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ABSTRACT

A good teacher should not only be knowledgeable, but should also be able to
communicate in a way that the student understands – to share the student’s rep-
resentation of the world. In this work, we introduce a new controlled experi-
mental setting, GRADE, to study pedagogy and representational alignment. We
use GRADE through a series of machine-machine and machine-human teaching
experiments to characterize a utility curve defining a relationship between repre-
sentational alignment, teacher expertise, and student learning outcomes. We find
that improved representational alignment with a student improves student learn-
ing outcomes (i.e., task accuracy), but that this effect is moderated by the size
and representational diversity of the class being taught. We use these insights to
design a preliminary classroom matching procedure, GRADE-Match, that opti-
mizes the assignment of students to teachers. When designing machine teachers,
our results suggest that it is important to focus not only on accuracy, but also on
representational alignment with human learners.

1 INTRODUCTION

The proliferation of digital education resources and AI systems has enabled human and machine
teachers to reach potentially millions of students. For example, Massive Open Online Courses
(MOOCs) promised to revolutionize education by having top educators record lectures in their do-
main of expertise and make course materials widely accessible online for many learners. However,
this expert-first approach to online learning was not as effective and accessible as hoped for (Reich
& Ruipérez-Valiente, 2019), with courses delivered by local teachers often showing better outcomes,
in-person and online (Kelly, 2014). More recently, AI systems like ChatGPT have gained hundreds
of millions of users, many of whom are using them, or the educational applications they power, to
learn new subjects. While these systems can now outperform humans on some tasks (Strachan et al.,
2023; Van Veen et al.; Thirunavukarasu et al., 2024), their internal representations are not often
human-like (Fel et al., 2022; Muttenthaler et al., 2022), highlighting the distinction between domain
expertise and the ability to map knowledge into human-understandable spaces. This tension is nei-
ther new nor unique to AI; professors can also be experts in their fields that struggle to communicate
knowledge to students (Carter et al., 1987; Hinds et al., 2001). Yet many recent public education
proposals explicitly focus on increasing teachers’ domain expertise (e.g., Ontario, 2024), and much
AI research continues to focus on improving the expertise of the agents being developed. Under-
standing further factors of effective teaching can help determine strategies for improving outcomes
in classrooms.

We aim to bring together ideas from the burgeoning subfield of representational alignment (Su-
cholutsky et al., 2023b), machine teaching, and the cognitive science of pedagogy to shed light
on further improvements for classrooms. We propose that 1) representational alignment between
teachers and students, and 2) the size and diversity of the classroom, are both critical for deter-
mining the effectiveness of human and machine teaching (Figure 1B). To test this hypothesis, we
design a simple modular student-teacher cognitive task environment called “Grid Manipulation of
Representational Alignment and Domain Expertise” (GRADE) that enables the experimenter to
independently control the teacher’s expertise on the task, and the degree to which their representa-
tions of the task are similar to the student’s (Figure 1A). Through simulations and a study where
machines teach humans, we establish the relationship between teacher expertise, teacher-student
alignment, and student performance. We find that representationally aligned teachers with a high
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error rate on the underlying task can outperform highly accurate but representationally misaligned
teachers (Figure 1F). These results suggest that if a teacher adapts their representations to match the
student, then the student’s learning outcomes can significantly improve. We then extend our task
from a teacher interacting with individual students to interacting with a class of representationally
diverse students where the material they present is broadcasted to all students in the class (e.g., a lec-
ture; see Figure 1D) and determine that class size and representational diversity moderate the effect
of representational alignment on student outcomes (Figure 1G). Finally, we design a preliminary
classroom matching procedure, GRADE-Match, that takes into account representational alignment,
teacher expertise, and class size to optimize learning outcomes when assigning students to teach-
ers (Figure 1E). We find that it outperforms both random assignment and MOOC-style assignment
(Figure 1H). Our study emphasizes the importance of considering student-teacher representation
alignment – not just teacher expertise – in pedagogical settings. This is especially important for
designing AI thought partners that can think with us to help us grow (Collins et al., 2024) and tools
that help personalize suggestions to individual students (Wang et al., 2024).

GRADE: Grid Manipulation of Representational Alignment & Domain Expertise
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Figure 1: Overview. A: GRADE task; teacher and student receive misaligned grids (numbers only
represent re-arranged elements, participants do not see them). Teacher is shown all labels (shown
as colors) and reveals one per class to the student. Teacher’s error rate is controlled by mislabeling
their grid. B: Our hypothesized causal model. C: Dyadic interaction between a teacher and a
student. “Student-centric” teachers infer the student’s representations, making them fully aligned.
D: “Classroom” setting where teacher broadcasts examples to all students (who have individual
differences in representations); student-centric teachers jointly optimize over all students in the class.
E: “School” setting where teachers are matched with students; each student is matched with a single
teacher. F: Utility curve relating teacher error rate, representational alignment, and student accuracy
in simulations. G: Average accuracy and standard errors in a student-centric class as a function
of class size in simulations. H: Average accuracy and standard errors across a school achieved by
different matching procedures in simulations.
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2 GRADE: GRID MANIPULATION OF REPRESENTATIONAL ALIGNMENT
AND DOMAIN EXPERTISE

