 92.77±0.63 92.99±0.70 92.83±0.65
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K MORE FINE-TUNING RESULTS

Table 12: Full fine-tuning results of Gilon. We first perform self-supervised pretraining, followed by full
fine-tuning the whole network with 100%, 10%, and 1% of training data in Gilon task. Best scores for PatchTST
and PITS are in red bold and the top scoring value is underscored.

Fraction Models Accuracy AUROC AUPRC F1 score Precision Recall

100%

Mixing-up 93.92±0.85 98.85±0.19 95.18±1.07 91.71±0.98 91.55±1.03 92.11±0.85
SimCLR 95.78±0.36 99.64±0.03 98.52±0.13 95.47±0.38 95.66±0.51 95.40±0.32
TS2Vec 91.77±0.75 98.17±0.51 94.04±1.80 90.28±1.26 90.52±1.29 90.17±1.25
TF-C 91.98±0.62 99.23±0.08 95.60±0.59 91.45±0.71 91.32±0.73 91.77±0.72
TS-TCC 94.58±0.70 99.39±0.08 97.38±0.30 92.61±1.00 93.39±0.92 92.61±0.91
SimMTM 94.83±1.04 98.99±0.48 96.27±1.33 93.44±1.29 93.62±1.28 93.57±1.04
TimeMAE 95.63±0.31 99.43±0.15 97.60±0.56 94.61±0.55 94.71±0.45 94.60±0.68
TS-GAC 96.43±0.52 99.71±0.08 98.88±0.35 96.20±0.55 96.35±0.69 96.19±0.42

PatchTST (Random Init) 95.01±4.20 99.61±0.09 98.58±0.40 95.52±2.43 96.15±1.90 95.60±2.61
PatchTST (Mask) 97.12±0.49 99.73±0.04 99.00±0.14 96.94±0.57 97.30±0.35 97.09±0.47
PatchTST (Ours) 96.71±0.86 99.76±0.04 99.12±0.10 96.70±0.71 97.03±0.37 96.80±0.50

PITS (Random Init) 93.40±0.34 99.54±0.11 97.58±0.60 92.96±0.59 92.76±0.67 92.73±0.60
PITS (Mask + CL) 91.44±1.84 99.15±0.19 95.06±1.27 90.93±1.35 90.83±1.48 90.73±1.51
PITS (Ours) 95.53±0.83 99.79±0.06 98.89±0.37 95.25±0.84 95.43±0.89 95.25±0.76

10%

Mixing-up 92.85±0.69 98.74±0.26 94.42±1.14 90.44±0.91 90.59±0.65 90.69±0.90
SimCLR 84.55±0.78 98.47±0.20 91.74±0.83 83.60±1.21 86.78±0.62 82.56±1.16
TS2Vec 88.12±1.58 96.46±0.78 89.37±1.87 85.51±1.13 85.86±0.69 85.97±1.71
TF-C 83.35±0.48 97.96±0.09 87.87±0.36 82.73±0.48 83.95±0.33 82.10±0.59
TS-TCC 93.69±1.05 99.41±0.19 97.36±0.76 92.11±0.84 93.69±0.38 91.83±0.83
SimMTM 91.94±0.58 98.95±0.35 95.65±0.62 91.35±0.53 91.41±0.44 91.40±0.65
TimeMAE 90.06±2.95 98.77±0.43 94.65±2.04 91.10±2.54 91.50±2.46 90.83±2.63
TS-GAC 94.51±1.73 99.50±0.05 97.98±0.35 94.20±1.69 94.47±1.73 94.25±1.41

PatchTST (Random Init) 88.92±3.54 99.25±0.09 96.43±0.59 90.44±2.34 91.68±1.51 90.55±2.38
PatchTST (Mask) 91.61±0.82 99.35±0.11 97.10±0.47 92.33±0.89 92.88±0.80 92.47±0.75
PatchTST (Ours) 93.26±1.57 99.50±0.09 97.79±0.47 93.97±1.40 94.74±1.23 94.27±1.34

