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Abstract

Inverse Reinforcement Learning (IRL) deals with the problem of deducing a
reward function that explains the behavior of an expert agent who is assumed to
act optimally in an underlying unknown task. Recent works have studied the IRL
problem from the perspective of recovering the feasible reward set, i.e., the class
of reward functions that are compatible with a unique optimal expert. However,
in several problems of interest it is possible to observe the behavior of multiple
experts with different degree of optimality (e.g., racing drivers whose skills ranges
from amateurs to professionals). For this reason, in this work, we focus on the
reconstruction of the feasible reward set when, in addition to demonstrations from
the optimal expert, we observe the behavior of multiple sub-optimal experts. Given
this problem, we first study the theoretical properties showing that the presence
of multiple sub-optimal experts, in addition to the optimal one, can significantly
shrink the set of compatible rewards, ultimately mitigating the inherent ambiguity
of IRL. Furthermore, we study the statistical complexity of estimating the feasible
reward set with a generative model and analyze a uniform sampling algorithm that
turns out to be minimax optimal whenever the sub-optimal experts’ performance
level is sufficiently close to that of the optimal expert.

1 Introduction

Inverse Reinforcement Learning [IRL, 26] deals with the problem of recovering a reward function
that explains the behavior of an expert agent who is assumed to act optimally in an underlying
unknown task. Over the years, the IRL problem has consistently captured the attention of the research
community (see, for instance, [4] and [1] for in-depth surveys). Indeed, this general scenario, where
the reward function needs to be learned, emerges in numerous real-world applications. A example
arises from human-in-the-loop settings [25], where the expert is a human solving a task, and an
explicit specification of the human’s goal in the form of a reward function is often unavailable.
Notably, humans encounter difficulty in expressing their intentions in a numerical form, preferring
instead to demonstrate what they perceive as the correct behavior. Once we retrieve a reward function,
(i) we obtain explicit information for understanding the expert’s choices, and, furthermore, (ii) we
can utilize it to train reinforcement learning agents, even under shifts in the underlying system.
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Since the seminal work [26], IRL has emerged as a significantly complex task. One of its primary
challenges lies in the intrinsic ill-posed nature of the problem, as multiple reward functions compatible
with the expert’s behavior exist. Recently, a promising avenue of research [24, 19, 22] has tackled
this ambiguity issue from an intriguing perspective. Specifically, this strand of works focuses on
estimating all the reward functions that are compatible with the observed demonstration, thereby
postponing the selection of the reward and directing their focus solely on the expert’s intentions.

Nevertheless, these approaches based on recovering the feasible set [24, 19, 22] fall short in modeling
more articulated situations that arise in the real world. In several problems of interest, it is possible to
observe the behavior of multiple agents with different degrees of expertise. As an illustrative example,
consider the human-in-the-loop settings, mentioned above, in which we are interested in recovering
reward functions that explain the intent behind racing drivers. In this scenario, racing car companies
typically have access to a variety of drivers with diverse skills, including professionals, test drivers,
and emerging talents from developmental programs. In this context, while the focus is typically on
the reward function of professional drivers, we expect a proficient IRL method to effectively leverage
demonstrations provided by drivers with lower expertise. From an intuitive perspective, if we have
some information on the degree of expertise of other drivers, we expect that, by exploiting their
demonstrations, we can reduce the ambiguity of IRL problem.

With these motivations, in this work, we extend the IRL formulation as the reconstruction of the
feasible reward set to settings where, in addition to demonstrations from an optimal expert, we observe
the behavior of multiple sub-optimal experts, of which we know a bound on their sub-optimality.
More specifically, we will primarily focus in answering the following theoretical questions:

(Q1) How does the presence of sub-optimal experts affect the set of reward functions that are
compatible with the observed behaviors? Can they mitigate the intrinsic ambiguity of IRL?

(Q2) What is the statistical complexity of estimating the set of reward functions that are compatible
with the given experts? How does it compare against the one of single-experts IRL problems?

Contributions and Outline. After providing the necessary background, we introduce the novel
problem of Inverse Reinforcement Learning with multiple and sub-optimal experts (IRL-SE, Section
2). We then proceed by studying the theoretical properties of the class of reward functions that are
compatible with a given set of experts under the assumption that an upper bound on the performance
between a sub-optimal expert and the optimal expert is available to the designer of the IRL system
(Section 3). Our findings indicate that having multiple sub-optimal experts can significantly shrink
the set of compatible rewards, thereby mitigating the ambiguity issue that affects IRL. Leveraging
our previous results, we continue by studying the statistical complexity of estimating the feasible
reward set with a generative model (Section 4). To this end, after formally introducing a Probabilistic
Approximately Correct [PAC, 9] framework, we derive a novel lower bound on the number of samples
that are required to obtain an accurate estimate of the feasible reward set. Then, we present a uniform
sampling algorithm and analyze its theoretical guarantees. Our results show that (i) the IRL problem
with sub-optimal experts is statistically harder than the single expert IRL setting, and (ii) that the
uniform sampling algorithm is minimax optimal whenever the sub-optimal experts’ performance
level is sufficiently close to the one of the optimal expert. Finally, we conclude with a discussion on
existing works (Section 5) and by highlighting potential avenues for future research (Section 6).

2 Preliminaries

In this section, we provide the notation and essential concepts employed throughout this document.
Appendix A contains tables of symbols and a summary of the notation.

Notation. Let X be a finite set, we denote with ∆X the set of probability measures over X .
Let Y be a set, we denote with ∆XY the set of functions f : Y → ∆X . Given f ∈ Rn, we
denote with ‖f‖∞ the infinite norm of f . Let X and X ′ be two non-empty subsets of a met-
ric space (Y, d), we define the Hausdorff distance [31] between X and X ′ as Hd(X ,X ′) =
max{supx∈X infx′∈X ′ d(x, x′), supx′∈X ′ infx∈X d(x, x′)}. The Hausdorff distance directly de-
pends on the metric d. We denote with 1n the n-dimensional vector given by (1, . . . , 1)

>.

Markov Decision Processes. A Markov Decision Process without a reward function (MDP\R)
is a tuple M = (S,A, p, γ), where S is the set of states, A is the set of actions, p ∈ ∆SS×A is
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the transition probability kernel, and γ ∈ [0, 1) is the discount factor. We consider finite state and
action spaces, namely |S| = S and |A| = A. A Markov Decision Process [MDP, 27] is obtained by
combining an MDP\RM with a reward function r ∈ RS×A. Without loss of generality, we assume
reward functions bounded in [0, 1]. We denote withM∪ r the resulting MDP. The behavior of an
agent is described by a policy π ∈ ∆AS , that, for each state, prescribes a distribution over actions.

Operators. Let f ∈ RS and g ∈ RS×A. We denote with P and π the operators induced by the
transition model p and the policy π respectively.1 Specifically, Pf(s, a) =

∑
s′∈S p(s

′|s, a)f(s′),
and πg(s) =

∑
a∈A π(a|s)g(s, a). Moreover, we introduce the operators E and B̄π defined as:

Ef(s, a) = f(s) and
(
B̄πg

)
(s, a) = 1 {π(a|s) = 0} g(s, a). Finally, we define dπf as the expecta-

tion of f under the discounted occupancy measure: dπf = (IS − γπP )
−1
f =

∑+∞
t=0 (γπP )tf .

Value Functions and Optimality. Given an MDPM∪ r and a policy π, the Q-function QπM∪r
represents the expected discounted sum of rewards collected in M ∪ r starting from (s, a) and
following policy π. Formally:

QπM∪r(s, a) = E

[
+∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
,

where the expectation is taken w.r.t. the stochasticity of the policy and the environment, i.e., st+1 ∼
p(·|st, at) and at ∼ π(·|st). The V-function V πM∪r is the expectation of the Q-function over the
action space, namely V πM∪r = πQπM∪r. The advantage function AπM∪r = QπM∪r − EV πM∪r is the
immediate gain of taking a given action, rather than following policy π. A policy π∗ is optimal if it
has non-positive advantage in each-state action pair; namely Aπ

∗
M∪r ≤ 0 holds element-wise.

Inverse Reinforcement Learning. An Inverse Reinforcement Learning [IRL, 26] problem is a
tuple B = (M, πE), whereM is an MDP\R and πE ∈ ∆AS is the expert policy. Given a reward
function r ∈ RS×A, we say that r is feasible for B if it is compatible with the behavior of the expert,
namely πE is an optimal policy for the MDPM∪ r. We denote withRB the set of feasible reward
functions:

RB =
{
r ∈ [0, 1]S×A : AπEM∪r ≤ 0

}
. (1)

The setRB is named feasible reward set [24, 19, 22]. To characterize the setRB, [24] have shown
that a reward function r belongs toRB if and only if there exists ζ ∈ RS×A≥0 and V ∈ RS such that:

r = −B̄πEζ + (E − γP )V. (2)

Thus, each reward function inRB, is the sum of two components. The first one, −B̄πEζ, which is
non-zero only when πE(a|s) = 0, can be interpreted as the advantage function AπEM∪r. The second
one, (E−γP )V , instead, can be interpreted as a reward-shaping via function V , which maintains the
optimality of the expert’s policy [26]. It follows that ‖V ‖∞ ≤ (1− γ)−1 and ‖ζ‖∞ ≤ (1− γ)−1.

3 Sub-Optimal Experts and the Feasible Reward Set

In this section, we extend the IRL formulation to problems where, in addition to demonstrations
from an optimal expert, we observe the behaviors of multiple and sub-optimal experts. After having
formulated and motivated the problem (Section 3.1), we delve into the theoretical properties of the
induced feasible reward set, by providing both an implicit (Section 3.2) and explicit (Section 3.3)
descriptions. Our results indicate that the presence of sub-optimal experts can significantly shrink the
feasible set of compatible rewards, thus, mitigating the ambiguity issue of IRL.

3.1 Problem Formulation

We define the Inverse Reinforcement Learning problem with multiple and Sub-optimal Experts (IRL-
SE) as a tuple B̄ = (M, πE1

, (πEi)
n+1
i=2 , (ξi)

n+1
i=2 ), whereM is an MDP\R, πE1

is the policy of an

1We use the symbol π to indicate both the operator and the policy. In the following, the intended meaning
will be clear from the context.
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optimal expert,2 (πEi)
n+1
i=2 are a collection of n sub-optimal experts policies, and (ξi)

n+1
i=2 are the

corresponding sub-optimality bounds. More concretely, ξi represents a known upper bound on the
performance gap between the optimal expert and the i-th sub-optimal expert. Consequently, a reward
function r ∈ RS×A is feasible for B̄ if πE1

is an optimal policy for the MDPM∪ r and if:

∀i ∈ {2, . . . , n+ 1} :
∥∥V πE1

M∪r − V
πEi
M∪r

∥∥
∞ ≤ ξi. (3)

Thus, a feasible reward r must make the value function V
πEi
M∪r(s) of the i-th expert smaller than

that of the optimal expert V πE1

M∪r(s) = V ∗M∪r(s) by no more than the threshold ξi, uniformly over
s ∈ S. We denote byRB̄ the set of feasible rewards for B̄, i.e., r ∈ [0, 1]S×A belongs toRB̄ if (i)
A
πE1

M∪r ≤ 0 and (ii) Equation (3) holds. Notice that, whenever no sub-optimal expert is present, we
recover the definition of the feasible set for single-expert IRL problems, i.e.,RB in Equation (1).

We remark that ξi can even be a crude overestimate (i.e., an upper bound) of the sub-optimality of
expert i. Nevertheless, as we shall see, the ability of the sub-optimal policy πEi in mitigating the
IRL ambiguity, i.e., shrinking the feasible reward set, will be tightly connected on the magnitude of
ξi.The following examples illustrate how an expression ξi can be obtained in common scenarios with
no knowledge of the (possible) reward function optimized by the expert policy πE1

. Formal proof for
these statements are reported in Appendix C.
Example 3.1. Suppose that the i-th sub-optimal expert πEi is optimal for the same reward function
that πE1 is optimizing for, but under different transition model Pi. In this case, ‖V πE1

M∪r−V
πEi
M∪r‖∞ ≤

2γ
(1−γ)2 max(s,a)∈S×A ‖P (·|s, a)− Pi(·|s, a)‖1 =: ξi holds for all rewards r.

Example 3.2. Suppose that the i-th sub-optimal expert πEi is optimal for the same reward function
that πE1

is optimizing for, but using a different discount factor γ′. In this case, ‖V πE1

M∪r−V
πEi
M∪r‖∞ ≤

2 |γ−γ′|
(1−γ)(1−γ′) =: ξi holds for all rewards r.

Example 3.3. Suppose that the i-th sub-optimal expert πEi is sufficiently close to the optimal policy
πE1

, namely that maxs∈S ‖πE1
(·|s)−πEi(·|s)‖1 ≤ ε. In this case, ‖V πE1

M∪r−V
πEi
M∪r‖∞ ≤ 1

1−γ ε =: ξi
holds for all rewards r.

3.2 Implicit Formulation ofRB̄

In this section, we analyze the implicit description of the feasible reward setRB̄. From its definition
(Equations (1) and (3)), a reward function r ∈ [0, 1] belongs to RB̄ if and only if the following
conditions are satisfied:

(i) QπE1

M∪r(s, a) = V
πE1

M∪r(s) ∀(s, a) ∈ S ×A : πE1
(a|s) > 0,

(ii) QπE1

M∪r(s, a) ≤ V πE1

M∪r(s) ∀(s, a) ∈ S ×A : πE1(a|s) = 0,
(iii) V πE1

M∪r(s) ≤ V
πEi
M∪r(s) + ξi ∀s ∈ S, ∀i ∈ {2, . . . , n+ 1}.

Specifically, conditions (i) and (ii) directly encode the optimality of policy πE1
forM∪ r, i.e., the

advantage function AπE1

M∪r is non-positive. Condition (iii), on the other hand, arises from the presence
of sub-optimal experts, and directly follows from Equation (3). At this point, by closely examining
these conditions, it is possible to gain insight into the advantages and limitations associated with the
presence of multiple and sub-optimal experts. Consider, the following illustrative examples.
Example 3.4. Suppose that πEi = πE1

holds for all i ∈ {2, . . . , n+ 1}. Condition (iii) is clearly
satisfied for any reward function r. Thus, the feasible reward setRB̄ is determined by the requirement
that the advantage function of πE1

is non-negative, and, as a consequence, the setRB̄ coincides with
the one of the single-expert IRL problem, namelyRB̄ = RB. Analogously, if ξi ≥ (1− γ)−1 holds
for all sub-optimal experts, condition (iii) is vacuous, and, similarly,RB̄ reduces toRB.

Example 3.5. Consider the MDP with 2 states depicted in Figure 1, and suppose that only one
additional sub-optimal expert is present. The optimal and the sub-optimal experts follow different
policies in S0. From the definition ofRB̄, we can see that, in addition to the constraint r(S0, A1) ≥
r(S0, A2) (i.e., πE1 is optimal), condition (iii) enforces a further relationship between r(S0, A1) and
r(S0, A2), i.e., r(S0, A1)− r(S0, A2) ≤ ξi. If ξi is sufficiently small (i.e., ξi < 1), the presence of
the sub-optimal experts significantly reduces the set of compatible rewards (Figure 2).

