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ABSTRACT

Federated learning (FL) is a distributed learning framework for collaboratively
training models with a privacy guarantee. Class imbalance problem is the main
problem in FL with heterogeneous clients. Besides, Label noise is also an inherent
problem in scenarios since clients have varied expertise in annotations. However,
the co-existence of heterogeneous label noise and class-imbalance distribution in
FL’s small local datasets renders conventional label-noise learning methods inef-
fective. Thus, in this paper, we propose algorithm FEDCNI, including a noise-
resilience local solver and a robust global aggregator, to address the challenges
of noisy and highly-skewed data in FL without using an additional clean proxy
dataset. For the local solver, we first design a prototypical classifier to detect
noisy samples by evaluating the similarity between samples and prototypes. Then,
we introduce a curriculum pseudo labelling method with thresholds for different
classes cautiously from the noisy samples. For the global aggregator, We aggre-
gate critically by switching re-weighted aggregation from data size to noise level
in different learning periods. Experiments on real-world datasets demonstrate that
our method can substantially outperform state-of-the-art solutions and is robust in
mix-heterogeneous FL environments.

1 INTRODUCTION

The proliferation of smart devices such as mobile phones, cameras, and sensors has dramatically
expanded the perception and capabilities of numerous distributed devices, forming an increasingly
intelligent Internet of Things (Pandey et al., 2020) network. The massive data plays a key role in
generating powerful predictive models to provide better services to users. However, transferring
users’ data to the server poses a high privacy risk to service providers and mobile users and renders
traditional centralized training ineffective. Therefore, Federated Learning (FL) (McMahan et al.,
2017; Li et al., 2020; Acar et al., 2021) stands out as a promising solution that enables such collab-
orative training only by aggregating local models uploaded from clients without any data exchange.

In practical federated learning implementations on real heterogeneous networks, labels of local data
are often machine-generated or manually annotated. Nevertheless, clients have different domain
expertise and various human biases in annotation, resulting in inaccurate local labels and heteroge-
neous label noise among clients (Fang & Ye, 2022; Xu et al., 2022; Yang et al., 2022). It is shown
that the noisy labels result in overfitting and memorization of the noisy data (Arpit et al., 2017;
Zhang et al., 2021b), thus, causing catastrophic failure of deep neural networks (Han et al., 2018; Li
et al., 2019). Although there are many works tackling noisy-label learning problems in centralized
training, they are not effective in FL due to inherent challenges in FL. The most dominant chal-
lenge is the co-existence of label noise and class-imbalance distribution in clients’ local small data.
As we show in Figure 1, the small-loss technique (Li et al., 2019; Han et al., 2018; Jiang et al.,
2018), which is the most commonly used technique in noise detection of centralized learning, no
longer works when the client’s data has imbalanced class, noisy label, and small size. The small
dataset makes the model poorly generalized overall. Besides, the classifier learned directly from
class-imbalanced data is biased towards the majority class, which further leads to a poor generaliza-
tion of minority classes. Label noise cannot be detected using the sample loss produced by such a
biased classifier because both clean and noisy samples of the minority class have large losses and
low confidence, which is hard to distinguish. Other challenges, like data privacy and different noise

1



Under review as a conference paper at ICLR 2023

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Loss

0

50

100

150

200

250

C
ou

nt

Class0 clean
Class0 noise

(a) Small-loss on majority

1.6 1.8 2.0 2.2 2.4
Loss

0
2
4
6
8

10
12
14

C
ou

nt

Class1 clean
Class1 noise

(b) Small-loss on minority

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Distance

0
10
20
30
40
50
60
70

C
ou

nt

Class0 clean
Class0 noise

(c) Our on majority

0.60 0.65 0.70 0.75 0.80 0.85
Distance

0
2
4
6
8

10
12
14
16

C
ou

nt

Class1 clean
Class1 noise

(d) Our on minority

Figure 1: Illustration of noise detection results on small and class-imbalanced local datasets.
(a) and (b) show that the small-loss method is able to distinguish noisy samples in the majority class
but fails in the minority class. However, in (c) and (d), our proposed prototypical method can be
used to divide noisy and clean samples into both majority and minority.

levels across clients, are also crucial in noisy-label FL. Thus, effective methods need to be developed
in FL with noisy labels to tackle these challenges jointly.

There are some pioneer works addressing the problem of FL with noisy labels. However, the strong
assumptions or preconditions prevent them from being effective and general enough in practical
situations. Some works rely on clean proxy datasets on the server (Tuor et al., 2021; Chen et al.,
2020; Yang et al., 2021), clean public datasets held by all clients (Fang & Ye, 2022), or clean clients
without noisy labels (Xu et al., 2022). However, on one hand, clean datasets are not realistic since
collecting the clients’ data is forbidden in FL and annotating such a clean dataset requires huge
costs. On the other hand, the clean client assumption is not satisfied if the FL system is rather
heterogeneous. Besides, current methods are not tailored to solve the class-imbalance heterogeneity
in noisy-label learning, which makes them ineffective in mix-heterogeneous FL environments.

In this paper, we propose Federated Critical learning for Noisy and Imbalanced clients (FEDCNI)
to address the challenges of label noise and co-occurrence of class imbalance without additional
clean datasets in FL. We formulate the noisy-label FL as a bi-level problem that clients learn from
noisy data and server learns from noisy clients. Since the noisy data can cause catastrophic failure in
training and when the local dataset is small, the failure is more dominant, FEDCNI learns critically
and cautiously from the rare and noisy local data. FEDCNI detects the clients’ local noisy samples
and measures the noise levels of clients. Then it learns critically from the detected noisy samples
and aggregates critically according to the noise levels of clients.