We designed a new controlled task domain, called GRADE, where stimuli are arranged on a grid
and labeled. Teachers know all the labels for the stimuli, though their expertise can be modulated by
corrupting the true labels to get teachers with varying accuracy. Students do not yet know the labels
but do see the stimuli. We focus on the setting where the teacher selects some labeled examples to
reveal to the student. The arrangement of the stimuli on the grid might vary between the student and
teacher, allowing us to manipulate representational alignment. We show an example of misaligned
grids with two labeled examples chosen by the teacher in Figure 1A. GRADE lets us use any stim-
uli that can be arranged on a grid (e.g., based on pre-set features, as in the “salient-dinos” case in
our human experiments, or even amortized embeddings). Here, we define representation alignment
with respect to stimuli locations on the student and teacher grids; that is, we compute the Euclidean
distance between pairwise swaps between stimuli. GRADE permits modularly-specifiable represen-
tation functions; we refer to Sucholutsky & Griffiths for a survey of a myriad of ways of measuring
representation alignment. Additionally, we focus on a one-shot case where the teacher makes one
round of selections. However, researchers can easily extend GRADE to multi-turn interactions.
Appendix C contains a theoretical formalism of our setting.

2.1 RQ1: DOES REPRESENTATIONAL ALIGNMENT AFFECT TEACHING OUTCOMES?
We begin to explore the relationship between representation alignment and student outcomes in two
settings. We instantiate GRADE with two kinds of stimuli that can be arranged on an N × N
grid with K underlying classes: simple-features (where each stimulus is only represented by its
(x, y) coordinates; see Figure 7) and salient-dinos (stick figure images with features varying based
on grid location). First, we simulate student-teacher interactions with simple 1-NN agents in the
simple-features setting. We then generalize these findings with real human learners in both tasks.
We include details of our teacher and student models, and our human experiment, in Appendix E.
Representational (mis)alignment in simulations. In Figure 1F, we trace out a relationship between
student-teacher representational alignment, teacher error rate, and student accuracy. We uncover in-
stances wherein students can achieve higher performance by learning from teachers who are more
erroneous (“less expert”) provided the teachers are representationally aligned with the students than
comparatively more expert but misaligned teachers, underscoring that it is not just the accuracy of a
teacher that matters for student learning outcomes. For a fixed teacher error rate, higher representa-
tional alignment is always better for a student (provided the error rate is not too high). We uncover
similar curves across grid sizes and the number of categories (see Appendix E).
Representational alignment of machine teachers and human students. We then generalize our
findings through human experiments with N = 480 participants (see Appendix E). We construct
a utility curve paralleling our simulations by post-hoc varying teacher error rate (see Appendix G).
We find in Figure 2 that across both tasks (simple-features and salient-dinos), generally, higher rep-
resentational alignment induces higher average student accuracy, and report correlations in Table 1.
We find that even large increases in teacher error rate can be offset by increasing representational
alignment (e.g., a teacher with error rate 0 and representational alignment of 0.3, has similar stu-
dent outcomes as a teacher with error rate 0.4 and representational alignment 0.8). However, we
note that the ordering of high representational alignment is less clear, particularly for the settings
where each class corresponds to a column. We posit that people have a strong prior against classes
being distributed as columns, and find that especially for the column conditions, participants would
often label using strategies that did not correspond to nearest neighbor classification (e.g., several
participants labeled in a way that corresponded to different types of tilings).

2.2 RQ2: HOW DOES CLASS SIZE AND STUDENT REPRESENTATIONAL DIVERSITY
MODERATE THE EFFECT OF REPRESENTATIONAL ALIGNMENT ON STUDENT OUTCOMES?

We have demonstrated that both a teacher’s representational alignment and their accuracy matter
for student outcomes. So far, our teachers have been self-centered; they use a single representa-
tion to select labeled examples. This approach suits machine teachers unable to adapt to specific
students but does not capture capabilities of adaptable human or future machine teachers. Addi-
tionally, classroom teachers often address multiple students with differing representations, making
example selection more complex. Here, we consider student-centric teachers who aim to maxi-
mize the average performance of a student pool by simulating likely student learning outcomes to
various selections in an “inner loop” optimization (see Appendix F). While our earlier findings
suggest student-centric teachers may enhance learning by becoming representationally aligned with
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Figure 2: Relating teacher error rate and representational alignment between machine teachers and
human students to student accuracy. From left to right: simple-features one class per quadrant;
salient-dinos one per quadrant; simple-features one class per column (6); salient-dinos one class per
column (7). Format follows Figure 1F.

