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ABSTRACT

Federated learning (FL) is a distributed learning paradigm that allows devices to
collaboratively train a shared global model while keeping the data locally. Due to
the nature of FL, it provides access to an astonishing amount of training data for
meaningful research and applications. However, the assumption that all of these
private data samples include correct and complete annotations is not realistic for
real-world applications. Federated Semi-Supervised Learning (FSSL) provides a
powerful approach for training models on a large amount of data without requir-
ing all data points to be completely labeled. In this paper, we propose FedAnchor,
an innovative method that tackles the label-at-server FSSL scenario where the
server maintains a limited amount of labeled data, while clients’ private data re-
main unlabeled. FedAnchor introduces a unique double-head structure, with one
anchor head attached with a newly designed label contrastive loss based on the
cosine similarity to train on labeled anchor data to provide better pseudo-labels for
faster convergence and higher performance. Following this approach, we alleviate
the confirmation bias and over-fitting easy-to-learn data problems coming from
pseudo-labeling based on high-confidence model prediction samples. We conduct
extensive experiments on three different datasets and demonstrate our method can
outperform the state-of-the-art method by a significant margin, both in terms of
convergence rate and model accuracy.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017) allows edge devices to collaboratively learn a shared
global model while keeping their private data locally on the device. There are nearly seven billion
connected Internet of Things (IoT) devices and three billion smartphones around the world (Lim
et al., 2020), potentially giving access to an astonishing amount of training data and decentralized
computing power for meaningful research and applications. Most existing FL works primarily focus
on supervised learning where the local private data is fully labeled. However, assuming that the full
set of private data samples includes rich annotations is unrealistic for real-world applications (Jeong
et al., 2020; Diao et al., 2022; Jin et al., 2020; Yang et al., 2021). Although for some applications
of FL, such as keyboard predictions, labeling data requires virtually no additional effort, this is not
generally the case.

Acquiring large-scale labeled datasets on the user side can be extremely costly. For example, a
large amount of unlabeled data is generated through interactions with smart devices in daily life,
such as pictures or physiological indicators measured by wearables. These volumes of data make it
impractical to mandate individual users to annotate the data manually. This task can be excessively
time-intensive for users, or they may lack the requisite advanced knowledge or expertise for accurate
annotation, particularly when the dataset pertains to a specialized domain such as medical data (Yang
et al., 2021). The complicated process of annotation results in most user data remaining unlabeled,
further leading to the conventional FL pipeline being unable to conduct supervised learning. Recent
studies of self-supervised learning in FL attempt to leverage unlabeled user data to learn robust
representations (Gao et al., 2022; Rehman et al., 2022; 2023). However, the learned model still
requires fine-tuning on labeled data for downstream supervised tasks.
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Figure 1: (left) Pipeline of FedAnchor with pseudo labeling and anchor data on the server. Anchor embeddings
are only transmitted to the clients during downstream communication. (right) Pseudo labeling accuracy with
5000/2500/1000 anchor data on CIFAR10/CIFAR100/SVHN datasets, respectively.

Compared to FL environments, centralized data annotation is more straightforward and precise in
data centers. Even in low-resource contexts (e.g., medical data), the task of labeling limited data
stored on the server by experts would not demand substantial effort. The integration of semi-
supervised learning (SSL) (Chapelle et al., 2009; Yang et al., 2022; Sohn et al., 2020; Berthelot
et al., 2019) with FL can potentially leverage limited centralized labeled data to generate pseudo
labels for supervised training on unlabeled clients. Existing work (Jeong et al., 2020; Zhang et al.,
2021b) attempted to perform SSL by using off-the-shelf methods only, such as FixMatch (Sohn
et al., 2020), MixMatch (Berthelot et al., 2019) in FL environments. Although these methods provide
certain model convergence guarantees during the FL stage, they cause heavy traffic for data commu-
nication due to their per-mini-batch communication protocol. Another recent work, SemiFL (Diao
et al., 2022), improves the training procedure by implicitly conducting entropy minimization. This
is achieved by constructing hard (one-hot) labels from high-confidence predictions on unlabeled
data, which are subsequently used as training targets in a standard cross-entropy loss. However,
it is argued that using pseudo-labels based on model predictions might lead to a confirmation bias
problem or overfitting to easy-to-learn data samples (Nguyen & Yang, 2023). In addition, the exist-
ing methods typically establish a pre-defined threshold, generally set relatively high, to retain only
samples with very high confidence. This might lead to slow convergence issues, especially during
the beginning of training when there are very limited samples satisfying the threshold.

