

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNDERSTANDING AND IMPROVING CONTINUOUS AD- VERSARIAL TRAINING FOR LLMs VIA IN-CONTEXT LEARNING THEORY

Anonymous authors

Paper under double-blind review

## ABSTRACT

Adversarial training (AT) is an effective defense for large language models (LLMs) against jailbreak attacks, but performing AT on LLMs is costly. To improve the efficiency of AT for LLMs, recent studies propose continuous AT (CAT) that searches for adversarial inputs within the continuous embedding space of LLMs during AT. While CAT has achieved empirical success, its underlying mechanism, *i.e.*, why adversarial perturbations in the embedding space can help LLMs defend against jailbreak prompts synthesized in the input token space, remains unknown. This paper presents the first theoretical analysis of CAT on LLMs based on in-context learning (ICL) theory. For linear transformers trained with adversarial examples from the embedding space on in-context linear regression tasks, we prove a robust generalization bound that has a negative correlation with the perturbation radius in the embedding space. This clearly explains why CAT can defend against jailbreak prompts from the LLM’s token space. Further, the robust bound shows that the robustness of an adversarially trained LLM is closely related to the singular values of its embedding matrix. Based on this, we propose to improve LLM CAT by introducing an additional regularization term, which depends on singular values of the LLM’s embedding matrix, into the objective function of CAT. Experiments on real-world LLMs demonstrate that our method can help LLMs achieve a better jailbreak robustness-utility tradeoff.

## 1 INTRODUCTION

While large language models (LLMs) are increasingly adopted in various real-world applications, their safety is found to be compromised by jailbreak attacks (Wei et al., 2023). By feeding jailbreak prompts, which are specially constructed harmful instructions, one can “jailbreak” safety-aligned targeted LLMs to induce harmful behaviors in them. To ensure the robustness of LLMs against jailbreak attacks, one of the most effective defenses is adversarial training (AT) (Mazeika et al., 2024; Fu et al., 2025), which trains LLMs on synthesized jailbreak prompts to help them better recognize and refuse these harmful inputs. However, the synthesis of jailbreak prompts during AT usually requires solving discrete optimization problems and is thus computation-consuming (Zou et al., 2023; Chao et al., 2023), which restricts the use of AT for LLMs in practice.

To improve the efficiency of AT for LLMs, recent studies introduce *continuous AT (CAT)* (Xhonneux et al., 2024; Sheshadri et al., 2024; Ardit et al., 2024; Dékány et al., 2025), which performs AT on LLMs with adversarial inputs synthesized in the LLMs’ *continuous* token embedding space. Compared with the vanilla AT for LLMs, CAT can use projected gradient descent (PGD; Madry et al. 2018) to search for adversarial examples in the embedding space, which is significantly faster than that in vanilla AT where one needs to perform a heuristic search to find jailbreak prompts in the input token space. However, despite the empirical success of CAT, the reason behind it is still unknown. In fact, the training data in CAT and vanilla LLM AT are very different from each other: data in CAT are sequences of embedding vectors, while data in vanilla AT are sequences of token indices. This raises the following research question:

*Why can adversarial perturbations in the embedding space help LLMs learn to defend against jailbreak prompts from the original input token space?*

In light of recent advances in understanding LLM jailbreak robustness via in-context learning (ICL) theory (Fu et al., 2025; Kumano et al., 2025; Anwar et al., 2025), this paper presents the first theoretical analysis of LLM CAT, also based on ICL theory. We rigorously study how AT helps improve the robustness of linear transformers trained on linear regression tasks against in-context suffix adversarial attacks. To simulate the embedding space adversarial perturbation process in CAT, we introduce an additional trainable embedding matrix into linear transformers and perform adversarial perturbations on ICL input embeddings obtained from this embedding matrix, rather than on the vanilla ICL inputs. Under our new *ICL embedding AT* theoretical framework, we prove a robust generalization upper bound for linear transformers trained via ICL embedding AT. This robust bound has a negative correlation with the embedding space adversarial perturbation radius during ICL embedding AT, which clearly explains why adversarial perturbations in the embedding space can help LLMs defend against jailbreak prompts from the original input space.

Besides, our robust generalization upper bound is closely related to the singular values of the embedding matrix in linear transformers. Specifically, it suggests that an adversarially trained linear transformer with an embedding matrix that has “**not too large nor too small singular values**” would enjoy a small robust upper bound and thus strong adversarial robustness. Based on this finding, we further propose ***Embedding Regularized Continuous AT (ER-CAT)***, a new LLM AT approach improved from CAT by introducing the variance of the embedding matrix singular values as an additional regularization term into the objective function of the original CAT. The motivation behind this is to simultaneously reduce large singular values and increase small singular values, thereby helping to improve the jailbreak robustness of LLMs according to our proven theory. To verify the effectiveness of ER-CAT, we conducted experiments on six real-world LLMs and six common jailbreak attacks. Results show that compared with the original CAT method, ER-CAT can help LLMs achieve a better jailbreak robustness-utility tradeoff.

## 2 RELATED WORKS

**Jailbreak attacks.** Jailbreak prompts (Wei et al., 2023) are a kind of carefully crafted adversarial example (Szegedy et al., 2014; Goodfellow et al., 2015) that can induce targeted unsafe behaviors from LLMs. Existing jailbreak attacks include *token-level* attacks and *prompt-level* attacks. Token-level attacks synthesize jailbreak prompts via modifying/inserting tokens in prompts with different heuristic methods (Zou et al., 2023; Sadasivan et al., 2024; Hayase et al., 2024; Zhu et al., 2024; Paulus et al., 2025; Jin et al., 2024; Liao & Sun, 2024; Andriushchenko et al., 2025), while prompt-level attacks use prompts crafted by humans (Wei et al., 2023; Li et al., 2023; Shen et al., 2024) or LLM-based agents (Chao et al., 2023; Liu et al., 2024b;a; Sabbaghi et al., 2025) to jailbreak LLMs. Though the synthesis of jailbreak prompts in token-level attacks and prompt-level attacks is different from each other, CAT has been shown to be able to defend against both types of these attacks.

**LLMs adversarial training (AT).** To tackle jailbreak attacks, an effective method is to align LLMs via AT (Madry et al., 2018) to help them better recognize and refuse harmful inputs. A standard LLM AT aims to solve a minimax problem that minimizes the training loss on most adversarial jailbreak prompts (Mazeika et al., 2024). However, searching for jailbreak prompts in the discrete token space of LLMs is resource-intensive, limiting the broader application of LLM AT. More recent studies propose *continuous* AT (CAT) for LLMs, in which adversarial examples are embedding vectors obtained from adversarially perturbing token embeddings of the original prompts (Xhonneux et al., 2024; Casper et al., 2024; Sheshadri et al., 2024; Yu et al., 2025). Such a perturbation process can be efficiently performed with gradient-based optimizations, which thus significantly reduces the computational burden of LLM AT. Dékány et al. (2025) adopt both jailbreak prompts and perturbed prompt embeddings as adversarial examples to further improve the performance of LLM AT.

**In-context learning (ICL) theory.** ICL theory aims to understand how transformer-based LLMs can make decisions for different task-specific sequential context inputs (i.e., “prompts”) without adjusting model parameters. Existing ICL works have proven that one can construct explicit transformers layer by layer to mimic the process of learning a variety of function classes (Garg et al., 2022; Von Oswald et al., 2023; Ahn et al., 2023; Chen et al., 2024; Wang et al., 2024; Mahankali et al., 2024; Li et al., 2025). Efforts have also been made to analyze how one-layer transformers can learn ICL prediction abilities from massive task-specific contextual data (Lu et al., 2024; Magen et al., 2024; Frei & Vardi, 2025; Shi et al., 2024; Zhang et al., 2024; Yang et al., 2024b; Huang et al.,

2023; Wu et al., 2024; Lin et al., 2024; Lu et al., 2025). More recent studies have leveraged ICL theory to analyze the adversarial robustness of LLMs. Anwar et al. (2025) find that by only perturbing a single in-context sample in the entire real space, one can manipulate the ICL prediction of transformers to arbitrary results. Fu et al. (2025) study AT of ICL models under more restricted and realistic ICL adversarial attacks, where each ICL sample can only be perturbed within a restricted space. They prove that AT on contextual data with a very small number of perturbed in-context samples can already help trained transformers achieve strong robustness. Kumano et al. (2025) show that adversarially pretrained transformers focus more on robust features (Ilyas et al., 2019) and thus can generalize to downstream tasks robustly without additional AT. Our analysis mainly stems from Fu et al. (2025), with the goal of explaining the robust generalization ability of continuous AT.

### 3 PRELIMINARIES

**Large language models (LLMs).** An LLM is a function that maps sequential inputs to sequential outputs based on a parameterized distribution  $p_\theta$ . Let  $x \in \mathcal{V}^{|x|}$  be an input prompt of length  $|x|$ , where  $\mathcal{V} := \{1, \dots, |\mathcal{V}|\}$  is the token space. The probability that the LLM generates a response  $y \in \mathcal{V}^{|y|}$  of length  $|y|$  is:  $p_\theta(y|x) = \prod_{i=1}^{|y|} p_\theta(y_i|x \oplus y_{1:(i-1)})$ , where “ $\oplus$ ” denotes concatenation.

**Jailbreak attacks.** Current jailbreak attacks can be divided into *token-level* and *prompt-level* attacks. Given two token sequences  $x^{(h)}$  and  $y^{(h)}$ , where  $x^{(h)}$  is a harmful instruction and  $y^{(h)}$  is a targeted harmful response, a standard token-level attack concatenates a synthesized adversarial suffix  $x^{(s)}$  to the prompt  $x^{(h)}$  to form a jailbreak prompt that increases the probability of the LLM in generating  $y^{(h)}$ . The synthesis of the suffix  $x^{(s)}$  can be formalized as solving the below problem,

$$\min_{x^{(s)} \in \mathcal{V}^{|x^{(s)}|}} -\log p_\theta(y^{(h)}|x^{(h)} \oplus x^{(s)}). \quad (1)$$

Meanwhile, a prompt-level attack uses an attack oracle  $\mathcal{A}$ , which can be human experts or AI agents, to directly rewrite the original harmful prompt  $x^{(h)}$  to a jailbreak one  $\hat{x}^{(h)}$ , as shown below,

$$\min_{\hat{x}^{(h)} \sim \mathcal{A}(x^{(h)})} -\log p_\theta(y^{(h)}|\hat{x}^{(h)}). \quad (2)$$

It should be noted that performing both token-level and prompt-level attacks is resource-consuming, as solving Eq. (1) requires sophisticated discrete optimizations, while solving Eq. (2) requires human annotation or additional computing resources for AI agents to perform inference.

**Continuous AT for LLMs.** Let  $D^{(h)}$  be a *safety dataset*, where each sample  $(x, y, \tilde{y})$  consists of a harmful prompt  $x$ , a targeted harmful response  $y$ , and a *safe* reference response  $\tilde{y}$ . Additionally, let  $D^{(u)}$  be a *utility dataset*, where each sample  $(x, y)$  consists of a pair of a normal instruction and its answer. Then, Mazeika et al. (2024) formalize the first AT algorithm for LLMs as solving the following optimization problem:

$$\min_{\theta} \left\{ -\underbrace{\mathbb{E}_{(x, y, \tilde{y}) \in D^{(h)}} \left[ \underbrace{\log p_\theta(\tilde{y}|\hat{x}^*) + \log(1 - p_\theta(y|\hat{x}^*))}_{\text{Adversarial Loss}} \right]}_{\text{Adversarial Loss}} - \underbrace{\mathbb{E}_{(x, y) \in D^{(u)}} \log p_\theta(y|x)}_{\text{Utility Loss}} \right\}, \quad (3)$$

where  $\hat{x}^* = \arg \max_{\hat{x} \in \mathcal{B}(x, y)} \log p_\theta(y|\hat{x})$  is the jailbreak prompt for the harmful input-output pair  $(x, y)$  from the safety set and  $\mathcal{B}(x, y)$  denotes the search space of jailbreak prompts. In Eq. (3), the adversarial loss helps LLMs learn to respond harmlessly even when the most adversarial jailbreak prompts are present, while the utility loss helps retain the utility of pre-trained LLMs. As explained before, finding strong jailbreak prompts  $\hat{x} \in \mathcal{B}(x, y)$  from the search space determined by the used attacks is costly, which limits the efficiency of LLM AT.

More recent studies suggest using continuous AT (CAT) to reduce the computational overhead of vanilla LLM AT. Concretely, let  $\mathcal{E}(\cdot)$  denote the embedding function of the LLM  $f_\theta$ , with an embedding matrix  $W^E \in \mathbb{R}^{d \times |\mathcal{V}|}$  as its parameter, where  $W_{:, v}^E \in \mathbb{R}^d$  is the embedding vector for the token  $v \in \mathcal{V}$ . For any token sequence  $x \in \mathcal{V}^{|x|}$ , the embedding function  $\mathcal{E}(\cdot)$  maps it to its embedding sequence as  $\mathcal{E}(x) := (W_{:, x_1}^E \dots W_{:, x_{|x|}}^E) \in \mathbb{R}^{d \times |x|}$ . Continuous AT is then formalized as solving a new optimization problem as below (Xhonneux et al., 2024),

$$\min_{\theta} \left\{ -\alpha \cdot \mathbb{E}_{(x, y, \tilde{y}) \in D^{(h)}} \log \frac{p_\theta(\tilde{y}|\mathcal{E}(x) + \delta^*)}{p_\theta(y|\mathcal{E}(x) + \delta^*)} - \mathbb{E}_{(x, y) \in D^{(u)}} \log p_\theta(y|x) \right\}, \quad (4)$$

162 where  $\delta^* = [\arg \max_{\|\delta_1\|_2, \dots, \|\delta_{|x|}\|_2 \leq \epsilon} \log p_\theta(y|\mathcal{E}(x) + \delta)] \in \mathbb{R}^{d \times |x|}$  is the *most* adversarial perturbation  $\delta^*$  for the harmful input-output pair  $(x, y)$  from the safety set  $D^{(h)}$ ,  $\epsilon > 0$  is the embedding space perturbation radius,  $\alpha > 0$  is a weight parameter, and  $(\mathcal{E}(x) + \delta^*) := ((\mathcal{E}(x_1) + \delta_1^*) \dots (\mathcal{E}(x_{|x|}) + \delta_{|x|}^*)) \in \mathbb{R}^{d \times |x|}$  is the perturbed harmful prompt embeddings. The idea behind LLM CAT in Eq. (4) is to adopt adversarially perturbed embedding sequences as adversarial examples rather than jailbreak prompts in the vanilla LLM AT in Eq. (3). Additionally, the embedding space adversarial perturbation  $\delta^*$  can usually be searched via the fast projected-gradient descent (PGD) method (Madry et al., 2018), which makes CAT efficient in practice.

## 4 THEORETICAL ANALYSIS FOR CONTINUOUS AT

174 While LLM CAT has achieved empirical success (Xhonneux et al., 2024; Casper et al., 2024; She-  
175 shadri et al., 2024; Dékány et al., 2025), the mechanism behind it, *i.e.*, **why adversarial perturba-**  
176 **tions in the embedding space help LLMs defend against jailbreak prompts from the token space**,  
177 remains unclear. This section tackles this research question by conducting a theoretical analysis for  
178 CAT based on in-context learning theory (Zhang et al., 2024; Fu et al., 2025; Kumano et al., 2025).

179 **In-context learning (ICL) theory.** In the ICL theory, a *prompt* input of length  $N$ , specified by  
180 a *task* indexed by  $\tau$ , is formalized as a sequence  $(x_{\tau,1}, y_{\tau,2}, \dots, x_{\tau,N}, y_{\tau,N}, x_{\tau,q})$ , where the first  
181  $N$  labeled samples  $\{(x_{\tau,i}, y_{\tau,i})\}_{i=1}^N$  are task-specific in-context training samples, and the last item,  
182  $x_{\tau,q}$ , is the query sample. Then, the goal of an ICL model is to make a prediction for the query  
183 sample  $x_{\tau,q}$  solely based on the  $N$  in-context training data.

184 **ICL linear regression.** Our analysis focuses on training ICL models on different linear regression  
185 tasks. Suppose  $\tau$  is a task index and  $w_\tau \in \mathbb{R}^{d_0}$  is the corresponding task weight drawn from  
186  $w_\tau \sim \mathcal{N}(0, I_{d_0})$ . We assume that each ICL training point  $x_{\tau,i}$  ( $1 \leq i \leq N$ ) and the query point  $x_{\tau,q}$   
187 are drawn from  $x_{\tau,i}, x_{\tau,q} \sim \mathcal{N}(0, \Lambda)$  where  $\Lambda \in \mathbb{R}^{d_0 \times d_0}$  is the covariance matrix, and their labels  
188 are  $y_{\tau,i} = w_\tau^\top x_{\tau,i}$  and  $y_{\tau,q} = w_\tau^\top x_{\tau,q}$ . Then, the ICL input  $Z_\tau$  specified by the task  $\tau$  is given by

$$Z_\tau := \begin{pmatrix} x_{\tau,1} & \cdots & x_{\tau,N} & x_{\tau,q} \\ y_{\tau,1} & \cdots & y_{\tau,N} & 0 \end{pmatrix} \in \mathbb{R}^{(d_0+1) \times (N+1)}. \quad (5)$$

192 **Other notations.** We denote  $[n] := \{1, \dots, n\}$  for any  $n \in \mathbb{N}^+$ . For any  $A \in \mathbb{R}^{n \times m}$ , we denote  
193  $\|A\|_{2,\infty} := \max_{1 \leq i \leq m} \|A_{i,:}\|_2$ ,  $\|A\|_2$  be the operator norm, and  $\|A\|_F$  be the Frobenius norm.  
194 Besides,  $\lambda_i(A)$ ,  $\lambda_{\max}(A)$ , and  $\lambda_{\min}(A)$  denote its  $i$ -th largest, largest, and smallest eigenvalues,  
195 while  $\sigma_i(A)$ ,  $\sigma_{\max}(A)$ , and  $\sigma_{\min}(A)$  denote its  $i$ -th largest, largest, and smallest singular values.  
196 Finally, we denote  $\text{Tr}(A) := \sum_{i=1}^n A_{i,i}$  for any  $A \in \mathbb{R}^{n \times n}$ . We use standard Big O notation  $\mathcal{O}(\cdot)$ .

197 In the remainder, we will first establish an *ICL embedding AT* problem for linear transformers and  
198 explain why it can approximate real-world LLM CAT under the ICL theoretical framework. A robust  
199 generalization bound will then be proved for linear transformers trained from ICL embedding AT.  
200 Based on this bound, we will explain why CAT can work and how to further improve CAT.

