
Balanced Mixture of SuperNets
for Learning the CNN Pooling Architecture

Mehraveh Javan Roshtkhari1 Matthew Toews1 Marco Pedersoli1

1
École de technologie supérieure (ÉTS), Montreal, Canada

Abstract Downsampling layers, including pooling and strided convolutions, are crucial components of

the convolutional neural network architecture that determine both the granularity/scale of

image feature analysis as well as the receptive field size of a given layer. To fully understand

this problem, we analyse the performance of models independently trained with each pooling

configurations on CIFAR10, using a ResNet20 network and show that the position of the

downsampling layers can highly influence the performance of a network and predefined

downsampling configurations are not optimal.

Network Architecture Search (NAS) might be used to optimize downsampling configurations

as an hyperparameter. However, we find that common one-shot NAS based on a single

SuperNet does not work for this problem. We argue that this is because a SuperNet trained

for finding the optimal pooling configuration fully shares its parameters among all pooling

configurations. This makes its training hard because learning some configurations can harm

the performance of others.

Therefore, we propose a balanced mixture of SuperNets that automatically associates pooling

configurations to different weight models and helps to reduce the weight-sharing and inter-

influence of pooling configurations on the SuperNet parameters. We evaluate our proposed

approach on CIFAR10, CIFAR100, as well as Food101, and show that in all cases our model

outperforms other approaches and improves over the default pooling configurations.

1 Introduction

Downsampling layers in convolutional neural networks (CNN) are crucial, as they provide robust-

ness to shift and scale variations (Zhao et al., 2017), reduce the computational cost of models (Jin

et al., 2021; Riad et al., 2022), and control the access of subsequent convolution kernels to spatial

information, determining their receptive field (Le and Borji, 2017; Luo et al., 2016). In CNNs, spatial

resolution is related to the receptive field, which determines the aggregation of local features and

affects the performance of the CNN (Jang et al., 2022; Richter and Pal, 2022). The receptive field in

turn is controlled indirectly by the hyperparametrs of the network such as depth, filter sizes and

downsampling/pooling layers. The spatial density of the content in a dataset highly affects the

optimal receptive field and therefore the spatial pooling configuration. For instance, for a good

recognition on textures, smaller and more detailed local patterns are more important (Jang et al.,

2022), while for shapes, considering larger regions of the image should provide a better representa-

tion (Luo et al., 2016). Thus, being able to select how to downsample the image representation in

CNNs can help to better adapt the representation to the specific characteristics of a given dataset

and help to better understand the way that convolutional neural network find meaningful patterns

in images, and therefore determine what are the relevant features for a given task (Riad et al., 2022).

In CNN design, feature map downsampling is commonly performed by applying a strided

convolution (Howard et al., 2017), a convolution followed by a pooling operation (Simonyan and

Zisserman, 2014; Szegedy et al., 2015) or a combination of the two (He et al., 2016). For a downstream

task such as classification, the position of the downsampling in a network architecture is pre-defined

AutoML 2023 © 2023 the authors, released under CC BY 4.0

mailto:mehraveh.javan-roshtkhari.1@ens.etsmtl.ca
mailto:matthew.toews@etsmtl.net
mailto:marco.pedersoli@etsmtl.ca
https://creativecommons.org/licenses/by/4.0/

and based on the assumption that the receptive field should increase over layers until covering

most of the image (Richter and Pal, 2022). While this assumption can be removed by the use of

self-attention (Chen et al., 2021), its usage seems still utterly important for a good trade-off of

computation and accuracy (Liu et al., 2021). In this work we show that the commonly used pooling

configurations may not be optimal. A possible solution is to learn the best pooling configuration

for the dataset at hand. However, pooling configurations are discrete parameters and the number

of candidate architectures grows exponentially with depth, making bruteforcefully searching for

the best pooling configuration computationally infeasible for modern CNNs.

Previous works that attempt to find optimal feature map sizes in a predefined architecture avoid

the discrete nature of sub-sampling layers by relaxing the problem by learning resizing modules

(Liu et al., 2020; Riad et al., 2022; Jang et al., 2022), or indirectly do so by learning continuous filter

sizes (Romero et al., 2021; Pintea et al., 2021; Romero et al., 2021) at the same time as training the

CNN. Some works, such as DiffStride (Riad et al., 2022), cast learning fractional strides as learning

cropping size in frequency domain, the pooling is performed in spectral domain resulting in higher

cost and involving complex value operations.

