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Abstract. Instance segmentation has achieved siginificant progress in
the presence of correctly annotated datasets. Yet, object classes in large-
scale datasets are sometimes ambiguous, which easily causes confusion.
In addition, limited experience and knowledge of annotators can also lead
to mislabeled object classes. To solve this issue, a novel method is pro-
posed in this paper, which uses different losses describing different roles
of noisy class labels to enhance the learning. Specifically, in instance
segmentation, noisy class labels play different roles in the foreground-
background sub-task and the foreground-instance sub-task. Hence, on
the one hand, the noise-robust loss (e.g., symmetric loss) is used to pre-
vent incorrect gradient guidance for the foreground-instance sub-task.
On the other hand, standard cross entropy loss is used to fully exploit
correct gradient guidance for the foreground-background sub-task. Ex-
tensive experiments conducted with three popular datasets (i.e., Pascal
VOC, Cityscapes and COCO) have demonstrated the effectiveness of
our method in a wide range of noisy class labels scenarios. Code will be
available at: github.com/longrongyang/LNCIS.

Keywords: noisy class labels, instance segmentation, foreground-instance
sub-task, foreground-background sub-task

1 Introduction

Datasets are of crucial to instance segmentation. Large-scale datasets with clean
annotations are often required in instance segmentation. However, some classes
show similar appearance and are easily mislabeled, as shown in Fig. 1. Mean-
while, some existing papers [11, 19, 24] also mention that inherent ambiguity of
classes and limited experience of annotators can result in corrupted object class
labels. These mislabeled samples inevitably affect the model training. Therefore,
how to train accurate instance segmentation models in the presence of noisy class
labels is worthy to explore.
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(c) Sample with Noise(b) Sample without Noise(a) Image

motorcycle bicycle

Fig. 1. Example of noisy samples in the instance segmentation task. This example is
selected from Cityscapes dataset [5]. In this example, object class motocycle is misla-
beled as class bicycle by the annotator. We mainly discuss the noise on object class
labels in this paper. Similar with methods in classification, datastes with lots of noise
are produced by artificially corrupting labels.

In the classification task, label noise problem has been studied for a long
time. Some existing methods apply the noise-robust loss (e.g., symmetric loss)
to all samples to reduce gradients generated by noisy samples, such as [8,29,33].
These works have achieved promising results in the classification task. How-
ever, in the instance segmentation task, noisy class labels play different roles in
the foreground-background sub-task (i.e., distinguishing foreground and back-
ground) and the foreground-instance sub-task (i.e., classifying different classes
of foreground instances). From the perspective of the foreground-background
sub-task, all class labels always provide correct guidance to the gradient up-
date. Hence, if some key samples to the foreground-background sub-task are
suppressed by the noise-robust loss in the gradient computation, the foreground-
background sub-task is inevitably degenerated.

To solve this problem, we propose a novel method in this paper, which de-
scribes different roles of noisy class labels using diverse losses to enhance the
learning. Firstly, some evidences provided in [1, 21, 32] show that models prone
to fit clean and noisy samples in early and mature stages of training, respectively.
Hence, in early stages of training, the classification loss remains unchanged. In
mature stages of training, we observe that negative samples (i.e., samples be-
longing to background) are impossibly noisy and pesudo negative samples (i.e.,
positive samples misclassified as background) play key role in the foreground-
background sub-task. Hence, cross entropy loss is applied to all negative samples
and pesudo negative samples, to fully exploit correct gradient guidance provided
by these samples for the foreground-background sub-task. Meanwhile, the noise-
robust loss is applied to other samples for the foreground-instance sub-task. In
addition, we also use loss values as the cue to detect and isolate some noisy
samples, to further avoid the incorrect guidance provided by noisy class labels
for the foreground-instance sub-task. This proposed method is verified on three
well-known datasets, namely Pascal VOC [7], Cityscapes [5] and COCO [19]. Ex-
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tensive experiments show that our method is effective in a wide range of noisy
class labels scenarios.