### 4.1 ICL ADVERSARIAL TRAINING IN EMBEDDING SPACE

204 **Linear self-attention with embedding module (LSA-E).** Linear self-attention (LSA) models are  
205 linear transformers that have been widely used for theoretical ICL analysis (Zhang et al., 2024; Shi  
206 et al., 2024; Frei & Vardi, 2025). However, the LSA model studied in the previous work does not  
207 have an input embedding module and thus cannot be naturally adopted for the analysis of LLM CAT,  
208 which requires performing adversarial perturbations in the input embedding space. To tackle this  
209 challenge, we design a novel **LSA-with-Embedding (LSA-E)** model to approximate real-world CAT  
210 in our theoretical analysis. Specifically, let  $\mathcal{E}(\cdot)$  be an embedding function that maps any ICL input  
211  $Z_\tau \in \mathbb{R}^{(d_0+1) \times (N+1)}$  to its ICL embedding matrix  $\mathcal{E}(Z_\tau) \in \mathbb{R}^{(d+1) \times (N+1)}$  as follows:

$$\mathcal{E}(Z_\tau) := \begin{pmatrix} W^E x_{\tau,1} & \cdots & W^E x_{\tau,N} & W^E x_{\tau,q} \\ y_{\tau,1} & \cdots & y_{\tau,N} & 0 \end{pmatrix} \in \mathbb{R}^{(d+1) \times (N+1)}, \quad (6)$$

212 where  $W^E \in \mathbb{R}^{d \times d_0}$  is the trainable parameter of the embedding function and  $d$  is the dimension of  
213 the embedding space. Intuitively, the function  $\mathcal{E}(\cdot)$  in Eq. (6) aims to map each in-context point from

216 the original input space  $\mathbb{R}^{d_0}$  to the embedding space  $\mathbb{R}^d$  via a linear mapping. With the embedding  
 217 function  $\mathcal{E}(\cdot)$  in Eq. (6), the LSA-E model  $f_{\text{LSAE},\theta}$  is then formalized as below,  
 218

$$219 \quad f_{\text{LSAE},\theta}(Z_\tau) := \left[ \mathcal{E}(Z_\tau) + W^V \mathcal{E}(Z_\tau) \frac{\mathcal{E}(Z_\tau)^\top W^{KQ} \mathcal{E}(Z_\tau)}{N} \right] \in \mathbb{R}^{(d+1) \times (N+1)},$$

221 where  $W^{KQ} \in \mathbb{R}^{(d+1) \times (d+1)}$  is a matrix fused from the key and query projection matrices,  $W^V \in$   
 222  $\mathbb{R}^{(d+1) \times (d+1)}$  is the value projection matrix, and  $\theta := (W^E, W^{KQ}, W^V)$  contains all trainable  
 223 parameters of the LSA-E model. The prediction  $\hat{y}_{q,\theta}(Z_\tau)$  for the query point  $x_{\tau,q}$  is given by  
 224 the right-bottom entry of the LSA-E model output, *i.e.*,  $\hat{y}_{q,\theta}(Z_\tau) := f_{\text{LSAE},\theta}(Z_\tau)_{(d+1),(N+1)}$ . If  
 225 we follow Zhang et al. (2024); Frei & Vardi (2025); Fu & Wang (2024) to write matrices  $W^{KQ}$   
 226 and  $W^V$  as  $W^\square = \begin{pmatrix} W_{11}^\square & w_{12}^\square \\ (w_{21}^\square)^\top & w_{22}^\square \end{pmatrix}$ ,  $\square \in \{KQ, V\}$ , where  $W_{11}^\square \in \mathbb{R}^{d \times d}$ ,  $w_{22}^\square \in \mathbb{R}$ , and  
 227  $w_{12}^\square, w_{21}^\square \in \mathbb{R}^{d \times 1}$ , then the LSA-E model prediction  $\hat{y}_{q,\theta}$  can be further simplified as follows,  
 228

$$230 \quad \hat{y}_{q,\theta}(Z_\tau) := ((w_{21}^V)^\top \quad w_{22}^V) \frac{\mathcal{E}(Z_\tau) \mathcal{E}(Z_\tau)^\top}{N} \begin{pmatrix} W_{11}^{KQ} \\ (w_{21}^{KQ})^\top \end{pmatrix} W^E x_{\tau,q}. \quad (7)$$

233 **ICL embedding AT for LSA-E models.** To approximate the real-world setting of LLM CAT, the  
 234 theoretical ICL embedding AT also adopts ICL adversarial examples found in the embedding space  
 235 to train LSA-E models. An ICL adversarial example in the embedding space is defined as below,  
 236

$$237 \quad \mathcal{E}^{\text{adv}}(Z_\tau, \Delta_\tau^E) := \begin{pmatrix} W^E x_{\tau,1} + \delta_{\tau,1}^E & \cdots & W^E x_{\tau,N} + \delta_{\tau,N}^E & W^E x_{\tau,q} \\ y_{\tau,1} & \cdots & y_{\tau,N} & 0 \end{pmatrix} \in \mathbb{R}^{(d+1) \times (N+1)}, \quad (8)$$

239 where  $Z_\tau$  is the ICL input for the task  $\tau$  (see Eq. (5)),  $W^E$  is the parameter of the embedding function  
 240  $\mathcal{E}(\cdot)$  (see Eq. (6)), and  $\Delta_\tau^E := (\delta_{\tau,1}^E \cdots \delta_{\tau,N}^E) \in \mathbb{R}^{d \times N}$  denotes all adversarial perturbations  
 241 added to the embeddings of the  $N$  in-context training points. The prediction of the LSA-E model  
 242  $f_{\text{LSAE},\theta}$  for the adversarial example  $\mathcal{E}^{\text{adv}}(Z_\tau, \Delta_\tau^E)$  is then given by the following  $\hat{y}_{q,\theta}^{\text{adv}}(Z_\tau, \Delta_\tau^E)$ ,  
 243

$$244 \quad \hat{y}_{q,\theta}^{\text{adv}}(Z_\tau, \Delta_\tau^E) := ((W_{21}^V)^\top \quad w_{22}^V) \frac{\mathcal{E}^{\text{adv}}(Z_\tau, \Delta_\tau^E) \mathcal{E}^{\text{adv}}(Z_\tau, \Delta_\tau^E)^\top}{N} \begin{pmatrix} W_{11}^{KQ} \\ (W_{21}^{KQ})^\top \end{pmatrix} W^E x_{\tau,q}. \quad (9)$$

246 With all these notations, the ICL embedding AT for an LSA-E model is eventually formalized as the  
 247 following minimax optimization problem,  
 248

$$249 \quad \min_{\theta} \mathcal{L}_{\text{LSAE}}^{\text{adv}}(\theta) := \min_{\theta} \left\{ \mathbb{E}_{\tau} \max_{\|\Delta_\tau^E\|_2, \infty \leq \epsilon} \frac{1}{2} |\hat{y}_{q,\theta}^{\text{adv}}(Z_\tau, \Delta_\tau^E) - y_{\tau,q}|^2 \right\}, \quad (10)$$

251 Where  $\epsilon > 0$  is the embedding space adversarial perturbation radius and the expectation  $\mathbb{E}_\tau$  is calcu-  
 252 lated over the randomness of  $w_\tau, x_{\tau,1}, \dots, x_{\tau,N}, x_{\tau,q}$ . The restriction in the inner maximization in  
 253 Eq. (10) ensures that each adversarial perturbation  $\delta_{\tau,i}^E$  is confined within the ball-sphere  $\|\delta_{\tau,i}^E\|_2 \leq \epsilon$ .  
 254

255 **Robust generalization risk for LSA-E models.** We use the ICL suffix adversarial attack (Fu et al.,  
 256 2025) to assess the robustness of ICL models. Nevertheless, we note that our experiments in Sec-  
 257 tion 5 also consider attacks beyond suffix jailbreaking. Specifically, given an ICL input  $Z_\tau$  with  
 258 context length  $N$ , the ICL suffix adversarial attack adversarially perturbs the last  $M$  ( $M \leq N$ )  
 259 in-context training points of  $Z_\tau$  as follows,  
 260

$$261 \quad Z_{\tau,M}^{\text{adv}} := \begin{pmatrix} x_{\tau,1} & \cdots & x_{\tau,N-M} & x_{\tau,N-M+1} + \delta_{\tau,1}^O & \cdots & x_{\tau,N} + \delta_{\tau,M}^O & x_{\tau,q} \\ y_{\tau,1} & \cdots & y_{\tau,N-M} & y_{\tau,N-M+1} & \cdots & y_{\tau,N} & 0 \end{pmatrix}, \quad (11)$$

262 where  $\delta_{\tau,i}^O \in \mathbb{R}^{d_0}$  is the adversarial perturbation added to the  $i$ -th ICL suffix point  $x_{\tau,N-M+i}$ . Al-  
 263 though the ICL suffix adversarial example  $Z_{\tau,M}^{\text{adv}}$  in Eq. (11) looks similar to the adversarial example  
 264 defined in Eq. (8), the mechanisms behind them are very different: in Eq. (11), adversarial pertur-  
 265 bations are directly added to in-context points, whereas in Eq. (8), perturbations are added to the  
 266 embeddings of these in-context points. The robust generalization risk  $\mathcal{R}_{\rho,M}(\theta)$  with perturbation  $\rho$   
 267 and adversarial suffix length  $M$  for an LSA-E model  $f_{\text{LSAE},\theta}$  is then defined as below,  
 268

$$269 \quad \mathcal{R}_{\rho,M}^{\text{adv}}(\theta) = \mathbb{E}_{\tau} \max_{\|\Delta_\tau^O\|_2, \infty \leq \rho} \frac{1}{2} |\hat{y}_{q,\theta}(Z_{\tau,M}^{\text{adv}}) - y_{\tau,q}|^2, \quad (12)$$

270 where  $\hat{y}_{q,\theta}$  is the LSA-E prediction function in Eq. (7),  $Z_{\tau,M}^{\text{adv}}$  is the ICL suffix adversarial example  
 271 in Eq. (11),  $\Delta_{\tau}^O := (\delta_1^O \dots \delta_M^O) \in \mathbb{R}^{d_0 \times M}$  contains all perturbations added to the suffix of  
 272  $Z_{\tau,M}^{\text{adv}}$ , and  $\rho > 0$  is the adversarial perturbation radius for the suffix attack, which restricts each  
 273 perturbation  $\delta_i^O$  to the ball-sphere  $\|\delta_i^O\|_2 \leq \rho$ . A lower robust risk  $\mathcal{R}_{\rho,M}^{\text{adv}}(\theta)$  indicates stronger  
 274 adversarial robustness of the model  $f_{\text{LSAE},\theta}$ , and vice versa.  
 275

## 276 4.2 BRIDGING ICL EMBEDDING AT AND LLM CONTINUOUS AT

277 Before introducing our main theoretical results, here we explain why the established ICL embedding  
 278 AT in Eq. (10) can be a good artifact for approximating real-world LLM CAT in Eq. (3) under the  
 279 ICL theory by analyzing the similarities between them.  
 280

281 **Firstly, LSA-E models are very similar to real-world LLMs.** Ahn et al. (2024) empirically show  
 282 that the linear self-attention module in LSA-E models share similar properties with those non-linear  
 283 ones in LLMs and thus are useful for theoretically understanding LLMs. We further argue that  
 284 **the embedding processes of LSA-E models and real-world LLMs are also very similar.** If we  
 285 replace each token in an LLM prompt with its one-hot encoding vector defined over the token vocabu-  
 286 lary space, the embedding process for each token in an LLM can be seen as a matrix multiplication  
 287 between the LLM’s embedding matrix and the corresponding token’s one-hot encoding. This matrix  
 288 multiplication-based LLM prompt embedding process is almost identical to the ICL input embed-  
 289 ding process shown in Eq. (6), where input features are also linearly transformed by the LSA-E  
 290 model’s embedding matrix. Therefore, we believe the embedding spaces of both LSA-E models and  
 291 LLMs are similar, as they are both obtained via linear transformation.

292 **Secondly, the training goals of ICL embedding AT and LLM CAT are very similar to each**  
 293 **other.** The two AT problems both aim to enhance models’ robustness by training them on sequential  
 294 data where their embeddings are adversarially perturbed. The only difference is that in ICL embed-  
 295 ding AT, the goal of adversarial perturbations is to reduce the utility of linear regression prediction  
 296 made by LSA-E models, while in LLM CAT such a goal is to induce harmful content from LLMs.

297 **Finally, the adversarial robustness of LSA-E models is also very similar to the jailbreak ro-  
 298 bustness of LLMs.** Fu et al. (2025) has already illustrated why ICL suffix adversarial attacks are  
 299 similar to real-world jailbreak attacks through theoretical and empirical justifications. Since we also  
 300 leverage this ICL suffix adversarial attack to assess the robustness of LSA-E models, we believe that  
 301 analyzing the robust generalization ability of LSA-E models will effectively help us understand how  
 302 LLMs trained from CAT gain robustness against jailbreak attacks.

## 304 4.3 ROBUST GENERALIZATION BOUND OF ICL EMBEDDING AT

305 We now start to establish a robust generalization bound for the LSA-E model trained via ICL em-  
 306 bedding AT as formalized in Eq. (10). The derivation consists of three steps: (1) derive an upper  
 307 bound  $\tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta)$  for the original loss function  $\mathcal{L}_{\text{LSAE}}^{\text{adv}}(\theta)$  in ICL embedding AT (see Eq.(10)) and  
 308 formalize a surrogate AT problem that would minimize the upper bound  $\tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta)$ ; (2) calculate  
 309 the closed-form solution for the previously obtained surrogate ICL embedding AT problem; and  
 310 (3) prove a robust generalization bound for the LSA-E model trained with the surrogate problem.

312 **Surrogate ICL embedding AT.** The surrogate problem for Eq. (10) is formalized as

$$314 \min_{\theta} \tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta) = \min_{\theta} \left\{ \ell_1(\theta) + \ell_2(\theta) + \ell_3(\theta) + \ell_4(\theta) \right\}, \quad (13)$$

316 where  $\tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta) := \sum_{i=1}^4 \ell_i(\theta)$  is the surrogate objective function, and

$$318 \ell_1(\theta) := 2 \cdot \mathbb{E}_{\tau} \left| \left( \begin{pmatrix} w_{21}^V \end{pmatrix}^{\top} \quad w_{22}^V \right) \frac{\mathcal{E}(Z_{\tau}) \mathcal{E}(Z_{\tau})^{\top}}{N} \begin{pmatrix} W_{11}^{KQ} \\ (w_{21}^{KQ})^{\top} \end{pmatrix} W^E x_{\tau,q} - y_{\tau,q} \right|^2,$$

$$320 \ell_2(\theta) := \frac{2\epsilon^2}{N} \cdot \|w_{21}^V\|_2^2 \cdot \mathbb{E}_{\tau} \left[ \left\| \begin{pmatrix} W^E x_{\tau,1} & \dots & W^E x_{\tau,N} \\ y_{\tau,1} & \dots & y_{\tau,N} \end{pmatrix}^{\top} \begin{pmatrix} W_{11}^{KQ} \\ (w_{21}^{KQ})^{\top} \end{pmatrix} W^E x_{\tau,q} \right\|_2^2 \right],$$

$$322 \ell_3(\theta) := \frac{2\epsilon^2}{N} \cdot \mathbb{E}_{\tau} \left[ \left\| \begin{pmatrix} w_{21}^V \end{pmatrix}^{\top} \quad w_{22}^V \right) \begin{pmatrix} W^E x_{\tau,1} & \dots & W^E x_{\tau,N} \\ y_{\tau,1} & \dots & y_{\tau,N} \end{pmatrix}^{\top} \right\|_2^2 \right] \cdot \mathbb{E}_{\tau} \left[ \|W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \right],$$

$$\ell_4(\theta) := 2\epsilon^4 \cdot \|w_{21}^V\|_2^2 \cdot \mathbb{E}_{\tau} \left[ \|W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \right].$$

The new objective function  $\tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta)$  is a closed-form upper bound for the original ICL embedding AT loss function  $\mathcal{L}_{\text{LSAE}}^{\text{adv}}(\theta)$ , as shown in the following Lemma 1 (see Appendix B.2 for the proof).

**Lemma 1.** *For the objective function  $\mathcal{L}_{\text{LSAE}}^{\text{adv}}(\theta)$  in ICL embedding AT (Eq. (10)) and the objective function  $\tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta)$  in surrogate ICL embedding AT (Eq. (13)), we uniformly have  $\mathcal{L}_{\text{LSAE}}^{\text{adv}}(\theta) \leq \tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta)$  for any  $\theta := (W^E, W^{KQ}, W^V)$ .*

The reason for studying the surrogate ICL embedding AT problem in Eq. (13) instead of the original problem is because the objective function  $\mathcal{L}_{\text{LSAE}}^{\text{adv}}(\theta)$  in the original AT problem is difficult to tackle in a closed-form manner. With the new surrogate  $\tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta)$ , which is in closed-form, one can easily analyze the training dynamics of the LSA-E model trained from the surrogate problem. Further, since the surrogate objective function is an upper bound of the original one, minimizing it can also help to reduce the original AT loss and thus improve the robustness of the trained LSA-E model.

**Closed-form solution of the surrogate problem.** To solve the new surrogate AT problem in Eq. (13), we first make the below Assumption 1 on the initialization of the model parameter  $\theta$ .

**Assumption 1.** *Let  $\zeta > 0$  be a parameter and  $\Theta \in \mathbb{R}^{d \times d}$  be any matrix satisfying  $\|\Theta\Theta^\top\|_F = 1$  and  $\Theta\Lambda \neq 0_{d \times d}$ . We assume that  $W^V(0) = \begin{pmatrix} 0_{d \times d} & 0_{d \times 1} \\ 0_{1 \times d} & \zeta \end{pmatrix}$  and  $W^{KQ}(0) = \begin{pmatrix} \zeta\Theta\Theta^\top & 0_{d \times 1} \\ 0_{1 \times d} & 0 \end{pmatrix}$ .*

**Remark 1.** *Assumption 1 is widely adopted in the ICL theoretical analysis (Zhang et al., 2024; Frei & Vardi, 2025; Wu et al., 2024; Fu et al., 2025). The idea behind Assumption 1 is to (1) zero out terms  $w_{22}^{KQ}$ ,  $w_{12}^{KQ}$ ,  $W_{11}^V$ , and  $w_{12}^V$  that do not contribute to the ICL prediction function  $\hat{y}_{q,\theta}$  in Eq. (7) and (2) zero out terms  $w_{21}^{KQ}$  and  $w_{21}^V$  to ensure symmetric initialization.*

Under Assumption 1, the optimal solution for the LSA-E model trained from surrogate embedding ICL AT is calculated as the following Theorem 1 (see Appendix B.3 for the proof).

**Theorem 1** (Optimal solution of surrogate ICL embedding AT). *Suppose Assumption 1 holds and  $f_{\text{LSAE},\theta}$  is trained from the surrogate embedding AT problem defined in Eq. (13) with continuous gradient flow. Then, the optimal model parameter  $\theta_* := (W_*^E, W_*^{KQ}, W_*^V)$  should satisfies  $w_{*,12}^{KQ} = w_{*,21}^{KQ} = w_{*,12}^V = w_{*,21}^V = 0_{d \times 1}$ ,  $w_{*,22}^{KQ} = 0$ ,  $W_{*,11}^V = 0_{d \times d}$ , and*

$$w_{*,22}^V (W_*^E)^\top W_{*,11}^{KQ} W_*^E = (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda,$$

where  $\Gamma_N := (\frac{N+1}{N} \Lambda + \frac{1}{N} \text{Tr}(\Lambda) I_{d_0}) \in \mathbb{R}^{d_0 \times d_0}$ .

Applying Theorem 1 to the LSA-E model prediction function in Eq. (7), the optimal prediction function  $\hat{y}_{q,\theta_*}(\cdot)$  given by the model  $f_{\text{LSAE},\theta_*}$  trained from surrogate ICL embedding AT is as follows,

$$\hat{y}_{q,\theta_*}(Z_\tau) := \frac{1}{N} Y_\tau (X_\tau)^\top (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda x_{\tau,q}. \quad (14)$$

**Robust generalization ability.** Finally, we leverage the robust generalization risk  $\mathcal{R}_{\rho,M}^{\text{adv}}$  to assess the robustness of the optimal model  $f_{\text{LSAE}}(\theta_*)$  trained from surrogate ICL embedding AT. Formally, we prove a robust generalization upper bound for the robust risk  $\mathcal{R}_{\rho,M}^{\text{adv}}(\theta_*)$ , as shown in the following Theorem 2 (see Appendix B.4 for the proof).

**Theorem 2** (Robust generalization upper bound). *Suppose Assumption 1 holds,  $d \leq d_0$ , and  $\theta_*$  is the solution of the surrogate ICL embedding AT in Eq. (13) obtained from Theorem 1. We have*

$$\mathcal{R}_{\rho,M}^{\text{adv}}(\theta_*) \leq \mathcal{O} \left( \frac{(1 + M\rho^2/N^2) \cdot \sum_{i=1}^d \sigma_i(W_*^E)^4}{\sigma_{\min}(W_*^E)^4 + \epsilon^4} \right) + \mathcal{O}(1).$$

**Remark 2.** *Theorem 2 additionally requires that the embedding space dimension  $d$  of the LSA-E model be no larger than the input in-context sample dimension  $d_0$ . Such a requirement means that the LSA-E models would implicitly compress the input data.*

378 4.4 IMPLICATIONS  
379

380 So far, we have calculated the optimal ICL prediction function  $\hat{y}_{q,\theta_*}$  obtained from surrogate em-  
381 bedding ICL AT in Eq. (14) and further prove a robust generalization bound for it in Theorem 2. We  
382 now start to investigate how these results can help to understand and improve CAT for LLMs.

383 **Embedding-space adversarial perturbations provably enhance input-space adversarial ro-  
384 bustness.** The robust generalization bound in Theorem 2 clearly shows that the robust risk  $\mathcal{R}_{\rho,M}^{\text{adv}}(\theta_*)$   
385 of the trained LSA-E model, which is calculated based on adversarial ICL examples from the in-  
386 put space, has a negative correlation with the embedding-space adversarial perturbation radius  $\epsilon$ . A  
387 large perturbation radius  $\epsilon$  in the embedding-space can help reduce the robust upper bound and thus  
388 improve the robustness of the trained LSA-E model against adversarial ICL examples. This explains  
389 the main mechanism behind ICL embedding AT and also that in CAT for real-world LLMs.