Differently than previous work, we cast the problem of finding the optimal scales of analyzing

the CNN features as a Neural Architecture Search (NAS) problem. A popular research direction for

solving NAS problem is to first relax the optimization problem into an equivalent, but differentiable

one and then find the optimal hyper-parameters through bi-level optimization (Liu et al., 2018b).

The search is then reduced to the training of a single over-parameterized network that contains all

the searchable configurations, commonly called a SuperNet. However, differentiable models are

computationally and memory-wise demanding, because they evaluate all model configurations at

each training iteration. Additionally, they do not always provide optimal solutions as the bi-level

optimization is heavily approximated (Xue et al., 2021) and it is difficult to impose constraints in

configurations (as some configurations might not be feasible).

An alternative is to train a SuperNet by sampling at each iteration a different sub-net (Guo

et al., 2020; Li and Talwalkar, 2020; Stamoulis et al., 2020), while selecting the most likely sub-net

(Single Path Single-Shot. This solves the problems of computation and memory and is not limited

to differentiable models. However, finding the optimal subnet during training is quite risky because

the estimation of the gradients for sampling based algorithms is very noisy (Li and Talwalkar, 2020)

and the learning can easily be misled by this noise. These NAS approaches are sometimes referred

to as coupled or one-stage approaches, since the training of the SuperNet and searching for the

optimal configuration are performed together. In general, coupled optimization of architecture and

weights suffer from bias towards rapidly converging networks and multi-model forgetting (He et al.,

2021). A promising alternative is a two-stage search method, where a SuperNet is used to sample

configurations uniformly with shared parameters for training, but no specific configuration is

selected or preferred (Guo et al., 2020). Instead, after training, at search stage, the best configurations

are evaluated on a validation set and selected. Even though in this case, training might be slightly

longer, because it does not favor any sub-net, the simplicity and the robustness of the provided

results make it a promising candidate for NAS, especially for those problems that are difficult to be

relaxed in a differentiable way (Ren et al., 2021). For a more detailed analysis of related work see

Appendix A.

In this work we tested both differentiable and sample based approaches, but both failed to

provide good results for finding the optimal pooling configuration of a network. We hypothesize

that the underlying reason is two fold: inappropriate search space design, and strong weight sharing

in SuperNet. We show that defining the search space naively, by treating each resolution similar to

independent operations, does not necessarily return better results than fully sharing weights among

all resolutions, despite lower degree of weight sharing among the former. This search space design

result in greedily reducing the weight sharing, i.e. all configurations with the same resolution at a

2

layer share weights, regardless of the path as a whole. Therefore, even though complete weight

sharing pose a problem, its reduction should be performed in a more appropriate way.

To investigate this problem, we perform extensive experiments on on CIFAR10 dataset to find the

optimal pooling configuration on ResNet20. As the resolution of CIFAR10 images is low, ResNet20

requires only 2 pooling layers, which amounts (after reasonable constraints) to 36 configurations.

Thus, we have independently trained all configurations and consider the obtained accuracy as our

ground truth performance. A revealing result is that, even with only 36 possible configurations

and the extreme use of CIFAR10 for image classification, the standard pooling strategy is not the

optimal and there is a gap of more than one point.

In order to find the optimal pooling configuration, we propose a new model based on SuperNet

sampling that reduces the problem of parameter sharing by using multiple balanced SuperNets.

The sampling of the pooling configuration is kept uniform as in (Guo et al., 2020), to avoid to

introducing bias. However, to avoid interference among the different pooling configurations, we

train multiple models at the same time. Each configuration favors sampling the model that leads

to higher accuracy with it, while making sure that all models on average receive equal amounts

of training, so that they are balanced. This training strategy allows each model to specialize to

different pooling configurations.

Our main contributions are summarized as follows:

• We present the task of finding the optimal CNN downsampling or pooling layers as a NAS

problem, and perform extensive experiments to evaluate search space design and NAS methods

on the CIFAR10 classification task with ResNet20 architecture. We show that designing the

search space for this problem requires more insight and a naive design can lead to poor pooling

configurations.

• We show that, while optimal pooling configurations can improve upon the performance of

standard configurations on the widely used CIFAR10 dataset, they are not identified by common

NAS methods. We argue that this is due to weight sharing in the SuperNet and more specifically

to the full weight sharing of the problem.

• We propose a balanced mixture of SuperNets that reduces the weight sharing problem by learning

the correct association between each pooling configuration and one of the weight models.

• We validate our approach on several datasets and CNN configurations and show that by only

learning the optimal scales with our method, we can improve the classification performance of

ResNet architectures without altering any other hyperparameters.