2 Related Works

Learning with noisy class labels for the classification task: Different
methods have been proposed to train accurate classification models in the pres-
ence of noisy class labels, which can be roughly divided into three categories.
The first category is to improve the quality of raw labels by modeling the noises
through directed graphical models [30], conditional random fields [27], neural
networks [17,28] or knowledge graphs [18]. These methods usually require a set of
clean samples to estimate the noise model, which limits their applicability. Hence,
the joint optimization framework [26] does unsupervised sample relabeling with
own estimate of labels. Meanwhile, Label Smoothing Regularization [23,25] can
alleviate over-fitting to noisy class labels by soft labels. The second category is
to compensate for the incorrect guidance provided by noisy samples via modi-
fying the loss functions. For example, Backward [22] and Forward [22] explicitly
model the noise transition matrix to weight the loss of each sample. However,
this method is hard to use because the noise transition matrix is not always
availabel in practice [12]. Hence, some noise-robust loss functions are designed,
such as MAE [8]. However, training a model with MAE converges slowly. To
deal with this issue, Generalized Cross Entropy Loss [33] combines advantages
of MAE and cross entropy loss by Box-Cox transformation [2]. Meanwhile, sym-
metric Cross Entropy Loss is proposed in [29], which applies the weighting sum
of reverse cross entropy loss and cross entropy loss to achieve promising results
in classification. These methods only require minimal intervention to existing
algorithms and architectures. The third category is to introduce an auxiliary
model. For example, a TeacherNet is used to provide a data-driven curricu-
lum for a StudentNet by a learned sample weighting scheme in MentorNet [16].
To solve the accumulated error issue in MentorNet, Co-teaching [13] maintains
two models simultaneously during training, with one model learning from the
another model’s most confident samples. Furthermore, Co-teaching+ [31] keep
two networks diverged during training to prevent Co-teaching reducing to the
self-training MentorNet in function.

These methods suppose that noisy class labels inevitably degenerate the
model accuracy, which is suitable for the classification task, but is invalid for
the instance segmentation task with multiple sub-tasks such as foreground-
background and foreground-instance. It is the fact that noisy labels play different
roles in the two sub-tasks, which need be treated differently.

Instance segmentation: Some instance segmentation models have been
proposed in the past few years [3,6,14,15,20]. Based on the segmentation manner,
these methods can be roughly divided into two categories. The first one is driven
by the success of the semantic segmentation task, which firstly predicts the
class of each pixel, and then groups different instances, such as GMIS [20] and
DLF [6]. The second one connects strongly with the object detection task, such
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as Mask R-CNN [14], Mask Scoring R-CNN [15] and HTC [3], which detects
object instances firstly, and then generates masks from the bounding boxes.
Among these methods, Mask R-CNN [14] selected as the reference backbone for
the task of instance-level segmentation in this paper consists of four steps. The
first one is to extract features of images by CNNs. The second one is to generate
proposals by RPN [10]. The third one is to obtain the classification confidence
and the bounding box regression. Finally, segmentation masks are generated
inside of bounding boxes by the segmentation branch.

Although Mask R-CNN [14] has achieved promising results for the instance
segmentation task, it is based on clean annotations. When there are noisy labels,
its performance drops significantly. In contrast to the classification task, Mask
R-CNN [14] has multiple sub-tasks with different roles and classification losses.
From the perspective of the foreground-background sub-task, noisy class labels
still provide correct guidance. Meanwhile, in instance segmentation, proposal
generation and mask generation are only related with the foreground-background
sub-task. Hence, the binary classification losses in RPN [10] and the segmenta-
tion branch remains unchanged. In this paper, we focus on the multi-class clas-
sification loss in the box head, which is related with the foreground-background
sub-task and the foreground-instance sub-task, simultaneously.

