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ABSTRACT

Adversarial training (AT) is an effective defense for large language models
(LLMs) against jailbreak attacks, but performing AT on LLMs is costly. To
improve the efficiency of AT for LLMs, recent studies propose continuous AT
(CAT) that searches for adversarial inputs within the continuous embedding space
of LLMs during AT. While CAT has achieved empirical success, its underlying
mechanism, i.e., why adversarial perturbations in the embedding space can help
LLMs defend against jailbreak prompts synthesized in the input token space, re-
mains unknown. This paper presents the first theoretical analysis of CAT on LLMs
based on in-context learning (ICL) theory. For linear transformers trained with
adversarial examples from the embedding space on in-context linear regression
tasks, we prove a robust generalization bound that has a negative correlation with
the perturbation radius in the embedding space. This clearly explains why CAT
can defend against jailbreak prompts from the LLM’s token space. Further, the
robust bound shows that the robustness of an adversarially trained LLM is closely
related to the singular values of its embedding matrix. Based on this, we propose
to improve LLM CAT by introducing an additional regularization term, which
depends on singular values of the LLM’s embedding matrix, into the objective
function of CAT. Experiments on real-world LLMs demonstrate that our method
can help LLMs achieve a better jailbreak robustness-utility tradeoff.

1 INTRODUCTION

While large language models (LLMs) are increasingly adopted in various real-world applications,
their safety is found to be compromised by jailbreak attacks (Wei et al., 2023). By feeding jailbreak
prompts, which are specially constructed harmful instructions, one can “jailbreak™ safety-aligned
targeted LLMs to induce harmful behaviors in them. To ensure the robustness of LLMs against
jailbreak attacks, one of the most effective defenses is adversarial training (AT) (Mazeika et al.,
2024; Fu et al., 2025), which trains LLMs on synthesized jailbreak prompts to help them better
recognize and refuse these harmful inputs. However, the synthesis of jailbreak prompts during AT
usually requires solving discrete optimization problems and is thus computation-consuming (Zou
et al., 2023; Chao et al., 2023), which restricts the use of AT for LLMs in practice.

To improve the efficiency of AT for LLMs, recent studies introduce continuous AT (CAT) (Xhonneux
et al., 2024; Sheshadri et al., 2024; Arditi et al., 2024; Dékany et al., 2025), which performs AT
on LLMs with adversarial inputs synthesized in the LLMs’ continuous token embedding space.
Compared with the vanilla AT for LLMs, CAT can use projected gradient descent (PGD; Madry
et al. 2018) to search for adversarial examples in the embedding space, which is significantly faster
than that in vanilla AT where one needs to perform a heuristic search to find jailbreak prompts in
the input token space. However, despite the empirical success of CAT, the reason behind it is still
unknown. In fact, the training data in CAT and vanilla LLM AT are very different from each other:
data in CAT are sequences of embedding vectors, while data in vanilla AT are sequences of token
indices. This raises the following research question:

Why can adversarial perturbations in the embedding space help LLMs learn to
defend against jailbreak prompts from the original input token space?
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In light of recent advances in understanding LLM jailbreak robustness via in-context learning (ICL)
theory (Fu et al., 2025; Kumano et al., 2025; Anwar et al., 2025), this paper presents the first theoret-
ical analysis of LLM CAT, also based on ICL theory. We rigorously study how AT helps improve the
robustness of linear transformers trained on linear regression tasks against in-context suffix adversar-
ial attacks. To simulate the embedding space adversarial perturbation process in CAT, we introduce
an additional trainable embedding matrix into linear transformers and perform adversarial perturba-
tions on ICL input embeddings obtained from this embedding matrix, rather than on the vanilla ICL
inputs. Under our new ICL embedding AT theoretical framework, we prove a robust generalization
upper bound for linear transformers trained via ICL embedding AT. This robust bound has a neg-
ative correlation with the embedding space adversarial perturbation radius during ICL embedding
AT, which clearly explains why adversarial perturbations in the embedding space can help LLMs
defend against jailbreak prompts from the original input space.

Besides, our robust generalization upper bound is closely related to the singular values of the embed-
ding matrix in linear transformers. Specifically, it suggests that an adversarially trained linear trans-
former with an embedding matrix that has “not too large nor too small singular values” would
enjoy a small robust upper bound and thus strong adversarial robustness. Based on this finding,
we further propose Embedding Regularized Continuous AT (ER-CAT), a new LLM AT approach
improved from CAT by introducing the variance of the embedding matrix singular values as an ad-
ditional regularization term into the objective function of the original CAT. The motivation behind
this is to simultaneously reduce large singular values and increase small singular values, thereby
helping to improve the jailbreak robustness of LLMs according to our proven theory. To verify the
effectiveness of ER-CAT, we conducted experiments on six real-world LLMs and six common jail-
break attacks. Results show that compared with the original CAT method, ER-CAT can help LLMs
achieve a better jailbreak robustness-utility tradeoff.

2 RELATED WORKS

Jailbreak attacks. Jailbreak prompts (Wei et al., 2023) are a kind of carefully crafted adversarial
example (Szegedy et al., 2014; Goodfellow et al., 2015) that can induce targeted unsafe behaviors
from LLMs. Existing jailbreak attacks include foken-level attacks and prompt-level attacks. Token-
level attacks synthesize jailbreak prompts via modifying/inserting tokens in prompts with different
heuristic methods (Zou et al., 2023; Sadasivan et al., 2024; Hayase et al., 2024; Zhu et al., 2024;
Paulus et al., 2025; Jin et al., 2024; Liao & Sun, 2024; Andriushchenko et al., 2025), while prompt-
level attacks use prompts crafted by humans (Wei et al., 2023; Li et al., 2023; Shen et al., 2024) or
LLM-based agents (Chao et al., 2023; Liu et al., 2024b;a; Sabbaghi et al., 2025) to jailbreak LLMs.
Though the synthesis of jailbreak prompts in token-level attacks and prompt-level attacks is different
from each other, CAT has been shown to be able to defend against both types of these attacks.

LLMs adversarial training (AT). To tackle jailbreak attacks, an effective method is to align LLMs
via AT (Madry et al., 2018) to help them better recognize and refuse harmful inputs. A standard LLM
AT aims to solve a minimax problem that minimizes the training loss on most adversarial jailbreak
prompts (Mazeika et al., 2024). However, searching for jailbreak prompts in the discrete token space
of LLMs is resource-intensive, limiting the broader application of LLM AT. More recent studies
propose continuous AT (CAT) for LLMs, in which adversarial examples are embedding vectors
obtained from adversarially perturbing token embeddings of the original prompts (Xhonneux et al.,
2024; Casper et al., 2024; Sheshadri et al., 2024; Yu et al., 2025). Such a perturbation process
can be efficiently performed with gradient-based optimizations, which thus significantly reduces the
computational burden of LLM AT. Dékéany et al. (2025) adopt both jailbreak prompts and perturbed
prompt embeddings as adversarial examples to further improve the performance of LLM AT.

In-context learning (ICL) theory. ICL theory aims to understand how transformer-based LLMs
can make decisions for different task-specific sequential context inputs (i.e., “prompts”) without
adjusting model parameters. Existing ICL works have proven that one can construct explicit trans-
formers layer by layer to mimic the process of learning a variety of function classes (Garg et al.,
2022; Von Oswald et al., 2023; Ahn et al., 2023; Chen et al., 2024; Wang et al., 2024; Mahankali
et al., 2024; Li et al., 2025). Efforts have also been made to analyze how one-layer transformers
can learn ICL prediction abilities from massive task-specific contextual data (Lu et al., 2024; Magen
et al., 2024; Frei & Vardi, 2025; Shi et al., 2024; Zhang et al., 2024; Yang et al., 2024b; Huang et al.,
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2023; Wu et al., 2024; Lin et al., 2024; Lu et al., 2025). More recent studies have leveraged ICL
theory to analyze the adversarial robustness of LLMs. Anwar et al. (2025) find that by only per-
turbing a single in-context sample in the entire real space, one can manipulate the ICL prediction of
transformers to arbitrary results. Fu et al. (2025) study AT of ICL models under more restricted and
realistic ICL adversarial attacks, where each ICL sample can only be perturbed within a restricted
space. They prove that AT on contextual data with a very small number of perturbed in-context sam-
ples can already help trained transformers achieve strong robustness. Kumano et al. (2025) show
that adversarially pretrained transformers focus more on robust features (Ilyas et al., 2019) and thus
can generalize to downstream tasks robustly without additional AT. Our analysis mainly stems from
Fu et al. (2025), with the goal of explaining the robust generalization ability of continuous AT.

3 PRELIMINARIES

Large language models (LLMs). An LLM is a function that maps sequential inputs to sequential
outputs based on a parameterized distribution py. Let z € VIZ| be an input prompt of length ||,
where V := {1,---,|V|} is the token space. The probability that the LLM generates a response

y € VWl of length |y| is: pg(y|z) = H‘l"’:ll Po (il © y1.(i—1)), where “@” denotes concatenation.

Jailbreak attacks. Current jailbreak attacks can be divided into foken-level and prompt-level at-
tacks. Given two token sequences (") and y™, where (" is a harmful instruction and 3" is a
targeted harmful response, a standard token-level attack concatenates a synthesized adversarial suf-
fix 2(*) to the prompt (" to form a jailbreak prompt that increases the probability of the LLM in
generating (™. The synthesis of the suffix 2(*) can be formalized as solving the below problem,
min  —logpy(y™ |z @ 2(*)). (1)
z() eplz(3)]
Meanwhile, a prompt-level attack uses an attack oracle .A, which can be human experts or Al agents,
to directly rewrite the original harmful prompt (") to a jailbreak one ("), as shown below,
; | (ITAWAY 2
s~ logpo(y ) 2
It should be noted that performing both token-level and prompt-level attacks is resource-consuming,
as solving Eq. (1) requires sophisticated discrete optimizations, while solving Eq. (2) requires human
annotation or additional computing resources for Al agents to perform inference.