2 Our Approach: Balanced Mixture of SuperNets
In this section we present the search space that we use in order to find the optimal pooling

configurations. Then we present the corresponding SuperNet model and finally the balanced

mixture of SuperNets we propose to tackle the full weight sharing problem.

2.1 Search Space
In this work we focus on finding the optimal spatial resolution of the feature maps in a CNN, that

are controlled by downsampling operations.

First, we consider the general search space that contain 𝑟 resolutions per layer. The downsam-

pling is performed by applying the most commonly used downsampling operations such as max

pooling, reducing feature map size by a factor of two. Similarly to typical layer-wise operations, we

can assign unique convolutional operations to each resolution at each layer. Considering 𝐿 layers,

this will result in search space of size 𝑟𝐿 . We note that for classification it is well known that the

resolution of feature map is reduced across layers. Therefore, paths in the search space that contain

upsampling operations are not appropriate for this task.

3

L
ay

er
s

87.45

Early Pooling

91.83

Late Pooling

86.81

Combination

89.84

Figure 1: Interference of representations for ResNet20 on CIFAR10. Early pooling and late pooling
produce different feature representations on their layers, which lead to different performance

(on top). When training a model by sampling either one or the other pooling configuration

(combination), the two representations interfere which leads to lower performance of both

models. This motivated us to propose a mixture of models.

As downsampling operations reduce the feature map size, the boundary of this search space

is determined by input size and the minimum feature map size expected before the classification

layer. We consider the same number of downsampling operations as a default network (i.e. the

predefined network configuration) and exclude from the search space the first pooling layer as the

it corresponds to a manipulation of the input data. With these restrictions, the search space size is

combination

(
𝐿−1
𝑝

)
, exponentially growing with the depth of the network. With 𝑝 + 1 resolutions

present at the search space, each architecture in this search space can be uniquely identified by

the number of blocks in each resolution as 𝛼 = [𝑛0, 𝑛1, ..𝑛𝑝+1], where 𝑛𝑖 is the number of blocks in

resolution 𝑖 and
∑

𝑖 𝑛𝑖 = 𝐿. The search space design for each experiment is detailed in Appendix

B.2 in tab. 5

For simplicity we use a pre-defined number of channels for all architectures, ensuring the same

number of parameters in all architectures. We choose ResNet (He et al., 2016) as the building block

of our search space as it is one of the most widely used and well studied architectures and ensured

the incorporation of skip connections in our search space. As in ResNet the basic block is not a

single convolutional layer but a block (with two convolutional layers and the skip connection), we

use this block instead of a layer as basic unit to move the pooling location.

2.2 SuperNet

In order to find the optimal pooling configuration, we follow a two-stage strategy in which we first

sample all configurations during training and then evaluate the best ones at evaluation time. We

follow single-path uniform sampling strategy (Guo et al., 2020), by sampling a pooling configuration

𝑐 ∈ C (from the search space described above) with uniform probability at each iteration. For a

mini-batch of training samples and the corresponding annotations (𝑥,𝑦) ∈ X𝑡𝑟 , we update the

network weights𝑤 by minimizing the following loss:∑︁
(𝑥,𝑦)∼X𝑡𝑟 ,𝑐∼C

L(𝑓𝑐 (𝑥,𝑤), 𝑦), (1)

where 𝑓𝑐 is the output of the network for a given pooling configuration 𝑐 and L is a classification

loss such as cross-entropy. The choice of uniform sampling (Xie et al., 2018; Guo et al., 2020) is

hyperparameter free and ensures fairness in training among architectures. As the configurations

are chosen uniformly, this training does not favor any specific configuration provides a meaningful

estimation of the performance of each configuration.

At the end of training, the network 𝑓 is evaluated on a validation set X𝑣𝑎𝑙 for all configurations

C, and top-k configurations with higher accuracy are selected as best configurations. Previous work

has shown that this approach works when used to select network parts that do not share weights,

however, in our setting, as all configurations share the same parameters, they produce interference,

4

P(c) = uniform

x

P(m)

Sample

c

Sample

m

ℒ(𝑓𝑐 𝑥,𝑤𝑚 , 𝑦)

𝒳𝑣𝑎𝑙

𝒳𝑡𝑟

𝐴𝑐𝑐(𝑓𝑐 𝑥, 𝑤𝑚 , 𝑦)

update

M

C

𝑓𝑐 𝑥, 𝑤𝑚

𝑓𝑐 𝑥, 𝑤𝑚

Figure 2: Balanced Mixture of SuperNets. At each training iteration we uniformly sample a pooling

configuration 𝑐 , then a model with a probability proportional to 𝑝 (𝑚 |𝑐). The model weights