Loss : CE

The First Stage

(1
st
 epoch ~ 6

th
 epoch)

Ω 

Loss : SL

OS

Loss : CE

NEG U PSN

Loss : 0

POS – POS ∩ PSN

The Second Stage

(7
th
 epoch ~ 12

th
 epoch)

Fig. 2. Losses of different types of samples. Ω denotes the total sample space. NEG∪
PSN denotes all negative samples and pseudo negative samples. POS − POS ∩ PSN
denotes potential noisy samples classified foreground. OS denotes other samples. CE
and SL denote standard cross entropy loss and symmetric loss, respectively.

3 Methodology

The multi-class classification in instance segmentation consists of the foreground-
background sub-task and the foreground-instance sub-task. In general, it can be
formulated as the problem to learn a classifier fθ(x) from a set of training samples

D = (xi, yi)
N
i=1 with yi ∈ {0, 1, ...,K}. In instance segmentation, the sample xi



Learning with Noisy Class Labels for Instance Segmentation 5

corresponds to an image region rather than an image. yi is the class label of
the sample xi and can be noisy. For convenience, we assign 0 as the class label
of samples belonging to background. Meanwhile, suppose the correct class label
of the sample xi is yc,i. In this paper, we focus on the noise on object class
labels and 0 is not a true object class label in datasets, so p(yi = 0|yc,i 6= 0) =
p(yi 6= 0|yc,i = 0) = 0 . By a loss function, e.g., multi-class cross entropy loss,
the foreground-background sub-task and the foreground-instance sub-task are
optimized simultaneously:

lce =
1

N

N∑
i=1

lce,i = − 1

N

N∑
i=1

K∑
k=0

q(k|xi)logp(k|xi) (1)

where p(k|xi) denotes classification confidence of each class k ∈ {0, 1, ...,K}
for the sample xi, and q(k|xi) denotes the one-hot encoded label, so q(yi|xi) = 1
and q(k|xi) = 0 for all k 6= yi.

Cross entropy loss is sensitive to label noise. Some existing methods in clas-
sification use the noise-robust loss (e.g., symmetric loss) to replace cross entropy
loss to deal with this problem. However, the noise-robust loss leads to reduced
gradients of some samples, which degenerates the foreground-background sub-
task in instance segmentation. To solve this problem, we describes different roles
of noisy class labels using diverse losses, as shown in Fig. 2.

y≠0

y=0

Loss Value > γ 

Negative 

Samples

Pseudo 

Negative 

Samples

Potential 

Noisy 

Samples

Other 

Samples

argmax(p(k|x)) = 0
k

Fig. 3. Division of samples in this paper. Here, y is the class label of the sample
x. γ is a hyper-parameter that can adjust. p(k|x) is the confidence of x on class k.
Some samples possibly belong to pseudo negative samples and potential noisy samples,
simultaneously.
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3.1 Division of Samples

Firstly, as shown in Fig. 3, all samples are roughly divided into two types: positive
samples and negative samples. In Mask R-CNN [14], positive samples refer to
the samples whose IoUs (Intersection over Union) with the corresponding ground
truths are above 0.5. Hence, it is generally considered that positive samples
belong to foreground (i.e., y 6= 0) and negative samples belong to background
(i.e., y = 0).

Furthermore, positive samples are divided into three types: pseudo negative
samples (PSN), potential noisy samples (PON) and other samples (OS). Here,
we define positive samples which are misclassified as background as pseudo neg-
ative samples. Hence, it is easy to know that, for a pseudo negative samples x,
argmaxk(p(k|x)) = 0. In addition, as shown in Fig. 3, we define samples whose
loss values lce > γ as potential noisy samples. According to our stastics in Fig.
5, in instance segmentation, noisy samples usually have larger loss values than
clean samples in mature stages of training. From Fig. 5, it can be seen that 88.5%
of noisy samples have loss values lce > 6.0 while only 2.31% of clean samples
have loss values lce > 6.0. Subjective examples are also given in Fig. 4 to explain
the difference of different samples.