2For the sake of exposition, we consider a single optimal expert. The extension to cases where multiple
optimal policies are available is straightforward. For further details on this point see Appendix B.
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S0 S1

A1| πE1(A1|S0)=1

A2| πEi(A2|S0)=1

A

Figure 1: MDP example, with 2 states and 2 ex-
perts, that highlights the benefits of sub-optimal
experts (Example 3.5). In S1 both πE1 and πEi
are identical, i.e., πE1

(Ā|S1) = πEi(Ā|S1) = 1.
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Figure 2: Visualization of the feasible reward set
(i.e., shaded red area) for the problems described
in Example 3.5. On the left, the feasible reward
set for the single-expert IRL problem and on the
right the feasible reward set for the multiple and
sub-optimal setting when using ξi = 0.5.

Abstracting away from the examples, we deduce that whenever (a) the sub-optimal experts exhibit
behavior significantly different from that of the optimal expert and (b) their performance level is
sufficiently close to being optimal, RB̄ can notably shrink compared to RB. In the next section,
through an explicit formulation of the feasible set, we analyze this phenomenon quantitatively.

3.3 Explicit Formulation ofRB̄

In this section, we continue by providing an explicit formulation of the feasible setRB̄. The following
result (proof in Appendix D) summarizes our findings.

Theorem 3.6. Let B̄ be an IRL problem with sub-optimal experts. Let r ∈ [0, 1]S×A. Then, r ∈ RB̄

if and only if there exists ζ ∈ RS×A≥0 and V ∈ RS such that the following conditions are satisfied:

r = −B̄πE1
ζ + (E − γP )V, (4)

and, for all i ∈ {2, . . . , n+ 1}:
dπEiπEiB̄

πE1 ζ ≤ 1Sξi. (5)

Theorem 3.6 deserves some comments. First, from Equation (4), we see that a necessary condition
for having r ∈ RB̄ is that it can be expressed as the sum of two components, namely −B̄πE1

ζ and
(E − γP )V . This result is a direct consequence of the fact that πE1 is an optimal policy forM∪ r,
and, in this sense, it recovers the existing condition of single expert IRL settings (Equation 2) [24].3

Sub-optimal experts constrain the sub-optimality gaps. The role of the sub-optimal experts is
apparent in Equation (5) enforcing a set of linear constraints on the values that ζ can take.4 Since,
as discussed in Section 2, −B̄πE1 ζ represents the advantage function of the optimal policy πE1 ,
Equation (5) limits how much sub-optimal the values of actions not played by πE1 can be. Indeed,
the resulting Q-function of the optimal expert can be expressed as QπE1

M∪r = −B̄πE1 ζ + EV [24].

Sub-optimal experts affect only states in which they behave sub-optimally. The linear constraints
in Equation (5) are expressed in terms of πEiB̄

πE1 ζ. As a consequence, they will only affect state-
action pairs (s, a) ∈ S ×A that are played by the sub-optimal experts (i.e., πEi(a|s) > 0) and
that are not played by the optimal expert (i.e., πE1

(a|s) = 0). Therefore, as previously highlighted
with the implicit formulation ofRB̄, a sub-optimal expert πEi should behave differently w.r.t. the
optimal expert πE1

in order to provide meaningful information and reduce the feasible reward set.
Furthermore, the constraints over ζ are expressed w.r.t. expected discounted occupancy of πEi .

3Contrary to single-experts IRL problems, now Equation (4) is only a necessary condition for having r ∈ RB̄.
Moreover, whenever n = 1 (i.e., we have the optimal expert πE1 only), Theorem 3.6 reduces to Equation (4),
and, thus, it smoothly generalizes existing results for the classical IRL problem.

4Thanks to the linearity, testing whether a given ζ satisfies Equation (5) is computationally efficient.
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Therefore, Equation (5) has provided a precise mathematical description (i.e., if and only if conditions)
of the effect produced by the presence of sub-optimal experts on the feasible rewards r.

While in classical IRL problems, we have ‖ζ‖∞ ≤ (1 − γ)−1, the maximum value ζ can take in
the sub-optimal experts case may be smaller. Let us fix a state s′ ∈ S and a sub-optimal expert
i ∈ {2, . . . , n+ 1}; then, the constraint associated to state s′ in Equation (5) can be written as:∑

s∈S
d
πEi
s′ (s)

∑
a∈A:πE1

(a|s)=0

πEi(a|s)ζ(s, a) ≤ ξi, (6)

where d
πEi
s′ (s) is the discounted expected number of times that policy πEi visits state s ∈ S starting

from state s′. From Equation (6), we obtain necessary conditions on the values of ζ . More specifically,
let X (s, a) ⊆ {2, . . . , n+ 1} be the subset of sub-optimal experts such that πEi(a|s) > 0. Then, for
each state-action pair (s, a) ∈ S ×A such that πE1

(a|s) = 0 and πEi(a|s) > 0, we have that:

ζ(s, a) ≤ min

{
k(s, a),

1

1− γ

}
:= g(s, a), where k(s, a) := min

i∈X (s,a),s′∈S
ξi

d
πEi
s′ (s)πEi(a|s)

. (7)

The term k(s, a) directly follows from Equation (6), while (1− γ)−1 is the maximum value that any
ζ(s, a) can take, and arises, as in the classical IRL setting, from the fact that advantage functions are
bounded by (1−γ)−1 for any reward function. Thus, confirming our previous observations, Equation
(7) implies a significant potential reduction in the maximum values that the advantage function can
take, i.e., how much sub-optimal an action not played by πE1

can be in terms of Q-function values. 5

Example 3.7. Consider an IRL problem with only one additional sub-optimal expert. Suppose that
πE1

and πEi are deterministic. For all state-action pairs in which πE1
(a|s) = 0 and πEi(a|s) = 1,

Equation (7) implies that ζ(s, a) ≤ min
{
ξi, (1− γ)−1

}
. If ξi is significantly smaller than (1−γ)−1,

we obtain a notable restriction on the set of feasible reward functions.

Remark 3.8 (About alternative Sub-optimality Formulations). We have described the sub-optimal
experts by means of upper bounds on the value functions gaps; i.e., V πE1

M∪r − V
πEi
M∪r ≤ 1Sξi. In

principle, we may consider lower bounds on the value functions gaps; i.e., V πE1

M∪r − V
πEi
M∪r ≥ 1Sξi.

Intuitively, in the former case, we know that an expert is sub-optimal at most ξi, whereas, in the latter,
that an expert is sub-optimal at least ξi. Our theory smoothly generalizes to these latter scenario
obtaining an analogous of Theorem 3.6 where the constraints of Equation (5) are replaced with
dπEiπEiB̄

πE1 ζ ≥ 1Sξi. We refer the reader to Theorem D.5 for a formal statement.

4 Learning the Feasible Set with Sub-Optimal Experts

In this section, we address the statistical complexity of estimating RB̄ with a generative model.
Specifically, we first introduce a Probabilistic Approximately Correct (PAC) framework (Section 4.1).
Then, we study the statistical complexity of the problem by presenting lower bounds on the sample
complexity any algorithm requires in order to correctly identify the feasible set (Section 4.1). Finally,
we propose a uniform sampling algorithm and analyze its theoretical guarantees (Section 4.3).6

4.1 PAC Framework

We define a learning algorithm for an IRL-SE problem B̄ as a tuple A = (τ, ν) where τ is a
stopping and ν = (νt)t∈N is a history-dependent sampling strategy, i.e., νt ∈ ∆S×ADt−1

, where
Dt = (S × A× S × (A)n+1)t is the set of samples collected up to time step t ∈ N. At each time
step t, the algorithm selects a state-action pair (st, at) ∼ νt, and observes a sample s′t ∼ p(·|st, at)
from the environment, together with actions sampled from the experts’ policy, namely (a

(i)
t )n+1

i=1 ,
where a(i)

t ∼ πEi(·|st). The observed realizations Dt are then used to update the sampling strategy
νt, and the process goes on until the stopping rule τ is satisfied. Then, the algorithm leverages the

5In Appendix I, we also provide some simple numerical experiments that aim at visualizing the reduction of
the feasible reward set.

6For the sake of presentation, all results are presented under the assumption that πE1 is deterministic. The
extension to the case in which πE1 is stochastic is presented in Appendix F.
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collected data Dτ to output the estimate of the feasible reward set R̂τ . We are interested in designing
algorithms that, for any desired accuracy ε ∈ (0, 1) and any risk parameter δ ∈ (0, 1), guarantee that:

PA,B̄

(
H∞(RB̄, R̂τ ) > ε

)
≤ δ. (8)

We refer to these algorithms as (ε, δ)-correct identification strategies and we define their sample
complexity as the total number of interactions with the generative model before stopping, i.e., τ .

4.2 Lower Bound

In this section, we present lower bounds on the sample complexity that any (ε, δ)-correct algorithm
needs to perform to learnRB̄. The following theorem (proof in Appendix E) reports our result.
Theorem 4.1. Let A be a (ε, δ)-correct algorithm for the IRL problem with sub-optimal experts.
There exists a problem instance B̄ such that the expected sample complexity is lower bounded by:

EA,B̄[τ ] ≥ Ω

(
SA

ε2(1− γ)2

(
log

(
1

δ

)
+ S

))
, (9)

where Ω(·) hides constant dependencies. Let πmin > 0 be:

πmin := min
i∈{2,...n+1... }

min
(s,a)∈S×A:πEi (a|s)>0

πEi(a|s), (10)

and let q0 := π−1
minmaxi∈{2,...,n+1} ξi. Then, there exists an instance B̄′ in which q0 < 1 such that:

EA,B̄′ [τ ] ≥ Ω

(
q2
0S log

(
1
δ

)
ε2πmin

)
. (11)

Theorem 4.1 provides two distinct lower bounds (i.e., Equations 9 and 11) for IRL problems with sub-
optimal experts. Whenever q0 < 1 holds, the lower bound for the IRL-SE setting can be expressed as
the maximum between Equation (9) and (11). We now comment in-depth on these two equations.

Sub-optimal experts do not reduce the statistical complexity of IRL. Concerning Equation (9),
as our analysis reveals, it directly arises from the problem of estimating rewards functions that
are compatible with πE1

(i.e., with Equation (4) in Theorem 3.6). In this sense, it represents the
complexity of single-expert IRL problems.7 As a consequence of the structure of the feasible set
we derived in Theorem 3.6, this leads to a lower bound also for the multiple sub-optimal experts
setting. Therefore, Equation (9) formally shows that the sub-optimal expert setting is always at least
as difficult as the single expert IRL problem.

Sub-optimal experts have introduce further statistical complexities. Equation (11), on the other
hand, is tightly related to the presence of sub-optimal experts. More precisely, under the assumption
that q0 < 1 (e.g., for sufficiently small values of ξi), it shows a dependency in the lower bound of a
factor π−1

min, where πmin is the minimum probability with which sub-optimal experts plays their actions.
From an intuitive perspective, its presence is related to the difficulty in estimating reward functions
that are compatible with Equation (5) in Theorem 3.6. As we have shown in Section 3, the presence
of sub-optimal experts can limit the value of ζ with a relationship that involves π−1

min (i.e., Equation
(7)). As our analysis will reveal, the proof of Equation (11) is directly related to these worst-case
upper-bounds on ζ . We remark that, according to the value of πmin, Equation (11) can be significantly
larger than Equation (5), thus showing an increased difficulty in the statistical complexity that is
related to the stochasticity of sub-optimal experts.

We remark that τ represents the number of calls to the generative model and that each call, in our
setting, provides demonstrations from each (sub-)optimal expert. It can be shown that, by slightly
modifying the learning formalism, Equation (11) actually represents a lower bound to the number
of samples that should be gathered from each sub-optimal expert.8 In this sense, the statistical
complexity increases significantly in the sub-optimal expert setting compared to the single expert one.

7We notice that similar results were presented in [22] for the finite-horizon single expert IRL problem. In
this work, we extend their analysis to the infinite-horizon IRL setting.

8For further details, we refer the reader to Appendix G.
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Therefore, to conclude, we notice that, in order to gain the reduction in the feasible reward set that we
discussed in Section 5, we need to gather additional sampled demonstrations from the sub-optimal
experts. This unavoidable trade-off is a direct consequence of the structure of the feasible set RB̄
that we derived in Theorem 3.6, and, it arises from the statistical complexity of estimating reward
functions that are compatible with the linear constraints of Equation (5).

4.3 Uniform Sampling Algorithm

Algorithm 1 US-IRL-SE Algorithm
Require: Number of samples for each (s, a) pair

m
1: for t ∈ {1, . . . ,m} do
2: Collect (s′, (a(i))n+1

i=1 ) where s′ ∼ p(·|s, a)

and a(i) ∼ πEi(·|s) from each (s, a) ∈ S×
A and i ∈ {1 . . . , n+ 1}

3: Update p̂t and (π̂t,Ei)
n+1
i=1 according to

Equation (12)
4: end for
5: returnR ̂̄Bm

In this section, we present the Uniform Sam-
pling algorithm for Inverse RL with Suboptimal
Experts (US-IRL-SE).

Algorithm. The pseudo-code can be found
in Algorithm 1 US-IRL-SE takes as input the
number of samples m that will be queried
to the generative model in each state-action
pair. Then, it uniformly gathers data across
the entire state-action space, and it updates
the empirical estimates p̂t and (π̂t,Ei)

n+1
i=1 of

the transition model and expert’s policies. Let
Dt be a dataset of t ∈ {1, . . . ,m} tuples
Dt = {(sj , aj , s′j , (a

(i)
j )n+1

i=1 )}tj=1, where s′j ∼
p(·|sj , aj), and a(i)

j ∼ πEi(·|sj). Given Dt, we
define the empirical transition model p̂t and the empirical experts’ policy π̂t,Ei as follows:

p̂t(s
′|s, a) =

{
Nt(s,a,s

′)
Nt(s,a) if Nt(s, a) > 0

1
S otherwise

, π̂t,Ei(a|s) =

{
N

(i)
t (s,a)
Nt(s)

if Nt(s) > 0
1
A otherwise

, (12)

where Nt(s, a, s′) =
∑t
j=1 1{(sj , aj , s′j) = (s, a, s′)}, Nt(s, a) =

∑
s′∈S Nt(s, a, s

′), Nt(s) =∑
(a,s′)∈A×S Nt(s, a, s

′), and N (i)
t (s, a) = 1{(sj , a(i)

j ) = (s, a)}. Then, we denote with ̂̄Bt the
empirical IRL problem induced by p̂t and (π̂t,Ei)

n+1
i=1 . Finally, the algorithm returns the feasible set

R ̂̄Bm
corresponding to the estimated IRL-SE problem ̂̄Bm defined in terms of p̂m and (π̂m,Ei)

n+1
i=1 .

Sample Complexity Upper Bound The following theorem (proof in Appendix E), describes the
theoretical guarantees of US-IRL-SE.

Theorem 4.2. Let q1 = min
{
π−1

min maxi∈{2,...,n+1} ξi, (1− γ)−1
}

, and q2 = max {1, q1}. Then,
with a total budget of:

Õ
(

max

{
q2
1S log

(
1
δ

)
ε2πmin

,
q2
2SA(S + log

(
1
δ

)
)

ε2(1− γ)2

})
, (13)

US-IRL-SE is (ε, δ)-correct and Õ (·) hides constant and logarithmic dependencies.

Theorem 4.2 deserves some comments. First of all, it shows that when the total number of queries to
the generative is sufficiently large, US-IRL-SE is (ε, δ)-correct, and its sample complexity is provided
in Equation (13). Since m represents the number of calls to the generative model in each state-action
pair, its expression can simply be calculated dividing Equation (13) by SA.9 As a consequence, we
remark that, in order to compute the value of m, the algorithm requires knowledge of the minimum
probability πmin with which the sub-optimal experts play their actions.