Continuous AT for LLMs. Let D™ be a safety dataset, where each sample (z,, %) consists of
a harmful prompt z, a targeted harmful response y, and a safe reference response y. Additionally,
let D) be a utility dataset, where each sample (x, 1) consists of a pair of a normal instruction and
its answer. Then, Mazeika et al. (2024) formalize the first AT algorithm for LLMs as solving the
following optimization problem:

min{— E logpy(7]27) +log(1 —pe(yl2™))| — E Inge(ylx)}, 3)
4 (z,y,5)€D™) (z,y) € D) N’
Adversarial Loss Utility Loss

where &% = argmax;cp(, ) log po(y|2) is the jailbreak prompt for the harmful input-output pair
(z,y) from the safety set and B(z, y) denotes the search space of jailbreak prompts. In Eq. (3), the
adversarial loss helps LLMs learn to respond harmlessly even when the most adversarial jailbreak
prompts are present, while the utility loss helps retain the utility of pre-trained LLMs. As explained
before, finding strong jailbreak prompts & € B(z,y) from the search space determined by the used
attacks is costly, which limits the efficiency of LLM AT.

More recent studies suggest using continuous AT (CAT) to reduce the computational overhead of
vanilla LLM AT. Concretely, let £(-) denote the embedding function of the LLM fy, with an embed-
ding matrix W¥ € R®* VI as its parameter, where W € R? is the embedding vector for the token
v € V. For any token sequence z € V!*|, the embedding function £ (-) maps it to its embedding
sequence as £(z) :== (W - W::b;mm) € R¥¥Izl, Continuous AT is then formalized as solving a
new optimization problem as below (Xhonneux et al., 2024),

po(yl€(x) +67)

min<{ —a - E log ——————— — E log pe(ylz) ¢, 4)
0 { (@ypep®  po(ylE(x) +0%)  (ay)enm W )}
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where 6" = [argmax|is, |, ... |15, [.<e 108 Po (Y|E(x) + 0)] € R4*12| is the most adversarial per-

turbation §* for the harmful input-output pair (z,y) from the safety set D), ¢ > 0 is the em-
bedding space perturbation radius, o > 0 is a weight parameter, and (£(x) + 6*) = ((E(x1) +
01) -+ (E(me +07,)))) € R4*12| is the perturbed harmful prompt embeddings. The idea behind
LLM CAT in Eq. (4) is to adopt adversarially perturbed embedding sequences as adversarial exam-
ples rather than jailbreak prompts in the vanilla LLM AT in Eq. (3). Additionally, the embedding
space adversarial perturbation §* can usually be searched via the fast projected-gradient descent
(PGD) method (Madry et al., 2018), which makes CAT efficient in practice.

4 THEORETICAL ANALYSIS FOR CONTINUOUS AT

While LLM CAT has achieved empirical success (Xhonneux et al., 2024; Casper et al., 2024; She-
shadri et al., 2024; Dékany et al., 2025), the mechanism behind it, i.e., why adversarial perturba-
tions in the embedding space help LLMs defend against jailbreak prompts from the token space,
remains unclear. This section tackles this research question by conducting a theoretical analysis for
CAT based on in-context learning theory (Zhang et al., 2024; Fu et al., 2025; Kumano et al., 2025).

In-context learning (ICL) theory. In the ICL theory, a prompt input of length N, specified by
a task indexed by T, is formalized as a sequence (z1,Yr2, " , T+ N, Yr.N, Lrq), Where the first
N labeled samples {(z;,y-)} Y, are task-specific in-context training samples, and the last item,
Zr g, is the query sample. Then, the goal of an ICL model is to make a prediction for the query
sample x4 solely based on the N in-context training data.

ICL linear regression. Our analysis focuses on training ICL models on different linear regression
tasks. Suppose T is a task index and w, € R% is the corresponding task weight drawn from
wy ~ N (0, I,). We assume that each ICL training point 2 ; (1 < ¢ < N) and the query point z, 4
are drawn from z, ;, T, 4 ~ N(0,A) where A € R xdo ig the covariance matrix, and their labels
are Yr; = w) Tr;and yr o = w,) Zr 4. Then, the ICL input Z, specified by the task 7 is given by

[ Tr e Tr,N Lr, (do+1)x(N+1)

Z. =7 4 R . 5
T (yT,l e Yr,N 0 > < ( )
Other notations. We denote [n] := {1,--- ,n} forany n € N*. For any A € R"*™, we denote
A]l2,00 := maxi<i<m || A4i.:|l2. ||Al|2 be the operator norm, and || A||r be the Frobenius norm.

Besides, A\;(A), Amax(A), and Apin(A) denote its i-th largest, largest, and smallest eigenvalues,
while 0;(A), omax(A), and omin(A) denote its i-th largest, largest, and smallest singular values.
Finally, we denote Tr(A) := Y | A;; forany A € R"*". We use standard Big O notation O(-).

In the remainder, we will first establish an ICL embedding AT problem for linear transformers and
explain why it can approximate real-world LLM CAT under the ICL theoretical framework. A robust
generalization bound will then be proved for linear transformers trained from ICL embedding AT.
Based on this bound, we will explain why CAT can work and how to further improve CAT.

4.1 ICL ADVERSARIAL TRAINING IN EMBEDDING SPACE

Linear self-attention with embedding module (LSA-E). Linear self-attention (LSA) models are
linear transformers that have been widely used for theoretical ICL analysis (Zhang et al., 2024; Shi
et al., 2024; Frei & Vardi, 2025). However, the LSA model studied in the previous work does not
have an input embedding module and thus cannot be naturally adopted for the analysis of LLM CAT,
which requires performing adversarial perturbations in the input embedding space. To tackle this
challenge, we design a novel LSA-with-Embedding (LSA-E) model to approximate real-world CAT
in our theoretical analysis. Specifically, let £(-) be an embedding function that maps any ICL input
Z, € R{do+1)x(N+1) 0 jts ICL embedding matrix £(Z,) € R(@+D*(N+1) a5 follows:

£(2,) = WExr,l WE:ETJ\/ WExT,q € RE+DX(N+1) 6)
T) - Yr1 . Yr.N 0 ’

where WF € R%* is the trainable parameter of the embedding function and d is the dimension of
the embedding space. Intuitively, the function £(+) in Eq. (6) aims to map each in-context point from
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the original input space R to the embedding space R? via a linear mapping. With the embedding
function £(+) in Eq. (6), the LSA-E model fi,sag,¢ is then formalized as below,

E(Z:)TWKRE(Z,) € RUEHDX(N+1)
N )

fusago(Z7) = {S(ZT) +WVE(Z,)

where WE®@ ¢ R(4+1)x(d+1) j5 3 matrix fused from the key and query projection matrices, WV &
R(@+1)x(d+1) i the value projection matrix, and 6 := (W WX @ WV) contains all trainable
parameters of the LSA-E model. The prediction g, ¢(Z-) for the query point z, , is given by
the right-bottom entry of the LSA-E model output, i.e., §4,6(Z7) := fLsaE,0(Z7)(a+1),(n+1)- If

we follow Zhang et al. (2024); Frei & Vardi (2025); Fu & Wang (2024) to write matrices W%

g O
and WV as WH = ((XDST Zi) O € {KQ, V}, where W € R™4 w5, € R, and

wi, wh) € R, then the LSA-E model prediction § 4,0 can be further simplified as follows,
K
SLIEL)T (WS e,

Uq.0(Z7) = (wV)T wy.
q ( 21 22) N w2K1Q)T

)

ICL embedding AT for LSA-E models. To approximate the real-world setting of LLM CAT, the
theoretical ICL embedding AT also adopts ICL adversarial examples found in the embedding space
to train LSA-E models. An ICL adversarial example in the embedding space is defined as below,

£ (7. AE) = <WE:ET,1 +6F, - WPr y+6Ey WE:ET,q) € RUFDX(N+D) (g
e Yr1 e Yr,N 0 ’

where Z; is the ICL input for the task 7 (see Eq. (5)), W is the parameter of the embedding function

E(-) (see Eq. (6)), and AZ = (551 55 ~) € RN denotes all adversarial perturbations

added to the embeddings of the N in-context training points. The prediction of the LSA-E model
fLsag,p for the adversarial example &2dv(z_ . AF) is then given by the following g;‘i@V(ZT, AEY,

gadv(ZT7A7L_?)€adv(ZT7AE)T WlliQ

N (W ©)
With all these notations, the ICL embedding AT for an LSA-E model is eventually formalized as the
following minimax optimization problem,

§ (2 AF) = (W)T wh) T) Wz, )

mlnﬁ 0) := min{E 2N (Z., AEY) — 2} 10
LSAE( ) 0 HAETH20<:<€ |yq0 ( T 'r) y77q| ) ( )
Where € > 0 is the embedding space adversarial perturbation radius and the expectation [ is calcu-
lated over the randomness of wr, x;1,...,%r N, Zr 4. The restriction in the inner maximization in
Eq. (10) ensures that each adversarial perturbation 67, is confined within the ball-sphere [|5Z,[|> < e.

Robust generalization risk for LSA-E models. We use the ICL suffix adversarial attack (Fu et al.,
2025) to assess the robustness of ICL models. Nevertheless, we note that our experiments in Sec-
tion 5 also consider attacks beyond suffix jailbreaking. Specifically, given an ICL input Z, with
context length N, the ICL suffix adversarial attack adversarially perturbs the last M (M < N)
in-context training points of Z as follows,

@) o}

Zadv _ [(ZTr1  TrN-M TrN-M+1 T 67—71 XNt 6T,M Lr.q 11

adv . 0r),an
Yr1 - Yr,N-M Yr, N—M+1 ce Yr,N

where (5% € R is the adversarial perturbation added to the ¢-th ICL suffix point 2, y_ar44. Al-

though the ICL suffix adversarial example Z4 ‘pr in Eq. (11) looks similar to the adversarial example
defined in Eq. (8), the mechanisms behind them are very different: in Eq. (11), adversarial pertur-
bations are directly added to in-context points, whereas in Eq. (8), perturbations are added to the
embeddings of these in-context points. The robust generalization risk R, a7(6) with perturbation p
and adversarial suffix length M for an LSA-E model fi,gaE,¢ is then defined as below,

R (0) =E  max |yq9( 20 = yral?, (12)

T NAZTl2,00
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where 4 ¢ is the LSA-E prediction function in Eq. (7), Zij‘g is the ICL suffix adversarial example
in Bq. (11), A? := (6¢ .-+ 6Y) € R%*M contains all perturbations added to the suffix of
Ziji]\‘}, and p > 0 is the adversarial perturbation radius for the suffix attack, which restricts each
perturbation & to the ball-sphere [|6{[l2 < p. A lower robust risk R4% (6) indicates stronger
adversarial robustness of the model frsag,¢, and vice versa.