In this paper, we propose an enhanced federated SSL method, dubbed FedAnchor - a newly designed
label contrastive loss based on the cosine similarity metric to train on labeled anchor data on the
server. In this way, instead of retaining the high-confidence data through solely model prediction in
the conventional SSL studies, FedAnchor for-the-first-time generates the pseudo labels by comparing
the similarities between the model representations of unlabeled data and label anchor data. This
provides better quality pseudo-labels as shown in Fig. 1 (right), alleviates the confirmation bias,
and reduces over-fitting easy-to-learn data issues. Our contributions are summarized as follows:
1) we propose a unique pseudo-labeling method FedAnchor for SSL in FL, which leverages the
similarities between feature embeddings of unlabeled data and label anchor data; 2) we design a
novel label contrastive loss to further improve the quality of pseudo labels; 3) we perform extensive
experiments on three different datasets having different sizes of labeled anchor data and show that
the proposed methods achieve the state-of-the-art (SOTA) performance and faster convergence rate.

2 BACKGROUND

Federated Learning. Federated learning (FL) aims to collaboratively learn a global model while
keeping private data on the device. Let G be the global model and L = {lk}Kk=1 be a set of local
models for total K clients. We consider a C class classification problem defined over a compact
space X and a label space Y = [C] = {1, ..., C}. Let f : X → S maps x to the probability simplex
S, S = {z|

∑L
i=1 zi = 1, zi ≥ 0,∀i ∈ [C]} with fi denoting the probability for the ith class.

f is parameterized over the hypothesis class w, which is the weight of the neural network. L(w)
is the loss function. FL training follows communication rounds. During each round t, the server
broadcasts the current global model Gt to selected clients. Then, the selected clients train the model
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using the local dataset and send the updated local model Lt+1
i to the server. The server can then

aggregate the local models using techniques, e.g. FedAvg (McMahan et al., 2017).
Semi-Supervised Learning. Semi-supervised learning (SSL) is a general problem of learning
with partially labeled data, especially when the amount of unlabeled data is much larger than la-
beled ones (Zhou & Li, 2005; Rasmus et al., 2015). The standard SSL method involves giving
unlabeled data pseudo-labels (Lee et al., 2013) and then using these pseudo-labels as hard labels for
supervised training. For methods such as MixMatch (Berthelot et al., 2019) and FixMatch (Sohn
et al., 2020), the pseudo-label is only retained if the model produces a high-confidence prediction,
and then training involves implementation of different strong augmentation methods.
Federated Semi-Supervised Learning. Federated semi-supervised learning (FSSL) represents
the federated variant of SSL. In this context, the data stored on the client side may or may not
be labeled. Given a dataset D = {xi, yi}Ni=1, D is split into a labeled set S = {xi, yi}Si=1, which
will be called Anchor Data in our paper; and an unlabeled set U = {xi}Ui=1 as in the standard
semi-supervised learning. Taking the off-the-shelf SSL method and directly applying it to FL can-
not achieve communication-efficient FL training. For example, techniques such as FixMatch (Sohn
et al., 2020) or MixMatch (Berthelot et al., 2019) require each mini-batch to sample from both la-
beled and unlabeled data samples with a carefully tuned ratio, which is impossible to achieve in
the FL settings. FedMatch (Jeong et al., 2020) splits model parameters for labeled servers and un-
labeled clients separately. FedRGD (Zhang et al., 2021b) trains and aggregates the model of the
labeled server and unlabeled clients in parallel with the group-side re-weighting scheme while re-
placing the batch normalization (BN) to group normalization (GN) layers. Liu et al. (2021) and Saha
et al. (2023) considered the case when there are both labeled and unlabeled data at clients in the real
medical settings; imFed-Semi (Jiang et al., 2022) conducts the client training by exploiting class
proportion information; FedoSSL (Zhang et al., 2023) proposes a framework tackling the biased
training process for heterogeneously distributed and unseen classes; FedSiam (Long et al., 2020)
integrates a siamese network into FL, incorporating a momentum update to address the non-IID
challenges posed by unlabeled data; FedIL (Yang et al., 2023) employs iterative similarity fusion
to maintain consistency between server and client predictions on unlabeled data, and utilizes in-
cremental confidence to construct reliable pseudo-labels. SemiFL (Diao et al., 2022) combines the
centralized semi-supervised learning method MixMatch (Berthelot et al., 2019) and FixMatch (Sohn
et al., 2020) together with an alternate training scheme to achieve the current SOTA performance.
FedCon (Long et al., 2021) borrows the idea of using two models from BYOL (Grill et al., 2020)
without implementing any contrastive loss, despite the name. Instead, they use a consistency loss
between two different augmentations to help clients’ networks learn the embedding projection. Both
SemiFL and FedCon serve as baselines in our paper.
Latent Representation. The great success Neural Networks (NN) have achieved since their in-
troduction is to be adjudged to their capability of learning latent representations of the input data
that can eventually be used to learn the task they have been designed for. The set containing this
latent information is often referred to as latent space, which can also be the subject of topological
investigation (Zaheer et al., 2017; Hensel et al., 2021). Many theoretical studies have highlighted
the importance of such representations as they are explicitly identified in many settings, e.g. the
intermediate layers of a ResNet architecture (He et al., 2016), the word embedding space of a lan-
guage model, or the bottleneck of an Autoencoder (Moor et al., 2020). More recently, the research
community focused on investigating the quality of the latent space as well-performing networks
have shown similar learned representations (Li et al., 2015; Morcos et al., 2018; Kornblith et al.,
2019; Tsitsulin et al., 2019; Vulić et al., 2020). The most audacious attempt to leverage the struc-
ture of different latent spaces is presented in (Moschella et al., 2022), which provided interesting
observations regarding the structure of different latent spaces learned by diverse training procedures
to achieve zero-shot model stitching. Other methods, such as those proposed in (Lee et al., 2018;
Zhang et al., 2021a; Li et al., 2021), also used latent representation for tackling problems around
noisy labels and data. However, such analyses or methods were never extended to a semi-supervised
learning or federated learning context.