US-IRL-SE is minimax optimal when π−1
minξi ≤ 1. Equation (13) is the maximum between two

terms whose expressions closely resemble the lower bound of Theorem 4.1. The only difference arises
in the definition of q0, q1 and q2. We remark that, whenever the sub-optimal expert’s performance
level is sufficiently close to the one of the optimal expert, i.e., π−1

minξi ≤ 1 for all i ∈ {2, . . . , n+ 1},
9The exact expression of m (i.e., constants and hidden logarithmic factors) is provided in Appendix H.
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Equation (13) exactly recovers the lower bound that we presented in Theorem 4.1. Indeed, under this
condition, it holds that q0 = q1, and q2 = 1. We recall that, according to Theorem 3.6, as the values
of ξi’s decrease, the feasible reward set is substantially reduced. In this sense, US-IRL-SE enjoys
minimax optimality in the most interesting scenarios where the presence of sub-optimal experts is
particularly useful for mitigating the intrinsic ambiguity that affects IRL problems.

Technical challenges of Theorem 4.2. We highlight that the proof of Theorem 4.2 poses notable
technical challenges beyond the ones of the analysis for standard IRL [24]. In our setting, studying
how the Hausdorff distance between RB̄ and R ̂̄Bt

decreases as we collect more samples requires
taking into account that these feasible reward sets are subject to the peculiar structure identified in
Theorem 3.6, namely the set of constraints of Equation (5) arising from the presence of sub-optimal
experts. We study, with probabilistic arguments, error terms of the form ‖ζ − projΩ̂tζ‖∞, where ζ

is feasible for the exact problem B̄, Ω̂t denotes the set of ζ that are compatible with the empirical
problem ̂̄Bt, and proj(·) denotes the infinite norm projection. Analyzing these terms to obtain
nearly optimal rates requires careful considerations on the geometry of feasible reward set that the
sub-optimal experts induce. For further details, we refer the interested reader to Appendix E.

5 Related Works

In this section, we survey the works about IRL and the presence of multiple (sub-optimal) experts
that are related to our proposal.

Inverse Reinforcement Learning. Historically, solving an IRL problem [1] involves determining
a reward function that is compatible with the behavior of an optimal expert. Since the seminal work
of [26], the problem has been recognized as ill-posed, as multiple reward functions that satisfies
this requirement exists [34]. For this reason, over the years, several algorithmic criteria have been
introduced to address this ambiguity issue. These criteria includes maximum margin [30], Bayesian
approaches [28], maximum entropy [37], and many others [e.g., 21, 23, 36]. More recently, a new
line of works have circumvented the ambiguity issue by redefining the IRL task as the problem of
estimating the entire feasible reward set [24, 19, 22]. In our work, we take this novel perspective, and,
in this sense, this recent research strand is the most related to our document. Specifically, of particular
interests is the work of [22]. In their work, the authors study, for the first time, lower bounds for the
single-expert IRL problem in finite horizon settings. Furthermore, they show that uniform sampling
algorithm is minimax optimal for this task. Nevertheless, it has to remarked that this recent strand of
research focuses entirely on single expert problems. As we have shown, however, the extension to
the multiple and sub-optimal experts setting requires non-trivial effort. The reason is that the feasible
reward set significantly differ (see, e.g., Theorem 3.6), and the problem is harder from a statistical
perspective (see, e.g., Theorem 4.1).

Multiple and/or Sub-optimal Experts. The presence of multiple/sub-optimal experts has garnered
attention in the Imitation Learning [IL, 11] community. In IL problems, contrary to IRL, the goal
lies in directly leveraging demonstrations of optimal behavior to accelerate the training process
of reinforcement learning algorithms. In this context, works that are close in spirit to ours are
[17, 13, 6, 20]. Here, the authors extend the IL formulation to account for the fact that demonstrations
are provided from multiple and/or sub-optimal experts. However, unlike our specific focus, their
emphasis is on understanding how to effectively exploit imperfect demonstrations to improve training
of RL agents. In our work, instead, we exploit the presence of sub-optimal experts to reduce the
intrinsic ambiguity that affects the IRL formulation. In this sense, our work is complementary
to several studies that analyzed how to improve the identifiability of the reward function in IRL
problems by making additional structural assumptions. These include the possibility of observing
an optimal expert interacting with several MDPs [e.g., 30, 3, 2] and focusing on peculiar types of
MDPs that allows for strong theoretical guarantees [e.g., 8, 15, 5]. Along this line of work, the
most related to ours is [32]. Here, the authors study how the presence of multiple experts impact
the identifiability of the reward function. Contrary to our work, however, the authors assume each
expert to follow an entropy regularized objective and, furthermore, they focus on the case in which
all experts act optimally in the underlying environment. In this sense, our work encompasses a wider
spectrum of applications, as we do not require optimality for each of the expert, nor an entropy

9



regularized objective. Furthermore, it has to be remarked that the multiple expert setting and IRL
have been studied in [18] with the goal of providing practical algorithms that can be used in real-
world applications. Also in this scenario, each expert is assumed to act optimally in the underlying
domain. Finally, our work is related to approaches that aimed at extracting a single reward function
by leveraging possibly sub-optimal demonstrations [e.g., 35, 16, 12, 29]. In our work, instead, we
take a different theoretical perspective, and focus on the set of reward functions that are compatible
with multiple sub-optimal experts.

6 Conclusions

In this work, we studied the novel problem of Inverse RL where, in addition to demonstrations from
an optimal expert, we can observe the behavior of multiple and sub-optimal experts. More precisely,
we first investigated the theoretical properties of the class of reward functions that are compatible with
a given set of experts, i.e., the feasible reward set. Our results formally show that, by exploiting this
additional structure, it is possible to significantly reduce the intrinsic ambiguity that affects the IRL
formulation. Secondly, we have tackled the statistical complexity of estimating the feasible reward
set from a generative model. More precisely, we have shown that a uniform sampling algorithm is
minimax optimal whenever the performance level of the sub-optimal expert is sufficiently close to
the one of the optimal expert.

Our research opens up intriguing avenues for future studies. In the following, we highlight several
possibilities.

Closing the Theoretical Gap The results that we presented in Section 4 do not completely match.
When the performance of the sub-optimal experts are not sufficiently close to the one of the optimal
agent, the upper bound differs from the lower bound. Closing this gap, either by (i) developing
tighter lower bounds or (ii) proposing novel algorithms and/or refining the analysis of US-IRL to
achieve tighter upper bounds, is an interesting future direction. This would allow for a complete
understanding of the statistical complexity of the problem.

Offline IRL with Sub-Optimal Experts Secondly, we note that this work leverages the presence
of a generative model in the algorithm design. In the future, it would be interesting to remove this
assumption by considering an offline setting where only a dataset of collected demonstrations is
available to the learning system. This formulation is more practical since, in several real-world IRL
applications [18], only a dataset of pre-collected demonstrations is available to the designer of the
IRL system. We also note that this setting is, in principle, more challenging, as the data coverage of
the dataset is not under the control of the IRL system.

Large State-Action Spaces For instance, since we have shown that sub-optimal experts can
improve the identifiability of the reward function, future research should focus on building practical
algorithms that can exploit this additional structure. To this end, as an intermediate step, it might
be interesting to extend our results to the case in which the reward function is expressed as a linear
combination of features. This approach would enable addressing infinite state-spaces [e.g., 26].
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The structure of the supplementary materials is organized as follows:

• Appendix A provide tables that summaries the main symbols used in this document.

• Appendix B describes how to extend our result to the multiple optimal expert setting.

• Appendix C provides proof of Examples 3.1-3.3.

• Appendix D provides formal proofs of the theoretical claims of Section 3, together with
discussions on alternative formulations of the IRL-SE problem.

• Appendix E provides formal proofs of the theoretical claims of Section 4.

• Appendix F discusses how to extend our result to the setting in which πE1
is stochastic.

• Appendix G discusses how to change the learning formalism to derive a lower-bound that
directly depends on the number of samples that are needed from each sub-optimal expert.

• Appendix H provides additional details on US-IRL-SE (i.e., exact description of m) and
computational complexity analysis.

• Appendix I presents a simple numerical experiments that highlights the reduction of the
feasible reward set due to the presence of multiple and sub-optimal experts.

A Symbols and Notation

To begin, we provide tables that summaries the main symbols used in this document. Table 1 reports
a summary on the notation used throughout the paper. Table 2 reports a precise definition of the
operators used.

Table 1: Notation

SYMBOL MEANING

B Inverse RL problem with a single optimal agent.
B̄ Inverse RL problem with multiple and sub-optimal experts.
n Number of sub-optimal experts, n ∈ N>0.
πEi Policy of the i-th expert. If i = 1, the expert is optimal.
ξi Sub-optimality of the i-th expert, where i ∈ {2, . . . , n+ 1}.
π̂Ei Empirical estimates of the i-th expert policy πEi .
p̂ Empirical estimate of the transition model p.
Dt Dataset of t tuples from the generative model.
Nt(s, a) Number of samples gathered at state-action pair (s, a) in Dt.
Nt(s) Number of samples gathered at state s in Dt.̂̄B Empirical estimate of the IRL-SE problem induced by p̂ and π̂Ei .
RB Feasible reward set of a single-agent IRL problem.
RB̄ Feasible reward set of a IRL-SE problem.
R ̂̄B Feasible reward set of the IRL-SE problem induced by p̂ and π̂Ei .
H∞(X ,X ′) Hausdorff distance between set X and X ′.
A Learning algorithm for the US-IRL-SE problem.
ν Sampling strategy of a learning algorithm A.
τ Stopping time (i.e., sample complexity) of a learning algorithm A.
ε Desired level of accuracy when estimating the feasible reward set.
δ Maximum risk tolerated when estimating the feasible reward set.
m Number of samples that the US-IRL-SE algorithm gathers in each state-action pair.

B Additional Multiple Optimal Expert Setting

In this section, we discuss the extension of the IRL-SE setting to the case in which multi-
ple optimal policies are available. More specifically, we define this IRL-SE setting as a tuple
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Table 2: Operators

SYMBOL SIGNATURE DEFINITION

P RS → RS×A (Pf)(s, a) =
∑
s′∈S p(s

′|s, a)f(s′)
π RS×A → RS (πf)(s) =

∑
a∈A π(a|s)f(s, a)

E RS → RS×A (Ef)(s, a) = f(s)
B̄π RS×A → RS×A (B̄πf)(s, a) = 1 {π(a|s) = 0} f(s, a)
Bπ RS×A → RS×A (Bπf)(s, a) = 1 {π(a|s) > 0} f(s, a)

dπ RS → RS (dπf)(s) =
∑+∞
t=0 ((γπP )tf) (s)

IS RS → RS (ISf)(s) = f(s)

B̃ =
(
M,

(
π∗Ei
)n1

i=1
, (πEi)

n2

i=1 , (ξi)
n2

i=1

)
, where

(
π∗Ei
)n1

i=1
is a set of n1 optimal policies, (πEi)

n2

i=1

is a set of n2 sub-optimal policies with known degree of sub-optimality (ξi)
n2

i=1.

At this point, one can verify that the shape of the feasible set RB̃, is exactly the one of Theorem
3.6, where Equations (4) an (5) are obtained by replacing πE1 with each optimal policy π∗Ei with
i ∈ {1, . . . , n1}.
Concerning learning the feasible reward set, it is sufficient to extend the generative model so that
samples are gathered from all optimal and sub-optimal experts. The proof of Section 4 holds almost
unchanged.

C Proof of Examples 3.1-3.3

We now give formal proofs of Examples 3.1-3.3.

Proof of Example 3.1. Consider two MDPs \RM1 andM2 that differs only in the transition kernel,
which we denote by p1 and p2. Suppose that πE1 and πE2 are optimal forM1 andM2 respectively.
For any state s, it holds that:

V
πE1

M1∪r(s)− V
πE2

M1∪r(s) ≤ V
πE1

M1∪r(s)− V
πE1

M2∪r(s) + V
πE2

M2∪r(s)− V
πE2

M1∪r(s),

where we added and subtracted V πE1

M2∪r, and we used V πE1

M1∪r ≤ V
πE2

M2∪r due to the optimality of πE2

inM2. Then, focus on V πE1

M1∪r(s) − V
πE1

M2∪r(s) (but an identical reasoning can be applied for the
second difference as well):

V
πE1

M1∪r(s)− V
πE1

M2∪r(s) = γ
∑
a

πE1
(a|s)

∑
s′

p1(s′|s, a)(V
πE1

M1
(s′)− V πE1

M2
(s′))+

+ (p1(s′|s, a)− p2(s′|s, a))V
πE1

M2
(s′),

which, in turn, can be further bounded by:
γ

1− γ ||p1 − p2||1 + γ
∑
a

πE1
(a|s)

∑
s′

p1(s′|s, a)(V
πE1

M1
(s′)− V πE1

M2
(s′))

Unrolling the summation to iterate the aforementioned argument, and using the fact that
∑+∞
t=0 γ

t =
1

1−γ concludes the proof.

Proof of Example 3.2. In this proof, we explicit the relationship of the value function V with the
discount factor γ by writing V π,γM∪r. Then, it holds that:

V
πE1

,γ

M∪r (s)− V πE2
,γ

M∪r (s) ≤ V πE1
,γ

M∪r (s)− V πE1
,γ′

M∪r (s) + V
πE2

,γ′

M∪r (s)− V πE2
,γ

M∪r (s),

where we added and subtracted V
πE1

,γ′

M∪r (s), and we used V
πE1

,γ′

M∪r (s) ≤ V
πE2

,γ′

M∪r (s) due to the

optimality of πE2
for the discount factor γ′. Then, focus on V πE1

,γ

M∪r (s) − V
πE1

,γ′

M∪r (s). By the
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definition of the value function, together with the fact that rewards are bounded in [0, 1], we can
rewrite this difference as:

E[

+∞∑
t=0

(γt − γ′t)r(st, at)|s0 = s] ≤
+∞∑
t=0

γt − γ′t =
γ − γ′

(1− γ)(1− γ′) .

An identical argument holds for the second difference, thus concluding the proof.

Proof of Example 3.3. By using the definition of value function, we can rewrite V πE1

M∪r(s)−V
πE2

M∪r(s)

as
∑
a(πE1

(a|s)−πE2
(a|s))r(s, a)+γ

∑
s′ p(s

′|s, a)(V
πE1

M∪r(s
′)−V πE2

M∪r(s
′))). At this point, since

rewards are bounded in [0, 1] and by the policy similarity assumption, we have that the difference in
value functions can be upper bounded by ε+ γ

∑
s′ p(s

′|s, a)(V
πE1

M∪r(s
′)− V πE2

M∪r(s
′)). Unrolling

the summation to iterate the aforementioned argument, and using the fact that
∑+∞
t=0 γ

t = 1
1−γ

concludes the proof.

D Proofs and Derivations of Section 3

In this section, we provide formal proofs of the theoretical results of Section 3. We begin by reporting
for completeness some results from [24] that will be used in our analysis.
Lemma D.1. Let B = (M, πE) be a single-agent IRL problem. Let r ∈ [0, 1]S×A, then r is a
feasible reward if and only if for all (s, a) ∈ (S,A) it holds that:

(i) QπEM∪r(s, a)− V πEM∪r(s) = 0 if πE(a|s) > 0,

(ii) QπEM∪r(s, a)− V πEM∪r(s) ≤ 0 if πE(a|s) = 0.