Foreground

Potential 

Noisy 

Sample

Pseudo 

Negative 

Sample

Background

Negative 

Sample

Label : Background

Car : 0.9357

Truck : 0.0028

Label : Truck

Background : 0.9643

Rider : 0.0034

Label : Rider

Fig. 4. Subjective examples to explain the difference of different samples. Car : 0.9357
denotes that the confidence of this sample is 0.9357 on class Car.

3.2 Classification Loss

In early stages of training, models favor learning clean samples, while hindering
learning noisy samples [32]. As models converge to higher accuracy, noisy samples
gradually contribute more to the gradient update. In mature stages of training,
models prone to fit in noisy samples. Hence, in early stages of training (the first
stage), the classification loss remains unchanged (i.e., cross entropy loss is applied
to all samples). Suppose total sample numbers of a batch are N . Classification
loss of this batch in the first stage can be described as:
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Loss1 = − 1

N

N∑
i=1

K∑
k=0

q(k|xi)logp(k|xi) (2)

where Loss1 denotes the multi-class classification loss in the first stage. Sup-
pose E1 and E are epoch numbers of the first stage and total epoch numbers,
respectively. Under different noise rates, we empirically derive the relation be-
tween E and E1:

E1 =
1

2
E, s.t. ∀η (3)

where η denotes noise rate. In general, E = 12 and E1 = 6.

In mature stages of training (the second stage), the noise-robust loss needs
be introduced. However, this loss leads to reduced gradients of some key samples
to the foreground-background sub-task in instance segmentation. Hence, cross
entropy loss still needs to be used, to prevent the noise-robust loss from de-
generating the foreground-background sub-task. Different losses are applied to
different types of samples to yield a good compromise between fast convergence
and noise robustness.

Firstly, in instance segmentation, noisy class labels only exist in partial fore-
ground regions. Hence, we think that potential noisy labels do not exist in any
negative samples. To fully exploit correct gradient information provided by these
samples for the foreground-background sub-task, standard cross entropy loss is
applied to all negative samples. Secondly, it is clear that the noise on object class
labels does not change this fact that a positive sample belongs to foreground.
Therefore, if a positive sample is misclassified as background, this sample still
plays key role in the foreground-background sub-task even if it is noisy. For this
reason, standard cross entropy loss is also applied to all pseudo negative samples.
In addition, potential noisy samples classified as foreground can be isolated in
the gradient computation, to further aviod incorrect guidance provided by noisy
class labels to the foreground-instance sub-task.

Suppose total sample numbers of a batch are N . Meanwhile, there are N1

negative samples, N2 pseudo negative samples, N3 potential noisy samples clas-
sified foreground and N4 other samples in this batch. N = N1 +N2 +N3 +N4.
In mature stages of training, classification loss of this batch can be described as:

Loss2 = − 1

N
[

N1+N2∑
i=1

K∑
k=0

q(k|xi)logp(k|xi) +

N3∑
m=1

0 +

N4∑
j=1

(−lsl,j)] (4)

where Loss2 denotes the multi-class classification loss in the second stage.
lsl,j denotes a symmetric loss function which is robust to noise.
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3.3 Reverse Cross Entropy Loss

In this paper, we select reverse cross entropy loss proposed in [29] as the sym-
metric loss lsl,i. The reverse cross entropy loss is defined as:

lrce,i = −
K∑
k=0

p(k|xi)logq(k|xi) (5)

where lrce,i denotes the reverse cross entropy loss for the sample xi. This
kind of loss is robust to noise but takes longer time to converge [29]. Meanwhile,
there is also a compromise in accuracy due to the increased difficulty to learn
useful features. In this paper, the clipped replacement A of log0 is set to −4.