4.2 BRIDGING ICL EMBEDDING AT AND LLM CONTINUOUS AT

Before introducing our main theoretical results, here we explain why the established ICL embedding
AT in Eq. (10) can be a good artifact for approximating real-world LLM CAT in Eq. (3) under the
ICL theory by analyzing the similarities between them.

Firstly, LSA-E models are very similar to real-world LLMs. Ahn et al. (2024) empirically show
that the linear self-attention module in LSA-E models share similar properties with those non-linear
ones in LLMs and thus are useful for theoretically understanding LLMs. We further argue that
the embedding processes of LSA-E models and real-world LLMs are also very similar. If we
replace each token in an LLM prompt with its one-hot encoding vector defined over the token vocab-
ulary space, the embedding process for each token in an LLM can be seen as a matrix multiplication
between the LLM’s embedding matrix and the corresponding token’s one-hot encoding. This matrix
multiplication-based LLM prompt embedding process is almost identical to the ICL input embed-
ding process shown in Eq. (6), where input features are also linearly transformed by the LSA-E
model’s embedding matrix. Therefore, we believe the embedding spaces of both LSA-E models and
LLMs are similar, as they are both obtained via linear transformation.

Secondly, the training goals of ICL embedding AT and LLM CAT are very similar to each
other. The two AT problems both aim to enhance models’ robustness by training them on sequential
data where their embeddings are adversarially perturbed. The only difference is that in ICL embed-
ding AT, the goal of adversarial perturbations is to reduce the utility of linear regression prediction
made by LSA-E models, while in LLM CAT such a goal is to induce harmful content from LLMs.

Finally, the adversarial robustness of LSA-E models is also very similar to the jailbreak ro-
bustness of LLMs. Fu et al. (2025) has already illustrated why ICL suffix adversarial attacks are
similar to real-world jailbreak attacks through theoretical and empirical justifications. Since we also
leverage this ICL suffix adversarial attack to assess the robustness of LSA-E models, we believe that
analyzing the robust generalization ability of LSA-E models will effectively help us understand how
LLMs trained from CAT gain robustness against jailbreak attacks.

4.3 ROBUST GENERALIZATION BOUND OF ICL EMBEDDING AT

We now start to establish a robust generalization bound for the LSA-E model trained via ICL em-
bedding AT as formalized in Eq. (10). The derivation consists of three steps: (1) derive an upper
bound £2% 1;(#) for the original loss function £24% () in ICL embedding AT (see Eq.(10)) and

formalize a surrogate AT problem that would minimize the upper bound £} 1 (8); (2) calculate

the closed-form solution for the previously obtained surrogate ICL embedding AT problem; and
(3) prove a robust generalization bound for the LSA-E model trained with the surrogate problem.

Surrogate ICL embedding AT. The surrogate problem for Eq. (10) is formalized as
min £33 5(0) = min{ €1(6) + 2(0) + 5(0) + £a(0) } (13)

where £2%% -(0) := Z?:l £;() is the surrogate objective function, and

2

E(Z)E(Z)T [ whe
61(9) ::2'17@ ((w;/l)—r w¥2)()zv()<< KQ) >W Tr.q — Yrq| >
I 262 Vv W Tr1 - W Tr N ! WKQ E
60 =3 it w1 (7 ) (il ) WPl
2¢? WEz, 1 - W T,
a(0) = 5 B[l ()T ) (W e ] e e )
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K
£a(6) = 2€* - w3 E|IW W e g3

The new objective function ii%‘jm(ﬁ) is a closed-form upper bound for the original ICL embedding
AT loss function £3%% (), as shown in the following Lemma 1 (see Appendix B.2 for the proof).

Lemma 1. For the objective function L3 .(0) in ICL embedding AT (Eq. (10)) and the objective
function L3341 (0) in surrogate ICL embedding AT (Eq. (13)), we uniformly have L3\ () <
£33 (0) for any 6 := (WE, WK V),

The reason for studying the surrogate ICL embedding AT problem in Eq. (13) instead of the original
problem is because the objective function £3%% (9) in the original AT problem is difficult to tackle
in a closed-form manner. With the new surrogate £33, .(6), which is in closed-form, one can easily
analyze the training dynamics of the LSA-E model trained from the surrogate problem. Further,
since the surrogate objective function is an upper bound of the original one, minimizing it can also
help to reduce the original AT loss and thus improve the robustness of the trained LSA-E model.

Closed-form solution of the surrogate problem. To solve the new surrogate AT problem in
Eq. (13), we first make the below Assumption 1 on the initialization of the model parameter 6.
Assumption 1. Let ¢ > 0 be a parameter and © € R be any matrix satisfying |00 || = 1

T
and O # 045 4. We assume that WV (0) = (?ﬁlxj OdCXl) and WEQ(0) = (C(g?@d 0d0X1).
X X

Remark 1. Assumption 1 is widely adopted in the ICL theoretical analysis (Zhang et al., 2024, Frei

& Vardi, 2025; Wu et al., 2024; Fu et al., 2025). The idea behind Assumption 1 is to (1) zero out
terms waQ, leQQ, W, and wYy that do not contribute to the ICL prediction function 1q,0 in Eq. (7)

and (2) zero out terms wiQ and ¥, to ensure symmetric initialization.

Under Assumption 1, the optimal solution for the LSA-E model trained from surrogate embedding
ICL AT is calculated as the following Theorem 1 (see Appendix B.3 for the proof).

Theorem 1 (Optimal solution of surrogate ICL embedding AT). Suppose Assumption 1 holds and
fLsAE,¢ is trained from the surrogate embedding AT problem defined in Eq. (13) with continuous
gradient flow. Then, the optimal model parameter 0, := (WE, wke ,WY') should satisfies wf( % =

KQ _ v KQ
W, o1 = wY 12 = Wy 91 = Oax1, wy 22 =0,WY 11 = ded, and

-1
w! oy (WE)TWISWE = (WE)T (WEDNAWE)T + Te(A)eLa) - WEA,
where Iy := (2 A + £Tr(A)Iy,) € Rdoxdo,

Applying Theorem 1 to the LSA-E model prediction function in Eq. (7), the optimal prediction func-
tion gg,9+ () given by the model frsaw, o+ trained from surrogate ICL embedding AT is as follows,

1 -1

Ja0-(Z7) = Yo (X) T(WE)T (WEDNAWE)T + Te(A)eTa)  WEAzr,.  (14)

Robust generalization ability. Finally, we leverage the robust generalization risk Rd “pr to assess

the robustness of the optimal model frsag(0s) trained from surrogate ICL embeddlng AT. For-
mally, we prove a robust generalization upper bound for the robust risk R7¢ dv.(6.), as shown in the
following Theorem 2 (see Appendix B.4 for the proof).

Theorem 2 (Robust generalization upper bound). Suppose Assumption 1 holds, d < dy, and 0, is

the solution of the surrogate ICL embedding AT in Eq. (13) obtained from Theorem 1. We have

(1+Mp*/N?) - 328 oa(WE)
Tmin(WE)* + €

Ra%(0.) < (9( ) +0(1).

Remark 2. Theorem 2 additionally requires that the embedding space dimension d of the LSA-E
model be no larger than the input in-context sample dimension dy. Such a requirement means that
the LSA-E models would implicitly compress the input data.
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4.4 IMPLICATIONS

So far, we have calculated the optimal ICL prediction function 4,9, obtained from surrogate em-
bedding ICL AT in Eq. (14) and further prove a robust generalization bound for it in Theorem 2. We
now start to investigate how these results can help to understand and improve CAT for LLMs.

Embedding-space adversarial perturbations provably enhance input-space adversarial ro-
bustness. The robust generalization bound in Theorem 2 clearly shows that the robust risk R;fi]‘cj (04)
of the trained LSA-E model, which is calculated based on adversarial ICL examples from the in-
put space, has a negative correlation with the embedding-space adversarial perturbation radius e. A
large perturbation radius € in the embedding-space can help reduce the robust upper bound and thus
improve the robustness of the trained LSA-E model against adversarial ICL examples. This explains
the main mechanism behind ICL embedding AT and also that in CAT for real-world LLMs.

The role of the embedding matrix in ICL robust generalization. An interesting observation from
Eq. (14) is that the optimal ICL prediction function g, 9. depends only on the embedding matrix W2

but not on remaining LSA-E model parameters WE? and WY . Therefore, a “good” embedding ma-
trix W is expected to provide strong robustness for the ICL model. Besides, from Theorem 2, we
have two insights: (1) if those large singular values of W are not “too large”, then the numer-
ator of the first term in the robust upper bound can be reduced, which helps to reduce the overall
bound; and (2) if those small singular values of W*E are not “too small”, it helps to increase
the denominator of the first term in the robust upper bound, which also helps to reduce the overall
bound. Thus, we may expect an LSA-E model or even a real-world LLM to have an embedding
matrix that has “not too large nor too small singular values” for strong model robustness.

Improve CAT with an optimized embedding matrix. Based on the previous analysis, we now
propose Embedding-Regularized continuous AT (ER-CAT), a new AT method for LLMs designed
by introducing an additional regularization term, defined as the variance of all singular values of the
LLM embedding matrix, into the objective function of CAT in Eq. (4). Concretely, training an LLM
fo via ER-CAT is formalized as solving the following optimization problem:

d E —= EN12
. (W) —a(W
min Ler_car(0, o, §) := min{ Lear(0,a) +5 - Lz [n(W7) = (W] }, (15)
0 0 —_—— d
CAT loss in Eq. (4) Embedding-Regularization Term
where § > 0 is the coefficient for the regularization term and g(W7) := 1% o;(WP) is

the mean of all singular values of W¥. The reason for using the variance of singular values as a
regularization term is that minimizing it can help to reduce too large singular values and increase too
small singular values of the embedding matrix simultaneously, which, as explained before, helps to
reduce the overall robust upper bound in Theorem 2. In addition, while in theory the singular values
of W¥ in Eq. (15) are not differentiable, in practice their gradient calculation can be automatically
handled by native PyTorch functions. This enables us to implement our ER-CAT method easily.