students, we hypothesize that this effect will be moderated by the group’s size and representational
diversity, since teachers must optimize for all students simultaneously.
Setup We extend GRADE to investigate classrooms of varying sizes. Because we sample students
for each class from the same pool of representationally diverse students (Appendix F), increasing
classroom size will generally increase representational diversity.
Results We investigate the relationship between classroom size and student performance by sam-
pling teachers with a range of error rates (between 0 and 0.5 in increments of 0.1) and classroom
sizes (10 seeds per setting). Each student-centered teacher optimizes for their class through T = 100
inner loop iterations. We then marginalize over our sampled error rates to compute an expected aver-
age classroom accuracy per classroom size. We find that the performance of students in a classroom
with a student-centric teacher is initially high (i.e., with a class of only a single student, the student-
centric teacher would be equivalent to a fully representationally aligned teacher in the dyad setting)
but falls off rapidly as a function of classroom size and then plateaus (as shown in Figure 1G).

2.3 RQ3: CAN WE MATCH TEACHERS AND STUDENTS TO IMPROVE OUTCOMES?
Given a “school” of teachers and students, how can we simultaneously group students into “class-
rooms” and determine which teacher to allot to which class? We begin to explore this question
through a series of “classroom matching” experiments. We develop a classroom matching proce-
dure, GRADE-Match, which given a pool of students and teachers, assigns groups of students to
teachers based on our representational alignment-teacher utility curve. We emphasize though, that
our analogy to “classrooms” and “schools” is explored in simulation with machines teaching ma-
chines; substantial future work is required to investigate the generalization of possible links between
representational alignment, teacher error rate, and classroom properties in practice.
Setup
Student and teacher pools. We focus on our simple-features setting and extend our dyad (single
teacher, single student) setting to simulated pools of teachers and students over our same 6× 6 grid.
We design two different pools of students and teachers (unstructured and structured). We include
pool construction and generalization experiments to the salient-dinos setting in Appendix F.
Matching procedures. We propose matching students using our utility curve to estimate their ac-
curacy (Grade-Match (Ours)). We compute the representational alignment between a student and
teacher and index into a bucketed version of the utility curve (recomputed by averaging over sam-
ples of corrupted students; see Appendix F). that we construct in Section 2 using both the repre-
sentational alignment and teacher’s expected error rate (which we assume we have access to). The
resulting metric is the student’s expected performance under a specific teacher and classroom. We
iterate over all teachers for each student and select the teacher who helps the student achieve the
highest expected performance. We consider three baselines: (i) Random matching of students to
teachers, (ii) MOOC which matches all students to the lowest error rate teacher, and (iii) Optimal
wherein we use a brute force-search to match students to the highest attainable accuracy, giving an
indication of the upper limit of performance that a matching algorithm could possibly achieve. Gaps
between (ii) and (iii) further drive home the importance of going beyond teacher accuracy when
pairing students to teachers.
Results Our matching algorithm, which groups students to teachers based on their representational
alignment and teacher error rate, generally outperforms random matching and, particularly for top-
performing students, is better than having assigned the student to an expert (minimal error rate
teacher; MOOC) who may be representationally distinct (see Figure 1H and Appendix Tables 2 and
3). This observation is intriguing – students may not achieve their full potential when paired with
a representationally misaligned teacher, even if that teacher is an expert. We observe performance
gains for our utility curve-based matching across both pool types. However, we do not yet attain
optimal matching performance, perhaps due to a mismatch in our utility curve.
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3 DISCUSSION AND LIMITATIONS

Expertise on a task is not sufficient to be a good teacher; representational alignment matters too.
Using a new controlled experimental paradigm (GRADE), we trace out a utility curve between
teacher accuracy, teacher-student representational alignment, and student accuracy to characterize
the crucial relationship between representational (mis)alignment and student learning outcomes.
We put this utility curve to work to better match teachers to students based on representational
alignment. Our work underscores the importance of teachers representing a diversity of students
and arranging student-teacher groups to ensure there is at least one teacher that any student can
effectively learn from. This motivates further investigation into representational alignment and its
influence on pedagogical effectiveness in multiple learning settings, like teacher-student interactions
and peer mentorship. Yet, we emphasize that our work is a first step in the study of the relationship
between representational alignment, teacher efficacy, and student-teacher matching. Our simulations
always assume that students are 1-NN classifiers, which grossly undercuts the richness of human
behavior. Further, our simulated students’ representations are fixed; in practice, students adapt their
representations over time. We also only consider single-turn, single-lesson settings, wherein students
have no indication of the reliability of the teacher. We look forward to investigations that leverage
and extend GRADE to go beyond our simple yet revealing initial setting.
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A BROADER IMPACT AND SOCIETAL RISKS

As we discuss in Section 3, our work portends broader implications for the design of machine-human
teaching setups where machines are intentionally built with representation alignment in mind, as
well as representation diversity to safeguard against threats to inclusivity. It is possible that our
simulations could support interventions in real classrooms, e.g., informing classroom size decisions
drawing on measures of the representational diversity of a classroom pool and the expertise of the
teacher. However, we heed caution in over-generalizing our results to settings where real student
experiences and learning potential is at stake. Broad-brush application of AI systems in education
has not been met with universal success (Reich, 2020) and inappropriately incorporated can have
unintended impacts on student success (Fischer et al., 2020).