3 METHODOLOGY: FedAnchor

In this section, we present our method FedAnchor (Fig. 1) in detail. FedAnchor aims to fully utilize
the information embedded in the anchor dataset stored on the server to provide better pseudo-labels
for unlabeled private client’s data to be trained on supervised tasks. We propose a novel label
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contrastive loss combined with cosine similarity metrics to extract the anchor information in the
latent space. The section is organized as below: we detail the new label contrastive loss in Section
3.1; we then explain in Section 3.2 how to obtain the pseudo label in our methods; then it is followed
by the algorithm of local training on the client side in Section 3.3 and the server training using anchor
data in Section 3.4. The pseudo-code of the FedAnchor is summarized in Algorithm 1.

3.1 LABEL CONTRASTIVE LOSS

One of the main novelties of our method lies in introducing new label contraction loss on the latent
space. As mentioned in the background section (Section 2), the latent space contains important
representations that can be identified and utilized in many settings. In our case, the latent space can
be the output of any pre-defined layers in the neural network.

We propose to have a double-head structure for the model, with one head (classification head)
consisting of the original classification layers and the other (anchor head) consisting of a projection
layer to the latent space to reduce the previous embedding dimension. The anchor head is crucially
designed for the new label contrastive loss that we propose below. This structure is model agnostic
and can be implemented in all the deep learning model architectures used for a classification task.

We define the xm to be the unlabeled data samples on clients m; (xanchor, yanchor) be the labeled
anchor data; zm be the output of the latent space/anchor head for the unlabeled client data, and
zanchor be the output of the latent space/anchor head for the anchor data. Hence, z represents the
latent representation of any given data. Also, we let ŷ denote the pseudo-label for unlabeled data.

The objective is to map the zanchor of the same label to the same localized region in the latent
space while forcing data with different labels to be far from each other. We let si,j be the similarity
function between data sample xi and xj in the latent space (zi,zj). Cosine similarity is used in our

case: szi,zj =
zT
i zj

∥zi∥∥zj∥ .

Then, we propose our new label contrastive loss as in eq. 1 and 2. The label contrastive loss is
defined on a batch of anchor data samples. Given a batch of anchor data, we calculate the l(c) for
each label class, then sum up all label classes to obtain the final label contrastive loss value.

l(c) = − log

∑
y(i),y(j)=c exp(szi,zj/τ)∑
y(i)̸=y(j) exp(szi,zj/τ)

(1)

Lc =
1

C

C∑
c=1

l(c) (2)

where τ is the temperature hyper-parameter that can be tuned. The label conservative loss aims to
maximize the similarities between samples with the same labels while minimizing the similarities
between samples with different labels. The proposed loss will eventually force data samples with
the same label to be projected in the same localized region of the latent space while forcing regions
referring to different labels to be far from each other.