Lemma D.2. Let B = (M, πE) be a single-agent IRL problem. A Q-function satisfies condition of
Lemma D.1 if and only if there exist ζ ∈ RS×A≥0 and V ∈ RS such that:

QM∪r = −B̄πEζ + EV

Lemma D.3. Let B = (M, πE) be a single-agent IRL problem. Let r ∈ RS×A, then r is a feasible
reward, if and only if there exist ζ ∈ RS×A≥0 and V ∈ RS such that:

r = −B̄πEζ + (E − γP )V

At this point, we proceed by proving a Lemma that implicitly describes the set of reward functions
that are compatible with a IRL-SE problem.
Lemma D.4. Let B̄ be an IRL problem with sub-optimal experts. Let r ∈ [0, 1]S×A. Then, r ∈ RB̄
if and only if the following conditions are satisfied:

(i) QπE1

M∪r(s, a) = V
πE1

M∪r(s) ∀(s, a) : πE1
(a|s) > 0,

(ii) QπE1

M∪r(s, a) ≤ V πE1

M∪r(s) ∀(s, a) : πE1
(a|s) = 0,

(iii) QπE1

M∪r ≤ V
πEi
M∪r + 1Sξi ∀i ∈ {2, . . . , n+ 1}.

Proof. Condition (i) and (ii) are necessary conditions for the claim to hold. This directly follows by
the definition ofRB̄ and from Lemma D.1. At this point, what remains to be proven is condition (iii).

We begin by showing that, if r ∈ RB then condition (iii) is satisfied. Since (i) and (ii) holds, it
sufficies to plug V πE1

M∪r − V
πEi
M∪r ≤ ξi within (i) and (ii) to obtain the desired result.

We conclude by showing that if (i)-(iii) are satisfied, then r ∈ RB. Since (i) and (ii) holds, then, by
Lemma D.1, we know that πE1

is optimal forM∪r. It remains to be proven that V πE1

M∪r−V
πEi
M∪r ≤ ξi

holds as well. However, since (i) holds, (iii) implies that V πE1

M∪r(s)− V
πEi
M∪r(s) ≤ ξi(s) holds for all

s ∈ S, thus concluding the proof.

We continue by proving Theorem 3.6.
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Theorem 3.6. Let B̄ be an IRL problem with sub-optimal experts. Let r ∈ [0, 1]S×A. Then, r ∈ RB̄

if and only if there exists ζ ∈ RS×A≥0 and V ∈ RS such that the following conditions are satisfied:

r = −B̄πE1
ζ + (E − γP )V, (4)

and, for all i ∈ {2, . . . , n+ 1}:
dπEiπEiB̄

πE1 ζ ≤ 1Sξi. (5)

Proof. First of all, Equation (4) is a necessary condition for the claim to hold. Indeed, from Lemma
D.3 and Lemma D.4, Equation (4) is a necessary and sufficient condition to make πE1 optimal in
M∪ r.

At this point, we proceed conditioning on the fact that Equation (4) holds. We need to show that, if
r ∈ RB̄, then Equation (5) holds, and if Equation (5) holds, then r ∈ RB̄.

From Lemma D.4, we know that a necessary and sufficient condition for the previous statements to
hold is that:

Q
πE1

M∪r(s, a) ≤ V πEiM∪r(s) + ξi,

holds for any state-action pair (s, a) and for all experts i ∈ {2, . . . , n+ 1}. Given Equation (4) and
Lemma D.2, the previous equation can be conveniently written as:

−B̄πE1
ζ + EV ≤ EV πEiM∪r + E1Sξi. (14)

At this point, consider (s, a) such that πE1
(a|s) > 0. Then, Equation (14) reduces to:

V (s) ≤ V πEiM∪r(s) + ξi. (15)

Conversely, consider (s, a) such that πE1
(a|s) = 0, then Equation (14) reduces to:

−ζ(s, a) + V (s) ≤ V πEiM∪r(s) + ξi. (16)

Since ζ(s, a) ≥ 0 by assumption, Equation (16) is directly implied by Equation (15). Therefore, it
suffices to study:

V (s) ≤ V πEiM∪r(s) + ξi,

which can be rewritten as:

V − 1Sξi ≤ V πEir = (IS − γπEiP )
−1
πEir.

At this point, we can plug Equation (4) within the previous Equation. More specifically, we obtain:

V − 1Sξi ≤ (IS − γπEiP )
−1
πEi

(
−B̄πE1 ζ + (E − γP )V

)
. (17)

We now proceed by rewriting the right hand side of Equation (17). More precisely, we notice that:

(IS − γπEiP )
−1
πEi ((E − γP )V ) = (IS − γπEiP )

−1
V − γ (IS − γπEiP )

−1
πEiPV

= (IS − γπEiP )
−1

(IS − γπEiP )V

= V.

Plugging this result within Equation (17), we arrive at:

(IS − γπEiP )
−1
πEi

(
B̄πE1 ζ

)
≤ 1Sξi,

which concludes the proof.

D.1 Other Assumptions on the Behavior of the Sub-optimal Experts

In this section, we investigate the generality of the results presented in Theorem 3.6. Specifically, we
remark that all the results that we derived in Section 3 can be easily extended to other assumptions on
the sub-optimal experts. More specifically, the results of Theorem 3.6 can easily be extended to the
following cases:

V
πE1

M∪r − V
πEi
M∪r ≥ 1Sξi, (18)
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or

V
πE1

M∪r − V
πEi
M∪r = 1Sξi. (19)

Equation (18) encodes the fact that that a given sub-optimal expert i is at least ξi sub-optimal w.r.t.
the optimal policy πE1 , while Equation (19) encodes the the fact that the sub-optimal expert i is
exactly ξi sub-optimal w.r.t. the optimal agent. In these cases, it is possible to derive the following
generalizations of Theorem 3.6.

Theorem D.5. Let B̄ be an IRL problem with sub-optimal experts where V πE1

M∪r − V
πEi
M∪r ≥ 1Sξi

holds for all sub-optimal experts i. Let r ∈ [0, 1]S×A. Then, r ∈ RB̄ if and only if there exists
ζ ∈ RS×A≥0 and V ∈ RS such that the following conditions are satisfied:

r = −B̄πE1
ζ + (E − γP )V, (20)

and, for all i ∈ {2, . . . , n+ 1}:
dπEiπEiB̄

πE1 ζ ≥ 1Sξi. (21)

Theorem D.6. Let B̄ be an IRL problem with sub-optimal experts where V πE1

M∪r − V
πEi
M∪r = 1Sξi

holds for all sub-optimal experts i. Let r ∈ [0, 1]S×A. Then, r ∈ RB̄ if and only if there exists
ζ ∈ RS×A≥0 and V ∈ RS such that the following conditions are satisfied:

r = −B̄πE1
ζ + (E − γP )V, (22)

and, for all i ∈ {2, . . . , n+ 1}:
dπEiπEiB̄

πE1 ζ = 1Sξi. (23)

The proofs of Theorem D.5 and D.6 are identical to the one of Theorem 3.6. In terms of results,
the only difference lies in the fact that the set of linear constraints introduces a different type of
relationship between ζ and ξi.10

At this point, we remark that Theorem D.5 follows a very similar interpretation of the one we
presented in Section 3. In other words, the sub-optimal experts introduces lower bounds on the values
of the advantage function that are played by the sub-optimal experts πEi and that are not played by
the optimal expert.11 This result is as expected. Indeed, if we know that a given policy is sub-optimal
at least by a given quantity ξi, then, intuitively, we can extrapolate knowledge, expressed as lower
bounds, on how sub-optimal certain actions are.

Concerning Theorem D.6, instead, we notice that the result is much more stronger w.r.t. to the
case in which inequalities are involved in the problem (i.e., Theorem 3.6 and Theorem D.5). More
specifically, we notice that in this case, starting from Equation (23), it is possible to obtain the
following result on the values of ζ:

πEiB̄
πE1 ζ = (IS − γπEiP )1Sξi. (24)

Developing this constraint for a specific state s, we obtain the following linear constraint:∑
a:πE1

(a|s)=0

πEi(a|s)ζ(s, a) = ξi(1− γ). (25)

In other words, it provides a set of hard constraints that the values of ζ should satisfy. At this point,
we remark on two important observations. The first one is that Equation (25) might not be satisfied
for any choice of ζ ∈ RS×A. In particular, suppose that there is only one sub-optimal expert. In this
case, if πE1 = πEi , Equation (25) reduces to:

0 = ξi(1− γ),

10As a consequence of these results, we notice that it is direct to extend the properties of the feasible reward
set to the case in which, e.g., for some experts it holds that V

πE1
M∪r − V

πEi
M∪r ≤ ξi, while for other experts it holds

that V
πE1
M∪r − V

πEi
M∪r ≥ ξi.

11As a consequence, highly sub-optimal experts with different behaviors leads to the most effective reduction
of the feasible reward setRB̄. This is opposed to the results of Section 3.3, where close-to-optimal experts with
different behaviors lead to the most effective reduction.
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which is clearly false for any strictly positive value of ξi. We notice that this result is as expected. If
the two policies are identical, then there should be no gap in the performance of πE1 and πEi . As
a consequence, the feasible reward set of this IRL problem is empty.12 Secondly, instead, suppose
that all the experts are deterministic, and suppose that they all behave differently to πE1

in each
state-action pair (so that the feasible reward set is non-empty). Then, focus on the i-th expert and
consider a state-action pair (s, a) such that πEi(a|s) = 1. Then, Equation (25) reduces to:

ζ(s, a) = ξi(1− γ),

In this sense, the presence of the sub-optimal expert implies a unique value that ζ(s, a) can take.13

It follows that, is for each state-action pair (s, a) such that πE1(a|s) = 0, there exists a single
sub-optimal expert i such that πEi(a|s) = 1, we are able to recover entirely a unique vector ζ̄ that is
compatible with the underlying IRL problem. In other words, in this scenario, we are able to exactly
recover the values of the advantage function that express the sub-optimality gaps of actions that are
not played by the optimal agent.

D.2 Measuring Volumes of the Feasible Values of ζ

Finally, we conclude this section by reporting an additional analysis that quantitatively measure the
reduction in the feasible values of ζ that are compatible with the presence of the sub-optimal experts.

To begin, we first introduce some notation. Let X be a measurable subset of Rn, we denote with
Vol(X ) the Lebesgue measure of X [7]. In other words, Vol(X ) represents the n-dimensional volume
of X .

At this point, from Theorem 3.6, we know that the presence of sub-optimal experts can effectively
limit the values that ζ can assume. Consequently, in order to measure the reduction of the feasible
reward set, we will compute upper bounds on the volume of the region of ζ that induces at least one
feasible reward function inRB̄. In the remainder of this section, for a generic IRL problem B, we
will denote with Z(B) such set. More specifically, we define:

Z(B) =

{
ζ ∈ RS×A≥0 : ∃r ∈ RB : ∃V ∈ RS :

r = −B̄πE1 ζ + (E − γP )V and ζ(s, a) = 0 ∀(s, a) : πE1(a|s) = 0

}
.

Notice that, we are directly restricting the analysis to state-action pairs for which πE1
(a|s) = 0 holds.

Indeed, fix (s, a) such that πE1(a|s) = 0 holds. Then, changing the value of ζ(s, a) does not affect
class of compatible reward functions.

At this point, the following proposition provides upper bounds on the volume of the feasible values
of ζ for IRL and IRL-SE problems.

Proposition D.7. Let B and B̄ be an IRL and an IRL-SE problem. Let g(s, a) be defined as follows:

g(s, a) :=

{
min

{
k(s, a), 1

1−γ

}
if (s, a) : πE1

(a|s) = 0 and
∣∣∣X (s, a)

∣∣∣ > 0
1

1−γ otherwise
,

where k(s, a) is defined as in Equation (7), and X (s, a) denotes the subset of sub-optimal experts
such that πEi(a|s) > 0. Then, it holds that:

Vol(Z(B)) ≤
∏

(s,a):πE1
(s,a)=0

1

1− γ , (26)

Vol(Z(B̄)) ≤
∏

(s,a):πE1
(s,a)=0

g(s, a). (27)

12Notice that, to obtain an empty feasible region, it is sufficient that the two experts behave identically in a
single state-action pair. This is a direct consequence of the fact that the sub-optimality constraint is imposed
with equality for each state-action pair.

13Notice, in this sense, that, if any other deterministic sub-optimal expert j is present, if it holds that
πEj (a|s) = πEi(a|s) = 1, then we should have ξi = ξj to avoid obtaining an empty reward set.
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Proof. The proof of Equation (26) follows directly by noticing that ‖ζ‖∞ ≤ (1− γ)−1. Therefore,
as a consequence:

Vol(Z(B)) ≤
∏

(s,a):πE1
(a|s)=0

∫ (1−γ)−1

0

1dx =
∏

(s,a):πE1
(s,a)=0

1

1− γ .

Equation (27), instead, follows from worst-case upper bounds on ζ(s, a) that arise from Equation (5).
Specifically, as discussed in Section 3.3, it is possible to show that:

ζ(s, a) ≤ g(s, a).

As a consequence, we have that:

Vol(Z(B̄)) ≤
∏

(s,a):πE1
(a|s)=0

∫ g(s,a)

0

1dx =
∏

(s,a):πE1
(s,a)=0

g(s, a),

which concludes the proof.

At this point, we recall that k(s, a) is given by:

k(s, a) := min
i∈X (s,a),s′∈S

ξi

d
πEi
s′ (s)πEi(a|s)

.

Therefore, Proposition D.7 highlights that, for sufficiently small values of ξi, we obtain a notable
reduction in the upper bounds of Vol(Z(B̄)).

E Proofs and Derivations of Section 4

In this section, we provide formal proofs for the statements of Section 4. We first proceed with
the proof of the lower bound (Theorem 4.1), and then we continue with the analysis US-IRL-SE
(Theorem 4.2).

E.1 Proof of Theorem 4.1

In this section, we prove Theorem 4.1. We recall that Theorem 4.1 is composed of two parts. The
first one is related to learning reward functions that are compatible with the behavior of the optimal
expert (i.e., Equation (9)), while the second one directly arises from the structure of the sub-optimal
experts (i.e., Equation (11)).

We begin by proving Equation (9). As we have anticipated in Section 4.2, Equation (9) is directly
connected with the problem of learning reward functions that are compatible with the behavior of the
optimal expert πE1

. In this sense, we recall that, recently, [22] have provided lower bounds for the
single-agent IRL problem in finite-horizon MDPs. In our work, we provide an extension of these
results for the infinite-horizon IRL formulation.

Theorem E.1. Let A be a (ε, δ)-correct algorithm for the IRL problem with sub-optimal experts.
There exists a problem instance B̄ such that the expected sample complexity is lower bounded by:

EA,B̄[τ ] ≥ Ω

(
SA

ε2(1− γ)2

(
log

(
1

δ

)
+ S

))
. (28)

Proof. Similarly to [22], this results follows from two different lower bounds (i.e., Theorem E.2 and
Theorem E.3), and by assuming to observe instances like the ones of Theorem E.2 with probability 1

2

and instances like the ones of Theorem E.3 with probability 1
2 .

As discussed, Theorem E.1 follows from two intermediate results that leverage two different con-
structions (i.e., Theorem E.2 and Theorem E.3). We now delve into the proofs of these intermediate
theorems.
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Figure 3: Representation of the IRL-SE problem for the instances used in Theorem E.2.

Theorem E.2. Let A be a (ε, δ)-correct algorithm for the IRL problem with sub-optimal experts.
There exists a problem instance B̄ such that the expected sample complexity is lower bounded by:

EA,B̄[τ ] ≥ Ω

(
SA

ε2(1− γ)2
log

(
1

δ

))
. (29)

Proof. The proof is split into several steps. Since most of the arguments are borrowed from the proof
of Theorem B.2 in [22], we only provide a short sketch that involves the main differences between
the finite-horizon and the infinite horizon IRL model.