B RELATED WORK

Learning Sciences. The extended learning sciences community has studied aspects of what makes
for a good teacher or computer-based teaching system. The expertise or quality of the teacher with
respect to excellence of schooling, certification, and a teacher’s own test scores have been observed
to positively affect student learning (Rice, 2003). More classroom-adaptive qualities, like a teacher’s
amount of experience in classrooms and teaching strategies employed (i.e., pedagogy) are also top
contributing attributes (Rice, 2003). Closeness of representation to students with respect to demo-
graphic features has been shown to lead to more effective student performance (Dee, 2004), in part
due to the role model effect, but also because teachers closer in these dimensions can serve as so-
ciocultural interlocutors, helping translate the relevance of material to students (Egalite et al., 2015;
Harfitt, 2018). Intelligent Tutoring Systems (Anderson et al., 1985), growing out of the cognitive and
learning sciences, have been a consistently effective paradigm of computer-based teaching (Wang
et al., 2023), primarily utilizing the pedagogy of mastery learning (Bloom, 1984). They adapt the
amount of prescribed practice based on a representation of the student’s level of mastery of the skill
being worked on and provide procedural remediation in the problem-solving context. In a two-year,
large-scale evaluation, a commercial ITS was found to be effective overall, but only demonstrated
superior learning gains to standard classroom instruction in the second year. It was hypothesized
that this may have been due to teachers needing to learn how best to align their classroom to the
technology (Pane et al., 2014).

Machine teaching. Machine teaching aims to study the problem of teaching efficiency by charac-
terizing such efficiency as the minimal number of effective data examples that is needed for a learner
to learn some target concept. It has an intrinsic connection to optimal education (Zhu, 2015), cur-
riculum learning (Liu et al., 2017; Korakakis & Vlachos, 2023) and optimal control (Lessard et al.,
2019). Depending on the type of learner, machine teaching can be performed in a batch setting (Zhu,
2015; Zhu et al., 2018; Liu & Zhu, 2016) or an iterative setting (Liu et al., 2017; 2018; 2021; Qiu
et al., 2023; Zhang et al., 2023). The batch teaching aims to find a training dataset of minimal size
such that a learner can learn a target concept based on this minimal dataset. The iterative teach-
ing seeks a sequence of data such that the learner can sequentially learn the target concept within
minimal iterations. Complementary to these works, our findings indicate that, alongside the quality
of examples that the teacher selects, it is also critical for both the teacher and the student to share
similar representations.

Pragmatic communication. Successful communication rests on our ability to understand others’
beliefs and intentions (Gweon, 2021; Vélez et al., 2023). Indeed, even young children are sensitive
to others’ knowledge and competence when teaching (Liszkowski et al., 2008; Bridgers et al., 2020)
and learning (Bass et al., 2022; Csibra & Gergely, 2009; Bonawitz et al., 2011) from others. Inspired
by Gricean pragmatics (Grice, 1975), recent computational models have formalized this process
as recursive reasoning about others’ latent mental states (Chen et al., 2022; Goodman & Frank,
2016; Shafto et al., 2014). Such pragmatic models have been used to study and facilitate human-AI
interaction (Sumers et al., 2021; 2022; Lin et al., 2022; Andreas & Klein, 2016; Dale & Reiter, 1995;
Fried et al., 2018; Wang et al., 2016; 2020; Ho et al., 2016; Zhi-Xuan et al., 2024; Liu et al., 2024).
Crucially, however, when either party fails to accurately model the other’s beliefs or perspective,
human-human (Aboody et al., 2023; Sumers et al., 2023) and human-AI (Milli & Dragan, 2020;
Sumers et al., 2022) communication can be significantly degraded. Our work adds to this literature
by formalizing and analyzing the effect of representational misalignment on communication.
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Figure 3: Schematic of teaching and representational alignment. Teachers and students have distinct
representational spaces (X,Ys) with some mapping between them (Ts). There is a true label function
(f ) that can be projected onto both the teacher and student spaces, but a teacher may not perfectly
know this true label function and have their own, diverging label function (f ′). The teacher designs
curricular materials (L0; a set of examples paired with labels) that are projected to each student’s
space (Ls), where each student uses them to learn a label function (gs). Each student’s performance
(Vs) is then measured as the divergence between the learned label function and the hidden true label
function (T ′

s(f)).