Specifically, in FEDCNI, we devise a noise-resilience local solver and a robust global aggregator.
The noise-resilience local solver consists of two parts, namely, prototypical noise detection and
noise-resilience local loss. In the prototypical noise detection, we calculate the class prototypes in
each local epoch and use cosine similarity to distinguish samples with wrong labels. It is shown
that the prototypical technique is more effective than small-loss methods to detect noisy samples
in class-imbalanced data (Wei et al., 2021; 2022), and we find it also works in FL’s small local
datasets (shown in Figure 1). To avoid overfitting on majority classes and noisy data, we introduce
a dynamic threshold for pseudo labelling, considering the class’s noise level and quantity. Then, the
noise-resilience local loss is introduced to treat the clean and noisy samples differently for critical
learning. As to the global aggregator, a noise level re-weighted aggregation and data-size weighted
aggregation in different learning periods provide a balance between data quality and quantity. Our
contributions can be concluded as follows:

• We propose the FEDCNI tailored for tackling the joint challenge of noise label and class-
imbalance data in real-world FL scenarios.

• We craft a noise-resilience local solver and a robust global aggregator without offending clients’
privacy, extra communication overhead and additional monitor or proxy dataset, performing ro-
bustly in detection precision and other metrics.

• We conduct extensive experiments to show that our proposed approach outperforms state-of-the-
art FL methods on multiple datasets.

The rest of this paper is organized as follows. We introduce the related work of noisy-label federated
learning background in Section 2. The problem formulation is given in Section 3. The main algo-
rithm is presented in Section 4. In Section 5, experiments are conducted to evaluate the performance
of our method. Finally, Section 6 concludes this paper.
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2 RELATED WORKS

Heterogeneous Data in Federated Learning. Clients have Non-IID data distributions is an in-
herent problem in FL, which is also known as data heterogeneity. There are mainly two kinds of
heterogeneity in FL, one is label distribution shift, and the other is feature distribution shift (Li et al.,
2022). Label distribution shift results from a class-imbalanced local dataset for each client, and there
are a lot of works in FL that focus on designing effective algorithms to tackle this heterogeneity. Li
et al. propose FEDPROX with a proximal term on the client side so the model parameters obtained
by the client after local training will not deviate too much from the initial server parameters. FED-
DYN (Acar et al., 2021) adds a regularization term in local training based on the global model and
the model from previous rounds of communication to overcome device heterogeneity. Karimireddy
et al. propose SCAFFOLD to control variables for reducing client drift.

Noisy-label Federated Learning. There are some previous works that have concerned the FL with
noisy labels. Xu et al. propose multi-stage federated learning including noise client detection, noisy
sample detection and correction, and a vanilla FEDAVG (McMahan et al., 2017) phase. However,
their multi-step LID score calculations require a high computational complexity, and there are ex-
tensive hyper-parameters that need to be settled. They adopt the small-loss technique, which works
poorly in a class-imbalance scene. The method also requires clean clients, which is not realistic in
practice. Yang et al. introduce the exchange of class centroids between the server and clients to
give pseudo labels and generate loss based on similarity, which may threaten clients’ privacy due to
the direct transfer of class centroids. They also adopt the small-loss technique. Li et al. present a
robust aggregation with data quality and quality measurement. There are also some existing works
that rely on a clean proxy (benchmark) dataset on the server side. Tuor et al. upload local samples’
loss distribution to the server for noise detection by proxy dataset. The transmitted loss distribu-
tion can raise severe privacy concerns. Fang & Ye interchange model logits and analyze them by a
public dataset. The method lacks noise detection, only depending on KL divergence of knowledge.
Besides, the auxiliary public dataset is not available for the server and clients in real applications.

3 PROBLEM FORMULATION

We consider a typical federated learning scenario with a multi-class classification task. There are
K clients and overall N data samples in the training. Each client k ∈ {1, . . . ,K} holds a private
datasetDk = {(xk

i , y
k
i )}

nk
i=1, where xk

i is the input of the training sample, corresponding yki denotes
the given label, and the number of local samples is nk (

∑K
k=1 nk = N ). In the inaccurate annotation

scenario, yki ∈ {1, . . . , C} can be the same as the ground-truth label ȳki , or be different as a noise.
In FL, the global model θ aims to minimize the sum loss over all clients, formalized as

min
θ
L(θ) =

K∑
k=1

nk

N
Lk(θ), (1)

where Lk(θ) is the local loss on Dk for client k. It is formulated as

Lk(θ) =
1

nk

nk∑
i=1

Lce

(
yki ,P(θ;xk

i )
)
, (2)

where Lce is the cross entropy (CE) loss function and P(θ; :) is the prediction softmax given model
θ. FL algorithms solve the above optimization problem by iterating between the local training of
clients (initialized by the global model θ) and the global aggregation of clients’ models. Specifically,
client k updates the received global model (θk ← θ) by stochastic gradient descent (SGD) in each
iteration, defined as follows:

θk ← θk − η∇Lk(θk), (3)

where η refers to the local learning rate. The local training is conducted by E epochs. The central
server then aggregates the clients’ models by:

θ ←
K∑

k=1

nk

N
θk. (4)
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However, due to the existence of noisy labels, the optimization of minimizing loss leads to the model
overfitting on noisy labels. Aggregating these biased local models will make the global model with
poor generalization performance. Therefore, approaches for reducing the effect of noisy samples
are needed to achieve this optimization goal.