3.2 PSEUDO-LABELING USING ANCHOR HEAD

We present our pseudo-labeling method by describing the steps composing one communication
round, which will be iterated during the FL process. At the communication round t, the server selects
a subset of clients to participate with participation ratio r in the current federated round. The server
will then broadcast the model parameters (wt) and the latent anchor representations ({zanchori }Si=1)
to the selected clients. The anchor latent representations are the output of the anchor head, which is
used for generating the hard pseudo-label during training.

After receiving the current model weights and anchor latent representations, each client m first
compute the latent representation of each local data ({zmi }i). Then, it compares zmi to each anchor
latent representation ({zanchori }Si=1) to obtain the pseudo-label by computing the cosine similarity
between zmi and each anchor latent representation. The scores obtained from this comparison are
averaged by label, i.e. cosine similarities relative to anchor latent representation from anchor samples
with the same label are averaged. The pseudo-label is the label that provides the maximum score.
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Let Zanchor
c = {zanchori , yanchori = c} be the set of anchor latent representation with label c. Then,

the average cosine similarities between zmi and each Zc can be computed. Let savg be the average
similarities of a data input compared with anchor data. In particular, savgc (zmi ) be the average cosine
similarities between unlabeled data latent representation zmi compared with each anchor data with
label class c. The value of savgc (zmi ) can be calculated as:

savgc (zmi ) =
1

|Zanchor
c |

∑
zk∈Zanchor

c

s(zmi , zk), (3)

Subsequently, to obtain the pseudo-label ŷmi for each local data, we need to find the label class that
produces the maximum savgc (zmi ):

ŷmi = argmax
c∈[C]

(savgc (zmi )). (4)

3.3 LOCAL TRAINING

After obtaining the pseudo-labels (ŷm) for the local data, each local client will then construct a high-
confidence datasetDfix

m , which is called the fix dataset inspired by FixMatch (Sohn et al., 2020) and
SemiFL (Diao et al., 2022). The fix dataset is defined to be the set of data samples with the similarity
scores above the preset threshold t:

Dfix
m = {(xm

i , ŷmi ) s.t.max(savgc (zmi )) > t}. (5)

The current local training will be stopped if some clients have an empty fix dataset. Otherwise, we
then will sample with replacement to construct a mix inspired by MixMatch (Berthelot et al., 2019)
as below:

Dmix
m = Sample|Dfix

m | with replacement from {(xm
i , ŷmi )} (6)

where |Dfix
m | represents the size fix dataset, and in this case |Dfix

m | = |Dmix
m |.

During local training with a nonempty fix dataset, the loss function L consists of two parts: Lfix

and Lmix. Lfix is calculated as in standard supervised training with mini-batch sampled from the
fix dataset, but attaching strong augmentation A(·) on each data input:

Lfix = l(f(A(xfix
b ), ŷfixb ). (7)

where l is the loss function, such as cross-entropy loss for classification tasks.

In addition, the mix loss Lmix is computed following the Mixup method. Client m constructs a
mixup data sample from one fix data xfix and one mix dataset xmix by:

λmix ∼ Beta(a, a), xmix = λmixx
fix + (1− λmix)x

mix, (8)
where Beta(a, a) represents the beta distribution and a is a mixup hyperparameter, and the mix loss
is calculated as:

Lmix = λmix · l(f(α(xmix, ŷ
fix)) + (1− λmix) · l(f(α(xmix, ŷ

mix)), (9)
where α(·) represents weak augmentation of data samples. A single local epoch of a client m
corresponds to applying as many local SGD steps on the combined loss as the number of batches it
has in Dmix

m :
Lcombine = Lfix + bLmix, (10)

where b can be a linear combination coefficient and set to be 1 as default.

Finally, after operating for E local epoch, client m returns the updated model parameters to the
central server to finish the local training.