𝑤𝑚 are updated on a mini-batch of training data from model accuracy 𝐴𝑐𝑐 on validation

data. A moving average of the accuracy is used to update 𝑝 (𝑐,𝑚) such that 𝑝 (𝑚) remains

a uniform, balanced mixture of models, ensuring that each model is trained for the same

number of iterations.

and the SuperNet is no longer a good proxy to find the best performing configurations, which is the

aim of this approach. This is illustrated in Fig. 1, where jointly training two pooling configurations

produces worse results than training either one or the other independently. In fact, the features

and structures seen by the convolutional filters when working with different pooling configuration

are drastically different and learning them together hinder performance. For this reason, to reduce

the weight sharing and to avoid the interference of different configurations on the same model we

propose to use a mixture of models.

2.3 Balanced Mixture of SuperNets

Instead of using a single set of weights or SuperNet, we propose to use𝑀 independent SuperNet

models or weight sets𝑤𝑚 associated with a network 𝑓𝑐 . In this way, each set of weights may special-

ize to represent unique subsets of specific pooling configurations, leading to improved performance.

After each mini-batch training iteration, we compute the moving average of the accuracy 𝑎𝑐,𝑚 on a

validation minibatch X𝑣𝑎𝑙 for a given network 𝑓𝑐 (·,𝑤𝑚) with pooling configuration 𝑐 and weight

set𝑤𝑚 as follows:

𝑎𝑐,𝑚 = 𝛽 𝑎𝑐,𝑚 + (1 − 𝛽) 𝐴𝑐𝑐 (𝑓𝑐 (𝑥,𝑤𝑚), 𝑦), (𝑥,𝑦) ∼ X𝑣𝑎𝑙 , 𝑐 ∼ C, 𝑚 ∼ 𝑝 (𝑚 |𝑐) (2)

where 𝛽 is a hyper-parameter controlling the smoothness of the moving average. At each iteration,

the pooling configuration 𝑐 is sampled uniformly, while the model 𝑚 is sampled based on the

conditional probabilities 𝑝 (𝑚 |𝑐) = 𝑝 (𝑐,𝑚)∑
𝑐 𝑝 (𝑐,𝑚) . The probability 𝑝 (𝑐,𝑚) is computed by normalizing

the accuracies 𝑎𝑐,𝑚 with a 𝜏-softmax function:

𝑝 (𝑐,𝑚) = exp(𝑎𝑐,𝑚/𝜏)∑
𝑗,𝑘 exp(𝑎 𝑗,𝑘/𝜏)

, (3)

where in Equation (3) 𝜏 is a temperature hyperparameter of the probability distribution where

𝜏 → 0 implies a maximally concentrated distribution. These probabilities are thus proportional to

the accuracy of the chosen joint configuration of pooling 𝑐 and model𝑚. We could use directly

these probabilities to sample with a multinomial distribution a joint configuration (𝑐,𝑚) to train a

mini-batch. However, this would make the model focus on some specific joint configuration/model

during training and will lead to coupling of pooling configurations and models due to unbalanced

sampling. Instead we want the training to give equal importance to each pooling configuration 𝑐

while selecting the most promising model. The best pooling strategy is then selected at the end of

the training, making sure that each configuration and each model have received the equal amounts

of training.

5

We thus achieve balance SuperNet mixtures by imposing the constraint that the joint probability

distribution 𝑝 (𝑐,𝑚) have uniform marginals, i.e.

∑
𝑖 𝑝 (𝑐𝑖) = 1/𝐶 and

∑
𝑗 𝑝 (𝑚 𝑗) = 1/𝑀 . We use

the iterative proportional fitting (IPF) algorithm to achieve this, where 𝑝 (𝑐,𝑚) is alternatingly
normalized along 𝑐 and𝑚 dimensions until uniformity is achieved. The KL-distance is used to

estimate the deviation of 𝑝 (𝑚) from uniformity, and IPF terminates when the KL-distance falls

below the threshold of 𝛿 = 0.0001. At this point the pooling configuration 𝑐 is sampled uniformly

while the model𝑚 is sampled from the conditional distribution 𝑝 (𝑚 |𝑐).
Balancing allows each model to focus on different configurations, while ensuring equal im-

portance of all models during training iterations. 𝜏 is a concentration parameter and is decreased

linearly over the course of training. After training, the mixture of SuperNets is used to select the

top-k performing configurations, by evaluating the model𝑚 with highest 𝑝 (𝑚 |𝑐) for each configu-

ration 𝑐 on the validation data. In this way, the number of evaluations required depends only on

the number of configurations even if many models are considered. The number of configurations

to evaluate may still become prohibitive when using very deep models (such as ResNet50). In this

case, instead of evaluating all configurations, we can use 𝑝 (𝑐,𝑚) as a proxy to select the correct

model and 𝑎𝑐,𝑚 to rank configurations and evaluate only the top ranking on the entire validation

set, and therefore reducing the computation required to select the best model after training.