4 PROPOSED METHOD Algorithm 1: FEDCNI Algorithm
Input: Clients {1, . . . ,K}, local dataset

Dk = {(xk
i , y

k
i )}

nk
i=1, switching round Ts, global

round T .
Output: Gloabl model θT .
Initialize global model weights θ1; for t = 1, . . . , T do

for client k = 1, . . . ,K in parallel do
θtk ← θt;
for local epoch e = 1, . . . , E do

for class c = 1, . . . , C do
Calculate prototype pk,c via Eq. (5);

Calculate similarity cos(pk,c,F(θk;xk
i ))

between each sample and prototype;
end
Divide Dk into clean subset Ck and noise subset
Nk by GMM; Update τk,c by Eq. (7, 8);

for xk
i ∈ Nk do

Compute the pseudo-label
ỹk
i ← argmaxc({cos(pk,c,F(θk;xk

i ))}Cc=1); if
t ≥ Ts and cos(pk,ỹk

i
,F(θk;xk

i )) ≥ τk,c
then

yki ← ỹki ;
end

end
Obtain Lsum

k by Eq. (11,12,13);
θtk ← θtk − η∇Lsum

k (θtk);
end
Return |Ck|, |Dk|, θtk;

end
The server updates θt+1 by Eq. (14).

end

Our method FEDCNI consists of
three basic modules, the prototypi-
cal local noise detection, the noise-
resilience local loss, and the robust
global aggregator. The prototypical
local noise detection and the noise-
resilience local loss form the noise-
resilience local solver. The overall
pseudo-code is shown in Algorithm
1, and we will introduce the three
modules respectively.

4.1 PROTOTYPICAL
LOCAL NOISE DETECTION

In the local training phase, we ini-
tially conduct prototypical local noise
detection in each client, and it in-
cludes three steps. The first step is
to calculate the prototypes of each
class. Second, we calculate the co-
sine similarities between the samples
and the corresponding prototypes and
use Gaussian Mixture Model on these
similarities to detect noisy samples.
Third, given the detected noisy sam-
ples, we dynamically adjust the con-
fidences of classes and give pseudo
labels according to the confidence to
prudently learn from the noisy data.

Prototype Generation. The class
prototype pc is defined as a normalized mean of samples’ embeddings for the class c ∈ {1, . . . C}.
For client k, we can obtain its local prototypes as:

pk,c =
1

|Dk,c|
∑

(xk
i ,y

k
i )∈Dk,c

F(θk;xk
i ), (5)

where Dk,c denotes the samples given the label c in local dataset Dk and F(θk;xk
i ) refers to the

output embedding of sample xk
i given the model θk.

We note that previous works adopt prototype sharing from clients to server (Tan et al., 2022; Yang
et al., 2022) and it will violate the data privacy of clients. Whilst we compute the local prototypes
just for local noise detection for each client. Our local prototype solution is also effective in noise
detection and further safeguards client privacy.

Noise Detection. For client k, given a prototype of a class pk,c, we compute the embeddings of
the samples which are labelled as c. Intuitively, the embeddings of clean samples may have high
similarities to the prototype, while the noisy samples represent outliers in the embedding space.
Thus, we use a two-component Gaussian Mixture Model (GMM) in the similarities to distinguish
noisy and clean samples for each class. It is worth mentioning that there are two common similarity
measurements for the embeddings, based on Euclidean space (i.e. L2 distance) (Wei et al., 2021)
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and inner product space (e.g. cosine function) (Wei et al., 2022). The embeddings are usually high
dimensional (512 in our paper) and the inner product measurements are more effective when the
vectors have high dimensions. Thus, we adopt the cosine function as the similarity measurement.
The cosine similarity between a sample xk

i ∈ Dk and a prototype pk,c is given by:

cos(pk,c, x
k
i ) =

⟨pk,c,F(θk;xk
i )⟩

∥pk,c∥∥F(θk;xk
i )∥

. (6)

We can obtain class-wise similarity sets sk,c = {cos(pk,c, xk
i )|xk

i ∈ Dk,c} that contain the sim-
ilarities between the class prototype and the samples. We conduct local noise detection using a
two-component GMM in sk,c and obtain the noisy set with lower similarity Nk,c and clean set with
higher similarity Ck,c. Then the overall detected noisy set for client k is Nk =

∑C
c=1Nk,c, and the

clean set is Ck =
∑C

c=1 Ck,c. The noisy and clean sets are disjoint thatNk ∩Ck = ∅,Nk ∪Ck = Dk.

Curriculum Pseudo Labelling. Existing noisy samples may have a detrimental influence on opti-
mization and generalization. To address the noisy-label challenge in the small-size local data, we
tackle it from a semi-supervised learning view (Li et al., 2019; Zhang et al., 2021a; Cascante-Bonilla
et al., 2021). The detected noisy samples are regarded as unlabeled data, and we assign pseudo la-
bels to these samples. However, the class imbalance in the local data causes different difficulties
in labelling majority classes and minority classes. Intuitively, the majority classes are easier to dis-
cern and learn, so the labelling confidence is always high. At the same time, due to the rareness, the
model has bad memorization of the minority classes. Even though some noisy samples’ ground-truth
labels belong to a minority class, the labelling confidence is low. Inspired by the idea of curriculum
labelling in semi-supervised learning (Zhang et al., 2021a), we propose a novel curriculum pseudo
labelling method considering the noise level and data quantity of each class.