Step 1: Base Instance and Alternative Instances We consider MDP\R instances that are pre-
sented in Figure 3. More specifically, the state space is given by S = {sroot, s1, . . . , sS̄ , s−, s+}, the
action space is composed of k actions A = {a1, a2, . . . , ak}, the transition model is described below,
and γ ∈ (0, 1).

In state sroot all actions have the same effect, and they lead, with probability 1
S̄

to a state in
{s1, . . . , sS̄}. Similarly, in state s− and s+ all actions have deterministic effect, and they all lead to
s− and s+ respectively. All the experts are deterministic and take action a1 with probability 1 in all
states. We then consider a base instance, where, in each state sj ∈ {s1, . . . , sS̄}, all actions lead,
with probability 1

2 to s− and s+.

We then consider a set of S̄ ×A alternative instances by varying the behavior of the transition model
in state-action pairs (sj , ak) ∈ {s1, . . . sS̄} × A. Specifically, by taking ak, the agent will end up,
with probability 1

2 + ε′ in s+, and, with probability 1
2 − ε′ in s−.

Step 2: Feasible Reward Set and Hausdorff Distance lower bound At this point, we study the
structure of the feasible reward set that is compatible with the instances we described. Specifically, we
are interested in the behavior of the reward function related to actions taken in states sj ∈ {s1, . . . sS̄}.
Specifically, for the base instance, we have:

r(sj , a1) +
γ

1− γ

[
1

2
r(s−, a1) +

1

2
r(s+, a1)

]
≥ r(sj , ak) +

γ

1− γ

[
1

2
r(s−, a1) +

1

2
r(s+, a1)

]
,
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which can be rewritten as:

r(sj , a1) ≥ r(sj , ak).

For the alternative instance in which we varied the behavior of the state-action pair (sj , ak), instead,
we obtain:

r(sj , a1) +
γ

1− γ

[
1

2
r(s−, a1) +

1

2
r(s+, a1)

]
≥

r(sj , ak) +
γ

1− γ

[(
1

2
− ε′

)
r(s−, a1) +

(
1

2
+ ε′

)
r(s+, a1)

]
,

thus leading to:

r(sj , a1) ≥ r(sj , ak)− ε′ γ

1− γ [r(s−, a1)− r(s+, a1)] ,

Given this construction, we can lower bound the Hausdorff distance between the feasible reward set of
the base and the alternative instance. Specifically, we first pick a reward function r′ compatible with
the alternative instance as follows: r′(s−, a1) = 1, r′(s+, a1) = 0, r′(sj , ak) = 1 and r′(sj , a1) =

1− ε′γ
1−γ . Then, we study which reward function compatible with the base instance minimizes the

infinite norm w.r.t. r′. Given these choices, similarly to [22], it is possible to obtain the following
lower-bound to the Hausdorff distance:

H∞(R,R′) ≥ ε′γ
1− γ ,

whereR denotes the feasible reward set of the base instance, whileR′ denotes the feasible reward
set of the alternative instance. We enforce the following constraint on the previous equation:

ε′γ
1− γ ≥ 2ε,

which, in turns, leads to the following requirement on ε′:

ε′ ≥ 2ε(1− γ)

γ
.

Step 3: Lower bounding the sample complexity At this point, the rest of the proof follows
identical to Theorem B.2 in [22], and leads to the desired result.

We now continue with the proof of second intermidiate result that is needed for the proof of Theorem
E.1.
Theorem E.3. Let A be a (ε, δ)-correct algorithm for the IRL problem with sub-optimal experts.
There exists a problem instance B̄ such that the expected sample complexity is lower bounded by:

EA,B̄[τ ] ≥ Ω

(
S2A

ε2(1− γ)2

)
. (30)

Proof. The proof is split into several steps. Since most of the arguments are borrowed from the proof
of Theorem B.3 in [22], we only provide a short sketch that involves the main differences between
the finite-horizon and the infinite horizon IRL model.

Step 1: Base Instance and Alternative Instances We consider MDP\R instances that are pre-
sented in Figure 4. More specifically, the state space is given by S =

{
sroot, s1, . . . , sS̄ , s

′
1, . . . , s

′
S̄

}
,

the action space is composed of k actions A = {a1, a2, . . . , ak}, the transition model is described
below, and γ ∈ (0, 1). In the following, we will assume S̄ to be divisible by 16.

In state sroot all actions have the same effect, and they lead, with probability 1
S̄

to a state in
{s1, . . . , sS̄}. In state s ∈

{
s′1, . . . , s

′
S̄

}
all actions have deterministic effect, and they all lead

to the same state in which the action is taken. All the experts are deterministic and take action a1
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Figure 4: Representation of the IRL-SE problem for the instances used in Theorem E.3.

with probability 1 in all states. Finally, in all states s ∈ {s1, . . . sS̄}, action a1 leads w.p. 1
S̄

to any
state in s′

S̄
∈
{
s′1, . . . , s

′
S̄

}
.

We then consider a class of instances by varying the behavior of the transition model in state-action
pairs (sj , ak) ∈ {s1, . . . sS̄} × A \ {a1}. Specifically, for each triplet (sj , s

′
i, ak), p(s′i|sj , ak) =

1+ε′v
(sj,ak)

i

2 , where v(sj ,k) =
(
v

(si,aj)
1 , . . . v

(si,aj)

S̄

)
∈ V , and V =

{
{−1, 1}S̄ :

∑S̄
i vj = 0

}
and

ε′ ∈
[
0, 1

2

]
.

Step 2: Feasible Reward Set and Hausdorff Distance lower bound We now proceed with lower
bounding the Hausdorff distance between the feasible reward set that is induced by two instances
that belongs to V , namelyRB̄v

andRB̄w
. To this end, first of all, we notice that our class of reward

functions admits elements that are bounded in [0, 1]. Let us denote with R̄B̄v
the class of compatible

rewards functions that are bounded in [−1, 1]. Then, we have that:

H∞
(
RB̄v

,RB̄w

)
≥ 1

2
H∞

(
R̄B̄v

, R̄B̄w

)
. (31)

The proof of Equation (31) follows by the following reasonings. First of all, we can see that, for any
v, r̄ ∈ R̄B̄v

holds if and only if r̄+1
2 ∈ RB̄v

holds.14 Then, with simple algebraic manipulations, we
have that:

sup
x∈RB̄v

inf
y∈RB̄w

‖x− y‖∞ = sup
x∈R̄B̄v

inf
y∈R̄B̄w

∥∥∥x+ 1

2
− y + 1

2

∥∥∥
∞

=
1

2
sup

x∈R̄B̄v

inf
y∈R̄B̄w

‖x− y‖∞,

from which it follows Equation (31).

At this point, our analysis follows by lower bounding the Hausdorff distance using reward functions
that are bounded in [−1, 1]. To this end, first of all, we analyze the feasible reward set for a single
instance B̄v . In this case, since a1 is played by the optimal expert, we have that:

r(sj , a1) +
1

S̄

γ

1− γ
∑
s′i

rv(s′i) ≥ r(sj , ak) +
1

S̄

γ

1− γ
∑
s′i

(1 + ε′vi) r
v(s′i),

14Notice that we are considering single-experts IRL problems. Indeed, in the considered IRL-SE problem, all
sub-optimal experts behave identically to the optimal agent, and the constraints of Equation (5) are vacuous.
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πE1
(a1|sj)=1

πEi(a1|sj)=1−πmin
πEi

(a2|sj)=πmin

Figure 5: Representation of the IRL-SE problem for the instances used in Theorem E.4.

which, in turns, leads to:

r(sj , a1) ≥ r(sj , ak) + ε′
1

S̄

γ

1− γ
∑
s′i

vir
v(s′i).

At this point, following the same steps of [22], we obtain:

H∞
(
RB̄v

,RB̄w

)
≥ 1

2
H∞

(
R̄B̄v

, R̄B̄w

)
≥ ε′

64

γ

1− γ ,

on which we enforce the following constraint:

ε′

64

γ

1− γ ≥ 2ε,

that is ε′ ≥ 128ε 1−γ
γ .

Step 3: Lower-bounding the sample complexity At this point, the rest of the proof follows
identical to Theorem B.3 in [22], and leads to the desired result.

We continue by proving the novel statement related to Equation (11), which captures the role of the
estimating reward functions that are compatible with the behavior of the sub-optimal experts.
Theorem E.4. Let A be a (ε, δ)-correct algorithm for the IRL problem with sub-optimal experts.
For sufficiently small values of ε, there exists an instance B̄ in which q0 < 1 such that the expected
sample complexity is lower bounded by:

EA,B̄[τ ] ≥ Ω

(
q2
0S log

(
1
δ

)
ε2πmin

)
. (32)
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Proof. The proof follows as the combination of several steps. We first describe the construction
considering the case in which there is a single sub-optimal expert. Then, the results will follow by
iterating the procedure for each sub-optimal expert in the given set.

Step 1: Base Instance and Alternative Instance We consider MDP\R instances that are presented
in Figure 5. More specifically, the state space is given by S = {sroot, s1, . . . , sS̄ , ssink}, the action
space is composed of two actions A = {a1, a2}, the transition model is described below, and
γ ∈ (0, 1).

In state sroot all actions have the same effect, and they lead, with probability 1
S̄

to a state in
{s1, . . . , sS̄}. In each state si ∈ {s1, . . . , sS̄}, again, all actions have the same effect, and they
lead, deterministically to state ssink. In state ssink all actions are deterministic and they all lead to ssink.

We then consider a base instance, where, in states sroot and state ssink all experts take action a1 with
probability 1. In each state sj ∈ {s1, . . . , sS̄}, instead, πE1

(a1|sj) = 1, while πEi(a1|sj) = 1−πmin
and πEi(a2|sj) = πmin for the sub-optimal expert.

We then consider a set of S̄ alternative instances by varying the behavior of the sub-optimal expert
in state sj ∈ {s1, . . . sS̄}. Specifically, the sub-optimal expert will act accordingly to the following
policy: πEi(a1|sj) = 1− απmin, and πEi(a2|sj) = απmin for some α > 1 (to be defined later). We

will denote our set of instances as M =
{
π

(l)
Ei

: l ∈ [S̄]
}

, and 0 denotes the behavior of the base
instance we described above.

Step 2: Feasible Reward Set At this point, we study the structure of the feasible reward set that is
compatible with the each instance we described. Specifically, we are interested in the properties of
feasible reward functions in states sj ∈ {s1, . . . , sS̄}.
For the base instance, in each state sj ∈ {s1, . . . , sS̄}, we have that, since a1 is the action taken by
the optimal expert:

r(sj , a1) +
γ

1− γ r(ssink, a1) ≥ r(sj , a2) +
γ

1− γ r(ssink, a1),

which reduces to:
r(sj , a1) ≥ r(sj , a2). (33)

Moreover, due to the presence of the sub-optimal expert, we have that V
π

(0)
E1

M∪r(sj) ≤ V
πEi
M∪r(sj) + ξi,

which results in:

r(sj , a1) +
γ

1− γ r(ssink, a1) ≤

(1− πmin)

(
r(sj , a1) +

γ

1− γ r(ssink, a1)

)
+ πmin

(
r(sj , a2) +

γ

1− γ r(ssink, a1)

)
+ ξi,

which can be rewritten as:

r(sj , a1)− r(sj , a2) ≤ ξi
πmin

. (34)

Similarly, for each alternative instance in M, we obtain:
r(sj , a1) ≥ r(sj , a2) (35)

r(a1, sj)− r(sj , a2) ≤ ξi
απmin

. (36)

Step 3: Lower-bounding the Hausdorff Distance At this point, we proceed by lower bounding
the Hausdorff distance between the feasible reward set of the base instance, namelyRB(0) , and that
of alternative instance j in which the policy of the sub-optimal expert is modified in state sj , namely
RB(j) .

To this end, we notice that it is sufficient to pick any r ∈ RB(0) , and then study the following
optimization problem:

inf
r′∈R

B(j)

‖r − r′‖∞. (37)
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We pick the following choice for r. For action a1 in state sj we pick r(sj , a1) = ξi
πmin

. Instead, for all
the other state-action pair, we pick r(·, ·) = 0.15 In this case, one can verify that the optimization
problem in (37) can be rewritten as follows:

inf
x,y

max

{∣∣∣ ξi
πmin

− x
∣∣∣, y}

s.t. x, y ∈ [0, 1]

x− y ≤ ξi
απmin

x ≥ y,

(38)

where x corresponds to r′(sj , a1), and y to r′(sj , a2). The optimization problem in (38) can be
further lower-bounded by:

inf
x,y

∣∣∣ ξi
πmin

− x
∣∣∣

s.t. x, y ∈ [0, 1]

x− y ≤ ξi
απmin

x ≥ y∣∣∣ ξi
πmin

− x
∣∣∣ ≥ y

(39)

We study the optimization problem in (39) by cases (i.e., ξiπmin
−1 < x, and ξiπmin

−1 ≥ x). First,
we suppose that ξiπmin

−1 < x. However, in this case, we would have y ≤ x − ξiπmin
−1, that is

x ≥ y + ξiπmin
−1. Chaining this inequality with x ≤ y + ξi (απmin)

−1 yields:

y +
ξi
πmin

≤ x ≤ y +
ξi

απmin
,

which is impossible since α > 1. Concerning the case in which ξiπmin
−1 ≥ x, instead, we have that

y ≤ ξiπmin
−1 − x. It follows that, since x ≤ ξiπ−1

min + y, the maximum value of x will be attained for
the maximum value of y. Therefore, we obtain:

x ≤ ξi
απmin

+
ξi
πmin

− x,

Thus leading to:

x ≤ 1

2

ξi
πmin

(
1

α
+ 1

)
.

Plugging this result into the objective function, we obtain the solution to optimization problem (39),
which in turn provides a lower bound to the Hausdorff distance. More specifically, we have that:

H∞ (RB(0) ,RB(j)) ≥ 1

2

ξi
πmin

(
1− 1

α

)
. (40)

We enforce the following constraint on this quantity, that is:

1

2

ξi
πmin

(
1− 1

α

)
= 2ε. (41)

We notice that in this sense, we need to impose α = ξi (ξi − 4επmin)
−1, which results being greater

than 1 for all values of ξi > 4επmin. Furthermore, since απmin < 1,16 we obtain the following
condition on the values of ε which guarantes that the construction is valid:

ε < min

{
ξi

4πmin
,

1− ξi
4

}
.

15Notice that in this step we have used the assumption that q0 < 1.
16This condition directly arises from the fact that απmin represents the probability with which the sub-optimal

expert takes a certain action.
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Step 4: Lower-bounding Probability At this point, consider an (ε, δ)-correct algorithm A that
outputs the correct feasible setR ̂̄B for each IRL-SE problem B̄. For A it holds that:

δ ≥ sup
B̄

PB̄,A

(
H
(
RB̄,R ̂̄B

)
≥ ε
)

(42)

≥ max
B∈M

PB̄,A

(
H
(
RB̄,R ̂̄B

)
≥ ε
)
, (43)

where PB̄,A denotes the joint probability distribution of all events realized by the execution of
algorithm A in the IRL-SE problem B̄, that is:

PB̄,A =

τ∏
t=1

νt (st, at|Dt−1) p(s′t|st, at)
n+1∏
i=1

πEi(a
(i)
t |st)

At this point, following the same reasonings of, e.g., Theorem B.2 in [22], one can see that, for all the
alternative instances in l ∈M, the previous equation can be further lower-bounded to obtain:

δ ≥ 1

4
exp

(
−KL

(
PB̄(0),A,PB̄(l),A

))
, (44)

Step 5: KL-divergence As a final step, we will proceed by analyzing Equation (46). We will start
by analyzing the KL divergence between PB̄(0),A and PB̄(0),A. Specifically, we have that:

KL
(
PB̄(0),A,PB̄(l),A

)
= EB̄(0),A

[
τ∑
t=1

KL
(
π

(0)
Ei

(·|st), π(l)
Ei

(·|st)
)]

≤ EB̄(0),A [Nτ (sj)]
TV
(
π

(0)
Ei

(·|sj), π(l)
Ei

(·|sj)
)2

πmin

≤ EB̄(0),A [Nτ (sj)]
(απmin − πmin)

2

πmin
,

where TV(p1, p2) represents the total variation distance between distribution p1 and p2. The first
inequality step follows from the reverse Pinkser’s inequality [33], and the second one, instead, from
the definition of the total variation distance.