3 Experiments

In this section we perform several experiments and ablations in order to evaluate the performance

of our proposed approach. We first individually train and evaluate the performance of a small

ResNet with 36 different pooling configurations on CIFAR10 and show that the optimal pooling

can improve the performance of the model. We also compare the correlation between different

configurations of a Mixture of SuperNets for various number of mixtures (M) with the individually

trained configurations and demonstrate that more models help in obtaining a better correlation.

Next, we present an ablation, considering different variants of weight sharing for DARTS and

Single Path One-Shot (SPOS) approaches. Additionally, we compare our model with other NAS and

non-NAS approaches. Finally, we evaluate our model on a higher resolution dataset (Food101), with

a larger model (ResNet50). In all experiments, we separate the default training set of each dataset

in 50% for training and 50% for validation, used for estimating the quality of the configurations.

3.1 Performance of individually trained Models

As shown in (Riad et al., 2022) the pooling configuration of a CNN has a large impact on the

performance of the model. To establish a benchmark, we consider all possible pooling configurations

that satisfy conditions set in section 2.1 to avoid useless configurations. With 2 pooling operations

and 9 available pooling locations, the search space size is combination

(
9

2

)
= 36. This limited search

space facilitates the exhaustive search of entire space and allows us to find the true ranking by

training independently all baseline models. In other words, unlike (Su et al., 2021a; Chau et al.,

2022) benchmarks, we fully train all architectures.

For this evaluation, we choose a lightweight ResNet configuration (He et al., 2016) and ex-

haustively train each architecture 3 times with different seeds and report the average result. The

complete results on the entire space are included in tab. 6 in appendix. The standard pooling

configuration is configuration [4,3,3], which has the first pooling layer after 4 ResNet block and

the second after other 3 blocks and its classification accuracy is 90.52% ± 0.6. In contrast, the best

configuration is [6,1,2], with an accuracy of 92.01%± 0.12. This shows that even for one of the most

common datasets, the pooling structure is not optimal, and therefore it makes sense to propose

models that can optimize the CNN pooling configuration. We hope that this benchmark will

motivate researcher in the field to not overlook the importance of an optimal pooling configuration.

While this benchmark is relatively small, with only 36 feasible pooling configurations, we show in

6

76

77

78

79

80

81

82

83

84

85

86

87 88 89 90 91 92

E
v

al
u

at
io

n
 A

cc
u

ra
cy

Ground Truth

1 0.142

2 0.311

4 0.533

8 0.530

M Kendall-τ

Figure 3: Evaluation accuracy vs. ground truth accuracy for CIFAR10 test dataset for different number

of mixtures (M). Each point represents the performance of a given configuration with a model

trained independently (Ground truth - x axis) and the same configuration evaluated with

the SuperNet (Evaluation Accuracy - y axis) with different numbers of mixtures M (colors).

Rank correlation measured by Kendall’s tau increases with number of models.

the next experiments that it is quite challenging and most of the commonly used NAS methods fail

to find a good pooling configuration.

3.2 Balanced Mixture of SuperNets
We evaluate our proposed balanced mixture of SuperNets on our benchmark with different numbers

of models M=[1,2,4,8]. The case of M=1 is equivalent to SPOS method with uniform sampling as

in (Guo et al., 2020) with complete weight sharing among architectures. In Fig.3, we show the

correlation of the performance obtained by our SuperNet trained with different number of mixture

models, with true accuracies of given pooling configuration models trained independently on test

set, and we calculate Kendall tau-rank correlation coefficient. As expected, using multiple mixtures

shows overall stronger correlation compared to SPOS uniform sampling (𝑀 = 1). This model has

poor correlation with ground-truth and is unable to find optimal configurations even in a limited

search space. The improvement is more prominent with higher ranking models, resulting in finding

better final configurations. For this experiment, for more than M=4 mixture models the gain in

performance seems to saturate.