We define the dynamic threshold τk,c for each class c in client k. Every class c ∈ {1, . . . , C} has a
different level of noise and data size, therefore, τk,c is to describe the difficulty of learning this class.
First, we introduce the definition of learning difficulty ρk,c as:

ρk,c =

∑
(xk

i ,y
k
i )∈Ck,c

I(maxj(Pj(θk;x
k
i )) > τk,c) · I(argmaxj(Pj(θk;x

k
i )) = c)

|Dk,c|
, (7)

where P(θk;xk
i ) is the prediction softmax values and Pj(θk;x

k
i ) is the j-th indexed value of the

softmax. In Equation 7, the initial threshold τk,c is set as τ for all classes after the early phase of
training. In the equation, we quantify the learning difficulty ρk,c as a confident and clean sample
proportion for each class. Then, we normalize ρk,c to update the dynamic threshold τk,c, as:

τk,c =
ρk,c

max(ρk)
τ, where ρk = {ρk,c|c ∈ {1, . . . , C}}. (8)

We update ρk,c and τk,c iteratively as in Equation 7 and Equation 8 during local training.

Besides, we can also get the cosine similarities between one sample xk
i and all classes’ prototypes

{cos(pk,c,F(θk;xk
i ))}Cc=1, and we use these cosine similarities as the prototypical classifier to pre-

dict the pseudo labels for the detected noisy set Nk. Concretely, given a sample (xk
i , y

k
i ) ∈ Nk, the

pseudo label is as

ỹki = argmax
c

({cos(pk,c,F(θk;xk
i ))|c ∈ {1, . . . , C}}). (9)

According to the dynamic thresholds, if the cosine value of the pseudo label is higher than the
threshold, we assign the sample with the pseudo label, otherwise, we use its original label, as

yki =

{
ỹki , if cos(pk,ỹk

i
,F(θk;xk

i )) > τk,ỹk
i
,

yki , otherwise.
(10)

In practice, we find the accuracy of pseudo labelling is relatively low at the beginning (see Figure 9
of the appendix), so we set a switching round Ts1 : before Ts1 , we use the given labels for the noisy
samples, and after Ts1 , we use the pseudo labels as Equation 10. The experiment in Figure 9 of the
appendix verifies that this strategy can improve the generalization in the early training.
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4.2 NOISE-RESILIENCE LOCAL LOSS

Given the detected noisy samples and the corresponding pseudo label in Section 4.1, we now devise
the noise-resilience local loss to critically learn from the noisy data. The loss consists of two parts,
the first is the denoise mixup loss and the second is the prototypical similarity loss, and we treat the
detected clean and noisy samples differently in each loss. Note that unlike previous works in noisy-
label FL Xu et al. (2022); Fang & Ye (2022), we are not using the vanilla CE loss; we empirically
find that the simple CE loss will cause performance degradation in FL’s small, noisy, and imbalanced
local datasets; instead, our loss is robust and noise-resilience (evidence in Table 6 of the appendix).

Denoise Mixup Loss. Recall that Mixup (Zhang et al., 2018) is a data augmentation method that
mixes up the samples’ features and labels to generate new samples. Specifically, it generates new
sample (x̃, ỹ) by linear combination of randomly selected pairs of samples (xi, yi) and (xj , yj), as
x̃ = λxi + (1 − λ)xj , ỹ = λyi + (1 − λ)yj . Mixup has been proven to be effective in both semi-
supervised learning (Zhang et al., 2021a) and noisy-label learning (Li et al., 2019; Wei et al., 2021).
But we notice it has marginal gains in noisy-label FL. We think this is because the clients’ local data
are rare and the samples with wrong labels will have larger negative effects in the Mixup process.
Intuitively, randomly mixing up the wrong-label samples with other samples will generate more
noisy-label samples. Therefore, we propose a denoise Mixup loss to treat the noisy samplesNk and
clean samples Ck differently. Specifically, for the detected noisy samples, we mix them with the
samples from their corresponding class yki (in Equation 10) to reduce the effects of wrong labels,
while for the clean data, we adopt vanilla Mixup (i.e. randomly-mixed). Given a sample (x, y),
we use the notation (x̃, ỹ) to denote the corresponding-class-only Mixup strategy and the notation
(x̂, ŷ) to denote the randomly-mixed Mixup strategy. Thus, our denoise Mixup loss for client k is
formulated as

Lmix
k (θk) =

1

|Nk|
∑

(xk
i ,y

k
i )∈Nk

Lmix(θk; (x̃
k
i , ỹ

k
i )) +

1

|Ck|
∑

(xk
j ,y

k
j )∈Ck

Lmix(θk; (x̂
k
j , ŷ

k
j )). (11)

The denoise Mixup loss can improve the performance over vanilla Mixup and vanilla CE loss, and
the result is in Table 6 of the appendix.

Prototypical Similarity Loss. Moreover, we consider the similarity of a noisy sample and its pseudo
label’s prototype is also a learning point. According to experimental evaluations (the left figure in
Figure 9 of the appendix), we observe that the pseudo label precision is confident enough to reduce
the gap between a noisy sample and its corresponding prototype. Thus, we devise a prototypical
similarity loss for the noisy samples Nk.

Lsim
k (θk) =

1

|Nk|
∑

(xk
i ,y

k
i )∈Nk

(1− cos(pk,yk
i
,F(θk;xk

i ))). (12)

Overall, the noise-resilience loss of client k is the sum of the two mentioned losses, formulated as:

Lsum
k (θk) = Lmix

k (θk) + λsimLsim
k (θk), (13)

where λsim is a hyper-parameter controlling the strength of Lsim
k . Clients locally adopt SGD to

minimize Lsum
k and update model parameters. The local training procedures are repeated for E

epochs, and then the updated weights are sent to the server.

4.3 ROBUST GLOBAL AGGREGATOR

Learning with label noise has different training dynamics in the early and late. In the works of
generalization and memorization (Shen & Sanghavi, 2019; Chatterjee, 2019; Chatterjee & Zielinski,
2020), it is found that in the early training period, generalization takes place that the neural networks
learn the correct samples which have common patterns, while in the late training, the networks
memorize the noisy data and fail in generalization.