4 Theoretical Analyses

4.1 Noise Robustness

We explain the noise robustness of reverse cross entropy loss from the perspective
of symmetric loss. For any classifier f , R(f) or Rη(f) denotes the risk of f under
clean class labels or noisy class labels (noise rate η), respectively. Suppose f∗

and f∗η are the global minimizers of R(f) and Rη(f), respectively. Let X ⊂ Rd

be the feature space. A symmetric loss function l is defined as:

K∑
y=0

l(f(x), y) = C, ∀x ∈ X , ∀f. (6)

where C is a constant. In [9], it has been proven that if loss function is
symmetric and noise rate η < K

K+1 , then under symmetric label noise, for ∀ f ,

Rη(f∗) − Rη(f) = (1 − η(K+1)
K )(R(f∗) − R(f)) 6 0. Hence, f∗η = f∗ and l is

noise robust. Moreover, it can also be proven, if R(f∗) = 0, that l is noise robust
under asymmetric noise. Meanwhile, according to Eq. 5, we can derive:

K∑
y=0

lrce = −
K∑
y=0

K∑
k=0

p(k|x)logq(k|x)

= −
K∑
y=0

(

K∑
k 6=y

p(k|x)log0 + p(y|x)log1)

= −
K∑
y=0

[1− p(y|x)]log0 = −KA

where −KA is a constant when class numbers K and A (log0 = A) are given.
Hence, reverse cross entropy loss is symmetric and noise robust.
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4.2 Gradients

Gradients of reverse cross entropy loss and cross entropy loss have been derived
in [29]. Based on this, we can explain why models favor learning clean samples
in early stages of training, while hindering learning noisy samples. This is not
discussed in [29]. For brevity, we denote pk, qk as abbreviations for p(k|x) and
q(k|x). We focus on a sample {x, y} ⊂ D. The gradient of reverse cross entropy
loss with respect to the logit zj can be derived as:

∂lrce
∂zj

=

{
Apj −Ap2j , qj = qy = 1
−Apjpy, qj = 0

(7)

The gradient of cross entropy loss lce is:

∂lce
∂zj

=

{
pj − 1, qj = qy = 1
pj , qj = 0

(8)

Analysis. As shown in Eq. 8, for cross entropy loss, if qj = 1, samples
with smaller pj contribute more to the graident update. Based on this, it is
clear that models gradually prone to fit noisy samples as models converge to
higher accuracy. To clarify this, suppose sample A and sample B belong to the
same class C1. pa,c1 denotes that the classification confidence of sample A on
class C1. Meanwhile, suppose class labels of sample A and B are C1 and C2,
respectively (C1 6= C2). At the beginning of the training, pa,c1 ≈ pb,c2 hence
their contribution to the gradient computation is approximately equal. When
the training continues to later stages of training, because the accuracy of models
increases, pa,c1 increases and pb,c2 decreases. As a result, gradients generated by
noisy samples become larger and gradients generated by clean samples become
smaller. When noisy samples contribute more to the gradient computation than
clean samples, model begins to prone to fit noisy samples.

Secondly, the weakness of reverse cross entropy loss can also be explained
from the respect of gradients. As shown in Eq. 7, if qj = 1, gradients of reverse
cross entropy loss are symmetric about pj = 0.5. This means that, if pj of a
sample is close to 0, the gradient generated by this sample is also close to 0.
This is the reason why this loss is robust to noise. However, this also leads to
reduced gradients of clean samples whose pj is close to 0 and these samples
usually play key role in training.

5 Experiments

5.1 Datasets and Noise Settings

Pascal VOC dataset: On Pascal VOC 2012 [7], the train subset with 5718
images and the val subset with 5823 images are used to train the model and
evaluate the performance, respectively. There are 20 semantic classes on Pascal



10 L. Yang et al.

VOC dataset [7]. All objective results are reported following the COCO-style
metrics which calculates the average AP across IoU thresholds from 0.5 to 0.95
with an interval of 0.05.

COCO dataset: COCO dataset [19] is one of the most challenging datasets
for the instance segmentation task due to the data complexity. It consists of
118,287 images for training (train-2017 ) and 20,288 images for test (test-dev).
There are 80 semantic classes on COCO dataset [19]. We train our models on
train-2017 subset and report objective results on test-dev subset. COCO stan-
dard metrics are used in this paper, which keeps the same with traditional in-
stance segmentation methods.