3.3 Relaxing the full weight sharing
We argued that one reason that makes the learning of optimal pooling difficult is the fact that the

model weights are fully shared, i.e. the same weights are used for all feature scales/resolutions. In

this subsection, we consider the case of relaxing the weight sharing and using a different weights

for each resolution. For this experiment we evaluate SPOS and DARTS, in case of using the same

parameters for each feature map resolution (Fully shared) or different (Not shared). For SPOS, we
consider two different variants. The first uses the 36 paths that are meaningful. However, we note

that by using only those 36 paths and different filters per resolutions would induce some filters to

be trained much more than others, which would bias the selection of the optimal filters. To avoid

that, we also considered a case in which all 19,683 possible configurations are used. In this case the

training takes longer and has more noise. For DARTS, in the case in which each resolution has

different parameters (Not shared) we consider two variants, the case of initializing filters with the

same initialization for all resolutions (same init.) or different (rnd init.). As tab. 1 shows, only our

adaptive association of pooling configurations and model parameters (Balanced Mixtures) manage

to obtain better results than the Default pooling configuration.

7

Table 1: CIFAR10 results for different search methods, number of model weights and paths. For DARTS

we consider a model with shared weights for different feature map resolutions (Fully Shared)
and not shared (Not Shared) with different weights per resolution with either same or different

initialization. In all cases accuracy is lower than the Default. For SPOS, we test Fully Shared
weights and Not Shared with different number of paths. Results are comparable to the default

setting. Only our Balanded Mixtures of SuperNets clearly outperforms default.

NAS Method Mixtures(M) Paths Architecture Accuracy

Default 1 1 [4,3,3] 90.52 ± 0.1

DARTS

Fully shared 1 19,638 Fig. 4a 89.23 ± 0.13

Not shared - same init. 4 19,638 Fig. 4b 89.85 ± 0.18

Not shared - rnd. init. 4 19,638 Fig. 4b 90.03 ± 0.21

SPOS

Fully shared 1 36 [3,3,4] 90.61 ± 0.17

Not shared 4 36 [4,2,4] 90.34 ± 0.12

Not shared 4 19,683 [4,2,4] 90.34 ± 0.12

Balanced Mixtures (Ours) 4 36 [5,3,2] 91.55 ± 0.08

Table 2: CIFAR10 found architectures, accuracies and training time for different search methods.

Results on DARTS are relaxed selections of resolutions and therefore outside the search space

we defined in our work.

NAS Method Architecture Accuracy Training (GPU hours)

DARTS + GAEA Fig. 4a 89.12 ± 0.1 12

DARTS Fig. 4a 89.23 ± 0.08 12

SBE + Unif. Smp. [1,6,3] 90.13 ± 0.06 2.5

SPOS [4,2,4] 90.34 ± 0.12 1.5

MCTS UCB [4,2,4] 90.34 ± 0.12 2.5

SBE [2,3,5] 90.42 ± 0.08 2

Default [4,3,3] 90.52 ± 0.10 -

MCTS UCB + Unif. Smp. [4,4,2] 90.85 ± 0.09 2.5

Balanced Mixtures (Ours) [5,3,2] 91.55 ± 0.08 6

Best conf. (Bruteforce) [7,1,2] 92.01 ± 0.12 98

3.4 Comparison with NAS-based methods

We compare our method with several variants of commonly used NAS methods: Differentiable

architecure search (DARTS) (Liu et al., 2018b), GAEA (Li et al., 2020b), Monte-Carlo Tree Search

(MCTS) (Su et al., 2021a) and Boltzmann Softmax Exploration (BSE) (Asadi and Littman, 2017;

Cesa-Bianchi et al., 2017). An explanation of these approaches is presented in Appendix C.

In tab.2, we present results in terms of found architecture and accuracy of the selected configu-

ration. Even if the number of possible configurations is limited, none of the method manages to

obtain the best pooling configuration, which is 1.5 points above the default baseline. DARTS-based

methods (as they do not have constraints on the pooling configurations) yield strange configurations

in which down-sampling if followed by up-sampling (see Fig.4a) which brings a loss of information

and therefore poor results. Other methods based on SPOS, BSE and MCTS with different variants,

obtain results that are comparable and close to default setting. Our method with M=4 models is the

only one that approaches the optimal performance, with an accuracy of 91.55%.

3.5 Comparison with other methods

We compare our Balanced Mixture of SuperNets with other approaches that aim to improve

performance by learning the scale of the feature representation through different algorithms not

8

DARTS DARTS + GAEA

L
ay

er
s

(a) Fully shared

Same Initialization Random Initialization

(b) Not shared

Figure 4: Final configurations found by DARTS Liu et al. (2018b) and its variant (Li et al., 2020b). The

first layer in grey is fixed at the maximum input resolution. (a) shared weights per layers. (b)

different weights per feature map resolution for each layer, weight are initialized randomly

or with same values.