At this point, however, from Equation (41), we obtain that:

απmin − πmin =
4απ2

minε

ξi
,

thus leading to:

KL
(
PB̄(0),A,PB̄(l),A

)
≤ EB̄(0),A [Nτ (sj)]

16α2π3
minε

2

ξ2
i

(45)

Plugging this result into Equation (46), and rearranging the terms, we obtain:

EB̄(0),A [Nτ (sj)] ≥
log
(

1
4δ

)
ξ2
i

16ε2π3
minα

2
≥ ξ2

i log
(

1
4δ

)
16ε2π3

min
. (46)

Finally, to conclude, we notice that:

EB̄(0),A [τ ] ≥
∑

s∈{s1,...,sS̄}
EB̄(0),A [Nτ (s)] (47)

≥ (S − 2)ξ2
i

16ε2π3
min

log

(
1

4δ

)
(48)

Iterating this procedure over all the possible experts yields the desired result.
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Finally, we are now ready to prove Theorem 4.1.
Theorem 4.1. Let A be a (ε, δ)-correct algorithm for the IRL problem with sub-optimal experts.
There exists a problem instance B̄ such that the expected sample complexity is lower bounded by:

EA,B̄[τ ] ≥ Ω

(
SA

ε2(1− γ)2

(
log

(
1

δ

)
+ S

))
, (9)

where Ω(·) hides constant dependencies. Let πmin > 0 be:

πmin := min
i∈{2,...n+1... }

min
(s,a)∈S×A:πEi (a|s)>0

πEi(a|s), (10)

and let q0 := π−1
minmaxi∈{2,...,n+1} ξi. Then, there exists an instance B̄′ in which q0 < 1 such that:

EA,B̄′ [τ ] ≥ Ω

(
q2
0S log

(
1
δ

)
ε2πmin

)
. (11)

Proof. The proof follows directly by combining Theorem E.1 and Theorem E.4.

E.2 Proof of Theorem 4.2

In this section, we provide a formal proof for Theorem 4.2.

First of all, we begin by defining a good event E that holds with probability at least 1− δ. To this
end, we begin by reporting, for the sake of completeness, the concentration tools that are used in
controlling the probability with which E holds.
Lemma E.5 (Multiplicative Chernoff bound [10]). Consider t independent random variables
X1, . . . , Xt taking values in [0, 1]. Suppose that E[Xi] = µ holds for all i ∈ {1, . . . , t}. Con-
sider α ∈ (0, 1). Then, we have that:

P

(
t∑
i=1

Xi ≥ tµ(1 + α)

)
≤ exp

(
−1

3
tµα2

)
.

Lemma E.6 (Proposition 1 in [14]). Let p be a categorical distribution over the simplex of dimension
y, and let p̂ be the maximum likelihood estimate of p obtained with t ≥ 1 independent samples. Then,
for all δ ∈ (0, 1) it holds that:

P
(
∃t ≥ 1 : tKL (p̂, p) > log

(
1

δ

)
+ (y − 1) log

(
e

(
1 +

t

y − 1

)))
≤ δ,

where KL(q1, q2) denotes the Kullback–Leibler divergence between distributions q1 and q2.

At this point, we proceed by defining our good event. In the following, the subscript t is used to
denote the iteration number of the US-IRL-SE algorithm.
Lemma E.7 (Good event). Consider t such that:√

3 log
(

3SAn
δ

)
πEi(a|s)Nt(s)

< 1 (49)

holds for all i ∈ {2, . . . , n+ 1} and for all (s, a) ∈ S ×A such that πEi(a|s) > 0. Let us define the
following events:

Ep =
⋂

(s,a)∈S×A

{
Nt(s, a)KL (p̂t(·|s, a), p(·|s, a)) ≤ log

(
3SAn

δ

)
+ (S − 1) log

(
e

(
1 +

Nt(s, a)

S − 1

))}

Eπ =
⋂

i∈{2,...,n+1}

⋂
s∈S

{
Nt(s)KL (π̂Ei,t(·|s), πEi(·|s)) ≤ log

(
3SAn

δ

)
+ (A− 1) log

(
e

(
1 +

Nt(s)

A− 1

))}

Eπmin =
⋂

i∈{2,...,n+1}

⋂
(s,a)∈S×A:πEi (a|s)>0

π̂Ei,t(a|s) ≤ πEi(a|s)
1 +

√
3 log

(
3SAn
δ

)
πEi(a|s)Nt(s)


Consider E = Ep ∩ Eπ ∩ Eπmin . Then, it holds that P(E) ≥ 1− δ.
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Proof. The proof follows by controlling the probability of the complementary event Ec. More
specifically, we have that:

P (Ec) = P
(
Ecp ∪ Ecπ ∪ Ecπmin

)
≤ P

(
Ecp
)

+ P (Ecπ) + P
(
Ecπmin

)
,

where in the last passage we have used Boole’s inequality. At this point, we will use Lemma E.5 and
Lemma E.6 to control P

(
Ecp
)

+ P (Ecπ) + P
(
Ecπmin

)
. More specifically, concerning Ecp , we have that:

P
(
Ecp
)
≤

∑
(s,a)∈S×A

P
(
Nt(s, a)KL (p̂t(·|s, a), p(·|s, a)) > log

(
3SAn

δ

)

+ (S − 1) log

(
e

(
1 +

Nt(s, a)

S − 1

)))
≤

∑
(s,a)∈S×A

δ

3SAn
≤ δ

3
,

where, in the first step we have applied Boole’s inequality, and in the second one Lemma E.6. From
identical reasoning, we can upper bound P (Ecπ), thus obtaining:

P (Ecπ) ≤ δ

3
.

Finally, concerning Ecπmin
, we have that:

P
(
Ecπmin

)
≤

∑
i∈{2,...,n+2}

∑
(s,a):πEi (a|s)>0

P

π̂Ei,t(a|s) > πEi(a|s)

1 +

√
3 log

(
3SAn
δ

)
πEi(a|s)Nt(s)


≤

∑
i∈{2,...,n+2}

∑
(s,a):πEi (a|s)>0

δ

3SAn
≤ δ

3
,

where, in the first step we have used Boole’s inequality, and in the second one Lemma E.5 together
with Equation (49). At this point, combining these results, we obtain P (Ec) ≤ δ, thus concluding the
proof.

At this point, it has to be remarked that Lemma E.7 holds whenever:

Nt(s) >
3 log

(
3SAn
δ

)
πmin

.

We remark that this term is due to the requirement that Lemma E.5 requires α in (0, 1). As we shall
see, however, this will be sufficient to carry out the theoretical analysis of US-IRL-SE.

We now proceed by presenting error propagation results that study the Hausdorff distance between
RB̄ andR ̂̄B. Before diving into the details, we introduce the following notation. We denote with Ψ
the set of ζ’s that are compatible with the linear constraints of Equation (5). More specifically:

Ψ :=
{
ζ ∈ RS×A≥0 : ∀i ∈ {2, . . . , n+ 1} dπEiπEiB̄

πE1 ζ ≤ 1Sξi

}
. (50)

Similarly, we denote with Ψ̂, the set of ζ’s that are compatible with the linear constraints of Equation
(5) that are induced by the empirical IRL problem ̂̄B. More precisely:

Ψ̂ :=
{
ζ ∈ RS×A≥0 : ∀i ∈ {2, . . . , n+ 1} d̂π̂Ei π̂EiB̄

π̂E1 ζ ≤ 1Sξi

}
, (51)

where d̂π denotes the discounted expected occupancy of policy π under the transition model p̂.

At this point, we provide a preliminary Lemma that will be used to study the Hausdorff distance.

Lemma E.8 (Error Propagation). Let B̄ be an IRL-SE problem and let ̂̄B be its empirical estimate.
Then, for any r ∈ RB̄ such that r = −B̄πE1 ζ + (E − γP )V , and (I − γπEiP )−1πEiB̄

πE1 ζ ≤ ξi,
there exists r̂ ∈ R ̂̄B such that element-wise it holds that:

|r − r̂| ≤ B̄πE1Bπ̂E1 ζ + γ|(P − P̂ )V |+ B̄π̂E1 B̄πE1‖ζ − projΨ̂ (ζ) ‖∞1S×A, (52)

where projΨ̂(·) denotes the infinite norm projection on the set Ψ̂. More formally, for ζ ∈ RS×A:

projΨ̂(ζ) = argmin
x∈Ψ̂

‖x− ζ‖∞
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Proof. From Theorem 3.6, we know that we can express the reward functions as:

r = −B̄πE1 ζ + (E − γP )V,

r̂ = −B̄π̂E1 ζ̂ + (E − γP̂ )V̂ ,

where V and V̂ belongs to RS , and ζ, ζ̂ ∈ RS×A≥0 satisfies the following equations for all i ∈
{2, . . . , n+ 1}:

(I − γπEiP )−1πEiB̄
πE1 ζ ≤ ξi,

(I − γπ̂Ei P̂ )−1π̂EiB̄
π̂E1 ζ̂ ≤ ξi.

At this point, we recall that, for any r ∈ RB, we are interested in a specific reward function r̂ ∈ RB̂

that is sufficiently close to r. For this reason, we pick V̂ = V , and ζ̂ = B̄πE1 projΨ̂(ζ).17 Plugging
these choices within |r − r̂|, and applying the triangular inequality, we obtain:∣∣∣r − r̂∣∣∣ ≤ ∣∣∣− (B̄πE1 ζ + B̄π̂E1 ζ̂)

∣∣∣+ γ
∣∣∣(P − P̂ )V

∣∣∣. (53)

Let us focus now on | − (B̄πE1 ζ + B̄π̂E1 ζ̂)|.∣∣∣− (B̄πE1 ζ + B̄π̂E1 B̄πE1 projΨ̂(ζ))
∣∣∣ =

∣∣∣− (B̄πE1 ζ + B̄π̂E1 B̄πE1 projΨ̂(ζ))± B̄π̂E1 B̄πE1 ζ
∣∣∣

≤
∣∣∣− B̄πE1 ζ + B̄π̂E1 B̄πE1 ζ

∣∣∣+
∣∣∣B̄π̂E1 ζ̂ − B̄π̂E1 B̄πE1 ζ

∣∣∣
=
∣∣∣− B̄πE1Bπ̂E1 ζ

∣∣∣+
∣∣∣B̄π̂E1 B̄πE1 projΨ̂(ζ))− B̄π̂E1 B̄πE1 ζ

∣∣∣,
where in the last step we have used Bπ + B̄π = IS×A.18 We now focus on the last term:∣∣∣B̄π̂E1 B̄πE1 projΩ̂(ζ))− B̄π̂E1 B̄πE1 ζ

∣∣∣ = B̄π̂E1 B̄πE1

∣∣ζ − projΩ̂(ζ)
∣∣

≤ B̄π̂E1 B̄πE1‖ζ − projΩ̂(ζ)‖∞1S×A.

Plugging these results within Equation (53) concludes the proof.

Before providing some interpretation to Lemma E.8, we recall the definition of the Hausdorff
distannce we are interested in:

H∞(RB̄,R ̂̄B) = max

{
sup
r∈RB̄

inf
r̂∈R̂̄B

‖r − r̂‖∞, sup
r̂∈R̂̄B

inf
r∈RB̄

‖r − r̂‖∞
}
. (54)

Given this definition, we can appreciate how Lemma E.8 can be used to upper-bound the error of the
first component of the Hausdorff distance, namely:

sup
r∈RB̄

inf
r̂∈R̂̄B

‖r − r̂‖∞.

Nevertheless, it is possible to obtain a symmetric version of Lemma E.8 that analyzes the existence
of an r ∈ RB̄ that is sufficiently close to any r̂ ∈ R ̂̄B. At this point, we notice that Lemma E.8
decomposes the error on the recovered reward set as the sum of three different components. The
first one is related to the error in the estimation of the optimal policy πE1 , and, to zero it out, it is
sufficient to estimate for each state one action that is played by the optimal expert. The second one,
instead, is related to the errors in the estimation of the transition model, and, finally, the last one is
related to the presence of multiple and sub-optimal experts. More precisely, we notice that the first
two components are present also for the single-agent setting [24], and, in this sense, they arise from
the difficulty of estimating reward functions that are compatible with Equation (4). The last term,
instead, is related to the presence of sub-optimal experts, and it denotes the infinite norm between
any ζ ∈ Ψ and its infinite-norm projection to the set Ψ̂. As one can imagine, and as our proofs will
reveal, studying how this last source of error decreases with the iterations of US-IRL-SE introduces
significant challenges in the analysis w.r.t. the single agent setting. Precisely, this complexity will
be tackled within the proof of the following Lemma, which analyzes how the error of Equation (52)
decreases with the number of iterations of US-IRL.

17Notice that, if x ∈ Ψ̂, B̄πE1x belongs to Ψ̂ as well.
18Consider RS×A, then Bπ is the operator defined as (Bπg)(s, a) = 1 {π(a|s) > 0} g(s, a).

29



Lemma E.9 (High-Probability Error Propagation). Let t be the iteration of US-IRL. Suppose that
Nt(s, a) ≥ 1 for all (s, a) ∈ S ×A and, furthermore, suppose that t is such that:

t ≥ 3 log
(
3SAnδ−1

)
Aπmin

(55)

t ≥ 8γ2

(1− γ)2

[
log

(
3SAn

δ

)
(56)

+ (S − 1) log

 64γ4

(1− γ)4

log

(
3SAn

δ

)
+ (S − 1)

(
√
e+

√
1

S − 1

)2
] (57)

t ≥ 8γ2

A(1− γ)2

[
log

(
3SAn

δ

)
(58)

+ (A− 1) log

 64γ4

(1− γ)4

log

(
3SAn

δ

)
+ (A− 1)

(
√
e+

√
1

A− 1

)2
]. (59)

Then let B̄ be an IRL-SE problem and let ̂̄B be its empirical estimate after t iteration of US-IRL.
Then, with probability at least 1− δ, for any r ∈ RB̄, there exists r̂ ∈ R ̂̄B such that:

‖r − r̂‖∞ ≤
2
√

2γ

1− γ βt +

(
ρt +

2
√

2γ

1− γ (αt + βt)

)
min

{
π−1

min max
i
ξi, (1− γ)−1

}
, (60)

where:

βt :=

√√√√ log
(

3SAn
δ

)
+ (S − 1) log

(
e
(

1 + t
S−1

))
t

(61)

αt :=

√√√√ log
(

3SAn
δ

)
+ (A− 1) log

(
e
(

1 + tA
A−1

))
tA

(62)

ρt :=

√
3 log

(
3SAn
δ

)
πmintA

. (63)

Proof. The proof follows by analyzing in greater detail the result of Lemma E.8. Indeed, from
Lemma E.8, we know that there exists r̂ ∈ R ̂̄B such that:

‖r − r̂‖∞ ≤ ‖B̄πE1Bπ̂E1 ζ‖∞ + γ‖(P − P̂ )V ‖∞ + ‖ζ − projΨ̂ (ζ) ‖∞ (64)

We split the analysis of Equation (64) into two three parts. First of all, we will focus on the two first
terms, that are ‖B̄πE1Bπ̂E1 ζ‖∞ and γ‖(P − P̂ )V ‖∞, and then we will tackle the most challenging
aspect, that is ‖ζ − projΨ̂ (ζ) ‖∞.