5 EMPIRICAL ANALYSIS OF ER-CONTINUOUS AT

In this section, we follow Eq. (15) to perform the theory-inspired ER-CAT on real-world LLMs,
which can further help to empirically justify our proved robust generalization bound in Theorem 2.

5.1 EXPERIMENTAL SETUP

Models. We adopt six common pre-trained LLMs, which are: Vicuna-7B-v1.5 (Zheng et al., 2023),
Mistral-7B-Instruct-v0.3 (Jiang et al., 2023), Llama-2-7B-Chat (Touvron et al., 2023), Llama-3-
8B-Instruct (Grattafiori et al., 2024), Qwen2.5-7B-Instruct (Yang et al., 2024a), and Gemma-2B-
it (Team et al., 2024). All models were downloaded from the Hugging Face model repository.

Datasets. During LLM AT, we follow Xhonneux et al. (2024) to use the training set of Harm-
bench (Mazeika et al., 2024) as the safety data and UltraChat 200K (Ding et al., 2023) as the utility
data. During robustness evaluation, we follow Fu et al. (2025) to use a safety datasets that consists
of the first 50 samples from the test set of Harmbench (Mazeika et al., 2024) and the first 50 samples
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Table 1: ASR on different models and attacks. A low ASR indicates a strong model robustness.

Avg@5 ASR (%) |

Model Type
GCG BEAST GCQ Zhu’s AutoDAN Deeplnception PAIR
Original 84.6 81.8 75.0 14.8 39.8 64.4
Vicuna-7B CAT 12.6 14.4 4.6 0.4 58 7.8
ER-CAT (Ours) 16.4 16.2 6.4 2.2 8.2 16.0
Original 74.6 65.8 69.8 43.0 49.8 56.0
Mistral-7B CAT 7.4 5.0 3.2 0.8 1.0 12.2
ER-CAT (Ours) 7.6 6.6 3.2 0.4 0.8 16.2
Original 41.0 18.2 5.6 72 30.8 242
Llama-2-7B CAT 23.6 17.2 8.0 4.0 8.0 13.4
ER-CAT (Ours) 15.6 104 1.2 0.4 2.0 4.6
Original 11.2 20.8 6.0 54 37.6 41.8
Llama-3.1-8B CAT 3.4 44 0.0 0.0 0.0 5.0
ER-CAT (Ours) 2.4 9.0 0.0 0.0 0.0 38
Original 712 71.6 59.8 15.6 585 46.2
Qwen2.5-7B CAT 20.6 21.2 17.8 0.0 0.2 15.2
ER-CAT (Ours) 16.8 154 6.6 0.0 1.4 13.6
Original 41.8 372 10.6 4.0 15.4 21.0
Gemma-2B CAT 18.0 11.2 2.6 0.2 0.2 44
ER-CAT (Ours) 16.0 104 6.2 1.6 0.0 3.6

Table 2: LC-WinRate on different models. A high LC-WinRate indicates a strong model utility.

(Utility) LC-WinRate (%) 1

Type
Vicuna-7B Mistral-7B Llama-2-7B Llama-3.1-8B Qwen2.5-7B Gemma-2B
Original 76.86 90.96 86.70 85.99 91.14 63.96
CAT 36.66 15.76 67.51 45.71 77.07 41.75
ER-CAT (Ours) 65.13 29.09 65.76 29.74 74.06 40.37

from AdvBench (Zou et al., 2023). For the utility analysis, we follow Dubois et al. (2024) to use the
AlpacaEval dataset for calculating the LC-WinRate utility metric.

Adversarial training. We use AdamW to train each model via CAT in Eq. (4) or our ER-CAT in
Eq. (15), where the embedding space perturbation radius e is fixed to 0.05. To improve the efficiency
of tuning LLMs, LoRA (Hu et al., 2022) is applied to the embedding layer and all query and key
projection matrices in attention layers. For the hyperparameter o of CAT, we follow Xhonneux et al.
(2024) to set it as 0.5. For the hyperparameters o and 3 of our ER-CAT, we set them to 0.1 and
0.2, respectively. We also follow Xhonneux et al. (2024) to apply the loss cut-off technique to the
objectives of both CAT and ER-CAT to avoid over-optimizing, but with less strict thresholds to help
the trained LL.Ms better preserve utility. Please refer to Appendix C.1 for omitted details.

Jailbreak attacks. We use six different jailbreak attacks to assess the jailbreak robustness of
LLMs. Among them, four attacks are token-level suffix attacks, which are: GCG (Zou et al., 2023),
BEAST (Sadasivan et al., 2024), GCQ (Hayase et al., 2024), and Zhu’s AutoDAN (Zhu et al., 2024).
The remaining two attacks are prompt-level attacks, which are: DeepInception (Li et al., 2023) and
PAIR (Chao et al., 2023). Please refer to Appendix C.2 for implementation details.

Evaluations. We evaluate the jailbreak robustness and the utility of trained LLMs. For the robust-
ness evaluation, we report the Avg@5 Attack Success Rate (Avg@5 ASR) of jailbreak attacks.
Specifically, each jailbreak prompt needs to repeatedly attack the targeted model for 5 times. An
LLM-based judger from Mazeika et al. (2024) is used to determine whether an attack is succeed
or not. The final Avg@5 ASR is averaged on all repeated attack results. For the utility evaluation,
we report the AlpacaEval’s Length-controlled WinRate (LC-WinRate) (Dubois et al., 2024) of
targeted models against a reference Davinci003 model, evaluated under the Llama-3-70B-Instruct
model. An LC-WinRate of 50% means that the output qualities of the two models are equal, and
higher LC-WinRate means that the targeted model is better than the reference model.

5.2 RESULTS ANALYSIS

Robustness&utility. Avg@5 ASR and LC-WinRate on different models are reported in Table 1
and Table 2, respectively. We have two main observations. Firstly, when maintaining the same
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Table 3: Time cost on different AT methods on different models.

Method Time Cost (s)

Vicuna-7B Mistral-7B Llama-2-7B Llama-3.1-8B Qwen2.5-7B Gemma-2B
CAT 987.81 933.00 934.16 904.59 801.42 335.99
ER-CAT (Ours) 1074.87 1052.12 1100.33 1094.90 1004.30 456.81

Table 4: LC-WinRate (%) and ASRs (%) of LLMs trained from ER-CAT under different embedding
regularization coefficient 3.

Model Utility or ASR Embedding-Regularization coefficient 3 in Eq. (15)

0.2 0.4 0.5 0.6 0.8 1.0

LC-WinRate 59.04 57.19 65.13 7030 6826  59.73

Vicuna-7B

GCG 138 120 164 300 170 162
BEAST 136 124 162 260 158 144
LC-WinRate  74.60 7452 7406 6593 6867 72.15

2.5-7B
Qwen2.5 GCG 168 178 168 142 146 188
BEAST 18.4 16.0 10.4 13.0 12.0 18.0

level of jailbreak robustness, ER-CAT achieves better utility. From the ASR results on Vicuna
and Mistral, we find that our ER-CAT was beaten by CAT by no more than 4% in most of the
attack scenarios. However, Vicuna and Mistral trained from ER-CAT achieved a nearly two-times
better LC-WinRate than those trained from CAT. Secondly, when maintaining the same level of
utility, ER-CAT achieves stronger jailbreak robustness. For Llama-2 and Qwen2.5, ER-CAT
reduces LC-WinRate by no more than 3% when compared with that of CAT. However, ER-CAT
helps Llama-2 reduce ASR on GCG and BEAST attacks by around 7%, and Qwen2.5 reduce ASR
on GCQ by 11%. All these suggest that our ER-CAT can achieve a better robustness-utility tradeoff.

Time cost. As explained in Section 4.4, calculating the embedding-regularization term (see Eq. (15))
for ER-CAT can be efficiently implemented via native PyTorch functions. Here we empirically
justify that ER-CAT does not add significant time overhead when compared with the original CAT.
Specifically, we collect and present the time cost of performing CAT and our ER-CAT on different
base models in Table 3, from which we find that ER-CAT only increases the time cost by 100 to 200
seconds. This suggests that the relative time overhead of ER-CAT is low.

Ablation studies on the coefficient 5 in ER-CAT. In our main experiments, the embedding regular-
ization coefficient 8 in ER-CAT (see Eq. (15)) is fixed to 0.5. We now analyze how this coefficient
[ affects the performance of models trained from ER-CAT. Specifically, we vary the coefficient 3
within the range [0, 1], train models via ER-CAT, and calculate their utility (i.e., LC-WinRate) and
robustness (i.e., GCG and BEAST). Preliminary results are reported in Table 4, from which we
surprisingly find that varying the coefficient 5 does not change the utility or the robustness of the
trained model too much. We deduce this is because we use the AdamW optimizer to perform the
training, and the gradient normalization procedure in AdamW implicitly performs reweighting on
the ER-CAT objective to mitigate the effect of tuning coefficients for different terms.

6 CONCLUSIONS

This paper aims to theoretically explain the mechanism behind CAT for LLMs, i.e., why embedding
space adversarial perturbations help LLMs learn to defend against jailbreak prompts from the token
space. We first establish a new ICL embedding AT problem under ICL theory and show that this
problem is a good theoretical artifact for approximating real-world LLM CAT. A robust generaliza-
tion upper bound for this new ICL embedding AT is then proved, which shows a negative correlation
with the embedding space perturbation radius. This clearly explains why CAT achieves empirical
success. Our bound also suggests that the jailbreak robustness of an LLM is closely related to sin-
gular values of its embedding matrix. Thereby, we design a new ER-CAT approach for LLMs, with
the goal of optimizing the LLM embedding matrix to be more robust. Experiments on real-world
LLMs and jailbreak attacks suggest that our ER-CAT enjoys a better robustness-utility tradeoff.
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A LLMSs USAGE IN THIS PAPER

LLMs were used only occasionally to help polish the writing (propose new words, grammar and
spelling correction). All technical ideas, experimental designs, analyses, conclusions, writing were
developed and carried out entirely by the authors. Authors have full responsibility for the final text.