Representational alignment. Representational alignment (Sucholutsky et al., 2023b) offers a con-
ceptual and grounded mathematical framework for characterizing teaching settings wherein two or
more agents engage on some task. Already, ideas from representational alignment are providing
new ways of thinking about machine learning efficiency (Sucholutsky et al., 2023a; Sucholutsky
& Griffiths, 2023), value alignment (Rane et al., 2023; Wynn et al., 2023), disagreement (Oktar
et al., 2023), and applications like human & machine translation and conversation (Niedermann
et al., 2024; Huang et al., 2024). In this study, we show that representational alignment is a key
dimension in predicting and optimizing student outcomes, with similar importance as the teacher’s
subject expertise.

C THEORETICAL FORMULATION UNDERLYING GRADE

We offer a deeper theoretical formalism for our setting. Figure 3 shows a schematic of our teaching
and representation alignment framework. Consider a space X of stimuli. We consider the case
where the teacher tries to teach the students some function f : X → C. We illustrate a simple case
in Figure 3 wherein C is a binary classification C = {0, 1} dividing X into two regions (C = 0 and
C = 1 are represented in Fig. 3 in light and dark gray, respectively). The teacher observes label
function f ′ : X → C, which may be different from f .

The teacher chooses n points from the space x1, x2, . . . , xn ∈ X and assigns labels to the points li.
The teacher materials can be represented by the labeled points : L0 = (xi, li)i=1,...,n. To represent
the fact that students’ representations may differ from that of the teacher, we assume that the student
s has a space Ys that corresponds to the student’s representations. Note that each student is part of
some classroom or population of students s ∈ S.

Next, we assume there is some transformation Ts : X → Ys. We assume that the function Ts is
also selected from some parametric function Ts ∼ T . The student s observes stimuli presented
by the teacher yi = Ts(xi) and labels li. The student learning input (i.e., the teaching materials
mapped into the student’s space) is thus Ls = (Ts(xi), li)i=1,...,n. From that, the student infers
the labeling for the rest of the space, which can be represented as the learning function gs(y|Ls).
The classification performance of the student is tested over additional test points where the expected
performance of the student is Vs = D(gs(y|Ls)||Ts(f(x))). Here, D represents some distance
measure.
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D COMPUTE DETAILS

All experiments were run on an 8-core, 16 GB memory laptop. Experiments were run exclusively
on CPUs and were all runnable within at most three hours. Our experiments are reproducible and
all the implementations for all computational experiments will be made available open-source upon
publication.

E ADDITIONAL DETAILS ON TASK SETUP FOR THE SINGLE TEACHER-SINGLE
STUDENT SETTING

Student and teacher models We instantiate our student (gs) as a 1-nearest neighbor (1-NN) clas-
sifier, who takes as input the teacher’s revealed examples (Ls) and classifies each of the unlabeled
points. Student performance (Vs) is computed as the accuracy of their classifications over the un-
labeled points. The teacher chooses K ′ points intended to maximally help the student (whom the
teacher “knows” is a 1-NN classifier) to achieve high accuracy on the remaining points. We assume
the teacher has access to labels for all cells; however, the “erroneous” teacher with some probability
assumes the wrong label on a cell (i.e., f ′ is different from f , which can ripple into their selec-
tions accordingly). The teacher computes the centroid of each class (using its own believed labels
f ′, which may have errors) and selects one example per class to reveal to the student. The teacher
reveals its believed labels to the student for the selected points.
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Figure 4: Utility curves on a 6 × 6 grid for different label structures. (Left:) 4 class underlying
label-per-quadrant; (Right:) 6 class underlying label-per-column.

Constructing the dyadic utility curve To construct our utility curve in Section 2, we sweep over
a range of possible teacher error rate parameterizations (from 0 to 0.9 in increments of 0.1) and
representation corruption levels (from 0 to 1.0 in increments of 0.01). We always use the same
“student” and corrupt teachers over the respective student grid. We compute the representation
alignment between the student and corrupted teacher; as the pairwise swaps (“corruptions”) are
randomly made over a fraction of the grid parameterized by the corruption level, we bucketize
the resulting observed representation alignment between student and teacher. We then sample 10
different seeds of selections for each teacher and average student performance. We repeat the same
sweeps over teacher parameterizations for our two labeling schemes: grids wherein each column
corresponds to one label (N labels for an N × N grid), and one where each quadrant corresponds
to one label (four labels). We average the resulting utility curves across label types.

Impact of underlying label structure We depict the separate utility curves in Figure 4. No-
tably, we observe different utility curves for different label structures. While there are some mi-
nor rank swaps between teachers across the structures, we see high Spearman rank correlation
(ρ = 0.994, p << 10e − 48) between the two settings underscoring general consistency in teacher
orderings.

Additional details on experiments with machines teaching humans
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E.0.1 PARTICIPANTS.