In FL with noisy labels, we found the learning periods are also important in aggregation1. By a
simple aggregation strategy switching, the overall performance can be further improved. We denote

1There is a previous work about critical learning periods in FL (Yan et al., 2021), but it is not about noisy-
label learning.
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Ts2 as the switching round for aggregation, and the learning periods can be divided into the early
(before round Ts2 ) and late (after round Ts2 ). During the early period, where mostly the general-
ization takes place, we adopt the data-size-based aggregation as FEDAVG. In the late period, where
bad memorization may occur, we cautiously aggregate clients’ model parameters according to the
noise levels. Hence, the robust global aggregator is:

θt+1 =

{∑K
k=1

|Dk|
N θtk, t < Ts2 ,∑K

k=1
|Ck|
M θtk, t ≥ Ts2 ,

(14)

where N =
∑K

k=1 nk is the sum of local data sizes, and M =
∑K

k=1 |Ck| is the sum of local clean
data sizes. The results in Figure 10 and Table 7 in the appendix validate that such a switching scheme
can improve overall convergence.

Recall that in Section 4.1, we use switching round Ts1 to determine the time for applying pseudo
labels to noisy samples. For simplicity, we set Ts = Ts1 = Ts2 . Generally, Ts is relatively small
compared with the number of all rounds T (e.g. Ts = 15, T = 100).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Datasets and Models. Our experiments are conducted on three datasets: CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009) and Clothing1M (Xiao et al., 2015). We follow the existing works and
apply Resnet-18 (He et al., 2016) for CIFAR-10, Resnet-34 for CIFAR-100, and Resnet-50 for
Clothing1M.

Data Partition and Noise Distribution. (i) We adopt a general Non-IID data partition by Dirichlet
distribution qkj ∼ Dirichlet(α) to allocate a portion of qkj of the samples in class k to client j.
We control the parameter α to adjust the degree of Non-IIDness. We consider α in {1, 0.7} for
experiments. (ii) To generate real-world noisy labels in heterogeneous FL environments, we allocate
a truncated Gaussian distribution χk ∼ g(χk;µ, σ, a, b) to formulate noise level for each client. The
limit is a = 0, and b = 1. We sample two groups of noise levels, a lower group is µ = 0.2, σ = 0.2,
and a higher noise level group is µ = 0.4, σ = 0.2. We sample once and fix the two groups of
noise ratios for experiments. We corrupt these datasets by two widely-used types of noisy labels:
symmetric flipping (Yang et al., 2022; Ghosh et al., 2017) and pair flipping (Han et al., 2018). More
details are in Appendix A.1.

Baselines. We compare FEDCNI with the following state-of-the-art methods in four groups: i)
general federated learning optimization methods: FEDAVG (McMahan et al., 2017), FEDPROX (Li
et al., 2020), FEDDYN (Acar et al., 2021) SCAFFOLD (Karimireddy et al., 2020); ii) a prototype
based federated learning solution: FEDPROTO (Tan et al., 2022); iii) methods designed for label
noise in centralized learning: CO-TEACHING (Han et al., 2018), DIVIDEMIX (Li et al., 2019), and
we construct a distributed implementation and a combination with FEDAVG; iv) FL methods to
tackle label noise without proxy datasets: FEDCORR (Xu et al., 2022), ROFL(Yang et al., 2022).

Implementation details. We use 20 clients fully participating in FL training in each round. We use
the SGD optimizer with a learning rate of 0.01 and momentum of 0.5 in all experiments. The entire
federated learning training process will last for 100 rounds to ensure convergence. We keep the
number of local epochs E = 5 and the local batch size as 100 in all experiments. For the switching
round, we set Ts = 15. The default confidence is set as τ = 0.5, the hyper-parameter λsim = 0.7.
We provide the hyper-parameters for baselines in Appendix A.1.

5.2 MAIN RESULTS

We compare FEDCNI with state-of-the-art methods in multiple noise types, noise ratios, and
imbalance levels. The results of CIFAR-10/100 are shown in Table 1. Table 3 shows the
results on the real-world dataset Clothing1M, which itself already contains real-world label
noise. In summary, FEDCNI achieves the best test accuracy in all noise settings tested
on the datasets, especially at high noise levels. For CIFAR-10, FEDCNI consistently out-
performs all baselines except FEDPROTO by at least 5%. To compare noisy-label learning
methods of centralized learning, we apply CO-TEACHING or DIVIDEMIX to each client.
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Table 1: Test accuracies (Top-1 %) on the CIFAR-10/100 dataset with symmetric and pair
flipping noises. Blue/bold fonts highlight the best baseline/our method.

Method

CIFAR-10 CIFAR-100
Symmetric Pair Symmetric Pair

µ = 0.2, σ = 0.2 µ = 0.4, σ = 0.2 µ = 0.2, σ = 0.2 µ = 0.4 , σ = 0.2 µ = 0.2, σ = 0.2 µ = 0.4, σ = 0.2 µ = 0.2, σ = 0.2 µ = 0.4 , σ = 0.2
α=1 α=0.7 α=1 α=0.7 α=1 α=0.7 α=1 α=0.7 α=1 α=0.7 α=1 α=0.7 α=1 α=0.7 α=1 α=0.7

FEDAVG 79.94 77.95 64.89 63.28 80.58 81.10 67.98 60.42 48.61 47.62 36.35 37.63 52.54 53.18 38.43 37.62
FEDPROX 79.25 77.75 66.21 64.12 79.63 80.46 62.30 63.54 48.2 47.58 37.22 36.6 52.93 52.24 39.26 38.13
FEDDYN 76.56 70.22 60.54 60.07 70.11 69.07 55.36 57.88 1.08 1.2 1.36 1.21 1.14 1.31 1.1 1.28
SCAFOLLD 79.15 77.87 63.79 66.29 80.29 79.26 61.12 61.84 49.45 47.73 36.79 36.46 54.01 51.16 38.92 39.01