390 **The role of the embedding matrix in ICL robust generalization.** An interesting observation from  
391 Eq. (14) is that the optimal ICL prediction function  $\hat{y}_{q,\theta_*}$  depends only on the embedding matrix  $W_*^E$   
392 but not on remaining LSA-E model parameters  $W_*^{KQ}$  and  $W_*^V$ . Therefore, a “good” embedding ma-  
393 trix  $W_*^E$  is expected to provide strong robustness for the ICL model. Besides, from Theorem 2, we  
394 have two insights: (1) **if those large singular values of  $W_*^E$  are not “too large”**, then the numer-  
395 ator of the first term in the robust upper bound can be reduced, which helps to reduce the overall  
396 bound; and (2) **if those small singular values of  $W_*^E$  are not “too small”**, it helps to increase  
397 the denominator of the first term in the robust upper bound, which also helps to reduce the overall  
398 bound. Thus, we may expect an LSA-E model or even a real-world LLM to have an embedding  
399 matrix that has “**not too large nor too small singular values**” for strong model robustness.

400 **Improve CAT with an optimized embedding matrix.** Based on the previous analysis, we now  
401 propose ***Embedding-Regularized continuous AT (ER-CAT)***, a new AT method for LLMs designed  
402 by introducing an additional regularization term, defined as the variance of all singular values of the  
403 LLM embedding matrix, into the objective function of CAT in Eq. (4). Concretely, training an LLM  
404  $f_\theta$  via ER-CAT is formalized as solving the following optimization problem:

$$405 \min_{\theta} \mathcal{L}_{\text{ER-CAT}}(\theta, \alpha, \beta) := \min_{\theta} \left\{ \underbrace{\mathcal{L}_{\text{CAT}}(\theta, \alpha)}_{\text{CAT loss in Eq. (4)}} + \beta \cdot \underbrace{\frac{\sum_{i=1}^d [\sigma_i(W^E) - \bar{\sigma}(W^E)]^2}{d}}_{\text{Embedding-Regularization Term}} \right\}, \quad (15)$$

409 where  $\beta > 0$  is the coefficient for the regularization term and  $\bar{\sigma}(W^E) := \frac{1}{d} \sum_{i=1}^d \sigma_i(W^E)$  is  
410 the mean of all singular values of  $W^E$ . The reason for using the variance of singular values as a  
411 regularization term is that minimizing it can help to reduce too large singular values and increase too  
412 small singular values of the embedding matrix simultaneously, which, as explained before, helps to  
413 reduce the overall robust upper bound in Theorem 2. In addition, while in theory the singular values  
414 of  $W^E$  in Eq. (15) are not differentiable, in practice their gradient calculation can be automatically  
415 handled by native PyTorch functions. This enables us to implement our ER-CAT method easily.

417 5 EMPIRICAL ANALYSIS OF ER-CONTINUOUS AT  
418

420 In this section, we follow Eq. (15) to perform the theory-inspired ER-CAT on real-world LLMs,  
421 which can further help to empirically justify our proved robust generalization bound in Theorem 2.

423 5.1 EXPERIMENTAL SETUP  
424

425 **Models.** We adopt six common pre-trained LLMs, which are: Vicuna-7B-v1.5 (Zheng et al., 2023),  
426 Mistral-7B-Instruct-v0.3 (Jiang et al., 2023), Llama-2-7B-Chat (Touvron et al., 2023), Llama-3-  
427 8B-Instruct (Grattafiori et al., 2024), Qwen2.5-7B-Instruct (Yang et al., 2024a), and Gemma-2B-  
428 it (Team et al., 2024). All models were downloaded from the Hugging Face model repository.

429 **Datasets.** During LLM AT, we follow Xhonneux et al. (2024) to use the training set of Harm-  
430 bench (Mazeika et al., 2024) as the safety data and UltraChat 200K (Ding et al., 2023) as the utility  
431 data. During robustness evaluation, we follow Fu et al. (2025) to use a safety datasets that consists  
of the first 50 samples from the test set of Harmbench (Mazeika et al., 2024) and the first 50 samples

Table 1: ASR on different models and attacks. A low ASR indicates a strong model robustness.

| Model        | Type          | Avg@5 ASR (%) ↓ |             |            |               |               |             |
|--------------|---------------|-----------------|-------------|------------|---------------|---------------|-------------|
|              |               | GCG             | BEAST       | GCQ        | Zhu's AutoDAN | DeepInception | PAIR        |
| Vicuna-7B    | Original      | 84.6            | 81.8        | 75.0       | 14.8          | 39.8          | 64.4        |
|              | CAT           | <b>12.6</b>     | <b>14.4</b> | <b>4.6</b> | <b>0.4</b>    | <b>5.8</b>    | <b>7.8</b>  |
|              | ER-CAT (Ours) | 16.4            | 16.2        | 6.4        | 2.2           | 8.2           | 16.0        |
| Mistral-7B   | Original      | 74.6            | 65.8        | 69.8       | 43.0          | 49.8          | 56.0        |
|              | CAT           | <b>7.4</b>      | <b>5.0</b>  | <b>3.2</b> | 0.8           | 1.0           | <b>12.2</b> |
|              | ER-CAT (Ours) | 7.6             | 6.6         | <b>3.2</b> | <b>0.4</b>    | <b>0.8</b>    | 16.2        |
| Llama-2-7B   | Original      | 41.0            | 18.2        | 5.6        | 7.2           | 30.8          | 24.2        |
|              | CAT           | 23.6            | 17.2        | 8.0        | 4.0           | 8.0           | 13.4        |
|              | ER-CAT (Ours) | <b>15.6</b>     | <b>10.4</b> | <b>1.2</b> | <b>0.4</b>    | <b>2.0</b>    | <b>4.6</b>  |
| Llama-3.1-8B | Original      | 11.2            | 20.8        | 6.0        | 5.4           | 37.6          | 41.8        |
|              | CAT           | 3.4             | <b>4.4</b>  | <b>0.0</b> | <b>0.0</b>    | <b>0.0</b>    | 5.0         |
|              | ER-CAT (Ours) | <b>2.4</b>      | 9.0         | <b>0.0</b> | <b>0.0</b>    | <b>0.0</b>    | <b>3.8</b>  |
| Qwen2.5-7B   | Original      | 71.2            | 71.6        | 59.8       | 15.6          | 58.5          | 46.2        |
|              | CAT           | 20.6            | 21.2        | 17.8       | <b>0.0</b>    | <b>0.2</b>    | 15.2        |
|              | ER-CAT (Ours) | <b>16.8</b>     | <b>15.4</b> | <b>6.6</b> | <b>0.0</b>    | 1.4           | <b>13.6</b> |
| Gemma-2B     | Original      | 41.8            | 37.2        | 10.6       | 4.0           | 15.4          | 21.0        |
|              | CAT           | 18.0            | 11.2        | <b>2.6</b> | <b>0.2</b>    | 0.2           | 4.4         |
|              | ER-CAT (Ours) | <b>16.0</b>     | <b>10.4</b> | 6.2        | 1.6           | <b>0.0</b>    | <b>3.6</b>  |

Table 2: LC-WinRate on different models. A high LC-WinRate indicates a strong model utility.

| Type          | (Utility) LC-WinRate (%) ↑ |            |            |              |            |          |
|---------------|----------------------------|------------|------------|--------------|------------|----------|
|               | Vicuna-7B                  | Mistral-7B | Llama-2-7B | Llama-3.1-8B | Qwen2.5-7B | Gemma-2B |
| Original      | 76.86                      | 90.96      | 86.70      | 85.99        | 91.14      | 63.96    |
| CAT           | 36.66                      | 15.76      | 67.51      | 45.71        | 77.07      | 41.75    |
| ER-CAT (Ours) | 65.13                      | 29.09      | 65.76      | 29.74        | 74.06      | 40.37    |

from AdvBench (Zou et al., 2023). For the utility analysis, we follow Dubois et al. (2024) to use the AlpacaEval dataset for calculating the LC-WinRate utility metric.

**Adversarial training.** We use AdamW to train each model via CAT in Eq. (4) or our ER-CAT in Eq. (15), where the embedding space perturbation radius  $\epsilon$  is fixed to 0.05. To improve the efficiency of tuning LLMs, LoRA (Hu et al., 2022) is applied to the embedding layer and all query and key projection matrices in attention layers. For the hyperparameter  $\alpha$  of CAT, we follow Xhonneux et al. (2024) to set it as 0.5. For the hyperparameters  $\alpha$  and  $\beta$  of our ER-CAT, we set them to 0.1 and 0.2, respectively. We also follow Xhonneux et al. (2024) to apply the loss cut-off technique to the objectives of both CAT and ER-CAT to avoid over-optimizing, but with less strict thresholds to help the trained LLMs better preserve utility. Please refer to Appendix C.1 for omitted details.

**Jailbreak attacks.** We use six different jailbreak attacks to assess the jailbreak robustness of LLMs. Among them, four attacks are token-level suffix attacks, which are: GCG (Zou et al., 2023), BEAST (Sadasivan et al., 2024), GCQ (Hayase et al., 2024), and Zhu's AutoDAN (Zhu et al., 2024). The remaining two attacks are prompt-level attacks, which are: DeepInception (Li et al., 2023) and PAIR (Chao et al., 2023). Please refer to Appendix C.2 for implementation details.

**Evaluations.** We evaluate the jailbreak robustness and the utility of trained LLMs. For the robustness evaluation, we report the **Avg@5 Attack Success Rate (Avg@5 ASR)** of jailbreak attacks. Specifically, each jailbreak prompt needs to repeatedly attack the targeted model for 5 times. An LLM-based judge from Mazeika et al. (2024) is used to determine whether an attack is succeed or not. The final Avg@5 ASR is averaged on all repeated attack results. For the utility evaluation, we report the AlpacaEval's **Length-controlled WinRate (LC-WinRate)** (Dubois et al., 2024) of targeted models against a reference Davinci003 model, evaluated under the Llama-3-70B-Instruct model. An LC-WinRate of 50% means that the output qualities of the two models are equal, and higher LC-WinRate means that the targeted model is better than the reference model.

## 5.2 RESULTS ANALYSIS

**Robustness&utility.** Avg@5 ASR and LC-WinRate on different models are reported in Table 1 and Table 2, respectively. We have two main observations. **Firstly, when maintaining the same**

486  
487  
488 Table 3: Time cost on different AT methods on different models.  
489  
490  
491

| Method        | Time Cost (s) |            |            |              |            |          |
|---------------|---------------|------------|------------|--------------|------------|----------|
|               | Vicuna-7B     | Mistral-7B | Llama-2-7B | Llama-3.1-8B | Qwen2.5-7B | Gemma-2B |
| CAT           | 987.81        | 933.00     | 934.16     | 904.59       | 801.42     | 335.99   |
| ER-CAT (Ours) | 1074.87       | 1052.12    | 1100.33    | 1094.90      | 1004.30    | 456.81   |

492  
493 Table 4: LC-WinRate (%) and ASRs (%) of LLMs trained from ER-CAT under different embedding  
494 regularization coefficient  $\beta$ .  
495

| Model      | Utility or ASR | Embedding-Regularization coefficient $\beta$ in Eq. (15) |       |       |       |       |       |
|------------|----------------|----------------------------------------------------------|-------|-------|-------|-------|-------|
|            |                | 0.2                                                      | 0.4   | 0.5   | 0.6   | 0.8   | 1.0   |
| Vicuna-7B  | LC-WinRate     | 59.04                                                    | 57.19 | 65.13 | 70.30 | 68.26 | 59.73 |
|            | GCG            | 13.8                                                     | 12.0  | 16.4  | 30.0  | 17.0  | 16.2  |
|            | BEAST          | 13.6                                                     | 12.4  | 16.2  | 26.0  | 15.8  | 14.4  |
| Qwen2.5-7B | LC-WinRate     | 74.60                                                    | 74.52 | 74.06 | 65.93 | 68.67 | 72.15 |
|            | GCG            | 16.8                                                     | 17.8  | 16.8  | 14.2  | 14.6  | 18.8  |
|            | BEAST          | 18.4                                                     | 16.0  | 10.4  | 13.0  | 12.0  | 18.0  |

506 **level of jailbreak robustness, ER-CAT achieves better utility.** From the ASR results on Vicuna  
 507 and Mistral, we find that our ER-CAT was beaten by CAT by no more than 4% in most of the  
 508 attack scenarios. However, Vicuna and Mistral trained from ER-CAT achieved a nearly two-times  
 509 better LC-WinRate than those trained from CAT. **Secondly, when maintaining the same level of**  
 510 **utility, ER-CAT achieves stronger jailbreak robustness.** For Llama-2 and Qwen2.5, ER-CAT  
 511 reduces LC-WinRate by no more than 3% when compared with that of CAT. However, ER-CAT  
 512 helps Llama-2 reduce ASR on GCG and BEAST attacks by around 7%, and Qwen2.5 reduce ASR  
 513 on GCQ by 11%. All these suggest that our ER-CAT can achieve a better robustness-utility tradeoff.

514 **Time cost.** As explained in Section 4.4, calculating the embedding-regularization term (see Eq. (15))  
 515 for ER-CAT can be efficiently implemented via native PyTorch functions. Here we empirically  
 516 justify that ER-CAT does not add significant time overhead when compared with the original CAT.  
 517 Specifically, we collect and present the time cost of performing CAT and our ER-CAT on different  
 518 base models in Table 3, from which we find that ER-CAT only increases the time cost by 100 to 200  
 519 seconds. This suggests that the relative time overhead of ER-CAT is low.

520 **Ablation studies on the coefficient  $\beta$  in ER-CAT.** In our main experiments, the embedding regular-  
 521 ization coefficient  $\beta$  in ER-CAT (see Eq. (15)) is fixed to 0.5. We now analyze how this coefficient  
 522  $\beta$  affects the performance of models trained from ER-CAT. Specifically, we vary the coefficient  $\beta$   
 523 within the range  $[0, 1]$ , train models via ER-CAT, and calculate their utility (*i.e.*, LC-WinRate) and  
 524 robustness (*i.e.*, GCG and BEAST). Preliminary results are reported in Table 4, from which we  
 525 surprisingly find that varying the coefficient  $\beta$  does not change the utility or the robustness of the  
 526 trained model too much. We deduce this is because we use the AdamW optimizer to perform the  
 527 training, and the gradient normalization procedure in AdamW implicitly performs reweighting on  
 528 the ER-CAT objective to mitigate the effect of tuning coefficients for different terms.

## 529 6 CONCLUSIONS

531 This paper aims to theoretically explain the mechanism behind CAT for LLMs, *i.e.*, why embedding  
 532 space adversarial perturbations help LLMs learn to defend against jailbreak prompts from the token  
 533 space. We first establish a new ICL embedding AT problem under ICL theory and show that this  
 534 problem is a good theoretical artifact for approximating real-world LLM CAT. A robust generaliza-  
 535 tion upper bound for this new ICL embedding AT is then proved, which shows a negative correlation  
 536 with the embedding space perturbation radius. This clearly explains why CAT achieves empirical  
 537 success. Our bound also suggests that the jailbreak robustness of an LLM is closely related to sin-  
 538 gular values of its embedding matrix. Thereby, we design a new ER-CAT approach for LLMs, with  
 539 the goal of optimizing the LLM embedding matrix to be more robust. Experiments on real-world  
 LLMs and jailbreak attacks suggest that our ER-CAT enjoys a better robustness-utility tradeoff.

540 REFERENCES  
541

542 Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-  
543 ment preconditioned gradient descent for in-context learning. *Conference on Neural Information*  
544 *Processing Systems*, 36:45614–45650, 2023.

545 Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Suvrit Sra. Lin-  
546 ear attention is (maybe) all you need (to understand transformer optimization). In *International*  
547 *Conference on Learning Representations*, 2024.

548 Maksym Andriushchenko, Francesco Croce, and Nicolas Flammarion. Jailbreaking leading safety-  
549 aligned LLMs with simple adaptive attacks. In *International Conference on Learning Repres-*  
550 *sentations*, 2025.

551 Usman Anwar, Johannes von Oswald, Louis Kirsch, David Krueger, and Spencer Frei. Understand-  
552 ing in-context learning of linear models in transformers through an adversarial lens. *Transactions*  
553 *on Machine Learning Research*, 2025. ISSN 2835-8856.

554 Andy Arditi, Oscar Balcells Obeso, Aaquib Syed, Daniel Paleka, Nina Rimsky, Wes Gurnee, and  
555 Neel Nanda. Refusal in language models is mediated by a single direction. In *Conference on*  
556 *Neural Information Processing Systems*, 2024.

557 Stephen Casper, Lennart Schulze, Oam Patel, and Dylan Hadfield-Menell. Defending against un-  
558 foreseen failure modes with latent adversarial training. *arXiv preprint arXiv:2403.05030*, 2024.

559 Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J Pappas, and Eric  
560 Wong. Jailbreaking black box large language models in twenty queries. *arXiv preprint*  
561 *arXiv:2310.08419*, 2023.

562 Sizhe Chen, Arman Zharmagambetov, Saeed Mahloujifar, Kamalika Chaudhuri, and Chuan Guo.  
563 Aligning LLMs to be robust against prompt injection. *arXiv preprint arXiv:2410.05451*, 2024.

564 Csaba Dékány, Stefan Balaucă, Robin Staab, Dimitar I Dimitrov, and Martin Vechev. MixAT: Com-  
565 bining continuous and discrete adversarial training for LLMs. *arXiv preprint arXiv:2505.16947*,  
566 2025.

567 Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong  
568 Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional  
569 conversations. *arXiv preprint arXiv:2305.14233*, 2023.

570 Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled Al-  
571 pacaEval: A simple way to debias automatic evaluators. *arXiv preprint arXiv:2404.04475*, 2024.

572 Spencer Frei and Gal Vardi. Trained transformer classifiers generalize and exhibit benign overfitting  
573 in-context. In *International Conference on Learning Representations*, 2025.

574 Shaopeng Fu and Di Wang. Theoretical analysis of robust overfitting for wide DNNs: An NTK  
575 approach. In *International Conference on Learning Representations*, 2024.

576 Shaopeng Fu, Liang Ding, Jingfeng Zhang, and Di Wang. Short-length adversarial training helps  
577 llms defend long-length jailbreak attacks: Theoretical and empirical evidence. *arXiv preprint*  
578 *arXiv:2502.04204v2*, 2025.

579 Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn  
580 in-context? a case study of simple function classes. *Conference on Neural Information Processing*  
581 *Systems*, 2022.

582 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial  
583 examples. *arXiv preprint arXiv:1412.6572*, 2015.

584 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad  
585 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The  
586 Llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.