PITS (Random Init) 87.91±2.14 98.58±0.23 91.47±1.97 88.36±2.19 87.22±1.78 87.58±1.94
PITS (Mask + CL) 85.11±3.78 98.18±0.43 89.51±2.63 85.67±2.21 84.61±2.35 84.60±2.65
PITS (Ours) 92.47±1.06 99.48±0.12 97.28±0.78 93.32±0.60 93.17±0.69 93.07±0.46

1%

Mixing-up 84.82±2.17 97.27±0.53 87.48±1.81 82.08±2.85 83.76±2.52 81.53±3.34
SimCLR 62.61±1.89 90.88±2.03 66.05±4.28 47.28±4.56 63.15±9.38 51.63±2.92
TS2Vec 77.41±1.33 96.17±0.45 82.84±1.67 75.17±2.85 79.04±1.10 74.64±3.01
TF-C 65.34±2.50 91.19±1.59 71.15±3.38 52.88±4.98 71.92±4.11 52.95±3.65
TS-TCC 85.77±1.08 97.82±0.25 89.85±1.19 83.02±1.16 86.31±2.00 83.04±1.46
SimMTM 78.44±2.20 94.93±0.87 82.75±1.34 79.48±1.95 80.66±2.40 79.31±1.85
TimeMAE 76.09±2.01 96.24±0.53 80.35±3.35 74.63±3.30 77.58±3.69 73.57±3.61
TS-GAC 80.57±11.8 97.28±1.67 87.57±6.06 72.99±19.7 82.01±7.92 74.02±17.5

PatchTST (Random Init) 82.63±2.89 97.89±0.74 89.84±2.02 85.16±2.35 82.78±4.48 83.07±3.76
PatchTST (Mask) 80.55±2.29 96.77±1.04 86.44±2.83 83.26±2.11 81.50±3.58 81.52±3.58
PatchTST (Ours) 84.80±1.68 98.08±0.38 90.64±1.90 86.92±1.48 86.88±1.65 86.75±1.57

PITS (Random Init) 74.25±3.03 96.15±0.61 78.73±2.90 75.27±4.24 71.45±4.74 72.08±5.65
PITS (Mask + CL) 72.41±2.05 95.40±0.60 75.92±3.23 72.81±4.76 69.83±3.77 70.45±4.71
PITS (Ours) 81.04±1.86 97.68±0.30 87.26±1.62 83.71±0.95 81.25±1.45 82.05±1.30
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L ACF-COS

L.1 PURPOSE OF DESIGNING ACF-COS

An autocorrelation function (ACF) calculates the correlation coefficients between a time series and
its own lagged versions at various intervals. Here, ACF provides an overview of the structured linear
patterns within the time series, revealing specific lags where these patterns recur. For example, when
applied to a time series from a force sensor in a smart insole, the ACF shows regular peaks that may
correspond to step frequency, indirectly providing information regarding the user’s pace. As such,
ACF provides a meaningful overview of a time series’s structural dependency and order patterns.

Accordingly, we designed the ACF-COS metric, which measures the cosine similarity between the
ACF of a time series and its patch-permuted version to quantify the order information present. To our
knowledge, no existing metric systematically quantifies the amount of order information in a time
series. The closest relevant metric, the permutation entropy (PE) (Bandt & Pompe, 2002), measures
the frequencies of a particular symbolic pattern to occur within the series. This diverges from our
objective of measuring “orderness” by focusing instead on pattern frequency rather than the structural
order itself. The intuition behind ACF-COS is that the ACF of a time series with “orderness” should
strongly diverge from the ACF of its patch-permuted version, leading to smaller ACF-COS scores.
On the other hand, time series with no order information (i.e., white noise) should have a similar ACF
score for its patch-permuted version, leading to high ACF-COS scores.
Discussion on Weak Stationary Assumption of ACF-COS. ACF has been primarily used in the
time series forecasting domain, where they analyze the absolute values of the ACF to understand trend
and seasonal patterns across different time windows. Holding the weak stationary assumption (having
constant mean and variance) is important for autocorrelation estimates in such scenarios. The
assumption enables the comparison of the ACF against different time steps or datasets. Unlike such
comparisons made with varying steps of time or datasets, our ACF-COS does not rely on absolute
values of ACF but on the similarity between patterns. Even if the data are non-stationary, our primary
objective is to quantify how autocorrelation structure changes when the patches’ order is shuffled. As
such, we are less concerned with the stationary assumption (which may be affected when we deal
with the absolute values) in calculating ACF-COS.