Cityscapes dataset: On Cityscapes dataset [5], the fine training set which
has 2975 images with fine annotations is used to train the model. The validation
set has 500 images, which is used to evaluate the performance of our method.
Eight semantic classes are annotated with instance masks.

Noise settings: Noisy datasets are produced by artificially corrupting ob-
ject class labels. Similar with noise settings in classification, there are mainly
two types of noise in this paper: symmetric (uniform) noise and asymmetric
(class-conditional) noise. If the noise is conditionally independent of correct class
labels, the noise is named as symmetric or uniform noise. Class labels with sym-
metric noise are generated by flipping correct class labels of training samples
to a different class with uniform random probability η. For class labels with
asymmetric noise, similar with [22,33], flipping labels only occurs within specific
classes which are easily misclassified, for example, for VOC dataset, flipping
Bird → Aeroplane, Diningtable → Chair, Bus → Car, Sheep → Horse,
Bicyce ↔ Motobike, Cat ↔ Dog; for Cityscapes dataset, flipping Person ↔
Rider, Bus ↔ Truck, Motorcycle ↔ Bicycle; for COCO dataset, 80 classes
are grouped into 12 super-classes based on the COCO standard, then flipping
between two randomly selected sub-classes within each super-class. Super-class
Person is not flipped because this super-class only has a sub-class.

5.2 Implementation Details

Hyper-parameters: For COCO dataset, the overall batch size is set to 16. The
initial learning rate is set to 0.02. We train for 12 epoches (1×) and the learning
rate reduces by a factor of 10 at 8 and 11 epoches. For Cityscapes dataset, the
overall batch size is set to 2. The initial learning rate is set to 0.0025. We train
for 64 epoches and the learning rate reduces by a factor of 10 at 48 epoches. For
Pascal VOC dataset, the overall batch size is set to 4. The initial learning rate is
set to 0.005. We train for 12 epoches and the learning rate reduces by a factor of
10 at 9 epoches. Other hyper-parameters follow the settings in MMdetection [4].

In our method, we set γ = 6.0 for all datasets. For symmertric noise, we test
varying noise rates η ∈ {20%, 40%, 60%, 80%}, while for asymmetric noise, we
test varying noise rates η ∈ {20%, 40%}.
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Table 1. The results on Pascal VOC dataset. 0% denotes no artificially corrupting
class labels. We report the mAP s of all methods. The best results are in bold.

Methods Symmetric Noise Asymmetric Noise

Noise Rates(η) 0% 20% 40% 60% 80% 20% 40%

LSR [23] 36.7 34.5 31.9 27.0 20.3 35.8 33.2
JOL [26] 32.7 22.7 11.5 3.8 3.8 24.6 24.3
GCE [33] 38.7 35.3 32.9 26.1 15.5 36.0 32.3
SCE [29] 39.4 34.6 32.1 27.9 21.2 37.5 34.9

CE [14] 39.3 34.2 31.5 27.1 20.7 36.8 34.5

Our Method 39.7 38.5 38.1 33.8 25.5 37.8 35.1

Table 2. The results on COCO test-dev subset.

Methods Symmetric Noise Asymmetric Noise

Noise Rates(η) 0% 20% 40% 60% 80% 20% 40%

SCE [29] 32.3 31.5 29.9 28.2 22.0 32.1 31.6

CE [14] 34.2 31.3 29.3 27.1 21.7 31.9 31.3

Our Method 33.7 33.1 31.3 30.8 26.6 33.3 33.0

5.3 Main Results

Baselines: How to effectively train an instance segmentation model in the pres-
ence of noisy class labels is never discussed in existing papers. Hence, we mainly
compare our method with some methods [23, 26, 29, 33] proposed in the classi-
fication task as well as the standard CE loss [14]: (1) LSR [23]: training with
standard cross entropy loss on soft labels; (2) JOL [26]: training with the joint
optimization framework. Here, α is set to 0.8 and β is set to 1.2; (3) GCE [33]:
training with generalized cross entropy loss. Here, q is set to 0.3; (4) SCE [29]:
training with symmetric cross entropy loss lsce = αlce + βlrce. Here, α is set to
1.0 and β is set to 0.1; (5) CE [14]: training with standard cross entropy loss.
Based on our experiments, we select the best hyper-parameter settings for meth-
ods proposed in classification. Note we only change the multi-class classification
loss in box head. Mask R-CNN [14] is used as the instance segmentation model
and the backbone is ResNet-50-FPN in all methods.