594 Jonathan Hayase, Ema Borevković, Nicholas Carlini, Florian Tramèr, and Milad Nasr. Query-based  
 595 adversarial prompt generation. In *Conference on Neural Information Processing Systems*, 2024.  
 596

597 Roger A Horn and Charles R Johnson. *Matrix analysis (2nd)*. Cambridge university press, 2012.  
 598

599 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,  
 600 and Weizhu Chen. LoRA: Low-Rank adaptation of large language models. In *International  
 Conference on Learning Representations*, 2022.  
 601

602 Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. *arXiv preprint  
 arXiv:2310.05249*, 2023.  
 603

604 Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander  
 605 Madry. Adversarial examples are not bugs, they are features. *Advances in Neural Information  
 Processing Systems*, 32, 2019.  
 606

607 Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,  
 608 Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.  
 609 Mistral 7B. *arXiv preprint arXiv:2310.06825*, 2023.  
 610

611 Haibo Jin, Andy Zhou, Joe D. Menke, and Haohan Wang. Jailbreaking large language models  
 612 against moderation guardrails via cipher characters. In *Conference on Neural Information Pro-  
 cessing Systems*, 2024.  
 613

614 Soichiro Kumano, Hiroshi Kera, and Toshihiko Yamasaki. Adversarially pretrained transformers  
 615 may be universally robust in-context learners. *arXiv preprint arXiv:2505.14042*, 2025.  
 616

617 Tianle Li, Chenyang Zhang, Xingwu Chen, Yuan Cao, and Difan Zou. On the robustness of trans-  
 618 formers against context hijacking for linear classification. *arXiv preprint arXiv:2502.15609*, 2025.  
 619

620 Xuan Li, Zhanke Zhou, Jianing Zhu, Jiangchao Yao, Tongliang Liu, and Bo Han. DeepInception:  
 621 Hypnotize large language model to be jailbreaker. *arXiv preprint arXiv:2311.03191*, 2023.  
 622

623 Zeyi Liao and Huan Sun. AmpleGCG: Learning a universal and transferable generative model of  
 624 adversarial suffixes for jailbreaking both open and closed LLMs. In *Conference on Language  
 Modeling*, 2024.  
 625

626 Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-  
 627 ment learning via supervised pretraining. In *International Conference on Learning Representa-  
 628 tions*, 2024.  
 629

630 Xiaogeng Liu, Peiran Li, Edward Suh, Yevgeniy Vorobeychik, Zhuoqing Mao, Somesh Jha, Patrick  
 631 McDaniel, Huan Sun, Bo Li, and Chaowei Xiao. Autodan-turbo: A lifelong agent for strategy  
 632 self-exploration to jailbreak LLMs. *arXiv preprint arXiv:2410.05295*, 2024a.  
 633

634 Xiaogeng Liu, Nan Xu, Muham Chen, and Chaowei Xiao. AutoDAN: Generating stealthy jailbreak  
 635 prompts on aligned large language models. In *International Conference on Learning Representa-  
 636 tions*, 2024b.  
 637

638 Yue M Lu, Mary I Letey, Jacob A Zavatone-Veth, Anindita Maiti, and Cengiz Pehlevan. Asymptotic  
 639 theory of in-context learning by linear attention. *arXiv preprint arXiv:2405.11751*, 2024.  
 640

641 Yue M Lu, Mary Letey, Jacob A Zavatone-Veth, Anindita Maiti, and Cengiz Pehlevan. Asym-  
 642 ptotic theory of in-context learning by linear attention. *Proceedings of the National Academy of  
 Sciences*, 122(28):e2502599122, 2025.  
 643

644 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.  
 645 Towards deep learning models resistant to adversarial attacks. In *International Conference on  
 Learning Representations*, 2018.  
 646

647 Roey Magen, Shuning Shang, Zhiwei Xu, Spencer Frei, Wei Hu, and Gal Vardi. Benign overfitting  
 in single-head attention. *arXiv preprint arXiv:2410.07746*, 2024.

648 Arvind V. Mahankali, Tatsunori Hashimoto, and Tengyu Ma. One step of gradient descent is prov-  
 649 ably the optimal in-context learner with one layer of linear self-attention. In *International Con-*  
 650 *ference on Learning Representations*, 2024.

651

652 Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin  
 653 Bossan. PEFT: State-of-the-art parameter-efficient fine-tuning methods. [https://github.](https://github.com/huggingface/peft)  
 654 [huggingface/peft](https://github.com/huggingface/peft), 2022.

655

656 Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaei,  
 657 Nathaniel Li, Steven Basart, Bo Li, David Forsyth, and Dan Hendrycks. HarmBench: A stan-  
 658 dardized evaluation framework for automated red teaming and robust refusal. *arXiv preprint*  
 659 *arXiv:2402.04249*, 2024.

660

661 Anselm Paulus, Arman Zharmagambetov, Chuan Guo, Brandon Amos, and Yuandong Tian. Ad-  
 662 vPrompter: Fast adaptive adversarial prompting for LLMs. In *International Conference on Ma-*  
 663 *chine Learning*, 2025.

664

665 Mahdi Sabbaghi, Paul Kassianik, George J. Pappas, Amin Karbasi, and Hamed Hassani. Adversarial  
 666 reasoning at jailbreaking time. In *International Conference on Machine Learning*, 2025.

667

668 Vinu Sankar Sadasivan, Shoumik Saha, Gaurang Sriramanan, Priyatham Kattakinda, Atoosa  
 669 Chegini, and Soheil Feizi. Fast adversarial attacks on language models in one GPU minute.  
 670 In *International Conference on Machine Learning*, 2024.

671

672 Xinyue Shen, Zeyuan Chen, Michael Backes, Yun Shen, and Yang Zhang. “do anything now”:  
 673 Characterizing and evaluating in-the-wild jailbreak prompts on large language models. In *Pro-*  
 674 *ceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security*,  
 675 pp. 1671–1685, 2024.

676

677 Abhay Sheshadri, Aidan Ewart, Phillip Guo, Aengus Lynch, Cindy Wu, Vivek Hebbar, Henry  
 678 Sleight, Asa Cooper Stickland, Ethan Perez, Dylan Hadfield-Menell, and Stephen Casper. La-  
 679 tent adversarial training improves robustness to persistent harmful behaviors in LLMs. *arXiv*  
 680 *preprint arXiv:2407.15549*, 2024.

681

682 Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do in-context  
 683 learning differently? In *International Conference on Machine Learning*, 2024.

684

685 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,  
 686 and Rob Fergus. Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*, 2014.

687

688 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya  
 689 Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open  
 690 models based on gemini research and technology. *arXiv preprint arXiv:2403.08295*, 2024.

691

692 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-  
 693 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-  
 694 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

695

696 Johannes Von Oswald, Eyyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-  
 697 intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient  
 698 descent. In *International Conference on Machine Learning*, pp. 35151–35174. PMLR, 2023.

699

700 Sheng-De Wang, Te-Son Kuo, and Chen-Fa Hsu. Trace bounds on the solution of the algebraic  
 701 matrix riccati and lyapunov equation. *IEEE Transactions on Automatic Control*, 31(7):654–656,  
 1986.

702

703 Yunjuan Wang, Kaibo Zhang, and Raman Arora. Benign overfitting in adversarial training of neural  
 704 networks. In *International Conference on Machine Learning*, 2024.

705

706 Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does LLM safety training  
 707 fail? In *Conference on Neural Information Processing Systems*, 2023.

702 Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter Bartlett.  
 703 How many pretraining tasks are needed for in-context learning of linear regression? In *Interna-*  
 704 *tional Conference on Learning Representations*, 2024.

705 Sophie Xhonneux, Alessandro Sordoni, Stephan Günnemann, Gauthier Gidel, and Leo Schwinn.  
 706 Efficient adversarial training in LLMs with continuous attacks. In *Conference on Neural Infor-*  
 707 *mation Processing Systems*, 2024.

708 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,  
 709 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv preprint*  
 710 *arXiv:2412.15115*, 2024a.

711 Tong Yang, Yu Huang, Yingbin Liang, and Yuejie Chi. In-context learning with representations:  
 712 Contextual generalization of trained transformers. In *Conference on Neural Information Process-*  
 713 *ing Systems*, 2024b.

714 Lei Yu, Virginie Do, Karen Hambardzumyan, and Nicola Cancedda. Robust LLM safeguarding via  
 715 refusal feature adversarial training. In *International Conference on Learning Representations*,  
 716 2025.

717 Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.  
 718 *Journal of Machine Learning Research*, 25(49):1–55, 2024.

719 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,  
 720 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.  
 721 Judging LLM-as-a-judge with MT-bench and chatbot arena. In *Conference on Neural Information*  
 722 *Processing Systems Datasets and Benchmarks Track*, 2023.

723 Sicheng Zhu, Ruiyi Zhang, Bang An, Gang Wu, Joe Barrow, Zichao Wang, Furong Huang, Ani  
 724 Nenkova, and Tong Sun. AutoDAN: Interpretable gradient-based adversarial attacks on large  
 725 language models. In *First Conference on Language Modeling*, 2024.

726 Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson.  
 727 Universal and transferable adversarial attacks on aligned language models. *arXiv preprint*  
 728 *arXiv:2307.15043*, 2023.

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A LLMS USAGE IN THIS PAPER**  
757758 LLMs were used only occasionally to help polish the writing (propose new words, grammar and  
759 spelling correction). All technical ideas, experimental designs, analyses, conclusions, writing were  
760 developed and carried out entirely by the authors. Authors have full responsibility for the final text.  
761762 **B PROOFS**  
763764 This section collects all proofs omitted from the main text. Without loss of generality, we assume  
765 that the order of differentiation and integration (or say expectation) is interchangeable.  
766767 **B.1 TECHNICAL LEMMAS**  
768769 This section collects technical lemmas that will be repeatedly used in our proofs.  
770771 **Lemma B.1** (c.f. Lemma D.2 in [Zhang et al. \(2024\)](#)). *If  $x \in \mathbb{R}^{d \times 1}$  is Gaussian random vector of  $d$   
772 dimension, mean zero and covariance matrix  $\Lambda$ , and  $A \in \mathbb{R}^{d \times d}$  is a fixed matrix. Then*  
773

774 
$$\mathbb{E}[xx^\top Axx^\top] = \Lambda(A + A^\top)\Lambda + \text{Tr}(A\Lambda)\Lambda.$$
  
775

776 **Lemma B.2** (c.f. Lemma A.2 in [Fu et al. \(2025\)](#)). *If  $x \in \mathbb{R}^{d \times 1}$  is Gaussian random vector of  $d$   
777 dimension, mean zero and covariance matrix  $\Lambda$ , and  $A \in \mathbb{R}^{d \times d}$  is a fixed matrix. Then*  
778

779 
$$\mathbb{E}[x^\top Ax] = \text{Tr}(A\Lambda).$$
  
780

781 **Lemma B.3** (c.f. Lemma A.3 in [Fu et al. \(2025\)](#)). *For any matrices  $A \in \mathbb{R}^{n \times m}$  and  $B \in \mathbb{R}^{m \times n}$ ,*  
782

783 
$$\text{Tr}(AB) = \text{Tr}(BA).$$
  
784

785 **Lemma B.4** (c.f. Lemma 1 in [Wang et al. \(1986\)](#)). *Let  $A, B \in \mathbb{R}^{n \times n}$  be two symmetric matrices  
786 and  $A$  is further positive semidefinite. Then*  
787

788 
$$\lambda_{\min}(B) \cdot \text{Tr}(A) \leq \text{Tr}(AB) \leq \lambda_{\max}(B) \cdot \text{Tr}(A),$$
  
789

790 where  $\lambda_{\min}(B)$  and  $\lambda_{\max}(B)$  are the minimal and maximal eigenvalues of  $B$  respectively.  
791792 **Lemma B.5** (Rayleigh Quotient Theorem; Also in part of Theorem 4.2.2 in [Horn & Johnson \(2012\)](#)).  
793 Let  $A \in \mathbb{R}^{n \times n}$  be a symmetric matrix. We have  
794

795 
$$\lambda_{\max}(A) = \max_{x \in \mathbb{R}^n, x \neq 0_n} \frac{x^\top Ax}{x^\top x} = \max_{x \in \mathbb{R}^n, \|x\|_2=1} x^\top Ax,$$
  
796 
$$\lambda_{\min}(A) = \min_{x \in \mathbb{R}^n, x \neq 0_n} \frac{x^\top Ax}{x^\top x} = \min_{x \in \mathbb{R}^n, \|x\|_2=1} x^\top Ax.$$
  
797

798 **B.2 PROOF OF LEMMA 1**  
799800 *Proof of Lemma 1.* Denote that  $X_\tau := (x_{\tau,1} \ \cdots \ x_{\tau,N}) \in \mathbb{R}^{d_0 \times N}$ ,  $Y_\tau := (y_{\tau,1} \ \cdots \ y_{\tau,N}) \in \mathbb{R}^{1 \times N}$  and  $\Delta_\tau^E := (\delta_{\tau,1}^E \ \cdots \ \delta_{\tau,N}^E) \in \mathbb{R}^{d \times N}$ . Then, by applying the inequality that  $|a + b|^2 \leq 2 \cdot (a^2 + b^2)$ , the ICL embedding AT loss  $\mathcal{L}_{\text{LSAE}}^{\text{adv}}(\theta)$  defined in Eq. (10), can be bounded as follows,  
801

802 
$$\mathcal{L}_{\text{LSAE}}^{\text{adv}}(\theta) := \mathbb{E}_\tau \max_{\|\Delta_\tau^{E^\top}\|_{2,\infty} \leq \epsilon} 2 \cdot |\hat{y}_{q,\theta}^{\text{adv}}(Z_\tau, \Delta_\tau^E) - y_{\tau,q}|^2$$
  
803 
$$\leq \mathbb{E}_\tau \max_{\|\Delta_\tau^{E^\top}\|_{2,\infty} \leq \epsilon} 2 \cdot \left| \begin{pmatrix} (w_{21}^V)^\top & w_{22}^V \end{pmatrix} \cdot \frac{\begin{pmatrix} W^E X_\tau & W^E x_{\tau,q} \\ Y_\tau & 0 \end{pmatrix}}{N} \cdot \begin{pmatrix} W^E X_\tau & W^E x_{\tau,q} \\ Y_\tau & 0 \end{pmatrix}^\top \cdot \begin{pmatrix} W_{11}^{KQ} \\ (w_{21}^{KQ})^\top \end{pmatrix} \cdot W^E x_{\tau,q} - y_{\tau,q} \right|^2$$
  
804 
$$+ \mathbb{E}_\tau \max_{\|\Delta_\tau^{E^\top}\|_{2,\infty} \leq \epsilon} \frac{2}{N^2} \cdot \left| \begin{pmatrix} (w_{21}^V)^\top & w_{22}^V \end{pmatrix} \cdot \begin{pmatrix} \Delta_\tau^E & 0_{d \times 1} \\ 0_{1 \times N} & 0 \end{pmatrix} \cdot \begin{pmatrix} W^E X_\tau & W^E x_{\tau,q} \\ Y_\tau & 0 \end{pmatrix}^\top \cdot \begin{pmatrix} W_{11}^{KQ} \\ (w_{21}^{KQ})^\top \end{pmatrix} \cdot W^E x_{\tau,q} \right|^2$$
  
805 
$$+ \mathbb{E}_\tau \max_{\|\Delta_\tau^{E^\top}\|_{2,\infty} \leq \epsilon} \frac{2}{N^2} \cdot \left| \begin{pmatrix} (w_{21}^V)^\top & w_{22}^V \end{pmatrix} \cdot \begin{pmatrix} W^E X_\tau & W^E x_{\tau,q} \\ Y_\tau & 0 \end{pmatrix} \cdot \begin{pmatrix} \Delta_\tau^E & 0_{d \times 1} \\ 0_{1 \times N} & 0 \end{pmatrix}^\top \cdot \begin{pmatrix} W_{11}^{KQ} \\ (w_{21}^{KQ})^\top \end{pmatrix} \cdot W^E x_{\tau,q} \right|^2$$
  
806

$$\begin{aligned}
& + \mathbb{E} \max_{\tau \|\Delta_{\tau}^{E \top}\|_{2,\infty} \leq \epsilon} \frac{2}{N^2} \left| \left( (w_{21}^V)^\top \quad w_{22}^V \right) \cdot \begin{pmatrix} \Delta_{\tau}^E & 0_{d \times 1} \\ 0_{1 \times N} & 0 \end{pmatrix} \cdot \begin{pmatrix} \Delta_{\tau}^E & 0_{d \times 1} \\ 0_{1 \times N} & 0 \end{pmatrix}^\top \cdot \begin{pmatrix} W_{11}^{KQ} \\ (w_{21}^{KQ})^\top \end{pmatrix} \cdot W^E x_{\tau,q} \right|^2 \\
& \leq 2 \cdot \mathbb{E} \left| \left( (w_{21}^V)^\top \quad w_{22}^V \right) \cdot \frac{\mathcal{E}(Z_{\tau}) \mathcal{E}(Z_{\tau})^\top}{N} \cdot \begin{pmatrix} W_{11}^{KQ} \\ (w_{21}^{KQ})^\top \end{pmatrix} \cdot W^E x_{\tau,q} - y_{\tau,q} \right|^2 \\
& \quad + \mathbb{E} \underbrace{\max_{\tau \|\Delta_{\tau}^{E \top}\|_{2,\infty} \leq \epsilon} \frac{2}{N^2} \cdot \left| (w_{21}^V)^\top \cdot \Delta_{\tau}^E \cdot \begin{pmatrix} W^E X_{\tau} \\ Y_{\tau} \end{pmatrix}^\top \cdot \begin{pmatrix} W_{11}^{KQ} \\ (w_{21}^{KQ})^\top \end{pmatrix} \cdot W^E x_{\tau,q} \right|^2}_{:= A_1(\theta)} \\
& \quad + \mathbb{E} \underbrace{\max_{\tau \|\Delta_{\tau}^{E \top}\|_{2,\infty} \leq \epsilon} \frac{2}{N^2} \cdot \left| \left( (w_{21}^V)^\top \quad w_{22}^V \right) \cdot \begin{pmatrix} W^E X_{\tau} \\ Y_{\tau} \end{pmatrix} \cdot (\Delta_{\tau}^E)^\top \cdot W_{11}^{KQ} \cdot W^E x_{\tau,q} \right|^2}_{:= A_2(\theta)} \\
& \quad + \mathbb{E} \underbrace{\max_{\tau \|\Delta_{\tau}^{E \top}\|_{2,\infty} \leq \epsilon} \frac{2}{N^2} \cdot \left| (w_{21}^V)^\top \cdot \Delta_{\tau}^E (\Delta_{\tau}^E)^\top \cdot W_{11}^{KQ} \cdot W^E x_{\tau,q} \right|^2}_{:= A_3(\theta)}. \tag{B.1}
\end{aligned}$$

For  $A_1(\theta)$  in Eq. (B.1), we have

$$\begin{aligned}
A_1(\theta) & := \mathbb{E} \max_{\tau \|\Delta_{\tau}^{E \top}\|_{2,\infty} \leq \epsilon} \frac{2}{N^2} \cdot \left| (w_{21}^V)^\top \cdot \Delta_{\tau}^E \cdot \begin{pmatrix} W^E X_{\tau} \\ Y_{\tau} \end{pmatrix}^\top \cdot \begin{pmatrix} W_{11}^{KQ} \\ (w_{21}^{KQ})^\top \end{pmatrix} \cdot W^E x_{\tau,q} \right|^2 \\
& \leq \mathbb{E} \max_{\tau \|\Delta_{\tau}^{E \top}\|_{2,\infty} \leq \epsilon} \frac{2}{N^2} \cdot \|(w_{21}^V)^\top \Delta_{\tau}^E\|_2^2 \cdot \left\| \begin{pmatrix} W^E X_{\tau} \\ Y_{\tau} \end{pmatrix}^\top \begin{pmatrix} W_{11}^{KQ} \\ (w_{21}^{KQ})^\top \end{pmatrix} W^E x_{\tau,q} \right\|_2^2 \\
& \leq \mathbb{E} \frac{2}{N^2} \cdot N \|w_{21}^V\|_2^2 \epsilon^2 \cdot \left\| \begin{pmatrix} W^E X_{\tau} \\ Y_{\tau} \end{pmatrix}^\top \begin{pmatrix} W_{11}^{KQ} \\ (w_{21}^{KQ})^\top \end{pmatrix} W^E x_{\tau,q} \right\|_2^2 \\
& = \frac{2\epsilon^2}{N} \cdot \|w_{21}^V\|_2^2 \cdot \mathbb{E} \left[ \left\| \begin{pmatrix} W^E X_{\tau} \\ Y_{\tau} \end{pmatrix}^\top \begin{pmatrix} W_{11}^{KQ} \\ (w_{21}^{KQ})^\top \end{pmatrix} W^E x_{\tau,q} \right\|_2^2 \right]. \tag{B.2}
\end{aligned}$$

For  $A_2(\theta)$  in Eq. (B.1), we have

$$\begin{aligned}
A_2(\theta) & := \mathbb{E} \max_{\tau \|\Delta_{\tau}^{E \top}\|_{2,\infty} \leq \epsilon} \frac{2}{N^2} \cdot \left| \left( (w_{21}^V)^\top \quad w_{22}^V \right) \cdot \begin{pmatrix} W^E X_{\tau} \\ Y_{\tau} \end{pmatrix} \cdot (\Delta_{\tau}^E)^\top \cdot W_{11}^{KQ} \cdot W^E x_{\tau,q} \right|^2 \\
& \leq \mathbb{E} \max_{\tau \|\Delta_{\tau}^{E \top}\|_{2,\infty} \leq \epsilon} \frac{2}{N^2} \cdot \left\| \left( (w_{21}^V)^\top \quad w_{22}^V \right) \begin{pmatrix} W^E X_{\tau} \\ Y_{\tau} \end{pmatrix} \right\|_2^2 \cdot \|(\Delta_{\tau}^E)^\top W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \\
& \leq \mathbb{E} \frac{2}{N^2} \cdot \left\| \left( (w_{21}^V)^\top \quad w_{22}^V \right) \begin{pmatrix} W^E X_{\tau} \\ Y_{\tau} \end{pmatrix} \right\|_2^2 \cdot N \epsilon^2 \|W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \\
& = \frac{2\epsilon^2}{N} \cdot \mathbb{E} \left[ \left\| \left( (w_{21}^V)^\top \quad w_{22}^V \right) \begin{pmatrix} W^E X_{\tau} \\ Y_{\tau} \end{pmatrix} \right\|_2^2 \right] \cdot \mathbb{E} \left[ \|W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \right]. \tag{B.3}
\end{aligned}$$