We recruit 480 participants from Prolific (Palan & Schitter, 2018). We filtered the participant pool
by country of residence (United States), number of completed studies (> 100), and approval rate
(> 95%). Participants gave informed consent under an approved IRB protocol.

E.0.2 TASK.

We design a task for our machines to teach humans about categories, in which participants see a grid
of stimuli; for each cell in the grid, there is an underlying true category. Our simulated teacher model
selects labels based on these underlying categories, and participants see these labels with the grid.
Participants must then categorize all the unlabeled stimuli on the grid using the teacher’s labels. We
do not inform participants of the number of examples per category. We investigate two structures of
categories: one class per column of the grid (“cols”) and one class per quadrant of the grid (“quad”).
Note that these categories induce labeling functions that the students should be able to learn; they
are tractable (column structure and block structure). There were two different stimuli sets. The
first (simple-features) is the closest analog to our simulated experiments, in which participants saw
a 6 × 6 grid with blank cells, so the features are completely expressed via the coordinates of the
grid. The second (salient-dinos) is a more rich set of stimuli, wherein participants see a 7×7 grid of
dinosaur (“dino”) images from Malaviya et al. (2022). Dino stimuli were defined by nine different
features (e.g., body length, neck length, neck angle) and organized on the grid by two principle
components of those underlying features. For a visualization of the participant’s view, see Figure
7. For each condition, different teachers were generated from our model, sampling across varying
levels of alignment. This structure leads to 24 different conditions (2 stimuli sets × 2 category
structures × 6 teacher alignment levels) for which we collect 20 participants each.

E.0.3 MODELS AND EXAMPLE SELECTION.

We employ the same model types as in our simulations. Teachers are self-centered and assume
that students are 1-NN classifiers1. In both settings, we assume the representations of teachers and
students can be expressed through their two-dimensional grid locations. For the simple-grid setting,
there are no features for the human to use for their categorization beyond grid cell location; and
in the salient-dinos setting, features were defined by two principal components (which we can use
as grid coordinates). We again induce representation misalignment between teacher and student by
shuffling the stimuli on the grid. We sample a set of teachers spanning a range of representational
alignments. We select a single set of points for each teacher, assuming the teacher has perfect
accuracy. We explore alternate labeling functions to simulate alternate teacher error rates post-hoc
(see Appendix G).

E.0.4 ADDITIONAL RESULTS ON MACHINES TEACHING HUMANS

We present the correlations between average human and student teacher accuracy in Table 1.

Quadrants Columns Both
simple-features 0.91 (p=0.013) 0.59 (p=0.221) 0.59 (p=0.054)
salient-dinos 0.52 (p=0.286) 0.86 (p=0.027) 0.63 (p=0.037)

Table 1: Pearson correlations (with associated p-values) of average human student accuracy and
representational alignment of the machine teacher across the various conditions.

F ADDITIONAL DETAILS ON CLASSROOM SIMULATIONS

Additional details on classroom pool construction We explore two different pools of students
and teachers: (i) unstructured pools spanning a range of representational alignments and error rates,
and (ii) clustered sets of students and teachers. For the latter, we construct a generative model over

1We acknowledge such an assumption is highly simplistic for students and encourage future work to explore
alternate models of students.
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student-teacher populations wherein we have a set of clusters, with a fixed number of students per
cluster share similar representations. We sample one similar teacher from each cluster with some
error rate (sampled from a uniform distribution over 0 to 0.5). We then deliberately downsample
from the available teachers to simulate the case where some students are representationally distinct
from the other students and available pool of teachers. Additional details are included in Appendix F.
For each experiment, we sample 10 different teacher pools. We additionally compute the proportion
of students who achieve “passing” marks (set to a moderately high threshold of 45% accurate, given
chance guessing is 16.6% on our 6x6 grid). We also note that we focus here on row-based labels (a
new f ).

Utility curve over classrooms The utility curves that we construct in Section 2 and E were always
constructed with respect to a single student (in a respective, “dyadic”2). However, in our classroom
settings, we also corrupt the students’ representations to simulate representational diversity. We sam-
ple a new utility curve, wherein, for each teacher parameterization (same error rate parameterization
as above, with representation corruptions now in increments of 0.1), we sample 10 different student
corruptions ranging over 0 to 0.9 in increments of 0.1. We build this curve only for the column label
type. We then bucketize the teacher error rate as well as the representation alignment such that we
can index into the curve to extract an “expected average performance” for any student-teacher pair.

Constructing classroom pools We construct two different classroom pools in Section 2.3: un-
structured and structured. Here, we provide additional details on how we sampled students and
teachers for each pool type.

Unstructured pool All students and teachers are sampled independently. We sample 1000 stu-
dents and 30 teachers with corruption levels (pairwise swaps) sampled from a beta distribution
(α = 1.5, β = 2.5) to ensure that we have some students that are reasonably aligned. We sam-
ple teacher error rate uniformly over the range 0− 0.5.