L.2 FULL ACF-COS SCORES

We provide the detailed ACF-COS statistics in Tab. 13. The ACF score, calculated for 17 tasks from
the UEA Repository, is the average score across three different patch sizes (Tab. 14). The ACF Range
provides the minimum and maximum value of ACF-COS score. T and D is the length of the time
sequence and number of channels, respectively. The AUROC Win (%) metric shows how often our
method (PPT) surpassed the cross-entropy (CE) based method by at least 1% in the AUROC metric.
Similarly, the Accuracy Win (%) measures how frequently Method outperformed the CE method in
accuracy. A total of 162 different hyperparameter configurations were tested for each dataset.

L.3 HYPERPARAMETER CONFIGURATIONS FOR ACF-COS CALCULATION

We calculated the ACF-COS score based on the hyperparameter configuration in Tab. 14. We selected
a patch size allowing between 10 to 40 patches per dataset. The batch size was determined by the
number of training samples. The hidden dim is the size of hidden dimension in PatchTST. Strong
γ is the lower bound of strong permutation frequency used in PPT training. We used two different
learning rates throughout the whole training: 0.02 and 0.002. For the EigenWorms dataset, data
sampling was necessary due to its large size. The total combination of hyperparameters are 162.
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Table 13: ACF-COS Statistics

Dataset Name ACF-COS ACF Range T D AUROC Win (%) Acc. Win (%) # Acc. Wins

ShapesAll 0.449 0.239 - 0.660 512 1 44.44 62.96 102 / 162
UWaveGestureLibraryAll 0.423 0.262 - 0.585 945 1 35.19 46.30 75 / 162
Cricket 0.418 0.261 - 0.576 1197 6 61.73 75.93 123 / 162
OSULeaf 0.418 0.266 - 0.570 427 1 37.04 47.53 77 / 162
CricketX 0.416 0.280 - 0.552 300 1 27.16 46.91 76 / 162
CharacterTrajectories 0.410 0.207 - 0.613 120 3 44.44 53.09 86 / 162
CricketZ 0.400 0.253 - 0.547 300 1 25.31 45.06 73 / 162
CricketY 0.397 0.272 - 0.522 300 1 48.77 57.41 93 / 162
Plane 0.374 0.175 - 0.574 144 1 37.04 43.83 71 / 162
Handwriting 0.335 0.239 - 0.431 152 3 46.30 51.85 84 / 162
EigenWorms 0.290 0.216 - 0.363 17984 6 58.02 61.11 99 / 162
Earthquakes 0.262 0.209 - 0.316 512 1 43.21 42.59 69 / 162
Blink 0.223 0.132 - 0.313 510 4 45.06 43.21 70 / 162
Libras 0.218 0.091 - 0.345 45 2 30.25 46.91 76 / 162
NATOPS 0.216 0.087 - 0.346 51 24 53.70 75.31 122 / 162
LargeKitchenAppliances 0.190 0.151 - 0.230 720 1 48.77 54.32 88 / 162
GestureMidAirD1 0.186 0.104 - 0.268 360 1 40.74 48.15 78 / 162
WalkingSittingStanding 0.176 0.086 - 0.267 206 3 43.21 46.30 75 / 162
GestureMidAirD2 0.166 0.099 - 0.234 360 1 37.04 46.30 75 / 162
GunPointOldVersusYoung 0.105 0.028 - 0.182 150 1 3.09 7.41 12 / 162
GunPointAgeSpan 0.104 0.024 - 0.183 150 1 45.68 46.91 76 / 162
GunPointMaleVersusFemale 0.100 0.029 - 0.171 150 1 28.40 45.68 74 / 162
GestureMidAirD3 0.060 0.034 - 0.086 360 1 27.16 37.65 61 / 162
EMOPain 0.026 0.018 - 0.035 200 30 40.74 33.33 54 / 162

Table 14: Hyperparameter Search Space for ACF-COS Calculation.