Pascal VOC dataset: The objective results are reported in Table 1. Com-
pared with [14], methods proposed in classification bring marginal accuracy
increase (below 2% under different noise rates) if directly applied to instance
segmentation. However, our method can generate a substantial increase in per-
formance by using different losses describing different roles of noisy class labels.
Specifically, compared with [14], the accuracy increases 4.3%, 6.6%, 6.7% and
4.8% for 20%, 40%, 60% and 80% of symmetric label noise, respectively. Under
20% and 40% asymmetric noise, the accuracy increases by 1.0% and 0.6%, re-
spectively. It can be seen that our method yields an ideal accuracy under different
noise rates.

COCO dataset: The objective results are reported in Table 2. Compared
with [14], the accuracy increases 1.8%, 3.1%, 4.2% and 4.9% for 20%, 40%, 60%
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Table 3. The results on Cityscapes dataset.

Methods Symmetric Noise Asymmetric Noise

Noise Rates(η) 0% 20% 40% 60% 80% 20% 40%

SCE [29] 30.2 26.1 22.3 12.6 9.3 28.0 18.6

CE [14] 32.5 26.0 21.0 13.3 11.6 29.8 18.9

Our Method 32.7 30.8 29.1 19.1 15.2 30.9 21.3

and 80% of symmetric label noise, respectively. Under 20% and 40% asymmetric
noise, the accuracy increases by 1.4% and 1.7%, respectively.

Cityscapes dataset: The objective results are reported in Table 3. Com-
pared with [14], the accuracy increases 4.8%, 8.1%, 5.8% and 3.6% for 20%,
40%, 60% and 80% of symmetric label noise, respectively. Under 20% and 40%
asymmetric noise, the accuracy increases by 1.1% and 2.4%, respectively.

5.4 Discussion

Component ablation study: Our component ablation study from the baseline
gradually to all components incorporated is conducted on Pascal VOC dataset [7]
and noise rate η = 40%. We mainly discuss:

(i) CE: The baseline. The model is trained with standard cross entropy loss;
(ii) ST: Stage-wise training. We apply cross entropy loss and reverse cross

entropy loss to all samples in early and mature stages of training, respectively.
(iii) N & PSN: The key contribution in this paper. Cross entropy loss is

applied to all negative samples and pseudo negative samples. Meanwile, reverse
cross entropy loss is applied to other samples;

(iv) N & PSN & PON: Cross entropy loss is applied to all negative samples
and pseudo negative samples. Meanwhile, potential noisy samples classified as
foreground are isolated in the gradient computation.

(v) ST & N: Stage-wise training is applied. Meanwhile, cross entropy loss is
applied to negative samples in mature stage of training;

(vi) ST & N & PSN: Stage-wise training is applied. Meanwhile, cross en-
tropy loss is applied to all negative samples and pseudo negative samples in
mature stage of training;

(vii) ST & N & PSN & PON: Stage-wise training is applied. Meanwhile,
cross entropy loss is applied to all negative samples and pseudo negative samples
in mature stage of training. In addition, in mature stage of training, potential
noisy samples classified as foreground are isolated in the gradient computation.