Structured pool In the structured setting, we construct clusters of similar students and teachers.
We prespecify a number of clusters M and number of students per cluster. Clusters are designed to
span a range of levels of representation alignment over the “original” grid. We loop over possible
representation alignments corruptions ranging from 0 to 1 in increments of 1/M . For each cluster,
we sample a “seed” student using that corruption level. We then sample students on top of this
cluster with a representation corruption of 0.01 on top of the base student to ensure students share
similar (but some variation) in their representation. For each cluster, we sample a teacher with error
rate uniformly from 0 − 0.5 and representation with a similar slight possible corruption (sampled
uniformly from 0 − 0.01) on top of the seed student, thereby ensuring that there would be a repre-
sentationally similar teacher for each student in each cluster if provided. However, to simulate gaps
in coverage of particular representation characterizations, we randomly drop some teachers from the
pool.

Additional classroom matching results We include additional results into classroom matching
in Tables 2 and 3 and a relationship between group size and learning outcomes in Figure 5.

Generalization to the dino stimuli We explore generalization of our utility curve constructed
in the simple-features setting to our salient-dino stimuli. We repeat our two different pool types,
which we depict in Tables 4 and 5, respectively. We find that our utility curves generalize nicely
to different grid sizes and stimuli type, yielding student outcomes that on average appear to boost
student accuracy particularly for the students in the top-performing group than baselines which do
not account for representation misalignment (MOOC).

Additional details on student-centric teacher In contrast to our self-centered teacher, our
student-centric teacher does not use its own representation to select examples to provide to the
student. Instead, the student-centric teacher is endowed with an inner optimization loop over the
students assigned to it, whereby the teacher loops T times over “simulated students” (which we call
the “inner loop”) and randomly selects one point per category (using the teacher’s believed class

2Pairing two agents – one student and one teacher.
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Method Avg Acc Bottom 10% Top 10% Pass Rate

Random 0.33 ± 0.01 0.21 ± 0.01 0.49 ± 0.01 0.12 ± 0.02
Min Err 0.37 ± 0.01 0.26 ± 0.01 0.53 ± 0.03 0.18 ± 0.04
Utility 0.38 ± 0.01 0.27 ± 0.01 0.55 ± 0.03 0.20 ± 0.04
Optimal 0.43 ± 0.01 0.32 ± 0.01 0.60 ± 0.02 0.32 ± 0.04

Table 2: Student learning outcomes (accuracy) from different classroom matching approaches in
the structured pool setting. Higher is better for all metrics. ± indicates standard errors computed
over 40 sampled pools and associated assignments. We compute the average student performance
across all N = 1000 pooled students (paired with potentially M = 30 teachers), as well as accuracy
over the bottom and top 10% of students in each matching, respectively. We additionally compute
the proportion of students who achieve “passing” marks (set to a moderately high threshold of 45%
accurate, given chance guessing is 16.6% on our 6x6 grid). Higher is better for all metrics. ±
indicates standard errors computed over 10 sampled pools and associated assignments.

Method Avg Acc Bottom 10% Top 10% Pass Rate

Random 0.33 ± 0.00 0.17 ± 0.01 0.52 ± 0.01 0.09 ± 0.01
Min Err 0.39 ± 0.01 0.25 ± 0.00 0.57 ± 0.02 0.20 ± 0.02
Utility 0.39 ± 0.01 0.24 ± 0.00 0.61 ± 0.02 0.23 ± 0.02
Optimal 0.49 ± 0.00 0.36 ± 0.00 0.71 ± 0.02 0.54 ± 0.01

Table 3: Student learning outcomes (accuracy) from different classroom matching approaches in
the unstructured pool setting. ± indicates standard errors computed over 40 sampled pools and
associated assignments.
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Figure 5: (Left:) Group sizes from greedily incorporating the lowest performing students into the
classroom of a single student-centric teacher. (Right:) Average accuracy gains (out of 1.0) in per-
formance for students grouped with the student-centered teacher, on top of what they would have
achieved from a self-centered teacher. Error bars are standard errors over 20 seeds of student-centric
teacher groupings for a sampled structured pool of students and teachers.

Method Avg Acc Bottom 10% Top 10% Pass Rate

Random 0.29 ± 0.00 0.16 ± 0.00 0.47 ± 0.01 0.04 ± 0.00
Min Err 0.35 ± 0.01 0.22 ± 0.00 0.55 ± 0.04 0.13 ± 0.03
Utility 0.36 ± 0.01 0.22 ± 0.00 0.62 ± 0.04 0.16 ± 0.02
Optimal 0.44 ± 0.01 0.31 ± 0.00 0.69 ± 0.03 0.33 ± 0.01

Table 4: Student learning outcomes (accuracy) from different classroom matching approaches in the
unstructured pool setting for the dino stimuli. We again compute the student performance across all
N = 1000 pooled students (paired with potentially 30 teachers). Error bars are again computed over
40 different sampled pools.
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Method Avg Acc Bottom 10% Top 10% Pass Rate