B PROOFS

This section collects all proofs omitted from the main text. Without loss of generality, we assume
that the order of differentiation and integration (or say expectation) is interchangeable.

B.1 TECHNICAL LEMMAS

This section collects technical lemmas that will be repeatedly used in our proofs.

Lemma B.1 (c.f. Lemma D.2 in Zhang et al. (2024)). If x € R**! is Gaussian random vector of d
dimension, mean zero and covariance matrix A, and A € R?*? is a fixed matrix. Then

E[zx Azz '] = A(A+ AT)A + Tr(AA)A.

Lemma B.2 (c.f. Lemma A.2 in Fu et al. (2025)). If z € R*! is Gaussian random vector of d
dimension, mean zero and covariance matrix A, and A € R4*4 js q fixed matrix. Then

E[z " Az] = Tr(AA).
Lemma B.3 (c.f. Lemma A.3 in Fu et al. (2025)). For any matrices A € R™*™ and B € R™*",
Tr(AB) = Tr(BA).

Lemma B.4 (c.f. Lemma 1 in Wang et al. (1986)). Let A, B € R™*"™ be two symmetric matrices
and A is further positive semidefinite. Then

Auwin(B) - Tr(A) < TH(AB) < Apa(B) - Tr(A),

where Amin(B) and Amax(B) are the minimal and maximal eigenvalues of B respectively.

Lemma B.5 (Rayleigh Quotient Theorem; Also in part of Theorem 4.2.2 in Horn & Johnson (2012)).
Let A € R™™™ be a symmetric matrix. We have

-
x' Ax
)\max(A) = max T = max xTAx,
z€R" xz#0, ' X z€R™, ||z[[2=1
T
. r' Az
Amin(4) = min — = T Azx.
ze€R™ x2#0, T'X

min
z€R™,[|z|[2=1

B.2 PROOF OF LEMMA 1
Proof of Lemma 1. Denote that X, := (2,1 -+ x;n) € RN Y = (y,1 - y,n)E

RN and AP := (62, --- 6Fy) € R™N. Then, by applying the inequality that |a + b|? <
2 - (a? + b?), the ICL embedding AT loss £34% - (6) defined in Eq. (10), can be bounded as follows,

Lifap(0) :=E  max 2|52 (Z, AF) —yrg

T |AET 2,00 <€

2

Y, 0 Y,

(WEXT WExT,q) . (WEXT WExﬂq)T
0
<E max2[(h)T ) (

IAET 2,00 <e

N

2 AE 0 WEX. WEx .\ [ WE®
= . VAT V. T dx1 ) . T T,q . 11 . E
TRl < W (3T ui) < 0) < Y, 0 (wiyr)

O1><N

max

E a -5
T | AET|[3,00<e N2 O1x N
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2

2 N AE 040\ [ wEe
= VAT V. T dx1) . T dx1 . 11 . E
s < N2’((w21) wi) (01sz 0 ) <01><N 0 (wh )T W=

E(Z)EzZ)T < Wie
(

E
ng)T> Wor g = Yrg

2 wex,\ ' [ wke
a2 (wgl)—r : AE : ( Y. ) ((leb)T : WELCT,q

max
T |AET |[2,00<e N2 21

2

2

:Al(G)
2 WEX K 2
VAT |4 T ENT Q E
”AEIPHaZ <e N2 ((w21) w22)~< Y, )'(Ar) W Wha,
=A2(0)
2 E E KQ E 2
e A [T ARART WS W, ®.D
:A3(9)
For A;(0) in Eq. (B.1), we have
2 W 2
Aq(0) := 7.’VT.E 11 W
1( ) I‘TEHAEI%?;XwSS N2 (’LU21) T W=z »q
2 TAE E
S]EnAfgluafmgeW"'(w V) Al < ) ( >W wral
2 1
<E~ - Nluil3e - | K7 ) Wl
2¢? WEX. W
=2tz (M, ) ( b )W el ®2)
For A5(0) in Eq. (B.1), we have
— 2 VAT .V WEX. E\T 11/KQ 11/E 2
Az(0) ~—E”AETT11H2 <<N?' ‘((wm) w22) : ( Y, S(AF) W W,
WEX\ 2 ENT i KQui/E 2
<k o ()T o) (V) I ian T w e,
2 WEX,
<Ee (k) uly) (V) B N
2¢? WEX,
= e[t wh) (M5) 1] m{iwiew e, g). ®3)
For A3(0) in Eq. (B.1), we have
2
Aa(0) = ‘ VAT AE(ABYT . wEQ By
3(0) ]EHAEITHHQ . N? (wg) F(AD) W W,
2 K
SE e i) TATIE AR T e
<o B[ max  J@i)TAZR- max (AR TWEQWEa, 2]
= N2 FlarT s w<e T AT e T T
2
< 5 E[NI@h)l3e - N W OW Ea i |3]
= 26 B} - E[IW3TOW Ear, 1] (B4)
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Inserting Egs.(B.2), (B.3) and (B.4) into Eq.(B.1, we eventually have that
LiSie(9)

2
<2-E| ()T wl)-

EZNEZNT wke
( ) ( ) ' <( I%é?)T) 'WEa:ﬂq — Yrq

N Way

2¢° WEX, wke
2t g1 (V) (i) el

2¢?
+ 2 ()T w¥2>( ) 1) [||W§QWExT,q|3}

K Ladv
+2¢ Bl - E[IW QW%WH} e (0)
which completes the proof. O

B.3 PROOF OF THEOREM 1

The proof idea of Theorem 1 is similar to that in Zhang et al. (2024) and Fu et al. (2025). Specifically,
we first show that when training the LSA-E model f24%;(6) via continuous gradient flow, w2K1Q and
wy, stay zero during the surrogate ICL embedding AT (Lemma B.6), which can help us further

simplify the surrogate objective function %%‘AE(Q) (Lemma B.7). The global minimizer for the
surrogate ICL embedding AT problem is then derived based on the simplified surrogate objective
function (Lemma B.8).

We start by stating and proving Lemma B.6.
Lemma B.6. Suppose Assumption 1 holds and the LSAE model fngE( ) is trained via minimizing

~radv

the surrogate objective function L35 5 (6) in Eq. (13) with continuous gradient flow. Then, for any

continuous training time t > 0, we uniformly have that wi® (t) = wY¥, (t) = Ogx1.

Proof. Under Assumption 1, we already have that w2 (0) = wY] (0) = 04,1 at the initial training

time ¢ = 0. As a result, to prove Lemma B.6, we only need to further show that gradients for

parameters ng(t) and wY; (t), which are given by continuous gradient flows, stay zero during the
overall surrogate ICL embedding AT. Formally, we need to prove that for any ¢t > 0,

Oy (1) == ~0,, 10 Lighn(8) = O1xa,
Biw3) (t) = =0,y LISAE(0) = O1xa-
To this end, we adopt the decomposition of £3%% 1(9) in Eq. (13) here as follows,

L85 (0) = £1(0) + £2(0) + £3(0) + £4(0),

where
E(Z)E(ZH)T wke 2
61(9) =2 IE ((w;/l)—r w%)# (lelQ)T 'WEx‘r,q_yT,q ;
2y WEX, wie B2
at0) = 25 Il ) (M) (b ) wEealg)
2¢2

£a00) = 2 [l ()T wzvz)( ) 18] B[ Es, ),

0a(0) =26 Bl (w}))13- [wai‘?w%mn ]
and X, := (z,1 - x,n) € RN Y, := (yr1 - yrn) € RN, Then, we will

show that when ng = wé/l = 04x1, one always has 0, KQE 0) =0 ;/Z () = 01xq for every

i € [4], which thus automatically demonstrates that 9, KQ 'CLS Ae(0) = Ouy, L2495 2 (8) = 014 for
any continuous training time ¢ > 0 under Assumption 1

17
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Step 1: Show that wé(lQ = wy; = 04x indicates 0 xal1(0) = d,v {1(0) = 01x4. For the i-th
Waq 21

entry wQKff of wle, we have that

0. raly(0)

Wa1,i

N 59)
(T ) EEIGEI (O] W}
=10 vk SEEL (AT e )
RRAREALCA N L R,
—4 IE[(;; why - (Ve 0)- (WEX, WPz, ) WS WP~y
(% 0 0T W]
— 4175;[(% wly wl X (WEX)T WEQ WPy —w] .xT,q>
(]1[ wywl XX w el W), (B.5)

where e; € R?*! denotes an elementary vector that its i-th entry is 1 and all remaining entries are 0.
We then have two observations for Eq. (B.5): (1) for the first multiplication term in Eq. (B.5), each
of its summarization term contains exactly one element from the task parameter w.; and (2) for
the second multiplication term in Eq. (B.5), each of its summarization term contains exactly two
elements from w,. Based on these observations and the independency of w, with respect to X, and
Zr,q> Eq. (B.5) can further be re-organized as follows,

d d
0, x0l1(0)] o => >

w
21,4 Wy, C=wY; =0ax1 k111

M&

[ i kL Xr,ﬂquﬂ)} 'ITE[wnk “Wr 'wT,l], (B.6)
1

where E-[B; k.1(X-, Tr 4, 0)] is the coefficient for the term E - [w, , - wr ; - w ] and depends only
on X,, z; 4 and 0. Recall that w, ~ N(0, I4,), which means E.|w, j - w; j - wr;] = 0 holds for
any k, j,1 € [d]. Combine this result with Eq. (B.6), we thus have

0. raly(0)

Wa1,i

=0, Vield
W£Q7w2170d><1 ’ [ ]7

which indicates 0,y (0)

= 01><d-
K
wh @ =wY, =041

Besides, for the i-th element w3 ; of wy), we similarly have that

EZNEZNT wke
~epf((sm w) - I () e )
E(Z)EZ)T (WKL .

. T LIATET/EATT) .