3.4 SERVER TRAINING

We aim to use the labeled anchor data on the server as training data for supervised and label con-
trastive loss to leverage the information they carry fully. Training at the server on the labeled data is
not novel as SemiFL (Diao et al., 2022) performs this dubbing alternate training procedure. How-
ever, by comparison, FedAnchor trains on the anchor data at the server in two epochs: one for the
supervised classification loss and one for the label contrastive loss. Let Ls be the supervised training
loss, such as the standard cross-entropy loss for the classification task, andLc be the label contrastive
loss described in Section 3.1. Therefore, the server will train for one epoch on the classification head
by minimizing the loss Ls and for one epoch on the anchor head by minimizing the loss Lc.
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Algorithm 1 FedAnchor: Let N be the total number of clients, with total n data samples; (xm) be the
unlabeled data in client m; (xanchor, yanchor) be the labeled anchor data in the server; zm be the output of the
latent space for the unlabeled client data, and zanchor be the output of the latent space for the anchor data; we
let ŷ be the pseudo-label for unlabeled data; E be the number of local epochs; r be the participation ratio of
clients in each round; wt be the aggregated weights at round t; C be the total number of labels; Zanchor be the
set of anchor latent representation; ηclt and ηser be the client and server learning rate respectively.

procedure SERVER EXECUTES
Initialize the model weight w0

for t = 1,...,T do
Mt ← random select (rN) number of clients
compute Zanchor

for each m ∈Mt do
wm

t+1 ← ClientUpdate(k,wt, xm, Zanchor)

wt+1 ←
∑

m∈Mt

nm∑
nm

wm
t+1

wt+1 ← ServerUpdate(wt+1)
procedure CLIENTUPDATE(k,wt, xm, Za)

ŷm ← PseudoLabel(xm, Za)
create fix dataset: Dfix

m = {(xm,i, ŷm,i) s.t. max(sa(zm,i)c) > t} (eq. 5)
if Dfix

m ̸= ∅ then
create mix dataset: Dmix

m =Sample |Dfix
m | with replacement from {(xm,i, ŷm,i)} (eq. 6)

else
terminate ClientUpdate

for local epoch e = 1, ..., E do
Lfix = l(f(A(xfix

b ), ŷfixb ) (eq. 7)
λmix ∼ Beta(a, a), xmix = λmixx

fix + (1− λmix)x
mix (eq. 8)

Lmix = λmix · l(f(α(xmix, ŷ
fix)) + (1− λmix) · l(f(α(xmix, ŷ

mix)) (eq. 9)
Lcombine = Lfix + bLmix (eq. 10)
wm

t+1 ← wt − ηclt∇Lcombine

procedure PSEUDOLABEL(xm, Za)
create label specific anchor projected set: Zanchor

c = {zanchori , yanchori = c},∀c ∈ [C]
savgc (zmi ) = 1

|Zanchor
c |

∑
zk∈Zanchor

c
s(zmi , zk) (eq. 3)

ŷmm = argmaxc∈[C](s
avg
c (zmi )) (eq. 4)

procedure SERVERUPDATE(wt+1)
compute supervised loss Ls = l(f(A(xa), ya)
wt+1 ← wt+1 − ηse∇Ls

l(c) = − log
∑

y(i),y(j)=c exp(szi,zj /τ)∑
y(i)̸=y(j) exp(szi,zj /τ)

(eq. 1)

Lc =
1
C

∑C
c=1 l(c) (eq. 2)

wt+1 ← wt+1 − ηse∇Lc

3.5 POSSIBLE ADDITIONS

There are potentially some extensions that can be added to the above-described FedAnchor method.
One addition can be made to the supervised training on the server. Instead of only using strong
augmentation, we can implement the same idea of fix and mix dataset with loss function as explained
eq. 10. The mixup method trains a neural network on convex combinations of pairs of examples and
their labels with coefficients generated by the beta distribution, which can improve the robustness
of the model and utilize the limited labeled data. In this case, the fix dataset will be the full anchor
dataset, and we sample from the full anchor dataset with replacement to form the mix dataset.

Additionally, at the pseudo-labeling stage (Section 3.2), instead of feeding the raw and original unla-
beled training data, we can borrow the idea of consistency regularization and pseudo-label ensembles
techniques (Bachman et al., 2014; Sajjadi et al., 2016) to weakly augment the unlabeled training data
(α(xm

i )) for a few times and then take the ensembles to generate more robust pseudo-labels.
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Table 1: Comparison of FedAnchor with the SOTA methods and fully supervised baseline. FedAnchor (mix)
represents the experiments conducted using FedAnchor, but the supervised training on the server with anchor
data is replaced with the mixup method explained in Section 3.5. Supervised models are trained with standard
FL procedure without pre-training on anchor data.