For  $A_3(\theta)$  in Eq. (B.1), we have

$$\begin{aligned}
A_3(\theta) & := \mathbb{E} \max_{\tau \|\Delta_{\tau}^{E \top}\|_{2,\infty} \leq \epsilon} \frac{2}{N^2} \cdot \left| (w_{21}^V)^\top \cdot \Delta_{\tau}^E (\Delta_{\tau}^E)^\top \cdot W_{11}^{KQ} \cdot W^E x_{\tau,q} \right|^2 \\
& \leq \mathbb{E} \max_{\tau \|\Delta_{\tau}^{E \top}\|_{2,\infty} \leq \epsilon} \frac{2}{N^2} \cdot \|(w_{21}^V)^\top \Delta_{\tau}^E\|_2^2 \cdot \|(\Delta_{\tau}^E)^\top W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \\
& \leq \frac{2}{N^2} \cdot \mathbb{E} \left[ \max_{\tau \|\Delta_{\tau}^{E \top}\|_{2,\infty} \leq \epsilon} \|(w_{21}^V)^\top \Delta_{\tau}^E\|_2^2 \cdot \max_{\tau \|\Delta_{\tau}^{E \top}\|_{2,\infty} \leq \epsilon} \|(\Delta_{\tau}^E)^\top W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \right] \\
& \leq \frac{2}{N^2} \cdot \mathbb{E} \left[ N \|w_{21}^V\|_2^2 \epsilon^2 \cdot N \epsilon^2 \|W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \right] \\
& = 2\epsilon^4 \cdot \mathbb{E} \left[ \|w_{21}^V\|_2^2 \cdot \mathbb{E} \left[ \|W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \right] \right] \tag{B.4}
\end{aligned}$$

864 Inserting Eqs.(B.2), (B.3) and (B.4) into Eq.(B.1), we eventually have that  
865

$$\begin{aligned}
& \mathcal{L}_{\text{LSAE}}^{\text{adv}}(\theta) \\
& \leq 2 \cdot \mathbb{E}_{\tau} \left| \left( (w_{21}^V)^{\top} \quad w_{22}^V \right) \cdot \frac{\mathcal{E}(Z_{\tau}) \mathcal{E}(Z_{\tau})^{\top}}{N} \cdot \left( \begin{array}{c} W_{11}^{KQ} \\ (w_{21}^{KQ})^{\top} \end{array} \right) \cdot W^E x_{\tau,q} - y_{\tau,q} \right|^2 \\
& \quad + \frac{2\epsilon^2}{N} \cdot \|w_{21}^V\|_2^2 \cdot \mathbb{E}_{\tau} \left[ \left\| \begin{pmatrix} W^E X_{\tau} \\ Y_{\tau} \end{pmatrix}^{\top} \left( \begin{array}{c} W_{11}^{KQ} \\ (w_{21}^{KQ})^{\top} \end{array} \right) W^E x_{\tau,q} \right\|_2^2 \right] \\
& \quad + \frac{2\epsilon^2}{N} \cdot \mathbb{E}_{\tau} \left[ \left\| \left( (w_{21}^V)^{\top} \quad w_{22}^V \right) \begin{pmatrix} W^E X_{\tau} \\ Y_{\tau} \end{pmatrix} \right\|_2^2 \right] \cdot \mathbb{E}_{\tau} \left[ \|W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \right] \\
& \quad + 2\epsilon^4 \cdot \mathbb{E}_{\tau} \left[ \|w_{21}^V\|_2^2 \cdot \mathbb{E}_{\tau} \left[ \|W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \right] \right] = \tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta),
\end{aligned}$$

866 which completes the proof.  $\square$   
867

### 868 B.3 PROOF OF THEOREM 1

869 The proof idea of Theorem 1 is similar to that in Zhang et al. (2024) and Fu et al. (2025). Specifically,  
870 we first show that when training the LSA-E model  $f_{\text{LSAE}}^{\text{adv}}(\theta)$  via continuous gradient flow,  $w_{21}^{KQ}$  and  
871  $w_{21}^V$  stay zero during the surrogate ICL embedding AT (Lemma B.6), which can help us further  
872 simplify the surrogate objective function  $\tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta)$  (Lemma B.7). The global minimizer for the  
873 surrogate ICL embedding AT problem is then derived based on the simplified surrogate objective  
874 function (Lemma B.8).  
875

876 We start by stating and proving Lemma B.6.  
877

878 **Lemma B.6.** *Suppose Assumption 1 holds and the LSAE model  $f_{\text{LSAE}}^{\text{adv}}(\theta)$  is trained via minimizing  
879 the surrogate objective function  $\tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta)$  in Eq. (13) with continuous gradient flow. Then, for any  
880 continuous training time  $t \geq 0$ , we uniformly have that  $w_{21}^{KQ}(t) = w_{21}^V(t) = 0_{d \times 1}$ .*  
881

882 *Proof.* Under Assumption 1, we already have that  $w_{21}^{KQ}(0) = w_{21}^V(0) = 0_{d \times 1}$  at the initial training  
883 time  $t = 0$ . As a result, to prove Lemma B.6, we only need to further show that gradients for  
884 parameters  $w_{21}^{KQ}(t)$  and  $w_{21}^V(t)$ , which are given by continuous gradient flows, stay zero during the  
885 overall surrogate ICL embedding AT. Formally, we need to prove that for any  $t \geq 0$ ,  
886

$$\begin{aligned}
\partial_t w_{21}^{KQ}(t) &:= -\partial_{w_{21}^{KQ}} \tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta) = 0_{1 \times d}, \\
\partial_t w_{21}^V(t) &:= -\partial_{w_{21}^V} \tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta) = 0_{1 \times d}.
\end{aligned}$$

887 To this end, we adopt the decomposition of  $\tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta)$  in Eq. (13) here as follows,  
888

$$\tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta) := \ell_1(\theta) + \ell_2(\theta) + \ell_3(\theta) + \ell_4(\theta),$$

889 where  
890

$$\begin{aligned}
\ell_1(\theta) &:= 2 \cdot \mathbb{E}_{\tau} \left| \left( (w_{21}^V)^{\top} \quad w_{22}^V \right) \cdot \frac{\mathcal{E}(Z_{\tau}) \mathcal{E}(Z_{\tau})^{\top}}{N} \cdot \left( \begin{array}{c} W_{11}^{KQ} \\ (w_{21}^{KQ})^{\top} \end{array} \right) \cdot W^E x_{\tau,q} - y_{\tau,q} \right|^2, \\
\ell_2(\theta) &:= \frac{2\epsilon^2}{N} \cdot \|w_{21}^V\|_2^2 \cdot \mathbb{E}_{\tau} \left[ \left\| \begin{pmatrix} W^E X_{\tau} \\ Y_{\tau} \end{pmatrix}^{\top} \left( \begin{array}{c} W_{11}^{KQ} \\ (w_{21}^{KQ})^{\top} \end{array} \right) W^E x_{\tau,q} \right\|_2^2 \right], \\
\ell_3(\theta) &:= \frac{2\epsilon^2}{N} \cdot \mathbb{E}_{\tau} \left[ \left\| \left( (w_{21}^V)^{\top} \quad w_{22}^V \right) \begin{pmatrix} W^E X_{\tau} \\ Y_{\tau} \end{pmatrix} \right\|_2^2 \right] \cdot \mathbb{E}_{\tau} \left[ \|W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \right], \\
\ell_4(\theta) &:= 2\epsilon^4 \cdot \mathbb{E}_{\tau} \left[ \|w_{21}^V\|_2^2 \cdot \mathbb{E}_{\tau} \left[ \|W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \right] \right],
\end{aligned}$$

891 and  $X_{\tau} := (x_{\tau,1} \quad \cdots \quad x_{\tau,N}) \in \mathbb{R}^{d \times N}$ ,  $Y_{\tau} := (y_{\tau,1} \quad \cdots \quad y_{\tau,N}) \in \mathbb{R}^{1 \times N}$ . Then, we will  
892 show that when  $w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}$ , one always has  $\partial_{w_{21}^{KQ}} \ell_i(\theta) = \partial_{w_{21}^V} \ell_i(\theta) = 0_{1 \times d}$  for every  
893  $i \in [4]$ , which thus automatically demonstrates that  $\partial_{w_{21}^{KQ}} \tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta) = \partial_{w_{21}^V} \tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta) = 0_{1 \times d}$  for  
894 any continuous training time  $t \geq 0$  under Assumption 1.  
895

918 **Step 1: Show that**  $w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}$  **indicates**  $\partial_{w_{21}^{KQ}} \ell_1(\theta) = \partial_{w_{21}^V} \ell_1(\theta) = 0_{1 \times d}$ . For the  $i$ -th  
919 entry  $w_{21,i}^{KQ}$  of  $w_{21}^{KQ}$ , we have that  
920

$$\begin{aligned}
& \partial_{w_{21,i}^{KQ}} \ell_1(\theta) \Big|_{w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}} \\
&= 4 \cdot \mathbb{E}_{\tau} \left[ \left( \begin{pmatrix} (w_{21}^V)^\top & w_{22}^V \end{pmatrix} \cdot \frac{\mathcal{E}(Z_\tau) \mathcal{E}(Z_\tau)^\top}{N} \cdot \begin{pmatrix} W_{11}^{KQ} \\ (w_{21}^{KQ})^\top \end{pmatrix} \cdot W^E x_{\tau,q} - y_{\tau,q} \right) \right. \\
&\quad \left. \cdot \left( \begin{pmatrix} (w_{21}^V)^\top & w_{22}^V \end{pmatrix} \cdot \frac{\mathcal{E}(Z_\tau) \mathcal{E}(Z_\tau)^\top}{N} \cdot \begin{pmatrix} 0_{d \times d} \\ e_i^\top \end{pmatrix} \cdot W^E x_{\tau,q} \right] \Big|_{w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}} \\
&= 4 \cdot \mathbb{E}_{\tau} \left[ \left( \begin{pmatrix} (0_{1 \times d}) & w_{22}^V \end{pmatrix} \cdot \frac{\mathcal{E}(Z_\tau) \mathcal{E}(Z_\tau)^\top}{N} \cdot \begin{pmatrix} W_{11}^{KQ} \\ 0_{1 \times d} \end{pmatrix} \cdot W^E x_{\tau,q} - y_{\tau,q} \right) \right. \\
&\quad \left. \cdot \left( \begin{pmatrix} (0_{1 \times d}) & w_{22}^V \end{pmatrix} \cdot \frac{\mathcal{E}(Z_\tau) \mathcal{E}(Z_\tau)^\top}{N} \cdot \begin{pmatrix} 0_{d \times d} \\ e_i^\top \end{pmatrix} \cdot W^E x_{\tau,q} \right] \right. \\
&= 4 \cdot \mathbb{E}_{\tau} \left[ \left( \frac{1}{N} \cdot w_{22}^V \cdot (Y_\tau - 0) \cdot (W^E X_\tau - W^E x_{\tau,q})^\top \cdot W_{11}^{KQ} \cdot W^E x_{\tau,q} - y_{\tau,q} \right) \right. \\
&\quad \left. \cdot \left( \frac{1}{N} \cdot w_{22}^V \cdot (Y_\tau - 0) \cdot (Y_\tau - 0)^\top \cdot e_i^\top \cdot W^E x_{\tau,q} \right) \right] \\
&= 4 \cdot \mathbb{E}_{\tau} \left[ \left( \frac{1}{N} \cdot w_{22}^V \cdot w_\tau^\top \cdot X_\tau \cdot (W^E X_\tau)^\top \cdot W_{11}^{KQ} \cdot W^E x_{\tau,q} - w_\tau^\top \cdot x_{\tau,q} \right) \right. \\
&\quad \left. \cdot \left( \frac{1}{N} \cdot w_{22}^V \cdot w_\tau^\top \cdot X_\tau X_\tau^\top \cdot w_\tau \cdot e_i^\top \cdot W^E x_{\tau,q} \right) \right], \tag{B.5}
\end{aligned}$$

942 where  $e_i \in \mathbb{R}^{d \times 1}$  denotes an elementary vector that its  $i$ -th entry is 1 and all remaining entries are 0.  
943 We then have two observations for Eq. (B.5): (1) for the first multiplication term in Eq. (B.5), each  
944 of its summarization term contains exactly one element from the task parameter  $w_\tau$ ; and (2) for  
945 the second multiplication term in Eq. (B.5), each of its summarization term contains exactly two  
946 elements from  $w_\tau$ . Based on these observations and the independency of  $w_\tau$  with respect to  $X_\tau$  and  
947  $x_{\tau,q}$ , Eq. (B.5) can further be re-organized as follows,

$$\partial_{w_{21,i}^{KQ}} \ell_1(\theta) \Big|_{w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}} = \sum_{k=1}^d \sum_{j=1}^d \sum_{l=1}^d \mathbb{E}_{\tau} \left[ B_{j,k,l}(X_\tau, x_{\tau,q}, \theta) \right] \cdot \mathbb{E}_{\tau} \left[ w_{\tau,k} \cdot w_{\tau,j} \cdot w_{\tau,l} \right], \tag{B.6}$$

951 where  $\mathbb{E}_{\tau} [B_{j,k,l}(X_\tau, x_{\tau,q}, \theta)]$  is the coefficient for the term  $\mathbb{E}_{\tau} [w_{\tau,k} \cdot w_{\tau,j} \cdot w_{\tau,l}]$  and depends only  
952 on  $X_\tau$ ,  $x_{\tau,q}$  and  $\theta$ . Recall that  $w_\tau \sim \mathcal{N}(0, I_{d_0})$ , which means  $\mathbb{E}_{\tau} [w_{\tau,k} \cdot w_{\tau,j} \cdot w_{\tau,l}] = 0$  holds for  
953 any  $k, j, l \in [d]$ . Combine this result with Eq. (B.6), we thus have

$$\partial_{w_{21,i}^{KQ}} \ell_1(\theta) \Big|_{w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}} = 0, \quad \forall i \in [d],$$

955 which indicates  $\partial_{w_{21}^{KQ}} \ell_1(\theta) \Big|_{w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}} = 0_{1 \times d}$ .

956 Besides, for the  $i$ -th element  $w_{21,i}^V$  of  $w_{21}^V$ , we similarly have that

$$\begin{aligned}
& \partial_{w_{21,i}^V} \ell_1(\theta) \Big|_{w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}} \\
&= 4 \cdot \mathbb{E}_{\tau} \left[ \left( \begin{pmatrix} (w_{21}^V)^\top & w_{22}^V \end{pmatrix} \cdot \frac{\mathcal{E}(Z_\tau) \mathcal{E}(Z_\tau)^\top}{N} \cdot \begin{pmatrix} W_{11}^{KQ} \\ (w_{21}^{KQ})^\top \end{pmatrix} \cdot W^E x_{\tau,q} - y_{\tau,q} \right) \right. \\
&\quad \left. \cdot \left( (e_i^\top - 0) \cdot \frac{\mathcal{E}(Z_\tau) \mathcal{E}(Z_\tau)^\top}{N} \cdot \begin{pmatrix} W_{11}^{KQ} \\ (w_{21}^{KQ})^\top \end{pmatrix} \cdot W^E x_{\tau,q} \right) \right] \Big|_{w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}} \\
&= 4 \cdot \mathbb{E}_{\tau} \left[ \left( \frac{1}{N} \cdot w_{22}^V \cdot w_\tau^\top \cdot X_\tau \cdot (W^E X_\tau)^\top \cdot W_{11}^{KQ} \cdot W^E x_{\tau,q} - w_\tau^\top \cdot x_{\tau,q} \right) \right. \\
&\quad \left. \cdot \left( \frac{1}{N} \cdot e_i^\top \cdot (W^E X_\tau - W^E x_{\tau,q}) \cdot (W^E X_\tau - W^E x_{\tau,q})^\top \cdot W_{11}^{KQ} \cdot W^E x_{\tau,q} \right) \right]. \tag{B.7}
\end{aligned}$$

From Eq. (B.7) we notice that: (1) each summarization term in the first multiplication term of Eq. (B.7) contains exactly one element from  $w_\tau$ , and (2) the second multiplication term of Eq. (B.7) does not contain any element from  $w_\tau$ . Thus, Eq. (B.7) can be re-organized as below,

$$\partial_{w_{21,i}^V} \ell_1(\theta) \Big|_{w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}} = \sum_{k=1}^d \mathbb{E}_\tau \left[ B'_j(X_\tau, x_{\tau,q}, \theta) \right] \cdot \mathbb{E}_\tau [w_{\tau,k}], \quad (\text{B.8})$$

where  $\mathbb{E}_\tau [B'_j(X_\tau, x_{\tau,q}, \theta)]$  is the coefficient for the term  $\mathbb{E}_\tau [w_{\tau,k}]$  and depends only on  $X_\tau$ ,  $x_{\tau,q}$  and  $\theta$ . As a result, by again applying  $w_\tau \sim \mathcal{N}(0, I_{d_0})$ , we have  $\mathbb{E}_\tau [w_{\tau,k}] = 0$  for any  $k \in [d]$ , which means

$$\partial_{w_{21,i}^V} \ell_1(\theta) \Big|_{w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}} = 0 \quad \forall i \in [d],$$

and thus indicates  $\partial_{w_{21}^V} \ell_1(\theta) \Big|_{w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}} = 0_{1 \times d}$

**Step 2: Show that**  $w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}$  **indicates**  $\partial_{w_{21}^{KQ}} \ell_2(\theta) = \partial_{w_{21}^V} \ell_2(\theta) = 0_{1 \times d}$ . For  $\partial_{w_{21}^{KQ}} \ell_2(\theta)$ , we have

$$\begin{aligned} \partial_{w_{21}^{KQ}} \ell_2(\theta) \Big|_{w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}} &= \left[ \frac{2\epsilon^2}{N} \cdot \|w_{21}^V\|_2^2 \cdot \partial_{w_{21}^{KQ}} \left( \mathbb{E}_\tau \left\| \begin{pmatrix} W^E X_\tau \\ Y_\tau \end{pmatrix}^\top \begin{pmatrix} W_{11}^{KQ} \\ (w_{21}^{KQ})^\top \end{pmatrix} W^E x_{\tau,q} \right\|_2^2 \right) \right]_{w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}} \\ &= \frac{2\epsilon^2}{N} \cdot \|0_{d \times 1}\|_2^2 \cdot \partial_{w_{21}^{KQ}} \left( \mathbb{E}_\tau \left\| \begin{pmatrix} W^E X_\tau \\ Y_\tau \end{pmatrix}^\top \begin{pmatrix} W_{11}^{KQ} \\ (w_{21}^{KQ})^\top \end{pmatrix} W^E x_{\tau,q} \right\|_2^2 \right)_{w_{21}^{KQ} = 0_{d \times 1}} \\ &= 0_{1 \times d}. \end{aligned}$$

For  $\partial_{w_{21}^V} \ell_2(\theta)$ , we have

$$\begin{aligned} \partial_{w_{21}^V} \ell_2(\theta) \Big|_{w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}} &= \left[ \frac{2\epsilon^2}{N} \cdot 2 \cdot (w_{21}^V)^\top \cdot \mathbb{E}_\tau \left\| \begin{pmatrix} W^E X_\tau \\ Y_\tau \end{pmatrix}^\top \begin{pmatrix} W_{11}^{KQ} \\ (w_{21}^{KQ})^\top \end{pmatrix} W^E x_{\tau,q} \right\|_2^2 \right]_{w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}} \\ &= \left[ \frac{2\epsilon^2}{N} \cdot 2 \cdot (0_{d \times 1})^\top \cdot \mathbb{E}_\tau \left\| \begin{pmatrix} W^E X_\tau \\ Y_\tau \end{pmatrix}^\top \begin{pmatrix} W_{11}^{KQ} \\ (w_{21}^{KQ})^\top \end{pmatrix} W^E x_{\tau,q} \right\|_2^2 \right]_{w_{21}^{KQ} = 0_{d \times 1}} \\ &= 0_{1 \times d}. \end{aligned}$$

**Step 3: Show that**  $w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}$  **indicates**  $\partial_{w_{21}^{KQ}} \ell_3(\theta) = \partial_{w_{21}^V} \ell_3(\theta) = 0_{1 \times d}$ . For  $w_{21}^{KQ}$ , since it does not exist in  $\ell_3(\theta)$ , thus we always have  $\partial_{w_{21}^{KQ}} \ell_3(\theta) = 0$ .