((61 O) N (’LU;Q) W x'r,q)} é{lQ:wm*OXm

1
_ 4-@[(N wlwl X (WEX)T - WEQ WPy —w] ~x77q)

: (% el (WEX, WE,) - (WEX. WEa ) Wi wEe, )] B7)

18
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From Eq. (B.7) we notice that: (1) each summarization term in the first multiplication term of
Eq. (B.7) contains exactly one element from w.-, and (2) the second multiplication term of Eq. (B.7)
does not contain any element from w,. Thus, Eq. (B.7) can be re-organized as below,

Ay £1(0)

Wa1,;

d
= ZIE[B;(XTvxT,q,G) '@[wﬂk}? (BS)
k=1

wé(lQ :w;/l =04x1
where E, [B; (X+,2rq,0)] is the coefficient for the term E.[w, ;] and depends only on X, =, ,
and 6. As aresult, by again applying w, ~ N(0, I4,), we have E, [w; ;] = 0 for any k € [d], which
means

Dy 11(0) =0 Vield,

KQ_, v _
Wy ¥ =ws; =0dx1

and thus indicates 0,y £1(0) = O1x4q

KQ_, Vv _
Wy * =Wz =0ax1

Step 2: Show that ng = wy; = 04x; indicates 0, xals(0) = a%v/z(e) = 0yxq. For

8w2KIQ€2(9), we have

262 WEXT " WKQ
N.||w;||§~aw;Q(E||< v, ) ()T Wo2ral3)] o

21 =Wy =0dx1
2¢? wEx,\ ' ([ wke

_ 10 2.5 ( T 11 WwE 2)
N H d><1||2 wé(lQ IE”( Y’T (wé(lQ)T xqu”Q ’wé(lQ:del

= O1><d-

9. xals(9) - [
Way ng:w;{l:del

For 9,y £>(0), we have

D,y L2(6)

2¢? wEx,\' [ wie
.2.(w2Y/1)T.E( v ) ( Ig({?)T W¥z. ,
T T 1

_ 2
- 2}
szlQ:w;/l:OXm [N Wo wXl=uY,

21 =Wz =0dx1

2¢2 T WEX, ! WﬁQ E 2
=[5 2 e () (i) WEenall] g

Woq =04x1

= O1xa-
. KQ _ v _ o di — — KQ
Step 3: Show that w,; ¢ = w3; = 04x; indicates 01”2;«1@63(9) = 0y, €3(0) = O1xq. For wy;~,
since it does not exist in £3(#), thus we always have 0, ko £3(6) = 0.
21

Besides, for the i-th element w;/u of w3}, we have that

By L3(0)

21,3

)V
Way * =wz;=0ax1

2 2 WEXT WEXT !
- % IE 2 ((U‘)gl)—r w¥2> ' < YT > . ( Y‘r ) . ((ei)—r O)T:|w£(1Q:’LU¥1:0d><1

|
=5 af u” ) (M) () (e o] el i
|

= a7 IE 2- w;/? Y- (WEXT)T . ei:| : IE[”WgQWE‘TT,qH%}

K
E[IWOW Pz, |13

N
4 2
= S E[ul ] WEX - (WEX)T - e] - E[IW W ]
4 T E Evy \T KQuE 2
= ok Bl E[WEX- (WEX)T ] B[ WEOW 1]
4 2
= Sl Ouea B[WEX, - (WEX)T -] - E[IWEOW Ear 18] =0,
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where e; € R?*! is an elementary vector that its i-th entry is 1 and all other remaining entries are
0. As a result, we thus have

0, %/@3( ) xo = 01xq-
wy~ =wy; =0ax1

Step 4: Show that wle = wy; = 04« indicates 81”2;«1@64(9) = Ow%&l(e) = 0yxq. For ng,
since it does not exists in £4(6), thus we always have 9, ke f3(0) = 0.
21

Besides, for 0,y £4(f), we have

v £4(0) =2¢" 2+ (wh))T]

w.
21 KQ_, Vv
Wy Y =wy;=0gx1

3]

K
E [HWHQWExT,q

w;/lidel ’ o
= 26" [2- (0ax1) ] - B[ W W Py 3]
= O1xa-

The proof is completed. O

Based on Lemma B.6, we then simplify the objective function ﬁids"AE(ﬂ) in the surrogate ICL em-
bedding AT in Eq. (13), as shown in the following Lemma B.7.

Lemma B.7. Under Assumption I, the surrogate ICL embedding AT objective function LLS g (0)
defined in Eq. (13) can be simplified as

Li8e(8) = 2(w)? - Tr[(WETNAWE)T + Te(A)e L) - (WOWEAL) - (Wi QW EAL)T]
— dwly - T (WEOWEAD) - AF(WE)T| 4 2Tr(A),

where Iy := (2 A + £Tr(A)Iy,) € Rdoxdo,

Proof. When Assumption 1 holds, by applying Lemma B.6, ng and wy, become zero vectors

during the surrogate AT. Then, ¢>(0) and £4(6) in the surrogate AT loss L34 () will stay zero.

Besides, for £, (0) in £33 (6) in Eq. (13), it becomes

E(Z)E(Z,)T (WgQ
N led

2

0(0) =2- ITE’ ((led w¥2) : ) ) WExT,q ~ Yrq

:z.E\ why - (Ve 0)- (WEX, WPz ) - WEL WEr ,—y,

V2
_ 2(w22) ]E.[xiq((WE)TWgQWE)TXTY: .YTX:((WE)ngQWE)xT,q}

B 4’LU¥2 E{Y XT<(WE)TWKQWE)JJ . } +2'E[ 2 ]

N p T T 11 T,q yT;q TyT,q

72(105/2)2 T ENT1i/KQui/ENT T, T, T ENTywEQ/E

- N2 ]];xT,q((W ) Wll w ) XTXT Ig[w‘l'w‘r] XTXT ((W ) Wll w )l’-,-,q
%-E[wT-X X (WEYTWEWE) g, ol - }+2 E[ T W]
N - T T 11 9 T,q 7,9 T

1
= 2(w},)? - T [(WE) TWHOWE)T - Bl X, X X, X - (W) TWCWE) - A

Lemma B.2

—4w¥2~Tr{%IE[XTXTT]-((WE)TWﬁQWE) E[qux ]} +2Tr(A)

Lemma B.2
N
1
= 2(wy)*Tr [((WE)TWﬁQWE)T Nz (Z ]E[a;”x s, Lx” + ZE T, r) T T, ]) A((WEYTWECWEY . A
i=1 i#j
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—4w¥2-Tr[A-((WE) WEQWEY. A} + 2Tr(A

— 2(w}y)*T [((WE) whQwe)T ( N (242 4 Tr(A)A) +(N? - N)AZ) - (W) TWOWE) - A]
LemmdBl
— 4wy, - Tr[ KQWE } +2Tr(A
= 2(w})*T [((WE) Wf‘QwE> NA - (WE)T WfiQwE> A

— 4w, T [ (WE) WﬁQWE) A}+2T&(A), (B.9)
N

where I'y == (ZHA + £ Tr(A)1y,) € Rtoxdo,

For £3(0) in £3%% (0) in Eq. (13), we have

2 WEX,
60 = 5 B[ 01 w22)( )H} E[IW W e, |3]
= B B3 E [T, VW) T W e

1
= 263 (wh,)? - i Z x, werl‘m] - Tr [(WﬁQWE)TWﬁQWEA}

Lemma B.2

= 2¢2(w))? - Tr(A) -T&«{(WﬁQWE)TW{{QWEA] (B.10)

Finally, by inserting Egs. (B.9) and (B.10) back into the surrogate AT loss £33 1 (0) in Eq. (13) and
repeatedly applying Lemma B.3 and the commutativity between A and I" 7, we thus have

Ly p(0) = 2(wiy)? - Tr [((WE)TWfoWE)T TN - (WE)TWEQWE) -A}
— 4wy, - Tr [A- (WEYTWowWE) -A] +2Tr(A)
+ 2¢2(wdy)? - Tr(A) - Tr[(WgQWE)TWﬁQWEA}
= 2wly)?  Te[WETNAWE)T - (WEOWEAR) - (WOWEAS)T]
— 4wy, - Tr [(WﬁQWEA%) : A%(WE)T] +2Tr(A)
+ 262 (w3y)* Tr(A) - Tr[(WﬁQWEA%) : (WﬁQWEA%)T}
=2(wy,)*  Tr [(WEFNA(WE)T +Te(A)eL,) - (WEQWEALY. (WSQWEA%)T}
(

— dwly  Te[(WOWEAR)  AF(WE)T] 4 2Tw(A). B.11)

The proof is completed. O

Based on the simplified surrogate AT loss, we now calculate the global solution for the surrogate
embedding ICL AT problem in the following Lemma B.8.

Lemma B.8. Suppose Assumption I holds. Then, 0, = (WF, wke ,WY) is a global minimizer
for the surrogate embedding ICL AT problem defined in Eq. (13) if and only if

wl o (WE)TWEWYE = (WE)T(WEDNAWE)T + Te(A)e 1) WEA.
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Proof. Under Assumption 1, by applying Lemma B.3 and Lemma B.7, we can re-organize the
surrogate AT loss £34 ;(#) in Eq. (13) as follows,

LiSAE(9)

= 2(wl)? T | (WETNAWE)T + Te(A)e L) - (W OWEAR) - (W QW EAL)T]
— duly T [(WEOWPAR) AR (WP)T] 4 2Te(n)
=2 T [ (WETNAWVE)T + Te(A)eLy ) - (wl WS OWPAR) - (W {{OWEAR)T] 4+ 2Tx(A)
4 Tr [(V«/EFNA(WE)T + Tr(A)e21d) (WY, WEQWEAR) . AF(WE)T (WEFNA(WE)T + Tr(A)eQId) _1}
—2. Tr[(WEFNA(WE)T + Tr(A)eQId>
: (wQQWMQWEAz - (WEFNA(WE)T + Tr(A)eQId>_1WEA%)
: (w22W11QWEA2 - (WEFNA(WE)T + Tr(A)eQId)AWEA%)T}
- Tr[(WEI‘NA(WE)T + TI‘(A)EQId) _2WEA3(WE)T} + 2Tr(A). (B.12)

Note that the second and third summation terms in Eq. (B.12) are constants. Besides, the first term
in Eq. (B.12) is non-negative and can achieve zero via setting