Table 3: Accuracy comparison between default, different methods that find optimal feature map scale

and our method on CIFAR10 and CIFAR100 for ResNet18 and ResNet50.

Method Dataset Backbone Baseline Improved Gap

DiffStride (Riad et al., 2022) CIFAR10 ResNet18 91.4 ± 0.2 92.4 ± 0.1 1.0

Balanced Mixtures (Ours) CIFAR10 ResNet18 90.45 ± 0.21 91.51 ± 0.09 1.06

DynOPool(Jang et al., 2022) CIFAR100 ResNet50 78.50 80.60 2.1

ShapeAdaptor(Liu et al., 2020) CIFAR100 ResNet50 78.50 80.29 1.8

Balanced Mixtures (Ours) CIFAR100 ResNet50 77.57 ± 0.18 79.61 ± 0.21 2.04

based on NAS. In contrast to the other experiments, here we present results provided directly by

other papers. In this case, we noticed that the final performance is highly affected by the performance

of the baseline model, which can vary depending on small and difficult to control details. Thus, in

order to make the comparison fairer, results of the method (Improved) are presented with respect

to the corresponding Baseline, so that we can consider not only the absolute performance but also

the relative Gap with respect to the baseline. In tab. 3 we compare our results with DiffStride (Riad

et al., 2022) on CIFAR10 with ResNet18 and CIFAR100 with ResNet50. We also compare with

DynOPool (Jang et al., 2022) and Shape Adaptor (Liu et al., 2020) on CIFAR100 with ResNet50. In

all experiment our approach performs comparable to other methods that explicitly change and

improve the pooling layers.

3.6 Larger Dataset and Model

Table 4: Resnet50 on Food101. We report best archi-

tectures, their accuracy after retraining for

different number of Mixtures (M) of our Su-

perNets. Increasing M leads to an architecture

with better accuracy.

Models Best Arch. Accuracy

Default [3,4,6,3] 84.00 ± 0.10

M = 1 [6,4,5,1] 84.24 ± 0.09

M = 2 [4,5,6,1] 84.34 ± 0.18

M = 4 [8,3,3,2] 84.35 ± 0.14

M = 8 [9,4,2,1] 84.73 ± 0.09

To evaluate our method on new domains, we

use fine-grained food classification on Food101,

which contains more images than CIFAR and

at higher resolution. We adapt a deeper ResNet

network, ResNet50 and fix first layer and initial

downsampling in the architecture. By using

a deeper network, the search space size is in-

creased to combination

(
15

3

)
= 455 architectures.

We conduct our experiments on input image

resolution of 256. Food101 is a challenging fine-

grained object classification dataset that con-

sists of 101 food categories with 75,750/25,250

training/test split. We show the results in tab. 4 The results clearly show increased improvement by

increasing number of models. Food101 has high intra-class variance, that does not show distinguish-

ing spatial layout and the classification would need to rely on colors, textures and local information

to distinguish them (Bossard et al., 2014). Therefore unsurprisingly, identified architectures show a

tendency towards adopting high resolution feature maps in early layers.

9

4 Conclusion

In this paper we presented the problem of learning the optimal scale for CNN feature maps

by learning pooling/stride configurations. We showed that current NAS methods (single-path

uniform sampling, differentiable methods and tree search) are insufficient for this problem. We

have established empirically the importance of appropriate search space design by an extensive

evaluation on CIFAR10 and introduced a balanced mixture of SuperNets to alleviate the weight-

sharing poor ranking correlations for this problem. Finally, we compared our method with several

non NAS-based approaches and evaluated it on a more challenging dataset and larger model and

search space.

5 Broader Impact

Our approach requires a higher number of iterations needed to converge, due to joint use of

multiple models. However, the computational cost and memory requirements of one iteration are

not affected as for each minibatch we select only one pooling configuration and one model. Also,

we should consider that even though the balanced mixtures approach can potentially work for any

NAS problem, we evaluated it only for finding the optimal pooling configuration, which was the

focus of this work. We leave a more general evaluation and application of the approach to future

work. One could argue that NAS in general are a waste of computation, however, they help to

avoid an even more expensive validation search for the optimal hyper-parameters of the model.

Acknowledgments

This research was supported in part by " Natural Sciences and Engineering Research Council of

Canada" (NSERC) and "Digital Research Alliance of Canada" (alliancecan.ca)

10

6 Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 5.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 5.

The study does not have any direct potential negative effect.

(d) Have you read the ethics author’s and review guidelines and ensured that your paper

conforms to them? https://automl.cc/ethics-accessibility/ [Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A] No theoretical

results are presented in this paper.