FEDCORR 79.02 78.18 64.02 61.16 76.24 78.47 55.72 63.07 37.74 39.02 37.09 38.53 52.77 50.07 40.21 39.91
ROFL 80.59 81.71 65.27 65.92 81.37 80.22 72.21 65.32 47.71 48.09 45.5 48.09 47.15 46.49 44.83 46.72
FEDPROTO 82.11 80.87 72.16 71.93 80.09 82.36 61.67 69.74 55.83 55.2 45.84 44.78 59.78 58.11 45.29 44.28

Distributed CO-TEACHING 31.72 29.76 28.30 26.28 28.65 26.43 22.33 21.14 9.71 7.98 8.42 8.15 8.19 8.75 7.20 6.55
Distributed DIVIDEMIX 48.81 44.09 34.58 31.14 46.64 43.57 33.46 33.02 17.60 18.57 14.52 13.45 16.34 18.24 14.16 13.92
FEDAVG+CO-TEACHING 45.95 29.78 39.85 32.63 42.93 35.73 30.43 22.14 16.09 14.37 9.47 8.48 15.73 13.7 9.73 8.52
FEDAVG+DIVIDEMIX 80.23 79.68 65.17 60.72 74.15 76.13 54.31 54.19 39.28 37.18 30.06 28.69 45.25 44.37 35.12 27.05

Ours 86.62 84.38 78.02 78.45 86.13 82.37 72.16 71.04 62.13 56.42 54.37 50.29 61.33 59.14 53.07 50.42

Table 2: Best test accuracy of
different methods on CIFAR-
10 with 4 groups different
pair-flipping strategies.
Method\(µ, σ, αDir) (0.2, 0.2, 1)

FEDAVG 84.40
FEDPROX 84.95
FEDDYN 72.27
SCAFFOLD 84.87
FEDCORR 77.16
ROFL 85.32
FEDPROTO 86.45
FEDVAG+DIVIDEMIX 83.63
Ours 88.85

In most cases, the method using DIVIDEMIX has higher accuracy
and stability than CO-TEACHING. They all perform worse than fed-
erated learning baselines, which proves that a simple application of
CL methods is not proper. Besides, FEDAVG+CO-TEACHING has
difficulty in converging when the number of communication rounds
is limited. We also find that FEDPROTO, which aggregates updates
based on prototypes, also consistently surpasses the other baselines.
Prototype-based methods can thus be validated and can be more
effective in noisy environments. In CIFAR-100, Our FEDCNI also
shows effectiveness with 2% to 9% advantage. Our method shows
robustness regardless of the noise generated by the symmetric-flip
or pair-flip transformation matrices.

We further investigate a condition that clients adopt different pair-
flipping strategies in Table 2. Distinguished with the same mapping strategy for all clients, we divide
clients into four groups randomly. In each group, clients apply the uniform pair-flipping strategy.
The results show that the performances of all methods increase from 3% to 5%. Our method is
still state-of-art with 2% to 10% advantages. We infer that the uniform pair-wise flip for all clients
causes a global misunderstanding, while different strategies remix the labels randomly and enhance
the model generalization.

Table 3: Test accuracy on Clothing1M which naturally contains noise.
Dataset/ Method FEDAVG FEDPROX FEDDYN SCAFFOLD FEDCORR ROFL FEDPROTO CO-TEACHING DIVIDEMIX Ours

Clothing1M 68.34 69.85 70.55 69.36 72.4 73.31 70.52 69.83 70.1 74.26

5.3 MULTI-DIMENSION PERFORMANCES ANALYSIS

Convergence performance. As the results shown in Figure 2, we compare with FEDCORR, ROFL,
FEDAVG, and FEDAVG with clean data as an upper bound. Figure 2 (a, b) is conducted on the
condition of µ = 0.2, σ = 0.2, α = 1 in two types of noise. We can observe that our FEDCNI
continues to rise rapidly in rounds about 20 to 40 where baselines have reached their convergence at
lower accuracy. We infer that the start timing of our noise-level re-weighting and pseudo labelling
boosts the learning performance at these rounds.

Noise Detection performance. We investigate the performance of noise detection. As shown in
Figure 4 (a), we compare our method with FEDCORR and ROFL, where FEDCORR only detects for
limited times instead of every epoch. The results show that our method can outperform with 50%
higher than ROFL, 70% higher than FEDCORR. Our noise detection also improves along with
model learning. Besides, focusing precision is not comprehensive, because some clean samples may
be misclassified into the noise set. Thus, Figure 4 (b) gives the corresponding results of recalls. Our
method also shows 40% advantage over other baselines and also stabilizes with learning. We also
present results among clients in Figure 4 (c, d) in FEDCNI. Based on the difference between the
average and the highest, we can find that most clients are above or around the average, and very few
clients with extremely skewed data or high noise ratio are low.

Label correction performance. To verify the effectiveness of pseudo labelling, we further observe
the average accuracy between the given pseudo labels and ground-truth labels across clients. The
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Figure 2: Convergence performance. Experiments of rep-
resentative methods on CIFAR-10, and upper bound FEDAVG
with total clean data.
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Figure 3: Pseudo label accu-
racy performance. Experiments to
evaluate average pseudo label accu-
racy on CIFAR10
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(b) Recall
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(c) Ours Precision
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(d) Ours Recall

Figure 4: Noise detection precision and recall. Experiments to compare the ability of noise detec-
tion on federated learning with label noise baselines on CIFAR-10.

results in Figure 3 show that our prototypical local noise detection outperforms two federated noise
learning baselines. Our FEDCNI can stabilize at greater than 70% accuracy in label correction,
which is 10% to 20% higher than baselines. FEDCORR has high accuracy at the beginning, but
only correct labels for few times instead of every epoch and round. Besides, due to the failure of
small-loss method, two baselines may change the clean samples leading to unsatisfactory accuracy.