Wy, WESWEAE — (WEDNAWE)T + Tr(A)e?1y) " 'WEAS =0,
which is

wY oo (WE)TWESWE = (WE)YT(WEDNAWE)T + Te(A)e*La) ' WEA.
The proof is completed. O

B.4 PROOF OF THEOREM 2

We first prove a useful Lemma B.9 that will be frequently used in this section.
Lemma B.9. For the inverse matrix (WET yAWE)T + Tr(A)e? 1)t € R¥* in the optimal
surrogate ICL embedding AT solution in Theorem 1, we have

1
Umin(FNA) . (J’mi,ﬂ(I/V*E)2 + TI"(A)62

H (WFFNA(W*E)T + Tr(A)e2Id>_1H2 <

Proof. According to the definition of matrix operator norm (i.e., || - ||2), we have

H (WfFNA(Wf)T n Tr(A)eQId)_IHQ = Cmax [(WEFNA(WE)T + Tr(A)éId)_l}
1 1

" Gum [WETNAWE)T + Te(A)e | " o (WETNAWE)T] 4+ Te(A)e B9
Notice that WET Ny A(WEF)T is a positive semidefinite matrix, we thus have
Oumin [WETNAWE)T| = A [WEDNAWE)T]. (B.14)
By further applying Lemma B.5,
Amin [WFFNA(W*E)T} - UERgﬂliﬁ‘FlvTW*EI‘NA(Wf)Tv. (B.15)
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Denote that u = (WF)Tv € R?, then Eq. (B.15) can be re-written as
Amin |:W*EFNA(W*E)T] = min UTW*EFNA(W*E)TU
vER? ||v|l2=1

= min o (TyAu
vERY [Jv|l2=1

= min {7UT (L A)u . uTu}

veRd lu=1\  uTu
. u' T (DA . T
> min o ——m—— . min - u u
weRrd |l £0a U Tu veR [|vfl2=1

() Amin(CyA) - min - oTWEWE) Ty,

veRd [jvl=1

(2) /\min(FNA) . )\mln(W*E(W*E)T)

(2) Umin(FNA) 'O'min(Wf(Wf)T)

== Umin(FNA) . O'min(W*E)za (B16)
where both (x1) and () are obtained via again applying Lemma B.5, and (*3) is due to the fact

that both I'y A and WE(WZEF)T are positive semidefinite matrices. Combining Eqgs. (B.13), (B.14),
and (B.16), we finally have that

1
Omin(CNA) - Omin (WE)2 4 Tr(A)e2’

Tr[(WfFNA(Wf)T + ’IY(A)EQId) 71} <

which completes the proof. O
With the help of Lemma B.9, we can now start to prove Theorem 2.

Proof of Theorem 2. For the converged LSA-E model fisag g«(-) trained from the surrogate ICL
embedding AT, by inserting its prediction function g, ¢+ () given in Eq. (14) into the robust risk

R4 (+) defined in Eq. (12) and using the inequality |a + b|> < 2(a® + b?), we have that

R (0.)

171
=Y,
ITEHAQ%I?LSP 2 ‘ N

-1 2
< % E|Y.(X)T - (WET (W*EFNA(W*E)T + Tr(A)eQId) WEA -2,

=C1

-1
— S E[Y (X)W (WEDNAWE)T + Te(A) L) WEA -2y - yr] +EI2,]

N 7
——
=Cs :=C3

1 A ,
E Aohax <p‘NYTV<N—M+1):N(ATO)T : (W*E)T(W*El“NA(Wf)T + Tr(A)GQId) WEA - z,,|

Z:C4
(B.17)

where Y, (Nv_ar41)in = (UrN-mMi1 o0 Yrn) € RPM
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For (' in Eq. (B.17), we have

2

-1
1= (X T WE)T (WEDNAWE)T + Te(M)ela)  WEA -z,

N2 =
-1
= B[l VI T (WETNAGWE)T 4 (M) L) WE B, X w, w] X (X))

—1
S(WE)T (WfFNA(Wf)T n Tr(A)eQId) WEA - xﬂq}

-1
- E[xj C(WEA)T (WfFNA(W*E)T + Tr(A)eQId> WE

(S Bloiarania )+ S Bleir ] Bleesa )
i#j
(WEYT (WEFNA(WE)T + Tr(A)eQId) TWEA g "
= E[xI L (WEA)T (WfFNA(Wf)T + Tr(A)eQId> wE. L ( (2A2 + Tr(A)A) +(N? — N)A2>

Lemma B.1

—1
CWE)T (WEDNAWE)T + Tr(A)1,) WEA 2]
-1
= E[qu : (WEA)T(WEFNA(WE)T + Tr(A)eQId> WE . TyA
-1
CWET (WEDWAWE)T + Te(0)e ) WEA ]

—1 —1
Tr[(WFA)T (WEFNA(WE)T n Tr(A)e2Id) WE . TyA- (WE)T (WEFNA(WE)T n Tr(A)e2Id) WEA . A] .

Lemma B.2

Then, by repeatedly applying Lemma B.3 and Lemma B.4, we further have

—1 —1
Cy = Tr[(W*EA)T (W*EFNA(W*E)T + Tr(A)eZId) WE . TyA- (WE)T (WfFNA(WF)T + Tr(A)eZId) W*EAQ}

*1 [ -1 -1
)y (WE)T (W,FFNA(WE)T n Tr(A)e2Id) WE . TyA - (WE)T (WEFNA(WE)T + Tr(A)e2Id) WE . AS]

1 —1
< T [(WE)T (WEDNAWE)T + Te(A 2Id) WET Ny A(WE)T (WEFNA(W,F)T+Tr(A)e2Id) Wﬂ imax(A%)

—1 —1
; Tr(A)e2l;) WEWE)YT (WfFNA(W*E)T —‘rTr(A)EQId) WfFNA} Amax(A)?
WETNAWE)T 4+ Tr(A

GZId

A
w Tr[ BT (WEDNAWE)T +
< ﬂ?r (

1 —1
) wE (WEF AWE)T +Tr(A)€QId) Wf]
N )\max(FNA) N max(A)3
Cs) B i ENT (11 E ENT o0\ Y B ENT E ENT 2\ !
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(B.18)

where (#1) and (x3) is due to Lemma B.3, (x3), (*4) is due to Lemma B.4, (x5) is by Lemma B.3
and Lemma B.4, (x¢) is by Lemma B.3 and Lemma B.9, and (x7) is by Lemma B.4 and Lemma B.9.
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For C5 in Eq. (B.17), we have

B[V (X)T - (WE)T (WEDNAGVE)T 4+ Te(A)@LL) WEA -2y -y

= CE[w] X (X)T - (WE)T (WEThAWE)T + T(A)CL) WEA 2T, ]
T [EIX(X) ] (W) T (WEDAAGWE)T 4 T (W)@ L) WEA- Bl ga7, ]
Tr [NA S(WE)T (W*EFNA(W*E)T + ’IT(A)EQId) TwEp . A}

= o Ty [A% S(WE)T (WEFNA(WF)T + Tr(A)e2Id)_1Wf : A%} >0, (B.19)

where (%) is by Lemma B.2 and () is by Lemma B.3.
For (5 in Eq. (B.17), we have

Cs = IE)[qu] = ]g[w:xT,qquwT] = Tr(ITE[xT,qqu]) = Tr(A). (B.20)

For C} in Eq. (B.17), we have
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where (x) follows Lemma B.2. By using a similar derivation as that for Eq. (B.18), we thus have

2 3.y (WEY4
C, < Mp*Tr(A) ) Tmax (D) Zz:l oi(W.") ) (B.21)
N2 [Umin (FNA) : Umin(W*E)Q + TI(A)€2]2
Finally, inserting Eqgs. (B.18), (B.19), (B.20), and (B.21) into Eq. (B.17), we thus have
R (64)
Tmax(CNA?) - Z?:l o (W) -0+ Tr(A) + Mp*Tr(A) . Tmax(A)? - Zj:l o (WE)*!
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The proof is completed. ]

C ADDITIONAL EXPERIMENTAL DETAILS

This section collects experimental details omitted from Section 5.
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Table 5: LC-WinRate on models trained via CAT with different toward/away cut-off thresholds.

Type (Utility) LC-WinRate (%) T
Toward / Away Cut-off
(Toward / Away Cut-offs) Vicuna-7B Mistral-7B. Llama-2-7B  Llama-3.1-8B  Qwen2.5-7B  Gemma-2B

Original 76.86 90.96 86.70 85.99 91.14 63.96
CAT (1.0/ —3.0) 36.66 15.76 67.51 45.71 77.07 41.75
CAT (0.5/ —5.0) 23.60 12.12 67.65 52.46 71.11 38.91

C.1 ADVERSARIAL TRAINING

Searching embedding space adversarial perturbation. We leverage the projected gradient de-
scent (PGD) (Madry et al., 2018) to solve the following embedding space adversarial perturbation
searching problem for any harmful input-output pair (x, y),

5 = [ argmax  logpy(y|E(x) + 5)}
101112, 110}z 2<e

Specifically, PGD will first initialize a starting perturbation as 6(*) := 0Odx|z|» and then iteratively
update it for K times. In the k-th iteration, the update is as follows,

— 5, log p(y|€ (x) + 6% 1) ,
s = [5“ 1)+77- : , Vied{l,--- |z},
o= AL 185, og o (yIE (@) + 3% D)1 thoelel

where §(¥) is the intermediate adversarial perturbation found in the k-th iteration, 6£k) is the pertur-
bation for the ¢-th token embedding, > 0 is the step size, and H” 5, ||2 < MEANS that the perturbation
d; for the i-th input token embedding each token embedding is projected in a ball sphere centered at
Ogx1- The eventual adversarial perturbation is §* := § (K),

In all experiments, the perturbation radius e is set as 0.05, the update number K is set as 10, and the
learning rate is set as 1 x 1072,

Loss cut-off technique in LLM AT. The adversarial loss in CAT and ER-CAT can be decomposed
into a foward loss and an away loss as follows,

E [(-logpo(yle(@) +8") +logpa(flE (@) + 5.
(z,y,5)€D™

Toward Loss Away Loss
Then, the original CAT paper (Xhonneux et al., 2024) suggest “cut-off” each loss function £’ as
L=T[L"-0.999¢ + (I[L" > ¢] - 0.001 +T[L" < ¢])- L

To prevent over-optimizing both the toward and away losses, we use a cut-off parameter ¢ and the
indicator function I[-]. Xhonneux et al. (2024) originally set the cut-off value as 0.5 for the toward
loss and —5.0 for the away loss. However, we have empirically found that such a hyperparameter
choice significantly reduces the utility of trained LLMs. Specifically, we calculate the LC-WinRate
of a model trained from CAT with a toward cut-off value of 0.5 and an away cut-off value of —5.0 in
Table 5. From the table, we find that, for example, the original cut-off setting from Xhonneux et al.
(2024) can result in the LC-WinRate of Vicuna being 23.60%, which is significantly lower when
compared with its original LC-WinRate of 76.86% before finetuning.