Dataset Name Patch Size Batch Size Hidden Dim Strong γ learning_rate Use All Data?

ShapesAll 13, 17, 26 4, 8, 16 16, 32, 64 10, 20, 40 0.02, 0.002 True
UWaveGestureLibraryAll 24, 32, 47 32, 64, 128 16, 32, 64 10, 20, 40 0.02, 0.002 True
Cricket 30, 40, 50 4, 8, 16 16, 32, 64 10, 20, 40 0.02, 0.002 True
OSULeaf 11, 14, 21 4, 8, 16 16, 32, 64 10, 20, 40 0.02, 0.002 True
CricketX 8, 10, 15 4, 8, 16 16, 32, 64 10, 20, 40 0.02, 0.002 True
CharacterTrajectories 3, 4, 6 32, 64, 128 32, 64, 128 10, 20, 40 0.02, 0.002 True
CricketZ 8, 10, 15 4, 8, 16 16, 32, 64 10, 20, 40 0.02, 0.002 True
CricketY 8, 10, 15 4, 8, 16 16, 32, 64 10, 20, 40 0.02, 0.002 True
Plane 3, 4, 7 4, 8, 16 16, 32, 64 10, 20, 40 0.02, 0.002 True
Handwriting 4, 5, 8 4, 8, 16 16, 32, 64 10, 20, 40 0.02, 0.002 True
EigenWorms 450, 600, 900 4, 8, 16 16, 32, 64 10, 20, 40 0.02, 0.002 False (3000 samples)
Earthquakes 13, 17, 26 4, 8, 16 16, 32, 64 10, 20, 40 0.02, 0.002 True
Blink 13, 17, 26 4, 8, 16 16, 32, 64 10, 20, 40 0.02, 0.002 True
Libras 1, 2, 4 4, 8, 16 16, 32, 64 10, 20, 40 0.02, 0.002 True
NATOPS 1, 2, 4 4, 8, 16 16, 32, 64 10, 20, 40 0.02, 0.002 True
LargeKitchenAppliances 18, 24, 36 32, 64, 128 16, 32, 64 10, 20, 40 0.02, 0.002 True
GestureMidAirD1 9, 12, 18 4, 8, 16 16, 32, 64 10, 20, 40 0.02, 0.002 True
WalkingSittingStanding 5, 7, 10 32, 64, 128 16, 32, 64 10, 20, 40 0.02, 0.002 True
GestureMidAirD2 9, 12, 18 4, 8, 16 16, 32, 64 10, 20, 40 0.02, 0.002 True
GunPointOldVersusYoung 3, 5, 7 4, 8, 16 16, 32, 64 10, 20, 40 0.02, 0.002 True
GunPointAgeSpan 3, 5, 7 4, 8, 16 16, 32, 64 10, 20, 40 0.02, 0.002 True
GunPointMaleVersusFemale 3, 5, 7 4, 8, 16 16, 32, 64 10, 20, 40 0.02, 0.002 True
GestureMidAirD3 9, 12, 18 4, 8, 16 16, 32, 64 10, 20, 40 0.02, 0.002 True
EMOPain 5, 7, 10 32, 64, 128 16, 32, 64 10, 20, 40 0.02, 0.002 True
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L.4 STATISTICAL RESULTS

We provide the statistical results of fitting the ordinary least square (OLS) model and the robust linear
regression (RLM) model on the correlation between ACF-COS score and Accuracy Win (%).

Table 15: OLS Regression Results

Model: OLS Regression R-squared: 0.225
Method: Least Squares Adj. R-squared: 0.189
No. Observations: 24 F-statistic: 6.370
Df Residuals: 22 Prob (F-statistic): 0.0193
Df Model: 1 Log-Likelihood: 17.692
AIC: -31.38 BIC: -29.03

Omnibus: 5.298 Prob(Omnibus): 0.071
Skew: -0.186 Kurtosis: 5.142
Durbin-Watson: 2.435 Cond. No.: 8.14

coef std err t P> |t| [0.025 0.975]

const 0.3604 0.055 6.495 0.000 0.245 0.476
x1 0.4730 0.187 2.524 0.019 0.084 0.862