5.4 ABLATION STUDY

We conduct experiments to validate the effect of components in FEDCNI. We subtract each compo-
nent to observe the accuracy changes. All components help to improve accuracy where Mixup has
a greater impact. The fusion of noisy samples and clean samples in the same class results in the
bad memorization of the network. If the pseudo label is incorrect, the diverge of fusion images can
also be distinguished. Dynamic Confidence shows a smaller impact. We infer that it mainly helps to
provide a threshold for pseudo-labelling to improve pseudo-label precision and converge speed.

Table 4: Ablation study results

Method

CIFAR-10 Test Accuracy(%)
Symmetric Pair

µ=0.2, σ=0.2 µ=0.4, σ=0.2 µ=0.2, σ=0.2 µ=0.4 , σ=0.2
α=1 α=0.7 α=1 α=0.7 α=1 α=0.7 α=1 α=0.7

FEDAVG 78.69 76.32 65.33 64.15 81.56 81.66 68.4 60.11

Ours w/o Dynamic Confidence 85.02 84.09 76.94 77.92 85.94 81.59 71.97 70.61
Ours w/o Mixup 82.46 81.57 73.84 74.52 82.17 78.54 69.39 67.52
Ours w/o Distance Loss 86.5 84.96 78.2 76.28 85.6 82.37 70.86 71.36
Ours w/o Re-weight Aggregation 84.93 82.13 75.69 75.06 84.03 79.68 68.81 68.49

Ours 86.62 85.76 78.37 78.1 86.52 82.65 72.04 71.54

6 CONCLUSION

In this paper, we propose the FEDCNI, a novel federated learning method to tackle the label noise
in class-imbalanced data. To deal with the challenges, we present a bi-level solution that the clients
cautiously learn from noisy data, and the server critically aggregates from noisy clients. In FEDCNI,
the noise-resilience local solver use a prototypical method to detect and then correct local imperfect
annotations with dynamic confidence. While the robust global aggregator realizes the switching
between the data-size weighted aggregation and the noise-level re-weighted aggregation in different
learning periods. Extensive experiments demonstrate the effectiveness of the proposed mechanism.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Datasets and Models. Our experiments are conducted on three datasets: CIFAR-10, CIFAR-100
(Krizhevsky et al., 2009), and Clothing1M (Xiao et al., 2015). Clothing1M (Xiao et al., 2015) is
a real-world dataset that comprises 1 million training apparel images taken from 14 categories of
online shopping websites. It has real-world noisy labels.

Table 5: Summary of data sets used in the experiments.
Dataset CIFAR-10 CIFAR-100 Clothing1M

# of Training Dtrain 50,000 50,000 1,000,000
# of Testing Dtest 10,000 10,000 10,000
# of classes 10 100 14
image size 32 ×32 32 ×32 256 ×256

We follow the existing works and apply Resnet-18 for CIFAR-10, Resnet-34 for CIFAR-100, and
Resnet-50 for Clothing1M (He et al., 2016).

Noise Distribution. We consider the label noise in real-world is heterogeneous across clients. We
have χk as the noise level of a client which equals |Nk|

|Dk| . We assume the client’s noise level χk

initially has a Gaussian distribution χk ∼ ϕ(χk) =
1√
2πσ

exp(− (χk−µ)2

2σ2 ), where µ is the mean and
σ2 is the variance. Then we add a limit (a, b) to form a truncated Gaussian distribution as:

χk ∼ g(χk;µ, σ, a, b) =
1
σϕ(

χk−µ
σ )

Φ( b−µ
σ )− Φ(a−µ

σ )
, (15)

where Φ(·)is the cumulative distribution function. We sample two groups of noise level based on
truncated Gaussian distribution where we set a = 0, b = 1. We set a lower group as µ = 0.2, σ =
0.2, and a higher noise level group as µ = 0.4, σ = 0.2. We sample once and fix the two groups of
noise ratios for experimenting. We consider the two types of noisy labels:

• Symmetric flipping: All samples will be mislabeled as other labels with the same probabil-
ity (Yang et al., 2022; Ghosh et al., 2017). For each client, We sample a proportion of data, and
randomly replace their labels of a certain percentage of the training data with all possible labels.

• Pair flipping: A kind of asymmetric noise where mislabeled samples are annotated within very
similar classes (Han et al., 2018). (e.g. deer→horse, dog←→ cat). Our most experiments are
conducted on the same mapping strategy for all clients. We also investigate the condition of
different pair flipping strategies between clients.

Data Partition. In a realistic FL scenario, local datasets are usually Non-IID and frequently im-
balanced. We adopt a heterogeneous data partition by Dirichlet distribution qkj ∼ Dirichlet(α) to
allocate a portion of qkj of the samples in class k to client j. We control the parameter α to adjust the
degree of Non-IIDness. To generate the Non-IID data distributions on CIFAR10/100, we consider
Dirichlet parameter α in {1,0.7} in experiments.

Baselines. We compare FEDCNI with the following state-of-the-art methods in four groups: i)
general federated learning optimization methods: FEDAVG (McMahan et al., 2017), FEDPROX (Li
et al., 2020), FEDDYN (Acar et al., 2021) SCAFFOLD (Karimireddy et al., 2020); ii) a prototype
based federated learning solution: FEDPROTO (Tan et al., 2022); iii) methods designed for label
noise in centralized learning: CO-TEACHING (Han et al., 2018), DIVIDEMIX (Li et al., 2019); iv)
FL methods to tackle label noise without proxy datasets: FEDCORR (Xu et al., 2022), ROFL(Yang
et al., 2022).