Datasets CIFAR10 CIFAR100 SVHN

Number of anchor data 250 500 5000 2500 10000 250 1000

IID (Dir = 1000)

Supervised 89.45±0.47 89.73±0.09 89.07±0.22 61.84±0.17 60.56±0.13 95.38±0.03 94.87±0.53

FedCon 34.94±0.43 50.81±3.21 74.95±1.26 32.84±0.40 50.05±0.34 54.83±2.77 83.92±1.03

FedAvg+FixMatch 33.98±1.77 49.18±2.33 75.42±0.73 32.31±0.83 49.15±0.57 43.61±0.64 81.65±1.83

SemiFL 77.82±0.49 81.19±0.35 75.46±0.19 48.20±0.63 63.68±0.16 91.55±0.77 90.11±1.17

FedAnchor 80.36±0.18 85.94±0.11 83.52±0.41 50.79±0.27 62.02±0.24 91.74±0.41 92.77±0.11

FedAnchor (mix) 82.82±0.21 85.87±0.25 84.43±0.36 51.34±0.07 63.99±0.39 87.46±0.63 92.71±0.54

Non-IID (Dir = 0.1)

Supervised 75.42±5.64 77.96±2.55 77.99±1.24 50.87±1.64 48.68±5.32 87.48±4.78 89.55±0.14

FedCon 38.46±0.42 51.57±1.34 76.38±1.36 32.00±0.46 48.61±0.56 50.86±1.50 83.40±1.89

FedAvg+FixMatch 39.10±0.17 49.92±2.49 73.17±1.33 34.43±0.87 49.53±0.56 47.09±1.31 76.83±3.26

SemiFL 58.82±0.72 68.96±0.98 72.12±0.35 42.41±0.47 59.72±0.31 68.97±13.24 87.21±1.66

FedAnchor 60.19±0.32 72.75±0.63 81.37±0.31 43.50±0.13 59.96±0.40 77.42±0.55 90.20±0.56

FedAnchor (mix) 62.94±0.52 73.02±0.31 83.59±0.46 46.39±0.36 61.01±0.06 60.30±5.34 87.28±0.08

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Federated datasets. We conduct experiments on CIFAR-10/100 (Krizhevsky et al., 2009) and
SVHN (Netzer et al., 2011) datasets. The datasets are randomly split into labeled anchor data and
unlabeled clients’ data. To make a fair comparison, we set the number of labeled anchor data sam-
ples for CIFAR-10/100 and SVHN datasets to be {250, 500, 5000}, {2500, 10000} and {250, 1000}
respectively, according to popular SSL setups (Sohn et al., 2020; Berthelot et al., 2019). To simulate
a realistic cross-device FL environment using the rest of the data, we generate IID/non-IID versions
of datasets based on actual class labels using a Dirichlet coefficient Dir (Reddi et al., 2021), where
a lower value indicates greater heterogeneity. As a result, the datasets are randomly partitioned into
100 shards with Dir = 1000/0.1 for both IID/non-IID settings.

Training hyper-parameters. We select ResNet-18 as the backbone model for all datasets, with the
anchor head set to be a linear layer with 128 dimensions. During each FL round, 10 clients are
randomly selected to participate in the training for 5 local epochs. The FL training lasts for 500
rounds. We increase the number of FL rounds to 800 only for the SVHN 250 anchor case as it
seems that 500 is insufficient for the baseline to converge. More details regarding hyperparameters
and baseline implementations can be found in Appendix A.1.

4.2 COMPARISON WITH SOTA

Table 1 shows the performance of our two FedAnchor’s methods along with the current SOTA
SemiFL (Diao et al., 2022), FedCon (Long et al., 2021) and the supervised baseline. First, FedAn-
chor achieves new SOTA in all settings and datasets (with some even outperforming the supervised
baseline). Specifically, training with a minimal number of anchor data samples (e.g. 250) can yield
satisfactory performance in IID FL settings on relatively simple datasets (CIFAR10 and SVHN).
Increasing the anchor data can drastically boost performance in the more challenging but realistic
non-IID setting. In undertaking more complex tasks like the CIFAR100 dataset, FedAnchor necessi-
tates a larger amount of anchor data to achieve elevated accuracy, as has been done in many previous
literature. Indeed, this condition is not difficult to meet as numerous labeled data, suitable to be used
as anchors, are stored in centralized data centers.