Table 16: Robust Linear Model Regression Results

Dep. Variable: y No. Observations: 24
Model: RLM Df Residuals: 22
Method: IRLS Df Model: 1
Norm: HuberT Scale Est.: mad
Cov Type: H1 No. Iterations: 11

coef std err z P> |z| [0.025 0.975]

const 0.3870 0.039 10.022 0.000 0.311 0.463
x1 0.3676 0.130 2.819 0.005 0.112 0.623

M TIME SERIES FOUNDATION MODEL: GPT4TS

We applied PPT to GPT4TS (Zhou et al., 2024), a time series foundation model that fine-tunes specific
layers of the GPT2 (Radford et al., 2019) architecture. GPT4TS employs patching on the original
time series sequences. However, we encountered limitations in fully exploiting PPT’s capabilities
with GPT4TS due to two primary factors: (1) GPT4TS, being based on a language model, assumes
a univariate patch sequence. Consequently, in the original paper, patches were concatenated along
the channel dimension for multivariate time series. This makes the use of feature-wise consistency
and contrastive learning from PPT inapplicable. (2) GPT4TS utilizes overlapping patch setups on
certain datasets, whereas PPT assumes non-overlapping patches. Overlapping patches can mix order
information between patches, potentially reducing PPT’s effectiveness. Given these constraints,
we reconducted the time series classification experiments on the 10 UEA multivariate benchmark
datasets using a non-overlapping patch setup, as described in the original paper. With GPT4TS, we
performed a grid search using weight combinations of [(0.1, 0.1), (0.1, 0.5), (0.5, 0.1), (0.5, 0.5)] to
balance the losses between the consistency and contrastive terms.
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Table 17: Comparison of Mask and Reconstruction pretext task (each with 10 and 40% masking ratio) and PPT
in self-supervised linear probing setup, using GPT4TS model.

Dataset Name Mask (10%) Mask (40%) PPT (Ours)

FaceDetection 67.5 67.4 66.4
SelfRegulationSCP1 91.8 92.5 93.2
EthanolConcentration 30.8 33.5 34.6
Handwriting 27.3 29.3 24.2
JapaneseVowels 97.6 97.6 98.4
Heartbeat 77.6 77.6 76.6
UWaveGestureLibrary 85.3 84.4 85.6
SpokenArabicDigits 98.5 98.5 98.1
PEMS-SF 69.9 76.3 82.1
SelfRegulationSCP2 57.2 56.7 56.1

Average 70.3 71.4 71.5

Tab. 17 shows the results for linear probing, where we compared PPT to mask and reconstruction
pretext tasks. Here, we first conducted self-supervised training with unlabeled training samples and
consequently fitted a logistic regression for linear probing. We compared our work against mask and
reconstruction pretext task with 10% and 40% masking ratio. We set all other hyperparameters and
architectures fixed to make results comparable. We show that PPT leads to an average accuracy of
71.5% which is better or comparable to mask and reconstruct pretext task.

Table 18: Supervised Experiment of GPT4TS (CE) and GPT4TS (CE+PPT) Performance

Dataset Name GPT4TS (CE) GPT4TS (CE+PPT) Performance Change (%p)

FaceDetection 67.6 68.2 +0.68
SelfRegulationSCP1 92.5 92.2 -0.34
EthanolConcentration 30.0 32.3 +2.28
Handwriting 29.6 31.1 +1.41
JapaneseVowels 98.6 99.7 +1.08
Heartbeat 75.1 76.1 +0.98
UWaveGestureLibrary 85.3 86.9 +1.56
SpokenArabicDigits 98.7 98.5 -0.23
PEMS-SF 81.5 86.7 +5.20
SelfRegulationSCP2 54.4 58.9 +4.44

Average 71.3 73.1 +1.71

We also carried out a supervised experiment in which we incorporate PPT into the cross-entropy min-
imization process. The results in Tab. 18 show that incorporation of PPT can lead to an improvement
in the performance of the average accuracy from 71.3% to 73.1%. In particular, this performance
gain was achieved solely by using time-wise consistency and contrastive terms. Consequently, we
anticipate further performance enhancements when PPT is integrated into time series foundation
models capable of considering patches in the feature dimension, such as PatchTST and PITS.
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