Concerning ‖B̄πE1Bπ̂E1 ζ‖∞, we notice that, whenever Nt(s, a) > 1 holds, we have that:

B̄πE1Bπ̂E1 ζ = 0,

for any possible value of ζ. This is a direct consequence of the fact that πE1 is deterministic.

Secondly, let us focus on γ‖(P − P̂ )V ‖∞. First of all, we notice that, since Nt(s) >
3 log

(
3SAnδ−1

)
πmin holds for all s ∈ S , then E holds with probability at least 1− δ (Lemma E.7).
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At this point, conditioning on E , we have that:

γ‖(P − P̂ )V ‖∞ = γmax
s,a

∣∣∣ ∑
s′∈S

(p(s′|s, a)− p̂(s′|s, a))V (s′)
∣∣∣

≤ γ

1− γ max
s,a

∣∣∣ ∑
s′∈S

(p(s′|s, a)− p̂(s′|s, a))
∣∣∣

≤ γ

1− γ max
s,a
‖p(·|s, a)− p̂(·|s, a)‖1

≤ 2
√

2γ

(1− γ)
max
s,a

√
KL(p̂(·|s, a), p(·|s, a))

≤ 2
√

2γ

1− γ max
s,a

√√√√ log
(

3SAn
δ

)
+ (S − 1) log

(
e
(

1 + Nt(s,a)
S−1

))
Nt(s, a)

,

where the first inequality follows the fact that ‖V ‖∞ ≤ 1
1−γ , the third one by Pinksker’s inequality,

and the last one from Lemma E.7. At this point, since US-IRL gathers samples uniformly from each
state-action pair, we have that Nt(s, a) = t for all (s, a) ∈ S ×A. Thus leading to:

γ‖(P − P̂ )V ‖∞ ≤
2
√

2γ

1− γ

√√√√ log
(

3SAn
δ

)
+ (S − 1) log

(
e
(

1 + t
S−1

))
t

:=
2
√

2γ

1− γ βt.

Finally, we focus on ‖ζ − projΨ̂ (ζ) ‖∞. To upper-bound this last term we proceed in several steps.

Step 1: Relationship between Ψ and Ψ̂ First of all, we begin by finding a more explicit relation-
ship between Ψ and Ψ̂. To this end, we recall that ζ ∈ RS×A≥0 belongs to Ψ̂ if the following condition
is satisfied for all i ∈ {2, . . . , n+ 1}:

d̂π̂Ei π̂EiB̄
π̂E1 ζ ≤ 1Sξi.

Under the assumption that Nt(s, a) ≥ 1, since the expert policy πE1 is deterministic, the previous
Equation can be equivalently rewritten as:

d̂π̂Ei π̂EiB̄
πE1 ζ ≤ 1Sξi.

At this point, we proceed with some algebraic manipulations of the left-hand side of the previous
Equation. Specifically:

d̂π̂Ei π̂EiB̄
πE1 ζ =

(
d̂π̂Ei ± dπEi

)
π̂EiB̄

πE1 ζ

=
(
d̂π̂Ei − dπEi

)
π̂EiB̄

πE1 ζ + dπEi π̂EiB̄
πE1 ζ

=
(
d̂π̂Ei − dπEi

)
π̂EiB̄

πE1 ζ + dπEi (π̂Ei ± πEi) B̄πE1 ζ

=
(
d̂π̂Ei − dπEi

)
π̂EiB̄

πE1 ζ + dπEi (π̂Ei − πEi) B̄πE1 ζ + dπEiπEiB̄
πE1 ζ

At this point, focus on d̂π̂Ei − dπEi :
d̂π̂Ei − dπEi = (IS − γπ̂Ei P̂ )−1IS − (IS − γπEiP )−1IS

= (IS − γπEiP )−1
[
(IS − γπEiP )− (IS − γπ̂Ei P̂ )

]
d̂π̂Ei

= γdπEi
[
π̂Ei P̂ − πEiP

]
d̂π̂Ei

At this point, plugging this result into the previous Equation, we obtain that ζ belongs to Ψ̂ if and
only if the following holds for all experts i ∈ {2, . . . , n+ 1}:

dπEiπEiB̄
πE1 ζ + γdπEi

[
π̂Ei P̂ − πEiP

]
d̂π̂Ei π̂EiB̄

πE1 ζ + dπEi (π̂Ei − πEi) B̄πE1 ζ ≤ 1Sξi.

(65)
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As we can appreciate, Equation (65) relates the sets Ψ and Ψ̂ by an explicit relationship. Indeed,
by renaming ε1(ζ) := γdπEi

[
π̂Ei P̂ − πEiP

]
d̂ππ̂EiB̄

πE1 ζ and ε2(ζ) := dπEi (π̂Ei − πEi) B̄πE1 ζ,
Equation (65) can be rewritten as:

dπEiπEiB̄
πE1 ζ + ε1(ζ) + ε2(ζ) ≤ 1Sξi,

which closely resambles the definition of Ψ.

Step 2: Restricting the set Ψ̂ We continue our proof by defining a new set Ψ̃ such that Ψ̃ ⊆ Ψ̂
with probability at least 1− δ. Indeed, by definition of the projection according to the infinite norm,
this allows to upper-bound ‖ζ − projΨ̂ (ζ) ‖∞. More specifically, for any Ψ̃ ⊆ Ψ̂, we have that:

‖ζ − projΨ̂ (ζ) ‖∞ ≤ ‖ζ − projΨ̃ (ζ) ‖∞. (66)

More specifically, in order to define Ψ̃, we will first proceed by upper bounding ε1(ζ) and ε2(ζ).
Precisely, consider ζ ∈ Ψ̂. For ε1(ζ) we have that:

ε1(ζ) = γdπEi
[
π̂Ei P̂ − πEiP

]
d̂π̂Ei π̂EiB̄

πE1 ζ

= γ
[
dπEi (π̂Ei − πEi) P̂

]
d̂π̂Ei π̂EiB̄

πE1 ζ + γ
[
dπEiπEi(P̂ − P )

]
d̂π̂Ei π̂EiB̄

πE1

≤ γ
[
dπEi

∣∣∣π̂Ei − πEi∣∣∣P̂] d̂π̂Ei π̂EiB̄πE1 ζ + γ
[
dπEiπEi

∣∣∣P̂ − P ∣∣∣] d̂π̂Ei π̂EiB̄πE1 ,

where, given f ∈ RS , and g ∈ RS×A,
∣∣∣π̂ − π∣∣∣ denotes the operator defined as

∣∣∣π̂ − π∣∣∣g(s, a) =∑
a

∣∣∣π̂(a|s)− π(a|s)
∣∣∣g(s, a), and, similarly

∣∣∣P̂ − P ∣∣∣f(s) =
∑
s′

∣∣∣p̂(s′|s, a)− p(s′|s, a)
∣∣∣f(s′). At

this point, we notice that, since, for all ζ ∈ Ψ̂, it holds that d̂π̂Ei π̂EiB̄
πE1 ≤ 1Sξi. Therefore, we can

further upper bound the previous equation to obtain:

ε1(ζ) ≤ γ
∣∣∣∣∣∣ [dπEi ∣∣∣π̂Ei − πEi∣∣∣]1S×Aξi∣∣∣∣∣∣∞1S + γ

∣∣∣∣∣∣ [dπEiπEi∣∣∣P̂ − P ∣∣∣]1Sξi∣∣∣∣∣∣∞1S . (67)

At this point, let us focus on γ
∣∣∣∣∣∣ [dπEi ∣∣∣π̂Ei − πEi ∣∣∣]1S×Aξi∣∣∣∣∣∣∞:

γ
∣∣∣∣∣∣ [dπEi ∣∣∣π̂Ei − πEi∣∣∣]1S×Aξi∣∣∣∣∣∣∞ ≤ γξi max

s′

∑
s

d
πEi
s′ (s)

∑
a

∣∣∣π̂Ei(a|s)− πEi(a|s)∣∣∣
= γξi max

s′

∑
s

d
πEi
s′ (s)‖π̂Ei(·|s)− πEi(·|s)‖1

≤ 2
√

2γξi
1− γ max

s′

√
KL(π̂Ei(·, s′), πEi(·, s′))

≤ 2
√

2γξi
1− γ max

s

√√√√ log
(

3SAn
δ

)
+ (A− 1) log

(
e
(

1 + Nt(s)
S−1

))
Nt(s)

=
2
√

2γξi
1− γ

√√√√ log
(

3SAn
δ

)
+ (A− 1) log

(
e
(

1 + tA
A−1

))
tA

:=
2
√

2γξi
1− γ αt,

where in the third step we have used Pinkser’s inequality, in the fourth we have used Lemma E.7, and
in the fifth one we have used the fact that, in US-IRL-SE, Nt(s) =

∑
a∈ANt(s, a) = tA. At this
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point, focus on the second term of Equation (67), namely γ
∣∣∣∣∣∣ [dπEiπEi∣∣∣P̂ − P ∣∣∣]1Sξi∣∣∣∣∣∣∞1S :

γ
∣∣∣∣∣∣ [dπEiπEi∣∣∣P̂ − P ∣∣∣]1Sξi∣∣∣∣∣∣∞ ≤ γξi max

s′

∑
s

d
πEi
s′ (s)

∑
a

πEi(a|s)‖p(·|s, a)− p̂(·|s, a)‖1

≤ 2
√

2γξi
1− γ max

s,a

√
KL(p̂(·|s, a)− p(·|s, a))

≤ 2
√

2γξi
1− γ max

s,a

√√√√ log
(

3SAn
δ

)
+ (S − 1) log

(
e
(

1 + Nt(s)
S−1

))
Nt(s)

≤ 2
√

2γξi
1− γ

√√√√ log
(

3SAn
δ

)
+ (S − 1) log

(
e
(

1 + t
S−1

))
t

:=
2
√

2γξi
1− γ βt,

where in the second step we have used Pinkser’s inequality, in the third one Lemma E.7, and in the
fourth one we have used the fact that, in US-IRL-SE, Nt(s) = t for all states s ∈ S. Therefore,
plugging these results within Equation (67), we obtain an high-probability upper bound on ε1(ζ), that
is:

‖ε1(ζ)‖∞ ≤
2
√

2γξi
1− γ (αt + βt) . (68)

We now proceed with similar reasoning to obtain an upper bound on ε2(ζ). Nevertheless, contrary
to ε1(ζ), here we proceed with an element-wise upper bound on ε2(ζ). Specifically, for each state
s′ ∈ S:

ε2(ζ)(s′) =
∑
s

d
πEi
s′ (s)

∑
a:πE1

(a|s)=0

∣∣∣π̂Ei(a|s)− πEi(a|s)∣∣∣ζ(s, a)

=
∑
s

d
πEi
s′ (s)

∑
a:πE1

(a|s)=0,

πEi (a|s)>0

∣∣∣π̂Ei(a|s)− πEi(a|s)∣∣∣ζ(s, a)

=
∑
s

d
πEi
s′ (s)

∑
a:πE1

(a|s)=0,

πEi (a|s)>0

∣∣∣ π̂Ei(a|s)− πEi(a|s)
πEi(a|s)

∣∣∣πEi(a|s)ζ(s, a)

≤ max
(s′′,a′′):πEi (a

′′|s′′)>0

∣∣∣ π̂Ei(a′′|s′′)− πEi(a′′|s′′)
πEi(a

′′|s′′)
∣∣∣∑
s

d
πEi
s′ (s)

∑
a:πE1

(a|s)=0

πEi(a|s)ζ(s, a)

≤
√

3 log
(

3SAn
δ

)
πminNt(s)

∑
s

d
πEi
s′ (s)

∑
a:πE1

(a|s)=0

πEi(a|s)ζ(s, a)

=

√
3 log

(
3SAn
δ

)
πmintA

∑
s

d
πEi
s′ (s)

∑
a:πE1

(a|s)=0

πEi(a|s)ζ(s, a),

where the third step follows from the fact that, since Nt(s) ≥ 1, π̂Ei(a|s) = 0 for all (s, a) such that
πEi(a|s) = 0, the fifth one, instead, from Lemma E.7, and the last one from the fact that, in US-IRL-
SE, Nt(s) =

∑
aNt(s, a) = tA.19 Therefore, we have obtained an element-wise upper-bound on

ε2(ζ) of the following form:

ε2(ζ) ≤

√
3 log

(
3SAn
δ

)
πmintA

dπEiπEiB̄
πE1 ζ := ρtd

πEiπEiB̄
πE1 ζ. (69)

19Notice that Equation (55) guarantees that we can apply Lemma E.7.
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We are finally ready to define the set Ψ̃. More specifically:

Ψ̃ :=

{
ζ ∈ RS×A≥0 : (1 + ρt)d

πEiπEiB̄
πE1 ζ ≤ ξi −

2
√

2γξi
1− γ (αt + βt)

}
. (70)

As one can verify, the definition of Ψ̃ follows from upper-bounding ε1(ζ) and ε2(ζ) with Equations
(68) and (69). As a direct consequence, whenever ζ ∈ Ψ̃, we have that ζ belongs to Ψ̂ as well.

Step 3: Ensuring that the feasible region of Ψ̃ is non-empty At this point, one might be tempted
to directly study the projection of ‖ζ − projΨ̃ (ζ) ‖∞. Nevertheless, we notice that, for sufficiently
large values of αt and βt, Ψ̃ might be empty.

Sufficient conditions to guarantee that Ψ̃ is not empty are the following ones:

2
√

2γξi
1− γ αt ≤

ξi
2

(71)

2
√

2γξi
1− γ βt ≤

ξi
2
. (72)

Using Lemma 12 in [14], it is possible to verify that Equations (56) and (58) are sufficient conditions
for Equations (71)-(72) to hold.

Step 4: Picking ζ̃ ∈ Ψ̃ to upper-bound ‖ζ−projΨ̂ (ζ) ‖∞ At this point, we are ready to conclude
our proof. As we have previously verified, the set Ψ̃ is non-empty. We can now study ‖ζ −
projΨ̂ (ζ) ‖∞. More precisely, we have that:

‖ζ − projΨ̂ (ζ) ‖∞ ≤ ‖ζ − projΨ̃ (ζ) ‖∞.
To further upper bound this Equation, we notice that we can always pick, by definition of the infinite
norm projection, any ζ̃ ∈ Ψ̃. In other words, we have that:

‖ζ − projΨ̂ (ζ) ‖∞ ≤ ‖ζ − projΨ̃ (ζ) ‖∞ ≤ ‖ζ − ζ̃‖∞.