Besides, for the  $i$ -th element  $w_{21,i}^V$  of  $w_{21}^V$ , we have that

$$\begin{aligned} \partial_{w_{21,i}^V} \ell_3(\theta) \Big|_{w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}} &= \frac{2\epsilon^2}{N} \cdot \mathbb{E}_\tau \left[ 2 \cdot \left( (w_{21}^V)^\top \quad w_{22}^V \right) \cdot \left( \begin{pmatrix} W^E X_\tau \\ Y_\tau \end{pmatrix} \cdot \begin{pmatrix} W^E X_\tau \\ Y_\tau \end{pmatrix}^\top \cdot ((e_i)^\top \quad 0)^\top \right) \right]_{w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}} \cdot \mathbb{E}_\tau \left[ \|W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \right] \\ &= \frac{2\epsilon^2}{N} \cdot \mathbb{E}_\tau \left[ 2 \cdot \left( (0_{d \times 1})^\top \quad w_{22}^V \right) \cdot \left( \begin{pmatrix} W^E X_\tau \\ Y_\tau \end{pmatrix} \cdot \begin{pmatrix} W^E X_\tau \\ Y_\tau \end{pmatrix}^\top \cdot ((e_i)^\top \quad 0)^\top \right) \right] \cdot \mathbb{E}_\tau \left[ \|W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \right] \\ &= \frac{2\epsilon^2}{N} \cdot \mathbb{E}_\tau \left[ 2 \cdot w_{22}^V \cdot Y_\tau \cdot (W^E X_\tau)^\top \cdot e_i \right] \cdot \mathbb{E}_\tau \left[ \|W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \right] \\ &= \frac{4\epsilon^2}{N} \cdot \mathbb{E}_\tau \left[ w_{22}^V \cdot w_\tau^\top \cdot W^E X_\tau \cdot (W^E X_\tau)^\top \cdot e_i \right] \cdot \mathbb{E}_\tau \left[ \|W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \right] \\ &= \frac{4\epsilon^2}{N} \cdot w_{22}^V \cdot \mathbb{E}_\tau [w_\tau^\top] \cdot \mathbb{E}_\tau \left[ W^E X_\tau \cdot (W^E X_\tau)^\top \cdot e_i \right] \cdot \mathbb{E}_\tau \left[ \|W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \right] \\ &= \frac{4\epsilon^2}{N} \cdot w_{22}^V \cdot 0_{1 \times d} \cdot \mathbb{E}_\tau \left[ W^E X_\tau \cdot (W^E X_\tau)^\top \cdot e_i \right] \cdot \mathbb{E}_\tau \left[ \|W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \right] = 0, \end{aligned}$$

1026 where  $e_i \in \mathbb{R}^{d \times 1}$  is an elementary vector that its  $i$ -th entry is 1 and all other remaining entries are  
1027 0. As a result, we thus have

$$1028 \quad \partial_{w_{21}^V} \ell_3(\theta) \Big|_{w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}} = 0_{1 \times d}.$$

1031 **Step 4: Show that  $w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}$  indicates  $\partial_{w_{21}^{KQ}} \ell_4(\theta) = \partial_{w_{21}^V} \ell_4(\theta) = 0_{1 \times d}$ .** For  $w_{21}^{KQ}$ ,  
1032 since it does not exists in  $\ell_4(\theta)$ , thus we always have  $\partial_{w_{21}^{KQ}} \ell_3(\theta) = 0$ .  
1033

1034 Besides, for  $\partial_{w_{21}^V} \ell_4(\theta)$ , we have

$$1036 \quad \begin{aligned} \partial_{w_{21}^V} \ell_4(\theta) \Big|_{w_{21}^{KQ} = w_{21}^V = 0_{d \times 1}} &= 2\epsilon^4 \cdot [2 \cdot (w_{21}^V)^\top]_{w_{21}^V = 0_{d \times 1}} \cdot \mathbb{E}_\tau \left[ \|W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \right] \\ 1037 &= 2\epsilon^4 \cdot [2 \cdot (0_{d \times 1})^\top] \cdot \mathbb{E}_\tau \left[ \|W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \right] \\ 1038 &= 0_{1 \times d}. \end{aligned}$$

1041 The proof is completed.  $\square$

1043 Based on Lemma B.6, we then simplify the objective function  $\tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta)$  in the surrogate ICL em-  
1044 bedding AT in Eq. (13), as shown in the following Lemma B.7.

1045 **Lemma B.7.** *Under Assumption 1, the surrogate ICL embedding AT objective function  $\tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta)$   
1046 defined in Eq. (13) can be simplified as*

$$1048 \quad \begin{aligned} \tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta) &= 2(w_{22}^V)^2 \cdot \text{Tr} \left[ (W^E \Gamma_N \Lambda(W^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d) \cdot (W_{11}^{KQ} W^E \Lambda^{\frac{1}{2}}) \cdot (W_{11}^{KQ} W^E \Lambda^{\frac{1}{2}})^\top \right] \\ 1049 &\quad - 4w_{22}^V \cdot \text{Tr} \left[ (W_{11}^{KQ} W^E \Lambda^{\frac{1}{2}}) \cdot \Lambda^{\frac{3}{2}} (W^E)^\top \right] + 2\text{Tr}(\Lambda), \end{aligned}$$

1050 where  $\Gamma_N := (\frac{N+1}{N} \Lambda + \frac{1}{N} \text{Tr}(\Lambda) I_{d_0}) \in \mathbb{R}^{d_0 \times d_0}$ .  
1051

1052 *Proof.* When Assumption 1 holds, by applying Lemma B.6,  $w_{21}^{KQ}$  and  $w_{21}^V$  become zero vectors  
1053 during the surrogate AT. Then,  $\ell_2(\theta)$  and  $\ell_4(\theta)$  in the surrogate AT loss  $\tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta)$  will stay zero.

1054 Besides, for  $\ell_1(\theta)$  in  $\tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta)$  in Eq. (13), it becomes

$$1055 \quad \begin{aligned} \ell_1(\theta) &= 2 \cdot \mathbb{E}_\tau \left| \begin{pmatrix} 0_{1 \times d} & w_{22}^V \end{pmatrix} \cdot \frac{\mathcal{E}(Z_\tau) \mathcal{E}(Z_\tau)^\top}{N} \cdot \begin{pmatrix} W_{11}^{KQ} \\ 0_{1 \times d} \end{pmatrix} \cdot W^E x_{\tau,q} - y_{\tau,q} \right|^2 \\ 1056 &= 2 \cdot \mathbb{E}_\tau \left| \frac{1}{N} \cdot w_{22}^V \cdot (Y_\tau - 0) \cdot (W^E X_\tau - W^E x_{\tau,q})^\top \cdot W_{11}^{KQ} \cdot W^E x_{\tau,q} - y_{\tau,q} \right|^2 \\ 1057 &= \frac{2(w_{22}^V)^2}{N^2} \mathbb{E}_\tau \left[ x_{\tau,q}^\top ((W^E)^\top W_{11}^{KQ} W^E)^\top X_\tau Y_\tau^\top \cdot Y_\tau X_\tau^\top ((W^E)^\top W_{11}^{KQ} W^E) x_{\tau,q} \right] \\ 1058 &\quad - \frac{4w_{22}^V}{N} \cdot \mathbb{E}_\tau \left[ Y_\tau X_\tau^\top ((W^E)^\top W_{11}^{KQ} W^E) x_{\tau,q} \cdot y_{\tau,q} \right] + 2 \cdot \mathbb{E}_\tau [y_{\tau,q}^2] \\ 1059 &= \frac{2(w_{22}^V)^2}{N^2} \mathbb{E}_\tau \left[ x_{\tau,q}^\top ((W^E)^\top W_{11}^{KQ} W^E)^\top X_\tau X_\tau^\top \cdot \mathbb{E}_\tau [w_\tau w_\tau^\top] \cdot X_\tau X_\tau^\top ((W^E)^\top W_{11}^{KQ} W^E) x_{\tau,q} \right] \\ 1060 &\quad - \frac{4w_{22}^V}{N} \cdot \mathbb{E}_\tau \left[ w_\tau^\top \cdot X_\tau X_\tau^\top ((W^E)^\top W_{11}^{KQ} W^E) x_{\tau,q} x_{\tau,q}^\top \cdot w_\tau \right] + 2 \cdot \mathbb{E}_\tau [w_\tau^\top \cdot x_{\tau,q} x_{\tau,q}^\top \cdot w_\tau] \\ 1061 &= 2(w_{22}^V)^2 \cdot \text{Tr} \left[ ((W^E)^\top W_{11}^{KQ} W^E)^\top \underbrace{\cdot \mathbb{E}_\tau \left[ \frac{1}{N^2} X_\tau X_\tau^\top X_\tau X_\tau^\top \right] \cdot ((W^E)^\top W_{11}^{KQ} W^E) \cdot \Lambda}_{\text{Lemma B.2}} \right] \\ 1062 &\quad - 4w_{22}^V \cdot \text{Tr} \left[ \underbrace{\frac{1}{N} \mathbb{E}_\tau [X_\tau X_\tau^\top] \cdot ((W^E)^\top W_{11}^{KQ} W^E) \cdot \mathbb{E}_\tau [x_{\tau,q} x_{\tau,q}^\top]}_{\text{Lemma B.2}} \right] + 2\text{Tr}(\Lambda) \\ 1063 &= 2(w_{22}^V)^2 \text{Tr} \left[ ((W^E)^\top W_{11}^{KQ} W^E)^\top \cdot \frac{1}{N^2} \left( \sum_{i=1}^N \mathbb{E}_\tau [x_{\tau,i} x_{\tau,i}^\top x_{\tau,i} x_{\tau,i}^\top] + \sum_{i \neq j} \mathbb{E}_\tau [x_{\tau,i} x_{\tau,i}^\top x_{\tau,j} x_{\tau,j}^\top] \right) \cdot ((W^E)^\top W_{11}^{KQ} W^E) \cdot \Lambda \right] \end{aligned}$$

$$\begin{aligned}
& - 4w_{22}^V \cdot \text{Tr} \left[ \Lambda \cdot ((W^E)^\top W_{11}^{KQ} W^E) \cdot \Lambda \right] + 2\text{Tr}(\Lambda) \\
& = 2(w_{22}^V)^2 \text{Tr} \left[ ((W^E)^\top W_{11}^{KQ} W^E)^\top \cdot \frac{1}{N^2} \underbrace{\left( N \underbrace{(2\Lambda^2 + \text{Tr}(\Lambda)\Lambda)}_{\text{Lemma B.1}} + (N^2 - N)\Lambda^2 \right)}_{\text{Lemma B.1}} \cdot ((W^E)^\top W_{11}^{KQ} W^E) \cdot \Lambda \right] \\
& \quad - 4w_{22}^V \cdot \text{Tr} \left[ \Lambda \cdot ((W^E)^\top W_{11}^{KQ} W^E) \cdot \Lambda \right] + 2\text{Tr}(\Lambda) \\
& = 2(w_{22}^V)^2 \text{Tr} \left[ ((W^E)^\top W_{11}^{KQ} W^E)^\top \cdot \Gamma_N \Lambda \cdot ((W^E)^\top W_{11}^{KQ} W^E) \cdot \Lambda \right] \\
& \quad - 4w_{22}^V \cdot \text{Tr} \left[ \Lambda \cdot ((W^E)^\top W_{11}^{KQ} W^E) \cdot \Lambda \right] + 2\text{Tr}(\Lambda), \tag{B.9}
\end{aligned}$$

where  $\Gamma_N := (\frac{N+1}{N}\Lambda + \frac{1}{N}\text{Tr}(\Lambda)I_{d_0}) \in \mathbb{R}^{d_0 \times d_0}$ .

For  $\ell_3(\theta)$  in  $\tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta)$  in Eq. (13), we have

$$\begin{aligned}
\ell_3(\theta) & = \frac{2\epsilon^2}{N} \cdot \mathbb{E}_\tau \left[ \left\| \begin{pmatrix} 0_{1 \times d} & w_{22}^V \end{pmatrix} \begin{pmatrix} W^E X_\tau \\ Y_\tau \end{pmatrix} \right\|_2^2 \right] \cdot \mathbb{E}_\tau \left[ \|W_{11}^{KQ} W^E x_{\tau,q}\|_2^2 \right] \\
& = \frac{2\epsilon^2 (w_{22}^V)^2}{N} \cdot \mathbb{E}_\tau \|Y_\tau\|_2^2 \cdot \mathbb{E}_\tau \left[ x_{\tau,q}^\top (W_{11}^{KQ} W^E)^\top W_{11}^{KQ} W^E x_{\tau,q} \right] \\
& = 2\epsilon^2 (w_{22}^V)^2 \cdot \frac{1}{N} \sum_{i=1}^N \mathbb{E}_\tau \left[ x_{\tau,i}^\top w_\tau w_\tau^\top x_{\tau,i} \right] \cdot \underbrace{\text{Tr} \left[ (W_{11}^{KQ} W^E)^\top W_{11}^{KQ} W^E \Lambda \right]}_{\text{Lemma B.2}} \\
& = 2\epsilon^2 (w_{22}^V)^2 \cdot \text{Tr}(\Lambda) \cdot \text{Tr} \left[ (W_{11}^{KQ} W^E)^\top W_{11}^{KQ} W^E \Lambda \right]. \tag{B.10}
\end{aligned}$$

Finally, by inserting Eqs. (B.9) and (B.10) back into the surrogate AT loss  $\tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta)$  in Eq. (13) and repeatedly applying Lemma B.3 and the commutativity between  $\Lambda$  and  $\Gamma_N$ , we thus have

$$\begin{aligned}
\tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta) & = 2(w_{22}^V)^2 \cdot \text{Tr} \left[ ((W^E)^\top W_{11}^{KQ} W^E)^\top \cdot \Gamma_N \Lambda \cdot ((W^E)^\top W_{11}^{KQ} W^E) \cdot \Lambda \right] \\
& \quad - 4w_{22}^V \cdot \text{Tr} \left[ \Lambda \cdot ((W^E)^\top W_{11}^{KQ} W^E) \cdot \Lambda \right] + 2\text{Tr}(\Lambda) \\
& \quad + 2\epsilon^2 (w_{22}^V)^2 \cdot \text{Tr}(\Lambda) \cdot \text{Tr} \left[ (W_{11}^{KQ} W^E)^\top W_{11}^{KQ} W^E \Lambda \right] \\
& = 2(w_{22}^V)^2 \cdot \text{Tr} \left[ W^E \Gamma_N \Lambda (W^E)^\top \cdot (W_{11}^{KQ} W^E \Lambda^{\frac{1}{2}}) \cdot (W_{11}^{KQ} W^E \Lambda^{\frac{1}{2}})^\top \right] \\
& \quad - 4w_{22}^V \cdot \text{Tr} \left[ (W_{11}^{KQ} W^E \Lambda^{\frac{1}{2}}) \cdot \Lambda^{\frac{3}{2}} (W^E)^\top \right] + 2\text{Tr}(\Lambda) \\
& \quad + 2\epsilon^2 (w_{22}^V)^2 \text{Tr}(\Lambda) \cdot \text{Tr} \left[ (W_{11}^{KQ} W^E \Lambda^{\frac{1}{2}}) \cdot (W_{11}^{KQ} W^E \Lambda^{\frac{1}{2}})^\top \right] \\
& = 2(w_{22}^V)^2 \cdot \text{Tr} \left[ (W^E \Gamma_N \Lambda (W^E)^\top + \text{Tr}(\Lambda)\epsilon^2 I_d) \cdot (W_{11}^{KQ} W^E \Lambda^{\frac{1}{2}}) \cdot (W_{11}^{KQ} W^E \Lambda^{\frac{1}{2}})^\top \right] \\
& \quad - 4w_{22}^V \cdot \text{Tr} \left[ (W_{11}^{KQ} W^E \Lambda^{\frac{1}{2}}) \cdot \Lambda^{\frac{3}{2}} (W^E)^\top \right] + 2\text{Tr}(\Lambda). \tag{B.11}
\end{aligned}$$

The proof is completed.  $\square$

Based on the simplified surrogate AT loss, we now calculate the global solution for the surrogate embedding ICL AT problem in the following Lemma B.8.

**Lemma B.8.** *Suppose Assumption 1 holds. Then,  $\theta_* := (W_*^E, W_*^{KQ}, W_*^V)$  is a global minimizer for the surrogate embedding ICL AT problem defined in Eq. (13) if and only if*

$$w_{*,22}^V (W_*^E)^\top W_{*,11}^{KQ} W_*^E = (W_*^E)^\top (W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda)\epsilon^2 I_d)^{-1} W_*^E \Lambda.$$

1134 *Proof.* Under Assumption 1, by applying Lemma B.3 and Lemma B.7, we can re-organize the  
 1135 surrogate AT loss  $\tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta)$  in Eq. (13) as follows,  
 1136

$$\begin{aligned}
 1137 \quad & \tilde{\mathcal{L}}_{\text{LSAE}}^{\text{adv}}(\theta) \\
 1138 \quad & = 2(w_{22}^V)^2 \cdot \text{Tr} \left[ (W^E \Gamma_N \Lambda(W^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d) \cdot (W_{11}^{KQ} W^E \Lambda^{\frac{1}{2}}) \cdot (W_{11}^{KQ} W^E \Lambda^{\frac{1}{2}})^\top \right] \\
 1139 \quad & \quad - 4w_{22}^V \cdot \text{Tr} \left[ (W_{11}^{KQ} W^E \Lambda^{\frac{1}{2}}) \cdot \Lambda^{\frac{3}{2}} (W^E)^\top \right] + 2\text{Tr}(\Lambda) \\
 1140 \quad & = 2 \cdot \text{Tr} \left[ \left( W^E \Gamma_N \Lambda(W^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right) \cdot (w_{22}^V W_{11}^{KQ} W^E \Lambda^{\frac{1}{2}}) \cdot (w_{22}^V W_{11}^{KQ} W^E \Lambda^{\frac{1}{2}})^\top \right] + 2\text{Tr}(\Lambda) \\
 1141 \quad & \quad - 4 \cdot \text{Tr} \left[ \left( W^E \Gamma_N \Lambda(W^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right) \cdot (w_{22}^V W_{11}^{KQ} W^E \Lambda^{\frac{1}{2}}) \cdot \Lambda^{\frac{3}{2}} (W^E)^\top \left( W^E \Gamma_N \Lambda(W^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} \right] \\
 1142 \quad & = 2 \cdot \text{Tr} \left[ \left( W^E \Gamma_N \Lambda(W^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right) \right. \\
 1143 \quad & \quad \cdot \left( w_{22}^V W_{11}^{KQ} W^E \Lambda^{\frac{1}{2}} - \left( W^E \Gamma_N \Lambda(W^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W^E \Lambda^{\frac{3}{2}} \right) \\
 1144 \quad & \quad \cdot \left. \left( w_{22}^V W_{11}^{KQ} W^E \Lambda^{\frac{1}{2}} - \left( W^E \Gamma_N \Lambda(W^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W^E \Lambda^{\frac{3}{2}} \right)^\top \right] \\
 1145 \quad & \quad - \text{Tr} \left[ \left( W^E \Gamma_N \Lambda(W^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-2} W^E \Lambda^3 (W^E)^\top \right] + 2\text{Tr}(\Lambda). \tag{B.12}
 \end{aligned}$$

1154 Note that the second and third summation terms in Eq. (B.12) are constants. Besides, the first term  
 1155 in Eq. (B.12) is non-negative and can achieve zero via setting  
 1156

$$w_{*,22}^V W_{*,11}^{KQ} W_*^E \Lambda^{\frac{1}{2}} - (W_*^E \Gamma_N \Lambda(W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d)^{-1} W_*^E \Lambda^{\frac{3}{2}} = 0,$$