In addition, using the mixup method in the server training process obtains slightly enhanced perfor-
mance in most cases. This improvement is primarily attributable to the ample use of data, which
is advantageous for training a more robust model (Berthelot et al., 2019). Utilizing mixup method
locally on the client-side training can also boost the performance. This can also explain why some
FedAnchor results can be higher than the fully supervised performance, where no mixup is im-
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Figure 2: Performance on CIFAR10 test set with both IID and non-IID cases across different numbers of
anchor data setups, compared with the baseline.

plemented. Another reason that FedAnchor might achieve higher performance can result from the
alternate server training process. FL training with non-IID clients can be slow in convergence as
shown in many previous research (Li et al., 2020; Karimireddy et al., 2020), even with supervised
learning. However, with centralized anchor training, the divergence from the non-IID local datasets
might be alleviated every round, resulting in better performance.

Compared to the baseline SemiFL and FedCon, our methods provide more stable performance with
less standard deviation. Indeed, this proves beneficial when deploying this method in real-world
applications or industrial contexts. The experimental results for SemiFL under SVHN non-IID
with 250 anchor data is extremely volatile and slow to converge. It largely depends on the random
process, yielding much unstable accuracy. FedCon consistently under-performs in comparison to
SemiFL.

Furthermore, the rate of model convergence emerges as a critical concern in FL studies. A slow con-
vergence rate will result in high communication costs and significantly increase the training latency
and wall-clock time. Fig. 2 shows the model converging behavior of our proposed methods and the
SemiFL baseline. FedAnchor makes the faster convergence in all settings. For instance, in the CI-
FAR10 250 anchor data IID scenario, FedAnchor can obtain 60% accuracy within 180 rounds, while
SemiFL requires nearly 300 rounds to achieve the same performance. The convergence difference
is also significant in other datasets.

Additional plots for CIFAR100 and SVHN can also be found in Appendix A.2 Fig. 4 and Fig. 5
respectively. As mentioned in the experimental setup section, we increased the number of training
rounds for the SVHN 250 anchor case to 800 because 500 rounds are not enough for the baseline
to converge. For the SVHN 250 anchor case, FedAnchor can achieve 87.4% at round number 200,
while the SemiFL baseline still oscillates around 20% test accuracy level. We can see from Fig. 5
that the test accuracy of SemiFL oscillates around a similar level in the first 100 rounds.

Furthermore, FedAnchor only requires a minor amount of anchor data on the server to obtain ac-
ceptable performance. The major overhead in the pseudo-labeling procedure is the computation of
the n ∗ m cosine similarities, where n is the number of samples on the client and m those on the
server. Cosine similarity is well-known for being low complexity and highly optimizable (Novotnỳ,
2018). Such n∗m operations are independent and completely parallelizable. Also, the dimension of
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Figure 3: Comparison of pseudo-label accuracy with the classification head (used for pseudo-labeling in the
baseline) for different datasets/settings.

such vectors is a constant, 128 in the experiments, which is very small. As a result, it is feasible to
scale up. In addition, since the server is sharing anchor embeddings with selected clients, there will
be downstream communication overhead. We have computed the overhead as shown in Appendix
A.3, showing that the overhead is minimal in all cases.

4.3 PSEUDO LABELING QUALITY

The quality of pseudo-labels can largely determine the convergence rate of the training and its re-
sulting performance. As unlabeled client training data is trained with generated hard pseudo-labels,
with higher pseudo-label accuracy, the model can extract more useful information from the unlabeled
client data, hence convergence to better performance with a faster convergence rate. We measure
the quality of pseudo-labeling in two different aspects. We compare our pseudo-label accuracy with
one of the baseline (SemiFL) pseudo-label accuracy in Fig. 3 and earlier in Fig. 1 (right). Grey line
in Fig. 3 shows the pseudo-label accuracy of the baseline while the red line shows the pseudo-label
accuracy of FedAnchor. It is clear that FedAnchor produces significantly higher pseudo-label accu-
racy than the baseline. Hence, FedAnchor can achieve higher performance with a faster convergence
rate. Fig. 1 (right) shows the pseudo-label accuracy at the round number 100, demonstrating that the
FedAnchor can produce higher pseudo-label accuracy with a big margin.