More specifically, we choose ζ̃ in the following way. If for all i ∈ {2, . . . , n+ 1}, πEi(a|s) = 0,
then we pick ζ̃(s, a) = ζ(s, a);20 otherwise, we pick ζ(s, a) in the following way:

ζ̃(s, a) =
1− 2

√
2γ

1−γ (αt + βt)

1 + ρt
ζ(s, a). (73)

First of all, we verify that this choice of ζ̃ belongs to Ψ̃. Plugging Equation (73) into the definition of
Ψ̃ we obtain that:(

1− 2
√

2γ

1− γ (αt + βt)

)
1 + ρt
1 + ρt

dπEiπEiB̄
πE1 ζ ≤ ξi −

2
√

2γξi
1− γ (αt + βt) .

However, since ζ ∈ Ψ, we have that dπEiπEiB̄
πE1 ζ ≤ ξi, thus leading to:(

ξi −
2
√

2γξi
1− γ (αt + βt)

)
≤ ξi −

2
√

2γξi
1− γ (αt + βt) ,

which is always true, and, consequently ζ̃ ∈ Ψ̃.

20Notice that, if for all i ∈ {2, . . . , n+ 1}, πEi(a|s) = 0, ζ(s, a) does not contribute to any of the linear
constraints that introduced by Equation (5).
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To conclude the proof, it remains to analyze ‖ζ − ζ̃‖∞. At this point, we notice that:

‖ζ − ζ̃‖∞ = max
(s,a):πE1(a|s)=0,

∃i:πEi (a|s)>0

∣∣∣ζ(s, a)−
1− 2

√
2γ

1−γ (αt + βt)

1 + ρt
ζ(s, a)

∣∣∣,
Indeed, for a state-action pair (s, a) such that πE1

(a|s) = 0, we can notice that any value ζ(s, a) will
not affect the resulting reward function.21 Furthermore, whenever there is no sub-optimal expert such
that πEi(a|s) > 0, then ζ̃(s, a) = ζ(s, a) holds by definition. To conclude, with simple algebraic
manipulations we can obtain the following result:

‖ζ − ζ̃‖∞ ≤ max
(s,a):πE1(a|s)=0,

∃i:πEi (a|s)>0

∣∣∣(1 + ρt)ζ(s, a)−
(

1− 2
√

2γ

1− γ (αt + βt)

)
ζ(s, a)

∣∣∣
= max

(s,a):πE1(a|s)=0,

∃i:πEi (a|s)>0

∣∣∣(ρt +
2
√

2γ

1− γ (αt + βt)

)
ζ(s, a)

∣∣∣
=

(
ρt +

2
√

2γ

1− γ (αt + βt)

)
max

(s,a):πE1(a|s)=0,

∃i:πEi (a|s)>0

∣∣∣ζ(s, a)
∣∣∣

≤
(
ρt +

2
√

2γ

1− γ (αt + βt)

)
min

{
π−1

min max
i
ξi, (1− γ)−1

}
,

where in the last step we have upper-bounded ζ(s, a) with an upper bound that follows directly from
Equation (7), thus concluding the proof.

We can appreciate as Lemma E.9 provides, under certain conditions on the time-step t, a high-
probability upper bound on the difference inf r̂∈R̂̄B ‖r− r̂‖∞ for any choice of r ∈ RB̄. Furthermore,
as we can see, the proof is fairly involved due to the necessity of upper bounding the error term
‖ζ − projΨ̂ (ζ) ‖∞. At this point, by deriving symmetric results (i.e., Lemma E.8 and Lemma E.9), it
is possible to derive an identical upper-bound for infr∈RB̄

‖r − r̂‖∞ for any choice of r̂ ∈ R ̂̄B. As
a consequence, Lemma E.9 provides the following high-probability upper-bound on the Hausdorff
distance betweenR ̂̄B andRB̄:

H∞
(
RB̄,R ̂̄B

)
≤ 2
√

2γ

1− γ βt +

(
ρt +

2
√

2γ

1− γ (αt + βt)

)
min

{
π−1

min max
i
ξi, (1− γ)−1

}
. (74)

Theorem 4.2. Let q1 = min
{
π−1

min maxi∈{2,...,n+1} ξi, (1− γ)−1
}

, and q2 = max {1, q1}. Then,
with a total budget of:

Õ
(

max

{
q2
1S log

(
1
δ

)
ε2πmin

,
q2
2SA(S + log

(
1
δ

)
)

ε2(1− γ)2

})
, (13)

US-IRL-SE is (ε, δ)-correct and Õ (·) hides constant and logarithmic dependencies.

Proof. Let us start from Lemma E.9 and consider t such that the condition of Lemma E.9 are satisfied.
As previously discussed, due to Lemma E.9, we have that, at time t, the algorithm US-IRL-SE
induces an estimated feasible reward set such that the following holds with high-probability:

H∞
(
RB̄,R ̂̄B

)
≤ 2
√

2γ

1− γ βt +

(
ρt +

2
√

2γ

1− γ (αt + βt)

)
min

{
π−1

min max
i
ξi, (1− γ)−1

}
.

21In other words, if (s, a) is such that πE1(a|s) = 0, we can add the following constraint to any of the set we
defined: ζ(s, a) = 0. The resulting feasible reward set is left unchanged.
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To conclude the proof, we need to find a sufficiently large t such that the following holds:

H∞
(
RB̄,R ̂̄B

)
≤ 2
√

2γ

1− γ βt +

(
ρt +

2
√

2γ

1− γ (αt + βt)

)
min

{
π−1

min max
i
ξi, (1− γ)−1

}
≤ ε,

for any ε ∈ (0, 1). To this end, it is sufficient to find the smallest t that satisfies the following
conditions:

ρt min
{
π−1

min max
i
ξi, (1− γ)−1

}
≤ ε

4
(75)

2
√

2γ

(1− γ)
βt ≤

ε

4
(76)

2
√

2γ

(1− γ)
min

{
π−1

min max
i
ξi, (1− γ)−1

}
βt ≤

ε

4
(77)

2
√

2γ

(1− γ)
min

{
π−1

min max
i
ξi, (1− γ)−1

}
αt ≤

ε

4
(78)

At this point, let us focus on ρt min
{
π−1

min maxi ξi, (1− γ)−1
}
≤ ε

4 . By simple algebraic manipula-
tions we obtain the following sufficient condition for t:

tA ≥ 48q2
1 log

(
3SAn
δ

)
πminε2

.

For 2
√

2γ
(1−γ)βt ≤ ε

4 , instead, we obtain the following condition on t:22

t ≥ 128γ2

(1− γ)2ε2

[
log

(
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δ

)

+ (S − 1) log

 16384γ4

(1− γ)4ε4

log

(
3SAn

δ

)
+ (S − 1)

(
√
e+

√
1

S − 1

)2
].

Similarly, for 2
√

2γ
(1−γ) min

{
π−1

min maxi ξi, (1− γ)−1
}
βt ≤ ε

4 , we need at least the following number
of samples:

t ≥ 128q2
1γ

2
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[
log

(
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δ
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16384q4
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4
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√
1
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)2
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Finally, for 2
√

2γ
(1−γ) min

{
π−1

min maxi ξi, (1− γ)−1
}
αt ≤ ε

4 , we obtain:

tA ≥ 128q2
1γ

2
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[
log

(
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1
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At this point, we notice that the total number of samples gathered from the generative at step t is
given by tSA. Therefore, from the previous equations, together with the conditions of Lemma E.9,
we obtian the following sufficient condition to guarantee that US-IRL-SE is (ε, δ)-correct.

tSA = O
(

max

{
q2
1S log

(
1
δ

)
π2

minε
2

,
q2
2SA

(
S + log

(
1
δ

))
(1− γ)2ε2

,
S log

(
1
δ

)
π2

min

})
, (79)

22This follows by applying Lemma 12 in [14].
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where the first term is due to Equation (75), the second one comes from Equations (76)-(77), and the
last term arises from Equation (55), and is independent w.r.t. the desired accuracy ε.23 Specifically,
we notice that for sufficiently small values of ε (i.e., ε < q1), the last term is always dominated by the
first one, which concludes the proof.

F Stochastic Optimal Expert

In this section, we discuss how to extend our analysis to the case in which the optimal expert plays a
stochastic policy. First of all, let us define πmin,E1

as the minimum probability with which the optimal
expert plays its actions.24

At this point, we notice that, for obtaining sample-complexity guarantees of the US-IRL-SE algorithm,
Lemma E.8 implies that we are interested in learning which are the actions that are played with
positive probability by the optimal expert. In other words, for any non-zero vector x ∈ RS×A, we
want the following to hold with high-probability:∣∣∣ (B̄πE1 − B̄π̂E1

)
x
∣∣∣ = 0. (80)

To this end, one can apply Lemma D.3 of [22], which implies that with a number of samples that is:

O
(
S

log
(

1
δ

)
log (1/(1− πmin,E1))

)
, (81)

Equation (80) holds w.p. at least 1 − δ. Once this condition is verified, the rest of the proof of
the complexity of US-IRL-SE follows identically to the one of Theorem 4.2.25 We notice that this
introduces an additional maximum in the result of the sample-complexity. However, it is also possible
to extend the proof of the lower bound of [22] (see Theorem D.1 in [22]), to show that the dependency
resulting from (81) is unavoidable. In this sense, US-IRL-SE remains minimax optimal whenever the
performance of the sub-optimal experts are sufficiently close to the ones of the optimal agent.

G Per-expert Complexity of IRL-SE

In this section, we provide a description of how to change the PAC learning formalism to show that
Equation (11) actually represents a lower bound to the number of data that is necessary to gather
from each of the different sub-optimal experts.

Specifically, we define a learning algorithm for an IRL problem B̄ as a tuple A = (τ, ν), where τ
is a stopping time that controls the end of the data acquisition phase, and ν = (νt)t∈N is a history-

dependent sampling strategy over S × A × (S)
n+1. More precisely, νt ∈ ∆

S×A×(S)n+1

Dt , where

Dt =
(

(S ×A)
n+2 × S

)t
. At each time step t ∈ N, the algorithm selects, by means of νt:

(i) a state-action pair (St, At) and observes a sample S′t ∼ p(·|St, At) from the environment

(ii) a state S(i)
t for each expert i ∈ {1, . . . , n+ 1} and observes a sample A(i)

t ∼ πEi(·|S(i)
t )

The observed realizations are then used to update the sampling strategy νt, and the process goes on
until the stopping rule is satisfied. At the end of the data acquisition phase, the algorithm leverages the
collected data to output the estimate of the feasible reward setR ̂̄Bτ

that is induced by the resulting

empirical IRL problem ̂̄Bτ . Given this formalism, we are interested in designing learning algorithms
that, for any desired accuracy ε ∈ (0, 1) and any risk parameter δ ∈ (0, 1), guarantee that:

PA,B̄

(
H∞(RB̄,R ̂̄Bτ

) > ε
)
≤ δ. (82)

23All the other equations introduce negligible terms in the O(·) notation.
24Notice that, in principle, πmin,E1 6= πmin that we defined for the sub-optimal experts.
25Notice, indeed, that we can apply Lemma E.9 as-is, but introducing the further constraints that t should be

sufficiently large so that Equation (80) holds.
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Figure 6: Experiment Results. Visualization of the maximum value that ζ can assume (using perfect
knowledge of the underlying MDP) (left). Visualization of the empirical maximum value that ζ can
assume (the results report the mean over 20 runs) (right).

We refer to these algorithms as (ε, δ)-correct identification strategies. For (ε, δ)-correct strategies,
we define their sample complexity as the sum of the number of unitary samples gathered from the
generative model. In other words, let us denote with Nt(s, a) the number of samples gathered, at
step t, from the environment, and let N (i)

t (s) denotes the number of samples gathered at step t from
the i-th expert at state s. Then, the sample complexity is given by:∑

(s,a)

Nτ (s, a) +
∑
i

∑
s

N (i)
τ (s).

Given this learning formalism, it is straightforward to extend the results of Theorem 4.1 to this setting.
More specifically, Theorem E.1 can be used to lower bound E

[∑
sN

(i)
τ (s)

]
for each sub-optimal

expert, thus showing a significant increase in the sample complexity (i.e., linear in the number of
sub-optimal experts).

H Further details on US-IRL-SE

In this section, we provide further details on US-IRL-SE. More precisely, we specify the exact
expression of the parameter m that is used to provide (ε, δ)-correc

Expression of m From the proof of Theorem 4.2, it is possible to derive an exact expression of m
that can be used in US-IRL-SE. More specifically, since t = Nt(s, a),26 it is sufficient to take m as
the minimum t that satisfies Equations (75)-(78) and Equations (55)-(58).

Computational Complexity of US-IRL-SE At each iteration, US-IRL-SE will query the genera-
tive model in all state-action pair (s, a) ∈ S ×A. Notice that the generative model samples (i) the
environment (ii) all the expert’s policy. Assuming a unitary cost for generating each sample, a single
query to the generative model results in a computational complexity of O (n). Therefore, the total
computational complexity of US-IRL-SE is given O (SAmn).

I Numerical Validation

We designed an experiment that aims at visualizing the reduction of the feasible reward set.

26This is a direct consequence of the uniform sampling strategy.
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Computing Resources The experiments have been run on a laptop with 8 Intel(R) Core(TM)
i5-8250U CPU @ 1.60GHz and 8GB of RAM. Total time to gather the results is less then a few
hours.

Experiment Setup We considered as environment the forest management scenarios with 10 states
and 2 actions that is available in the "pymdptoolbox" library.27 We considered a discount factor
γ = 0.9. We have run policy iteration on this domain to recover a set of expert policies (i.e., the
policy returned at each iteration by the policy iteration algorithm is a sub-optimal expert), and we
have considered as ξ the infinite norm between the value functions of the optimal policy and the
sub-optimal ones computed using the true reward function.

Results To appreciate the reduction in the feasible set that is introduced by the sub-optimal experts,
we have plotted the maximum value that ζ(s, a) can achieve according to the theoretical bound of
Eq. (7) (notice that this is way easier to visualize rather than an entire set of reward functions).
For the sake of visualization, we have flattened the matrix that contained upper bounds on ζ, and
we plotted the result in Figure 6 (left). As one can notice, the presence of the sub-optimal experts
can significantly limit the value of the advantage function in many state-action pairs (notice that
the maximum value for ζ is given by (1 − γ)−1 ≈ 10; this theoretical threshold represents the
upper-bound on that was derived in [24] for the single-agent problem).

We have then run our algorithm for 20 times using ε = 0.1 and δ = 0.1, and computed the (empirical)
theoretical upper bound on ζ . The reviewer can find the empirical value of the upper bounds on in the
Figure 6 (right). We have reported only the empirical mean, as the 95% confidence intervals are in
the order of 1e-5. As one can verify, the results are almost identical to the exact case.

27Code can be found at https://github.com/sawcordwell/pymdptoolbox. License is BSD 3-Clause
"New" or "Revised" License. Master branch at commit 7c96789cc80e280437005c12065cf70266c11636 was
used.
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Guidelines:
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

45

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

46


	Introduction
	Preliminaries
	Sub-Optimal Experts and the Feasible Reward Set
	Problem Formulation
	Implicit Formulation of R
	Explicit Formulation of R

	Learning the Feasible Set with Sub-Optimal Experts
	PAC Framework
	Lower Bound
	Uniform Sampling Algorithm

	Related Works
	Conclusions
	Symbols and Notation
	Additional Multiple Optimal Expert Setting
	Proof of Examples 3.1-3.3
	Proofs and Derivations of Section 3
	Other Assumptions on the Behavior of the Sub-optimal Experts
	Measuring Volumes of the Feasible Values of 

	Proofs and Derivations of Section 4
	Proof of Theorem 4.1
	Proof of Theorem 4.2

	Stochastic Optimal Expert
	Per-expert Complexity of IRL-SE
	Further details on US-IRL-SE
	Numerical Validation