1158 which is  
 1159

$$w_{*,22}^V (W_*^E)^\top W_{*,11}^{KQ} W_*^E = (W_*^E)^\top (W_*^E \Gamma_N \Lambda(W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d)^{-1} W_*^E \Lambda.$$

1162 The proof is completed. □  
 1163

#### 1164 B.4 PROOF OF THEOREM 2

1166 We first prove a useful Lemma B.9 that will be frequently used in this section.  
 1167

1168 **Lemma B.9.** *For the inverse matrix  $(W_*^E \Gamma_N \Lambda(W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d)^{-1} \in \mathbb{R}^{d \times d}$  in the optimal  
 1169 surrogate ICL embedding AT solution in Theorem 1, we have*

$$1170 \quad \left\| \left( W_*^E \Gamma_N \Lambda(W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} \right\|_2 \leq \frac{1}{\sigma_{\min}(\Gamma_N \Lambda) \cdot \sigma_{\min}(W_*^E)^2 + \text{Tr}(\Lambda) \epsilon^2}.$$

1174 *Proof.* According to the definition of matrix operator norm (i.e.,  $\|\cdot\|_2$ ), we have  
 1175

$$\begin{aligned}
 1176 \quad & \left\| \left( W_*^E \Gamma_N \Lambda(W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} \right\|_2 = \sigma_{\max} \left[ \left( W_*^E \Gamma_N \Lambda(W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} \right] \\
 1177 \quad & = \frac{1}{\sigma_{\min} \left[ W_*^E \Gamma_N \Lambda(W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right]} = \frac{1}{\sigma_{\min} \left[ W_*^E \Gamma_N \Lambda(W_*^E)^\top \right] + \text{Tr}(\Lambda) \epsilon^2}. \tag{B.13}
 \end{aligned}$$

1181 Notice that  $W_*^E \Gamma_N \Lambda(W_*^E)^\top$  is a positive semidefinite matrix, we thus have  
 1182

$$1183 \quad \sigma_{\min} \left[ W_*^E \Gamma_N \Lambda(W_*^E)^\top \right] = \lambda_{\min} \left[ W_*^E \Gamma_N \Lambda(W_*^E)^\top \right]. \tag{B.14}$$

1185 By further applying Lemma B.5,  
 1186

$$1187 \quad \lambda_{\min} \left[ W_*^E \Gamma_N \Lambda(W_*^E)^\top \right] = \min_{v \in \mathbb{R}^d, \|v\|_2=1} v^\top W_*^E \Gamma_N \Lambda(W_*^E)^\top v. \tag{B.15}$$

1188 Denote that  $u = (W_*^E)^\top v \in \mathbb{R}^d$ , then Eq. (B.15) can be re-written as  
1189

$$\begin{aligned}
1190 \quad & \lambda_{\min} \left[ W_*^E \Gamma_N \Lambda (W_*^E)^\top \right] = \min_{v \in \mathbb{R}^d, \|v\|_2=1} v^\top W_*^E \Gamma_N \Lambda (W_*^E)^\top v \\
1191 \quad & = \min_{v \in \mathbb{R}^d, \|v\|_2=1} u^\top (\Gamma_N \Lambda) u \\
1192 \quad & = \min_{v \in \mathbb{R}^d, \|v\|_2=1} \left\{ \frac{u^\top (\Gamma_N \Lambda) u}{u^\top u} \cdot u^\top u \right\} \\
1193 \quad & \geq \min_{u' \in \mathbb{R}^d, \|u'\| \neq 0_d} \frac{u'^\top (\Gamma_N \Lambda) u'}{u'^\top u'} \cdot \min_{v \in \mathbb{R}^d, \|v\|_2=1} u^\top u \\
1194 \quad & \stackrel{(*)_1}{=} \lambda_{\min}(\Gamma_N \Lambda) \cdot \min_{v \in \mathbb{R}^d, \|v\|_2=1} v^\top W_*^E (W_*^E)^\top v, \\
1195 \quad & \stackrel{(*)_2}{=} \lambda_{\min}(\Gamma_N \Lambda) \cdot \lambda_{\min}(W_*^E (W_*^E)^\top) \\
1196 \quad & \stackrel{(*)_3}{=} \sigma_{\min}(\Gamma_N \Lambda) \cdot \sigma_{\min}(W_*^E (W_*^E)^\top) \\
1197 \quad & = \sigma_{\min}(\Gamma_N \Lambda) \cdot \sigma_{\min}(W_*^E)^2, \\
1198 \quad & \end{aligned} \tag{B.16}$$

1207 where both  $(*)_1$  and  $(*)_2$  are obtained via again applying Lemma B.5, and  $(*)_3$  is due to the fact  
1208 that both  $\Gamma_N \Lambda$  and  $W_*^E (W_*^E)^\top$  are positive semidefinite matrices. Combining Eqs. (B.13), (B.14),  
1209 and (B.16), we finally have that

$$1210 \quad \text{Tr} \left[ \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} \right] \leq \frac{1}{\sigma_{\min}(\Gamma_N \Lambda) \cdot \sigma_{\min}(W_*^E)^2 + \text{Tr}(\Lambda) \epsilon^2}, \tag{B.17}$$

1214 which completes the proof.  $\square$

1217 With the help of Lemma B.9, we can now start to prove Theorem 2.

1221 *Proof of Theorem 2.* For the converged LSA-E model  $f_{\text{LSAE}, \theta_*}(\cdot)$  trained from the surrogate ICL  
1222 embedding AT, by inserting its prediction function  $\hat{y}_{q, \theta_*}(\cdot)$  given in Eq. (14) into the robust risk  
1223  $\mathcal{R}_{\rho, M}^{\text{adv}}(\cdot)$  defined in Eq. (12) and using the inequality  $|a + b|^2 \leq 2(a^2 + b^2)$ , we have that

$$\begin{aligned}
1225 \quad & \mathcal{R}_{\rho, M}^{\text{adv}}(\theta_*) \\
1226 \quad & = \mathbb{E} \max_{\tau} \frac{1}{2} \left| \frac{1}{N} Y_\tau (X_\tau + (0_{d_0 \times (N-M)} \Delta_\tau^O))^\top \cdot (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda \cdot x_{\tau, q} - y_{\tau, q} \right|^2 \\
1227 \quad & = \frac{1}{N^2} \mathbb{E} \underbrace{\left| Y_\tau (X_\tau)^\top \cdot (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda \cdot x_{\tau, q} \right|^2}_{:= C_1} \\
1228 \quad & \leq \frac{2}{N} \mathbb{E} \underbrace{\left[ Y_\tau (X_\tau)^\top \cdot (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda \cdot x_{\tau, q} \cdot y_{\tau, q} \right]}_{:= C_2} + \mathbb{E} \underbrace{[y_{\tau, q}^2]}_{:= C_3} \\
1229 \quad & + \mathbb{E} \max_{\tau} \underbrace{\left| \frac{1}{N} Y_{\tau, (N-M+1):N} (\Delta_\tau^O)^\top \cdot (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda \cdot x_{\tau, q} \right|^2}_{:= C_4}, \\
1230 \quad & \end{aligned} \tag{B.17}$$

1239 where  $Y_{\tau, (N-M+1):N} := (y_{\tau, N-M+1} \ \cdots \ y_{\tau, N}) \in \mathbb{R}^{1 \times M}$ .

1242 For  $C_1$  in Eq. (B.17), we have  
1243

$$\begin{aligned}
1244 \quad C_1 &:= \frac{1}{N^2} \mathbb{E} \left| Y_\tau (X_\tau)^\top \cdot (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda \cdot x_{\tau,q} \right|^2 \\
1245 \\
1246 \quad &= \frac{1}{N^2} \mathbb{E} \left[ x_{\tau,q}^\top \cdot (W_*^E \Lambda)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \cdot \mathbb{E}_\tau [X_\tau \cdot X_\tau^\top w_\tau \cdot w_\tau^\top X_\tau \cdot (X_\tau)^\top] \right. \\
1247 \\
1248 \quad &\quad \cdot (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda \cdot x_{\tau,q} \left. \right] \\
1249 \\
1250 \quad &= \mathbb{E}_\tau \left[ x_{\tau,q}^\top \cdot (W_*^E \Lambda)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \right. \\
1251 \\
1252 \quad &\quad \cdot \frac{1}{N^2} \left( \sum_i \mathbb{E}_\tau [x_{\tau,i} x_{\tau,i}^\top] + \sum_{i \neq j} \mathbb{E}_\tau [x_{\tau,i} x_{\tau,i}^\top] \cdot \mathbb{E}_\tau [x_{\tau,j} x_{\tau,j}^\top] \right) \\
1253 \\
1254 \quad &\quad \cdot (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda \cdot x_{\tau,q} \left. \right] \\
1255 \\
1256 \quad &= \mathbb{E}_\tau \left[ x_{\tau,q}^\top \cdot (W_*^E \Lambda)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \cdot \underbrace{\frac{1}{N^2} (N(2\Lambda^2 + \text{Tr}(\Lambda)\Lambda) + (N^2 - N)\Lambda^2)}_{\text{Lemma B.1}} \right. \\
1257 \\
1258 \quad &\quad \cdot (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda \cdot x_{\tau,q} \left. \right] \\
1259 \\
1260 \quad &= \mathbb{E}_\tau \left[ x_{\tau,q}^\top \cdot (W_*^E \Lambda)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \cdot \Gamma_N \Lambda \right. \\
1261 \\
1262 \quad &\quad \cdot (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda \cdot x_{\tau,q} \left. \right] \\
1263 \\
1264 \quad &= \text{Tr} \left[ (W_*^E \Lambda)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \cdot \Gamma_N \Lambda \cdot (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda \cdot \Lambda \right] \\
1265 \\
1266 \quad &\qquad \qquad \qquad \underbrace{\text{Lemma B.2}}_{\text{Lemma B.2}} \\
1267 \\
1268 \\
1269
\end{aligned}$$

1270 Then, by repeatedly applying Lemma B.3 and Lemma B.4, we further have  
1271

$$\begin{aligned}
1272 \quad C_1 &:= \text{Tr} \left[ (W_*^E \Lambda)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \cdot \Gamma_N \Lambda \cdot (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda^2 \right] \\
1273 \\
1274 \quad &\stackrel{(*)_1}{=} \text{Tr} \left[ (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \cdot \Gamma_N \Lambda \cdot (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \cdot \Lambda^3 \right] \\
1275 \\
1276 \quad &\stackrel{(*)_2}{\leq} \text{Tr} \left[ (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Gamma_N \Lambda (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \right] \cdot \lambda_{\max}(\Lambda^3) \\
1277 \\
1278 \quad &\stackrel{(*)_3}{=} \text{Tr} \left[ (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Gamma_N \Lambda \right] \cdot \lambda_{\max}(\Lambda)^3 \\
1279 \\
1280 \quad &\stackrel{(*)_4}{\leq} \text{Tr} \left[ (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \right] \\
1281 \\
1282 \quad &\quad \cdot \lambda_{\max}(\Gamma_N \Lambda) \cdot \lambda_{\max}(\Lambda)^3 \\
1283 \\
1284 \quad &\stackrel{(*)_5}{\leq} \text{Tr} \left[ W_*^E (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E (W_*^E)^\top \right] \cdot \lambda_{\max} \left[ \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} \right] \\
1285 \\
1286 \quad &\quad \cdot \lambda_{\max}(\Gamma_N) \cdot \lambda_{\max}(\Lambda)^4 \\
1287 \\
1288 \quad &\stackrel{(*)_6}{\leq} \text{Tr} \left[ W_*^E (W_*^E)^\top W_*^E (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} \right] \cdot \frac{\lambda_{\max}(\Gamma_N) \cdot \lambda_{\max}(\Lambda)^4}{\sigma_{\min}(\Gamma_N \Lambda) \cdot \sigma_{\min}(W_*^E)^2 + \text{Tr}(\Lambda) \epsilon^2} \\
1289 \\
1290 \quad &\stackrel{(*)_7}{\leq} \text{Tr} \left[ W_*^E (W_*^E)^\top W_*^E (W_*^E)^\top \right] \cdot \frac{\lambda_{\max}(\Gamma_N) \cdot \lambda_{\max}(\Lambda)^4}{[\sigma_{\min}(\Gamma_N \Lambda) \cdot \sigma_{\min}(W_*^E)^2 + \text{Tr}(\Lambda) \epsilon^2]^2} \\
1291 \\
1292 \quad &= \frac{\sigma_{\max}(\Gamma_N \Lambda^4) \cdot \sum_{i=1}^d \sigma_i(W_*^E)^4}{[\sigma_{\min}(\Gamma_N \Lambda) \cdot \sigma_{\min}(W_*^E)^2 + \text{Tr}(\Lambda) \epsilon^2]^2}, \\
1293 \\
1294
\end{aligned} \tag{B.18}$$

1295 where  $(*)_1$  and  $(*)_3$  is due to Lemma B.3,  $(*)_2$ ,  $(*)_4$  is due to Lemma B.4,  $(*)_5$  is by Lemma B.3 and Lemma B.4,  $(*)_6$  is by Lemma B.3 and Lemma B.9, and  $(*)_7$  is by Lemma B.4 and Lemma B.9.

**For  $C_2$  in Eq. (B.17), we have**

$$\begin{aligned}
C_2 &:= \frac{2}{N} \mathbb{E} \left[ Y_\tau(X_\tau)^\top \cdot (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda(W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda \cdot x_{\tau,q} \cdot y_{\tau,q} \right] \\
&= \frac{2}{N} \mathbb{E} \left[ w_\tau^\top \cdot X_\tau(X_\tau)^\top \cdot (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda(W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda \cdot x_{\tau,q} \cdot x_{\tau,q}^\top \cdot w_\tau \right] \\
&\stackrel{(*)}{=} \frac{2}{N} \text{Tr} \left[ \mathbb{E} \left[ X_\tau(X_\tau)^\top \right] \cdot (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda(W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda \cdot \mathbb{E} \left[ x_{\tau,q} x_{\tau,q}^\top \right] \right] \\
&= \frac{2}{N} \text{Tr} \left[ N \Lambda \cdot (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda(W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda \cdot \Lambda \right] \\
&\stackrel{(**)}{=} 2 \cdot \text{Tr} \left[ \Lambda^{\frac{3}{2}} \cdot (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda(W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \cdot \Lambda^{\frac{3}{2}} \right] \geq 0, \tag{B.19}
\end{aligned}$$

where  $(*)$  is by Lemma B.2 and  $(**)$  is by Lemma B.3.

For  $C_3$  in Eq. (B.17), we have

$$C_3 := \mathbb{E}[y_{\tau,q}^2] = \mathbb{E}[w_\tau^\top x_{\tau,q} x_{\tau,q}^\top w_\tau] = \text{Tr}(\mathbb{E}[x_{\tau,q} x_{\tau,q}^\top]) = \text{Tr}(\Lambda). \quad (\text{B.20})$$

For  $C_4$  in Eq. (B.17), we have

$$\begin{aligned}
C_4 &:= \mathbb{E} \max_{\tau, \|\Delta_\tau^O\|_{2,\infty} \leq \rho} \left| \frac{1}{N} Y_{\tau,(M-N+1):N} (\Delta_\tau^O)^\top \cdot (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda \cdot x_{\tau,q} \right|^2 \\
&\leq \frac{1}{N^2} \cdot \mathbb{E}_\tau \|Y_{\tau,(M-N+1):N}\|_2^2 \cdot \mathbb{E}_\tau \max_{\|\Delta_\tau^O\|_{2,\infty} \leq \rho} \|(\Delta_\tau^O)^\top \cdot (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda \cdot x_{\tau,q}\|_2^2 \\
&= \frac{M}{N^2} \text{Tr}(\Lambda) \cdot \rho^2 \cdot \mathbb{E}_\tau \| (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda \cdot x_{\tau,q} \|_2^2 \\
&\stackrel{(*)}{=} (M \rho^2 \text{Tr}(\Lambda) / N^2) \\
&\quad \cdot \text{Tr} \left[ \Lambda (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E (W_*^E)^\top \left( W_*^E \Gamma_N \Lambda (W_*^E)^\top + \text{Tr}(\Lambda) \epsilon^2 I_d \right)^{-1} W_*^E \Lambda \cdot \Lambda \right],
\end{aligned}$$

where  $(*)$  follows Lemma B.2. By using a similar derivation as that for Eq. (B.18), we thus have

$$C_4 \leq \frac{M\rho^2 \text{Tr}(\Lambda)}{N^2} \cdot \frac{\sigma_{\max}(\Lambda)^3 \cdot \sum_{i=1}^d \sigma_i(W_*^E)^4}{[\sigma_{\max}(\Gamma_N \Lambda) \cdot \sigma_{\max}(W^E)^2 + \text{Tr}(\Lambda) \epsilon^2]^2}. \quad (\text{B.21})$$

Finally, inserting Eqs. (B.18), (B.19), (B.20), and (B.21) into Eq. (B.17), we thus have

$$\begin{aligned}
& \mathcal{R}_{\rho, M}^{\text{adv}}(\theta_*) \\
& \leq \frac{\sigma_{\max}(\Gamma_N \Lambda^4) \cdot \sum_{i=1}^d \sigma_i(W_*^E)^4}{[\sigma_{\min}(\Gamma_N \Lambda) \cdot \sigma_{\min}(W_*^E)^2 + \text{Tr}(\Lambda) \epsilon^2]^2} - 0 + \text{Tr}(\Lambda) + \frac{M \rho^2 \text{Tr}(\Lambda)}{N^2} \cdot \frac{\sigma_{\max}(\Lambda)^3 \cdot \sum_{i=1}^d \sigma_i(W_*^E)^4}{[\sigma_{\min}(\Gamma_N \Lambda) \cdot \sigma_{\min}(W_*^E)^2 + \text{Tr}(\Lambda) \epsilon^2]^2} \\
& = \frac{\left(\sigma_{\max}(\Gamma_N \Lambda) + \frac{M \rho^2 \text{Tr}(\Lambda)}{N^2}\right) \cdot \sigma_{\max}(\Lambda)^3 \cdot \sum_{i=1}^d \sigma_i(W_*^E)^4}{[\sigma_{\min}(\Gamma_N \Lambda) \cdot \sigma_{\min}(W_*^E)^2 + \text{Tr}(\Lambda) \epsilon^2]^2} + \text{Tr}(\Lambda) \\
& \leq \mathcal{O}\left(\frac{(1 + M \rho^2/N^2) \cdot \sum_{i=1}^d \sigma_i(W_*^E)^4}{\sigma_{\min}(W_*^E)^4 + \epsilon^4}\right) + \mathcal{O}(1).
\end{aligned}$$

The proof is completed.

## C ADDITIONAL EXPERIMENTAL DETAILS

This section collects experimental details omitted from Section 5.