4.4 ABLATION STUDIES

We conduct ablation studies on the naive implementation of FixMatch (Sohn et al., 2020), the cen-
tralized SOTA method, under the FL setups, as shown in Table 1, to show the effect of the label con-
trastive loss and the proposed pseudo-labeling. As mentioned in Section 2, the original centralized
setting of FixMatch requires sampling both labeled and unlabeled data per mini-batch. Therefore,
implementing FedAvg+FixMatch combines FixMatch locally on the client side and alternative train-
ing using anchor data on the server side. We can see from the Table that our method significantly
outperforms this baseline.

5 CONCLUSION

In this paper, we propose FedAnchor, which is a FSSL method enhanced by a newly designed
label contrastive loss based on the cosine similarity to train on labeled anchor data on the server.
In this way, instead of retaining the high-confidence data through solely model prediction in the
conventional SSL studies, FedAnchor generates the pseudo labels by comparing the similarities
between the model representations of unlabeled data and label anchor data. This provides better
quality pseudo-labels, alleviates the confirmation bias, and reduces over-fitting easy-to-learn data
issues. We perform extensive experiments on three different datasets with different sizes of labeled
anchor data on the server and show that the proposed methods achieve state-of-the-art performance
and a faster convergence rate. As for future direction, we are experimenting with a fixed threshold
during the pseudo-labeling using the anchor data stage. More advanced adaptively and dynamic
thresholding techniques can be implemented to potentially further improve the performance and
convergence rate.
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A APPENDIX

A.1 TRAINING HYPER-PARAMETERS

Before FL, the model is pre-trained on anchor data on the server for 5 epochs with SGD to speed up
the training process with a learning rate of 0.05. We use a learning rate of 0.03, a weight decay of
5e− 4, and an SGD momentum of 0.9 for both local training on the client side and anchor training
on the server side. The threshold is set to 0.6 for our method and 0.95 for the SemiFL baseline,
as indicated in the paper. We conduct three random experiments for all the datasets with different
seeds, and the performance is reported on the centralized test set. The hyperparameter for the beta
distribution of mixup (eq.8) is a = 0.75, and the linear coefficient combining fix loss and mix loss
b (eq. 10) is 1 for all experiments. We implement RandAugment (Cubuk et al., 2020) as a robust
augmentation method. Our implementation of FedCon (Long et al., 2021) is based on the original
GitHub repository (1) from which we extracted both the client and server training pipeline and put
them in our codebase. We replaced the original backbone with ours to perform a fair comparison.

We have also included the federated supervised training as one of the baselines. The supervised im-
plementation follows the standard experimental protocol as per previous papers (Reddi et al., 2021;
Qiu et al., 2022; Horvath et al., 2021), where no strong augmentation methods are implemented.

A.2 PERFORMANCE W.R.T. FL ROUNDS

In this section, we provide some additional plots for both CIFAR100 and SVHN.

Figure 4: Performance on CIFAR100 test set with both IID and non-IID cases across different numbers of
anchor data setups, compared with the baseline.

A.3 COMMUNICATION OVERHEAD

Table 2 shows the communication overhead of FedAnchor compared to standard supervised FL train-
ing. The overhead is only for downstream communication when extra anchor embeddings must be
sent from the central server to the selected clients. The overhead is calculated as the percentage com-
pared with the supervised FL training when only the model parameters are shared for downstream
communication.

1urlhttps://github.com/zewei-long/fedcon-pytorch
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Figure 5: Performance on SVHN test set with both IID and non-IID cases across different numbers of anchor
data setups, compared with the baseline.

Table 2: Downstream communication overhead of FedAnchor compared with supervised FL training. We
computed the overhead as the percentage of transmitted parameters that compose the anchors’ embeddings
over the number of the model’s parameters transmitted by FedAvg: Overhead = 100

dim(w̄)

∑S
i=1 dim(zanchor

i ),
where w̄ is the model transmitted by FedAvg. The upstream communication is the same as FedAvg, so there is
no overhead.

Datasets Anchor Size Overhead

CIFAR10
250 0.29%
500 0.57%

5000 5.73%

CIFAR100 2500 2.85%
10000 11.41%

SVHN 250 0.29%
1000 1.15%

A.4 FEDCON PLOT

Figure 6: Performance on CIFAR10 test set with both IID and non-IID anchor size 5000 case for FedCon.
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