Implementation details. We use 20 clients fully participating in FL training in each round. We
set SGD optimizer with learning rate of 0.01, and momentum of 0.5 in all experiments. The entire
federated learning training process will last for 100 rounds to ensure convergence. We always apply
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(a) α = 1, µ = 0.2, σ = 0.2, Symmetric-flip
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Figure 5: The example of the sizes and noises of samples per class allocated to each client.
The size of the circle represents the number of samples. The lighter color shows the size of clean
samples, and the darker color denotes the noisy sample quantity.

5 local epochs and 100 local batch sizes. For the end of the early phase, we use Ts = 15. The default
confidence is set as τ = 0.5, the loss parameter λsim = 0.7.

Hyper-parameters. For FEDPROX (Li et al., 2020), we set the proximal term µ as 0.01. For
FEDDYN (Acar et al., 2021), we tune the penalty coefficient α over {0.1,0.01,0.001},and display
the results of 0.1. DIVIDEMIX (Li et al., 2019) has some epochs for warm-up, we let it be 5 here.
We follow the default pthreshold = 0.5 to detect noisy samples as their original code. For fairness, in
ROFL(Yang et al., 2022), we set the parameter Tpl of the round to start using global guided pseudo
labelling as 15, which equals our Ts to adjust aggregation and start pseudo labelling. FEDCORR
(Xu et al., 2022) has three phases of learning, we form them to fulfil the uniform 100 global rounds
as iteration1 = 10, rounds1=20, and rounds2=70. There are some hyper-parameters not mentioned,
which are not needed to be adjusted. We all follow the original settings.

A.2 ADDITIONAL DETAILED EXPERIMENTS

Effects of data conditions on noise detection. We evaluate our method in three more specific
dimensions: noise level, data size and class imbalance degree. The results shown in Figure 6, 7, 8
provide the relation between noise detection precision/recall and one of dataset’s attributes. Firstly,
our FEDCNI achieves a confident noise detection accuracy in the view of each client in Figure 6
(a). We have shown another statistical view in Figure 4. Based on the average accuracy that is above
70%, and the tolerable worst performance, we can conclude that our prototypical noise detection is
robust in a noisy and skewed data condition. The performance of recall in Figure 6 (b) also shows
that not many clean samples are regarded as noisy samples. By observing Figure 6, 7, 8, we infer
that the trend between noise level and noise detection accuracy is equally significant with the trend
between imbalance degree and noise detection accuracy. And the data size has a minor impact on
detection accuracy, only if an extreme small quantity.

Effects of Mixup strategies. In the Section 4.2, we propose a denoise Mixup. There are two sig-
nificant baselines: vanilla Mixup and classic cross-entropy loss. We validate our proposed denoise
Mixup loss in Table 6. The mixture of noisy samples and clean samples with the same class enhances
our methods with 1.4% and 4% advantages over baselines.

Table 6: Test accuracies on different Mixup strategies.
Dataset/ Method FEDCNI FEDCNI with vanilla Mixup FEDCNI with CE loss

CIFAR10 86.62 85.23 82.46

Effects of the switching round Ts1. As motioned in Equation 10, we evaluate the effect of hyper-
parameter Ts1 in Figure 9. The switching round Ts1 is used to control the starting round of pseudo-
labelling. We record the accuracy of pseudo-labelling but do not apply new labels to noisy samples
before Ts1 in Left Figure 9. We can observe that the accuracy of pseudo labelling is relatively lower
than 65% before the switching round Ts1 = 15. It gradually stabilizes to be above 70% after the
utilization of pseudo labels. We suggest that in the early phase, the accuracy of pseudo labeling is not
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Figure 6: Noise detection precision and recall on clients’ noise levels.
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Figure 7: Noise detection precision and recall on clients’ data sizes.

confident enough, so we give pseudo labels after a better performance to enhance the generalization
of the model. We also compare Ts1 = 15 with Ts1 = 0 in Right Figure 9, where the pseudo labeling
begins since the training starts. We can find the converge speed and test accuracy of Ts1 = 0 are
both worse than a confident switching round.

Table 7: Test accuracies in terms of aggregation strategy in different learning periods.
Dataset/ Method FEDCNI FEDCNI-data-size FEDCNI-noise-level

CIFAR10 86.62 84.92 85.04

Effects of the aggregation strategy. We present a switching strategy for federated aggregation in
Section 4.3. To verify the effectiveness of our aggregator, we compare with (i) based on the sum
of local data sizes in the whole process;(ii) based on the sum of local clean data sizes in the whole
process. The results in Table 7 show that our aggregation strategy outperforms the two baselines
with 1% to 2% advantages. Such a switching strategy is indeed effective. We can also observe the
learning curve after the switching is always higher than the stable aggregation strategies in Figure 10.
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(a) Precision
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(b) Recall

Figure 8: Noise detection precision and recall on clients’ imbalance degrees.
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Figure 9: Left: the accuracy of pseudo labelling. Right: the training performances of whether
utilizing pseudo label since start. The red dotted vertical line refers to the switching round Ts1 in
FEDCNI.
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Figure 10: Training performances in terms of aggregation strategy in different learning pe-
riods. The red dotted vertical line refers to the switching round Ts2 in FEDCNI. FEDCNI-data-
size/FEDCNI-noise-level refers to using data-size-based/noise-level-based aggregation throughout
training in FEDCNI.
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