1350 Table 5: LC-WinRate on models trained via CAT with different toward/away cut-off thresholds.  
1351

| Type<br>(Toward / Away Cut-offs) | (Utility) LC-WinRate (%) ↑ |            |            |              |            |          |
|----------------------------------|----------------------------|------------|------------|--------------|------------|----------|
|                                  | Vicuna-7B                  | Mistral-7B | Llama-2-7B | Llama-3.1-8B | Qwen2.5-7B | Gemma-2B |
| Original                         | 76.86                      | 90.96      | 86.70      | 85.99        | 91.14      | 63.96    |
| CAT (1.0 / -3.0)                 | 36.66                      | 15.76      | 67.51      | 45.71        | 77.07      | 41.75    |
| CAT (0.5 / -5.0)                 | 23.60                      | 12.12      | 67.65      | 52.46        | 71.11      | 38.91    |

1352 C.1 ADVERSARIAL TRAINING  
13531354 **Searching embedding space adversarial perturbation.** We leverage the projected gradient de-  
1355 scent (PGD) (Madry et al., 2018) to solve the following embedding space adversarial perturbation  
1356 searching problem for any harmful input-output pair  $(x, y)$ ,

1357 
$$\delta^* = \left[ \arg \max_{\|\delta_1\|_2, \dots, \|\delta_{|x|}\|_2 \leq \epsilon} \log p_\theta(y|\mathcal{E}(x) + \delta) \right].$$
  
1358

1359 Specifically, PGD will first initialize a starting perturbation as  $\delta^{(0)} := 0_{d \times |x|}$ , and then iteratively  
1360 update it for  $K$  times. In the  $k$ -th iteration, the update is as follows,  
1361

1362 
$$\delta_i^{(k)} = \prod_{\|\delta_i\|_2 \leq \epsilon} \left[ \delta_i^{(k-1)} + \eta \cdot \frac{\partial_{\delta_i} \log p_\theta(y|\mathcal{E}(x) + \delta^{(k-1)})}{\|\partial_{\delta_i} \log p_\theta(y|\mathcal{E}(x) + \delta^{(k-1)})\|_2} \right], \quad \forall i \in \{1, \dots, |x|\},$$
  
1363

1364 where  $\delta^{(k)}$  is the intermediate adversarial perturbation found in the  $k$ -th iteration,  $\delta_i^{(k)}$  is the pertur-  
1365 bation for the  $i$ -th token embedding,  $\eta > 0$  is the step size, and  $\prod_{\|\delta_i\|_2 \leq \epsilon}$  means that the perturbation  
1366  $\delta_i$  for the  $i$ -th input token embedding each token embedding is projected in a ball sphere centered at  
1367  $0_{d \times 1}$ . The eventual adversarial perturbation is  $\delta^* := \delta^{(K)}$ .  
13681369 In all experiments, the perturbation radius  $\epsilon$  is set as 0.05, the update number  $K$  is set as 10, and the  
1370 learning rate is set as  $1 \times 10^{-2}$ .  
13711372 **Loss cut-off technique in LLM AT.** The adversarial loss in CAT and ER-CAT can be decomposed  
1373 into a *toward* loss and an *away* loss as follows,  
1374

1375 
$$\mathbb{E}_{(x, y, \tilde{y}) \in D^{(h)}} \left[ \underbrace{(-\log p_\theta(y|\mathcal{E}(x) + \delta^*))}_{\text{Toward Loss}} + \underbrace{\log p_\theta(\tilde{y}|\mathcal{E}(x) + \delta^*)}_{\text{Away Loss}} \right].$$
  
1376

1377 Then, the original CAT paper (Xhonneux et al., 2024) suggest “cut-off” each loss function  $\mathcal{L}'$  as  
1378

1379 
$$\mathcal{L} = \mathbb{I}[\mathcal{L}'] \cdot 0.999c + (\mathbb{I}[\mathcal{L}' > c] \cdot 0.001 + \mathbb{I}[\mathcal{L}' \leq c]) \cdot \mathcal{L}'$$
  
1380

1381 To prevent over-optimizing both the toward and away losses, we use a cut-off parameter  $c$  and the  
1382 indicator function  $\mathbb{I}[\cdot]$ . Xhonneux et al. (2024) originally set the cut-off value as 0.5 for the toward  
1383 loss and  $-5.0$  for the away loss. However, we have empirically found that such a hyperparameter  
1384 choice significantly reduces the utility of trained LLMs. Specifically, we calculate the LC-WinRate  
1385 of a model trained from CAT with a toward cut-off value of 0.5 and an away cut-off value of  $-5.0$  in  
1386 Table 5. From the table, we find that, for example, the original cut-off setting from Xhonneux et al.  
1387 (2024) can result in the LC-WinRate of Vicuna being 23.60%, which is significantly lower when  
1388 compared with its original LC-WinRate of 76.86% before finetuning.  
13891390 As a result, in our experiments, we relax the cut-off values to 1.0 for the toward loss and  $-3.0$  for  
1391 the away loss in both CAT and ER-CAT to help trained LLMs better preserve their utility.  
13921393 **LoRA setting.** We use the PEFT library (Mangrulkar et al., 2022) to apply LoRA (Hu et al., 2022)  
1394 to the embedding layer and all query and key projection matrices in attention layers of LLMs.  
1395 For the embedding layer, we set its PEFT hyperparameters as  $r=1024$ ,  $lora.alpha=32$ , and  
1396  $lora.dropout=0.1$ . Besides, for the remaining layers, we set their PEFT hyperparameters as  
1397  $r=64$ ,  $lora.alpha=32$ , and  $lora.dropout=0.1$ .  
13981399 **Adversarial training.** We use AdamW to train each model via CAT in Eq. (4) or our ER-CAT in  
1400 Eq. (15), where the embedding space perturbation radius  $\epsilon$  is fixed to 0.05. To improve the efficiency  
1401

1404 of tuning LLMs, LoRA (Hu et al., 2022) is applied to the embedding layer and all query and key  
 1405 projection matrices in attention layers.  
 1406

1407 **Other AT hyperparameters.** In every AT experiment, we perform LLM AT with AdamW for 60  
 1408 iterations, where the learning rate is fixed to  $2 \times 10^{-4}$ . The batch size is set as 64, where 8 samples  
 1409 are adversarial inputs and the remaining 56 samples are utility inputs. We always use “Sorry, I  
 1410 can’t do that.” as the safe response for harmful inputs. For the hyperparameter  $\alpha$  of CAT,  
 1411 we follow Xhonneux et al. (2024) to set it as 0.5. For the hyperparameters  $\alpha$  and  $\beta$  of our ER-CAT,  
 1412 we set them to 0.1 and 0.5, respectively.  
 1413

## C.2 JAILBREAK ATTACKS

1415 We adopt six jailbreak attacks to assess the jailbreak robustness of LLMs. Four of them are  
 1416 token-level suffix attacks, which are: GCG (Zou et al., 2023), BEAST (Sadasivan et al., 2024),  
 1417 GCQ (Hayase et al., 2024), and Zhu’s AutoDAN (Zhu et al., 2024). The remaining two are prompt-  
 1418 level attacks, which are: DeepInception (Li et al., 2023) and PAIR (Chao et al., 2023). We re-  
 1419 implemented all six attacks by ourselves to enable efficient and fair jailbreak evaluations. Addi-  
 1420 tionally, for every suffix attack, the length of adversarial suffix token length is set as 20. Other  
 1421 hyperparameters of jailbreak attacks are set as follows:  
 1422

- **GCG:** According to Algorithm 1 in Zou et al. (2023), hyperparameters that we need to set  
 1423 for GCG include the iteration number  $T$ , the top-k parameter  $k$ , and the “batch-size”  $B$ .  
 1424 We set  $T$  as 500,  $k$  as 256, and  $T$  as 64.
- **BEAST:** According to Algorithm 1 in Sadasivan et al. (2024), hyperparameters that we  
 1426 need to set for BEAST are two beam-search parameters  $k_1$  and  $k_2$ . We set  $k_1$  as 64 and  $k_2$   
 1427 as 16.
- **GCQ:** According to Algorithm 1 in Hayase et al. (2024), hyperparameters that we need to  
 1429 set for GCQ include the iteration number  $T$ , the proxy batch size  $b_p$ , the query batch size  
 1430  $b_q$ , and the buffer size  $B$ . We set  $T = 200$  and  $b_p = b_q = B = 128$ .
- **Zhu’s AutoDAN:** According to Algorithm 1 and Algorithm 2 in Zhu et al. (2024), hyper-  
 1432 parameters that we need to set for Zhu’s AutoDAN are the iteration number  $T$  in each step,  
 1433 objective weights  $w_1$  and  $w_2$ , the top- $B$  parameter  $B$ , and the temperature  $\tau$ . We set  $T$  as  
 1434 3,  $w_1$  as 10,  $w_2$  as 100,  $B$  as 256, and  $\tau$  as 2.
- **DeepInception:** According to Li et al. (2023), DeepInception attack leverages human-  
 1436 crafted jailbreak prompts to perform attacks. Therefore, no hyperparameter need to be set  
 1437 for DeepInception. Additionally, we use the role play-based prompt from Li et al. (2023)  
 1438 to conduct the attack.
- **PAIR:** According to Chao et al. (2023), PAIR leverages an LLM-based attacker and an  
 1440 LLM-based judge to iteratively synthesize, evaluate, and refine jailbreak prompts. We use  
 1441 Mistral-8x7B-Instruct-v0.1 as the base model for attacker and Llama-3-70B-Instruct as the  
 1442 base model for judge. Besides, the number of iteratively refining is fix to 10.

## C.3 ADDITIONAL RESULTS

1444 This section collects experimental results that omitted from Section 5.  
 1445

1446 **Evolutions of singular values of  $W^E$ .** As illustrated in Section 4.4, our proposed ER-CAT aims  
 1447 to regularize the embedding matrix of trained LLMs so that its singular values be neither too large  
 1448 nor too small. Here we empirically show that the introduced regularization term in ER-CAT can  
 1449 indeed help to achieve such a training goal. Specifically, we plot the maximum singular value, the  
 1450 minimum singular value, the standard deviation of the singular values, and the mean of the singular  
 1451 values of the embedding matrix over the training progress of CAT and ER-CAT in Figure 1. From  
 1452 the figure, we find that when compared with the original CAT method, our ER-CAT can optimize  
 1453 the LLM embedding matrix to: (1) reduce its maximum singular value, (2) increase its minimum  
 1454 singular value, (3) reduce the standard deviation of all its singular values, and (4) do not change the  
 1455 mean of singular values too much (the change of mean is less than 2% on every base model). In  
 1456 other words, the newly introduced regularization term in ER-CAT can make these singular values  
 1457 more concentrated. However, we also notice that the reduction in singular values’ standard deviation

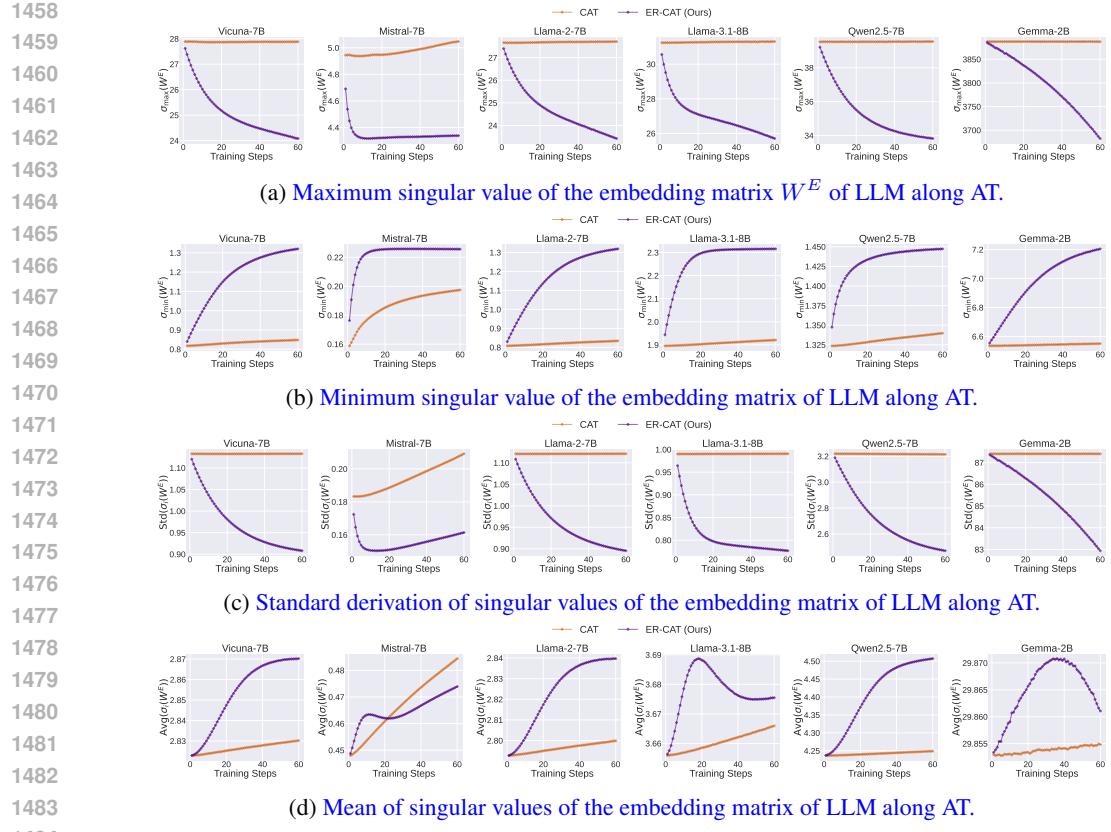


Figure 1: Evolutions of singular values of the embedding matrix of LLMs along AT.

Table 6: 1@5 ASR on different models and attacks. A low ASR indicates a model robustness.

| Model        | Type          | 1@5 ASR (%) ↓ |             |             |               |               |             |
|--------------|---------------|---------------|-------------|-------------|---------------|---------------|-------------|
|              |               | GCG           | BEAST       | GCQ         | Zhu's AutoDAN | DeepInception | PAIR        |
| Vicuna-7B    | Original      | 95.0          | 92.0        | 94.0        | 26.0          | 77.0          | 82.0        |
|              | CAT           | <b>31.0</b>   | 31.0        | <b>14.0</b> | <b>2.0</b>    | <b>22.0</b>   | <b>14.0</b> |
|              | ER-CAT (Ours) | 34.0          | <b>30.0</b> | 18.0        | 5.0           | 25.0          | 30.0        |
| Mistral-7B   | Original      | 94.0          | 89.0        | 92.0        | 64.0          | 84.0          | 73.0        |
|              | CAT           | 25.0          | <b>17.0</b> | 14.0        | 4.0           | 4.0           | <b>33.0</b> |
|              | ER-CAT (Ours) | <b>20.0</b>   | 18.0        | <b>8.0</b>  | <b>2.0</b>    | <b>3.0</b>    | 40.0        |
| Llama-2-7B   | Original      | 61.0          | 30.0        | 9.0         | 11.0          | 70.0          | 44.0        |
|              | CAT           | 45.0          | 30.0        | 15.0        | 8.0           | 24.0          | 25.0        |
|              | ER-CAT (Ours) | <b>32.0</b>   | <b>19.0</b> | <b>5.0</b>  | <b>1.0</b>    | <b>8.0</b>    | <b>12.0</b> |
| Llama-3.1-8B | Original      | 24.0          | 39.0        | 12.0        | 10.0          | 75.0          | 60.0        |
|              | CAT           | <b>9.0</b>    | <b>10.0</b> | <b>0.0</b>  | <b>0.0</b>    | <b>0.0</b>    | 12.0        |
|              | ER-CAT (Ours) | <b>9.0</b>    | 17.0        | <b>0.0</b>  | <b>0.0</b>    | <b>0.0</b>    | <b>9.0</b>  |
| Qwen2.5-7B   | Original      | 86.0          | 86.0        | 82.0        | 26.0          | 90.0          | 63.0        |
|              | CAT           | 41.0          | 43.0        | 40.0        | <b>0.0</b>    | <b>1.0</b>    | 26.0        |
|              | ER-CAT (Ours) | <b>30.0</b>   | <b>31.0</b> | <b>14.0</b> | <b>0.0</b>    | 4.0           | <b>21.0</b> |
| Gemma-2B     | Original      | 79.0          | 68.0        | 21.0        | 8.0           | 45.0          | 34.0        |
|              | CAT           | <b>40.0</b>   | <b>27.0</b> | <b>8.0</b>  | <b>1.0</b>    | 1.0           | <b>10.0</b> |
|              | ER-CAT (Ours) | <b>40.0</b>   | <b>27.0</b> | 15.0        | 3.0           | <b>0.0</b>    | <b>10.0</b> |

might not be large enough, which means that there is still room for improving the effectiveness of concentrating embedding matrix singular values.

**“Worst-case” (1@5 ASR) robustness analysis.** In Section 5, we leverage the metric Avg@5 ASR to evaluate the jailbreak robustness of LLMs. Here we focus on a more challenging setting to assess LLMs’ robustness via the 1@5 ASR metric. Specifically, under the 1@5 ASR metric, each jailbreak

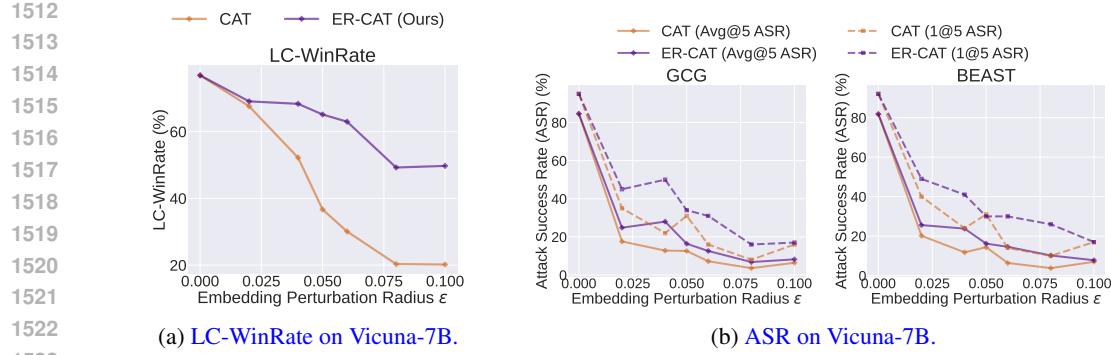


Figure 2: Utility (measured by LC-WinRate) and jailbreak robustness (measured by ASR) on Vicunna-7B trained with different embedding perturbation radius  $\epsilon$  within the range  $[0, 0.1]$ . A high LC-WinRate indicates a better utility, while a low ASR indicates a strong jailbreak robustness.

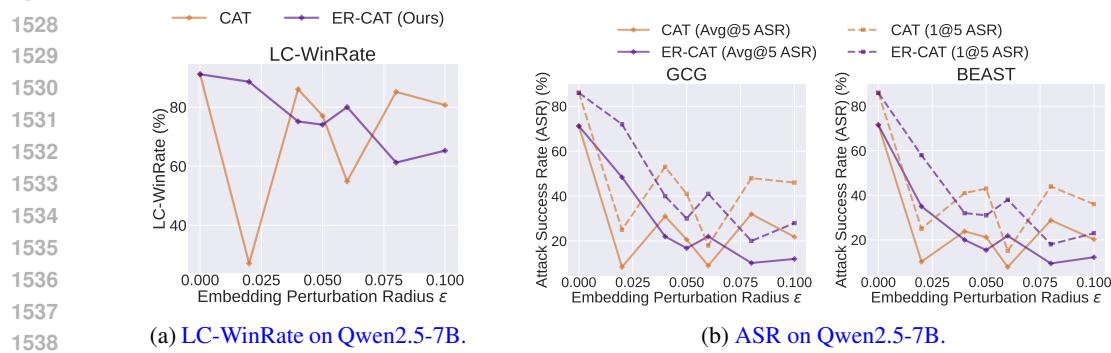


Figure 3: Utility (measured by LC-WinRate) and jailbreak robustness (measured by ASR) on Qwen2.5-7B trained with different embedding perturbation radius  $\epsilon$  within the range  $[0, 0.1]$ . A high LC-WinRate indicates a better utility, while a low ASR indicates a strong jailbreak robustness.

prompt needs to be repeatedly fed into the targeted model 5 times. If any of the 5 responses is judged as a harmful response, then this jailbreak prompt is considered to have successfully jailbroken the targeted model. Results of 1@5 ASR are collected and presented in Table 6. From the table, we have similar observations as those for Avg@5 ASR (see Figure 1 in Section 5), *i.e.*, ER-CAT achieves significantly better jailbreak robustness on Llama-2 and Qwen2.5 models, while maintaining similar robustness on Vicuna, Mistral, Llama-3.1 and Gemma models. It is also worth noting that while ER-CAT and CAT achieve similar robustness on Vicuna and Mistral, according to Table 2 in Section 5, the utility achieved by ER-CAT is significantly better than that by CAT.

**Ablation studies on the embedding space perturbation radius  $\epsilon$  in AT.** In our main experiments, the embedding space perturbation  $\epsilon$  is fixed to 0.05 for both CAT and our ER-CAT. We now analyze how different radii  $\epsilon$  affect the performance of adversarially trained models. Specifically, we train LLMs with different embedding perturbation radii  $\epsilon$  from the set  $\{0, 0.02, 0.04, 0.05, 0.06, 0.08, 0.1\}$  and then calculate their utility (*i.e.*, LC-WinRate) and robustness (*i.e.*, GCG and BEAST). Preliminary results are shown in Figure 2 for Vicuna-7B and Figure 3 for Qwen2.5-7B. From Figure 2, we observe that as the radius  $\epsilon$  increases, ER-CAT maintains similar jailbreak robustness to that of CAT, but the utility of CAT models degenerates rapidly. Besides, from Figure 3 we find that CAT is very sensitive to the change of radius  $\epsilon$  while ER-CAT is less sensitive. We also observe that when the radius is large (*i.e.*,  $\epsilon > 0.02$ ), the jailbreak robustness of ER-CAT is better than that of CAT in most cases.