As a result, in our experiments, we relax the cut-off values to 1.0 for the toward loss and —3.0 for
the away loss in both CAT and ER-CAT to help trained LLMs better preserve their utility.

LoRA setting. We use the PEFT library (Mangrulkar et al., 2022) to apply LoRA (Hu et al., 2022)
to the embedding layer and all query and key projection matrices in attention layers of LLMs.
For the embedding layer, we set its PEFT hyperparmeters as r=1024, lora_alpha=32, and
lora_dropout=0.1. Besides, for the remaining layers, we set their PEFT hyperparameters as
r=64, lora_alpha=32,and lora_dropout=0. 1.

Adversarial training. We use AdamW to train each model via CAT in Eq. (4) or our ER-CAT in
Eq. (15), where the embedding space perturbation radius € is fixed to 0.05. To improve the efficiency
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of tuning LLMs, LoRA (Hu et al., 2022) is applied to the embedding layer and all query and key
projection matrices in attention layers.

Other AT hyperparameters. In every AT experiment, we perform LLM AT with AdamW for 60
iterations, where the learning rate is fixed to 2 x 10~%. The batch size is set as 64, where 8 samples
are adversarial inputs and the remaining 56 samples are utility inputs. We always use “Sorry, I
can’t do that.” as the safe response for harmful inputs. For the hyperparameter o of CAT,
we follow Xhonneux et al. (2024) to set it as 0.5. For the hyperparameters « and 5 of our ER-CAT,
we set them to 0.1 and 0.5, respectively.

C.2 JAILBREAK ATTACKS

We adopt six jailbreak attacks to assess the jailbreak robustness of LLMs. Four of them are
token-level suffix attacks, which are: GCG (Zou et al., 2023), BEAST (Sadasivan et al., 2024),
GCQ (Hayase et al., 2024), and Zhu’s AutoDAN (Zhu et al., 2024). The remaining two are prompt-
level attacks, which are: Deeplnception (Li et al., 2023) and PAIR (Chao et al., 2023). We re-
implemented all six attacks by ourselves to enable efficient and fair jailbreak evaluations. Addi-
tionally, for every suffix attack, the length of adversairal suffix token length is set as 20. Other
hyperparameters of jailbreak attacks are set as follows:

* GCG: According to Algorithm 1 in Zou et al. (2023), hyperparameters that we need to set
for GCG include the iteration number 7, the top-k parameter k, and the “batch-size” B.
We set T" as 500, k as 256, and T as 64.

* BEAST: According to Algorithm 1 in Sadasivan et al. (2024), hyperparameters that we
need to set for BEAST are two beam-search parameters k; and ko. We set k1 as 64 and k5
as 16.

* GCQ: According to Algorithm 1 in Hayase et al. (2024), hyperparameters that we need to
set for GCQ include the iteration number 7', the proxy batch size b,, the query batch size
by, and the buffer size B. We set T' = 200 and b, = b, = B = 128.

* Zhu’s AutoDAN: According to Algorithm 1 and Algorithm 2 in Zhu et al. (2024), hyper-
parameters that we need to set for Zhu’s AutoDAN are the iteration number 7" in each step,
objective weights wy and ws, the top-B parameter B, and the temperature 7. We set T" as
3, wy as 10, woy as 100, B as 256, and T as 2.

* DeeplInception: According to Li et al. (2023), Deeplnception attack leverages human-
crafted jailbreak prompts to perform attacks. Therefore, no hyperparameter need to be set
for Deeplnception. Additionally, we use the role play-based prompt from Li et al. (2023)
to conduct the attck.

* PAIR: According to Chao et al. (2023), PAIR leverages an LLM-based attacker and an
LLM-based judger to iteratively synthesize, evaluate, and refine jailbreak prompts. We use
Mistral-8x7B-Instruct-v0.1 as the base model for attacker and Llama-3-70B-Instruct as the
base model for judger. Besides, the number of iteratively refining is fix to 10.

C.3 ADDITIONAL RESULTS

This section collects experimental results that omitted from Section 5.

Evolutions of singular values of W . As illustrated in Section 4.4, our proposed ER-CAT aims
to regularize the embedding matrix of trained LLMs so that its singular values be neither too large
nor too small. Here we empirically show that the introduced regularization term in ER-CAT can
indeed help to achieve such a training goal. Specifically, we plot the maximum singular value, the
minimum singular value, the standard deviation of the singular values, and the mean of the singular
values of the embedding matrix over the training progress of CAT and ER-CAT in Figure 1. From
the figure, we find that when compared with the original CAT method, our ER-CAT can optimize
the LLM embedding matrix to: (1) reduce its maximum singular value, (2) increase its minimum
singular value, (3) reduce the standard deviation of all its singular values, and (4) do not change the
mean of singular values too much (the change of mean is less than 2% on every base model). In
other words, the newly introduced regularization term in ER-CAT can make these singular values
more concentrated. However, we also notice that the reduction in singular values’ standard deviation
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Figure 1: Evolutions of singular values of the embedding matrix of LLMs along AT.

Table 6: 1@5 ASR on different models and attacks. A low ASR indicates a model robustness.

1@5 ASR (%) |,

Model Type

GCG BEAST GCQ  Zhu's AutoDAN  Deeplnception ~ PAIR

Original 95.0 92.0 94.0 26.0 77.0 82.0

Vicuna-7B CAT 31.0 31.0 14.0 2.0 22,0 14.0
ER-CAT (Ours) 34.0 30.0 18.0 5.0 25.0 30.0

Original 94.0 89.0 92.0 64.0 84.0 73.0

Mistral-7B CAT 25.0 17.0 14.0 4.0 4.0 33.0
ER-CAT (Ours) 20.0 18.0 8.0 2.0 3.0 40.0

Original 61.0 30.0 9.0 11.0 70.0 44.0

Llama-2-7B CAT 45.0 30.0 15.0 8.0 24.0 250
ER-CAT (Ours) 32,0 19.0 5.0 1.0 8.0 12.0

Original 24.0 39.0 12.0 10.0 75.0 60.0

Llama-3.1-8B CAT 9.0 10.0 0.0 0.0 0.0 12.0

ER-CAT (Ours) 9.0 17.0 0.0 0.0 0.0 9.0

Original 86.0 86.0 82.0 26.0 90.0 63.0

Qwen2.5-7B CAT 41.0 43.0 40.0 0.0 1.0 26.0
ER-CAT (Ours) 30.0 31.0 14.0 0.0 4.0 21.0

Original 79.0 68.0 21.0 8.0 45.0 34.0

Gemma-2B CAT 40.0 27.0 8.0 1.0 1.0 10.0
ER-CAT (Ours) 40.0 27.0 15.0 3.0 0.0 10.0

might not be large enough, which means that there is still room for improving the effectiveness of
concentrating embedding matrix singular values.

“Worst-case” (1@5 ASR) robustness analysis. In Section 5, we leverage the metric Avg@5 ASR
to evaluate the jailbreak robustness of LLMs. Here we focus on a more challenging setting to assess
LLMs’ robustness via the 1 @5 ASR metric. Specifically, under the 1@5 ASR metric, each jailbreak
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Figure 2: Utility (measured by LC-WinRate) and jailbreak robustness (measured by ASR) on
Vicunna-7B trained with different embedding perturbation radius e within the range [0,0.1]. A
high LC-WinRate indicates a better utility, while a low ASR indicates a strong jailbreak robustness.
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Figure 3: Utility (measured by LC-WinRate) and jailbreak robustness (measured by ASR) on
Qwen2.5-7B trained with different embedding perturbation radius e within the range [0,0.1]. A
high LC-WinRate indicates a better utility, while a low ASR indicates a strong jailbreak robustness.

prompt needs to be repeatedly fed into the targeted model 5 times. If any of the 5 responses is judged
as a harmful response, then this jailbreak prompt is considered to have successfully jailbroken the
targeted model. Results of 1@5 ASR are collected and presented in Table 6. From the table, we have
similar observations as those for Avg@5 ASR (see Figure 1 in Section 5), i.e., ER-CAT achieves
significantly better jailbreak robustness on Llama-2 and Qwen2.5 models, while maintaining similar
robustness on Vicuna, Mistral, Llama-3.1 and Gemma models. It is also worth noting that while ER-
CAT and CAT achieve similar robustness on Vicuna and Mistral, according to Table 2 in Section 5,
the utility achieved by ER-CAT is significantly better than that by CAT.

Ablation studies on the embedding space perturbation radius € in AT. In our main exper-
iments, the embedding space perturbation ¢ is fixed to 0.05 for both CAT and our ER-CAT.
We now analyze how different radii e affect the performance of adversarially trained mod-
els. Specifically, we train LLMs with different embedding perturbation radii ¢ from the set
{0,0.02,0.04,0.05,0.06,0.08,0.1} and then calculate their utility (i.e., LC-WinRate) and robust-
ness (i.e., GCG and BEAST). Preliminary results are shown in Figure 2 for Vicuna-7B and Figure 3
for Qwen2.5-7B. From Figure 2, we observe that as the radius € increases, ER-CAT maintains sim-
ilar jailbreak robustness to that of CAT, but the utility of CAT models degenerates rapidly. Besides,
from Figure 3 we find that CAT is very sensitive to the change of radius ¢ while ER-CAT is less
sensitive. We also observe that when the radius is large (i.e., € > 0.02), the jailbreak robustness of
ER-CAT is better than that of CAT in most cases.
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