Random 0.30 ± 0.01 0.18 ± 0.01 0.45 ± 0.02 0.06 ± 0.01
Min Err 0.34 ± 0.01 0.23 ± 0.01 0.51 ± 0.05 0.10 ± 0.03
Utility 0.36 ± 0.01 0.23 ± 0.01 0.57 ± 0.05 0.15 ± 0.03
Optimal 0.39 ± 0.01 0.28 ± 0.01 0.59 ± 0.04 0.18 ± 0.03

Table 5: Student learning outcomes (accuracy) from different classroom matching approaches in the
structured (clustered) pool setting for the dino stimuli. We again have 10 representationally distinct
clusters, each with 50 students, and sample 5 available teachers across the clusters.

– the teacher may not know the true categories) and measures the expected performance of each
student if that set of examples were revealed. Note, the teacher computes the expected accuracy of
each student using against its belief of the true categorization (which may be incorrect). The teacher
then chooses the set of examples that attains the highest average accuracy over students. Here, we
set T to 100; exploring the impact of varied T is a sensible next step. Exploration of alternate opti-
mization functions, e.g., optimizing over the minimum attained performance over the students in the
teacher’s classroom rather than average classroom performance, as well as exploring different kinds
of simulated students (here, we assume the teacher’s have the right model of each student) are also
ripe ground for future work.

We explore the effect of student-centric teachers by appending a second stage to our matching pro-
cedure. After matching using our utility curve (as noted above), we greedily attempt to pair the
lowest performing students with a student-centric teacher who chooses points by optimizing for
the students in their pool (i.e., taking the students’ representations into account). We continue in-
corporating the next lowest-performing students into the student-centric teacher’s classroom until a
student’s attained accuracy with the original pairing is not improved by the student-centric teacher.
We apply our procedure to the clustered pool structure noted above and find that it is beneficial to
continue adding students up to a point: if the teacher is an expert (zero error rate), we can add all stu-
dents from one cluster before we see detrimental performance across the pool of students assigned
to said teacher. As the student-centric teacher’s error rate increases, fewer students can be pooled
before performance dropoff (see Appendix Figure 5).

These results indicate the student-centric teachers can cover students who are representationally dis-
tinct and help boost their learning outcomes. However, classroom size matters, corroborating prior
works in machine and human teaching (Frank, 2014; Yeo et al., 2019; Ma et al., 2018; Zhu et al.,
2018). In the next section of the Appendix, we conduct a deeper dive into the relationship between
classroom size and student outcomes in our setting when student-centric teachers are available.
Herein, we see that teachers who may try to overalign to all students at once in a large classroom
induce poorer outcomes for the classroom writ large.

G ADDITIONAL HUMAN EXPERIMENT DETAILS

Participant recruitment and compensation Participants were recruited from Prolific and were
paid $12/hr plus a 10% bonus if they responded reasonably (i.e., did not select labels randomly or
choose the same label for all stimuli). The research did not contain risks to participants, and they
were able to opt out at any time. The institution of the principal investigator obtained IRB approval
for this experiment, and participants gave informed consent under this protocol.

Task instructions We include the full set of instructions provided to participants in Figure 6 and
sample interfaces in Figure 7.

Further analyses

Simulating teacher error in human experiments All human experiments were run with machine
teachers set to zero error, as collecting all combinations of teacher error and representational align-
ment would be prohibitively expensive. Instead, we simulate the effect of teacher error in a post-hoc
analysis by corrupting the true underlying labels in the same way we corrupted the teacher labels for
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Figure 6: Experiment instructions displayed to all participants, introduced paragraph by paragraph.
The only changes to instructions were to modify the type of stimuli (“empty cells”, “images that
represent stick figure dinosaurs”), size of the grid (6×6, 7×7), the number and names of categories
(4; A-D or 6/7; A to F/G).

Figure 7: Above are two example views of the experiment. All participants, after viewing the
instructions in Figure 6 were taken to a page that contained a grid and the labeled stimuli. They
were asked to categorize stimuli via a dropdown menu selection. Finally, they rated their confidence
using a scale below the stimulus grid. Left: salient-dinos, 7 (“col”) categories, medium-alignment
teacher. Right: simple-features, 4 (“quad”) categories, high-alignment teacher.
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Figure 8: Average human student classification accuracy at various levels of representational align-
ment. Error bars correspond to one standard error. (Left:) Results from simple-features setting.
(Right:) Results from salient-dinos setting. (Top:) One class per quadrant. (Middle:) One class
per column (6 for simple-features, 7 for salient-dinos). (Bottom:) Combined results.

the simulation experiments (i.e., error rate corresponds to the probability with which we flip each
true label to be a different label). Human student accuracy was then recomputed against these cor-
rupted true labels. The original human student results with no simulated teacher error are reported
in Figure 8.
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