The results of ablation study are reported in Table 4. Firstly, the key strat-
egy in this paper (i.e., using different losses to describe different roles of noisy
class labels) brings 5.8% higher accuracy than the baseline, which shows that
this strategy is greatly important in instance segmentation. Secondly, stage-wise
training can bring 2.8% higher accuracy than the baseline. However, if already
considering special properties of negative samples and pseudo negative samples,
stage-wise training can only bring about 0.6% higher accuracy. This means, the



Learning with Noisy Class Labels for Instance Segmentation 13

Table 4. Component ablation study. CE denotes the baseline. ST denotes stage-wise
training. N denotes applying cross entropy loss to all negative samples. PSN denotes
applying cross entropy loss to all pseudo negative samples. PON denotes isolating all
potential noisy samples classified as foreground.

CE ST N PSN PON AP AP50 AP75√
- - - - 31.5 57.4 31.0√

34.3 59.9 35.1√ √
37.3 63.5 39.0√ √ √
36.5 63.2 37.4√ √
37.4 64.7 39.0√ √ √
37.9 64.7 38.0√ √ √ √
38.1 64.5 40.0

main reason that stage-wise training works in instance segmentation is factually
to fully exploit correct gradient information for the foreground-background sub-
task. Thirdly, using loss values as the cue to identify noisy samples (i.e., PON)
brings marginal accuracy increase (about 0.2%), and stage-wise training (i.e.,
ST) should be applied simultaneously when PON is applied.

The relation between E and E1: Stage-wise training applies cross entropy
loss to all samples in early stages of training, to speed the convergence of models.
In mature stages of training, different losses are applied to different samples to
yield a good compromise between fast convergence and noise robustness. We
conduct some experiments about different E and E1 under noise rate η = 40%
in Table 5. From Table 5, it can be seen that E1 = 0.5E is the best setting.

Table 5. Study about the relation between E and E1. E1 and E are epoch numbers
of the first stage and total epoch numbers, respectively.

AP AP50 AP75

E = 12, E1 = 3 37.2 63.7 39.0
E = 12, E1 = 6 38.1 64.5 40.0
E = 12, E1 = 9 34.6 61.1 34.8

E = 18, E1 = 6 36.2 62.2 37.9
E = 18, E1 = 9 38.5 66.0 39.8
E = 18, E1 = 12 38.2 66.0 39.7
E = 18, E1 = 15 32.5 58.8 33.3

Hyper-parameter analysis: In our method, γ is a hyper-parameter that
need be discussed. Positive samples whose loss values lce > γ are named as
potential noisy samples. We observe that for a sample, if pj = 0.01 and qj = 1,
cross entropy loss lce = 4.5052. Meanwhile, if pj = 0.9, lce = 0.1054. Hence,
we think that γ must satisfy γ ≥ 5.0 to identify noisy samples, which also fits
statistics shown in Fig. 5. Several experiments are conducted about γ in Table
6. In our setting, we set γ = 6.0 for all datasets and all noise rates.
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Clean Samples 39436

Loss Value > 6.0

Sample Types Numbers

909

Numbers

2.31%

Percentage

Noisy Samples 9173

Loss Value > 6.0 8118 88.5%

Loss Value < 6.0

Loss Value < 6.0

38527 97.69%

1055 11.5%

Clean Samples

Noisy Samples

Fig. 5. Loss values lce and statistics of samples after the sixth epoch. We sample about
50000 samples.

Table 6. The settings of γ. γ controls how many samples are identified as potential
noisy samples.

AP AP50 AP75

γ = 4.0 37.5 64.0 37.8
γ = 5.0 38.0 64.9 39.7
γ = 6.0 38.1 64.5 40.0
γ = 7.0 38.0 64.7 40.0
γ = 8.0 37.2 62.6 38.1

6 Conclusion

In this paper, we propose a novel method to effectively train an instance seg-
mentation model whose performance is robust under noisy supervision. Our key
strategy is to use different losses describing different roles of noisy class labels.
Based on this, correct gradient information is fully exploited for the foreground-
background sub-task and incorrect guidance provided by noisy samples is avoided
for the foreground-instance sub-task. We have conducted sufficient experiments
on three well-known datasets (i.e., Pascal VOC, Cityscapes and COCO). The
results show the superiority of our method in various noisy class labels scenarios.
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