(b) Did you include complete proofs of all theoretical results? [N/A] No theoretical results are

presented in this paper.

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-

tal results, including all requirements (e.g., requirements.txt with explicit version), an

instructive README with installation, and execution commands (either in the supplemental

material or as a url)? [Yes] We have included the code for our main experiments (Bal-

anced Mixture of SupernNets) and run instructions at https://github.com/mehravehj/
Balanced-Mixture-of-SuperNets/tree/main

(b) Did you include the raw results of running the given instructions on the given code and

data? [Yes] We included raw results obtained for main experiments in this paper.

(c) Did you include scripts and commands that can be used to generate the figures and tables

in your paper based on the raw results of the code, data, and instructions given? [Yes]

(d) Did you ensure sufficient code quality such that your code can be safely executed and the

code is properly documented? [Yes]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces,

fixed hyperparameter settings, and how they were chosen)? [Yes] See appendix B and

https://anon-github.automl.cc/r/Multi-Model-NAS-264B

(f) Did you ensure that you compared different methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes] We compared our results on same datasets. For some

experiments to compare with previous work, the search space were different due to their

specific methods, these differences are clearly pointed out in each case.

(g) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] See section 3.3

(h) Did you use the same evaluation protocol for the methods being compared? [Yes]

(i) Did you compare performance over time? [N/A] Our comparisons are based on accuracy

11

https://automl.cc/ethics-accessibility/
https://github.com/mehravehj/Balanced-Mixture-of-SuperNets/tree/main
https://github.com/mehravehj/Balanced-Mixture-of-SuperNets/tree/main
https://anon-github.automl.cc/r/Multi-Model-NAS-264B

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] We

performed each experiments 3 times with random seeds and report the average and standard

deviation.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [Yes] We report the standard deviation for all our experiments.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] See tab. 6

(m) Did you include the total amount of compute and the type of resources used (e.g.,

type of gpus, internal cluster, or cloud provider)? [Yes] We included the GPU used

for this experiments and approximate run time in https://anon-github.automl.cc/r/
Multi-Model-NAS-264B

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your own method)? [Yes] See B

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [N/A]

(c) Did you include any new assets either in the supplemental material or as a url? [Yes]

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] These are publicly available datasets.

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] These are publicly available datasets.

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

12

https://anon-github.automl.cc/r/Multi-Model-NAS-264B
https://anon-github.automl.cc/r/Multi-Model-NAS-264B

References

Arber Zela, T. E., Saikia, T., Marrakchi, Y., Brox, T., and Hutter, F. (2020). Understanding and robus-

tifying differentiable architecture search. In International Conference on Learning Representations,
volume 2.

Asadi, K. and Littman, M. L. (2017). An alternative softmax operator for reinforcement learning. In

International Conference on Machine Learning, pages 243–252. PMLR.

Baker, B., Gupta, O., Naik, N., and Raskar, R. (2016). Designing neural network architectures using

reinforcement learning. arXiv preprint arXiv:1611.02167.

Bender, G., Kindermans, P.-J., Zoph, B., Vasudevan, V., and Le, Q. (2018). Understanding and

simplifying one-shot architecture search. In International conference on machine learning, pages
550–559. PMLR.

Bossard, L., Guillaumin, M., and Van Gool, L. (2014). Food-101–mining discriminative compo-

nents with random forests. In Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part VI 13, pages 446–461. Springer.

Cai, H., Chen, T., Zhang, W., Yu, Y., and Wang, J. (2018). Efficient architecture search by network

transformation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32.

Cesa-Bianchi, N., Gentile, C., Lugosi, G., and Neu, G. (2017). Boltzmann exploration done right.

Advances in neural information processing systems, 30.

Cha, S., Kim, T., Lee, H., and Yun, S.-Y. (2022). Supernet in neural architecture search: A taxonomic

survey. arXiv preprint arXiv:2204.03916.

Chau, T. C. P., Dudziak, Ł., Wen, H., Lane, N. D., and Abdelfattah, M. S. (2022). Blox: Macro neural

architecture search benchmark and algorithms. arXiv preprint arXiv:2210.07271.

Chen, X. and Hsieh, C.-J. (2020). Stabilizing differentiable architecture search via perturbation-based

regularization. In International conference on machine learning, pages 1554–1565. PMLR.

Chen, X., Xie, L., Wu, J., and Tian, Q. (2019). Progressive differentiable architecture search: Bridging

the depth gap between search and evaluation. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 1294–1303.

Chen, Z., Xie, L., Niu, J., Liu, X., Wei, L., and Tian, Q. (2021). Visformer: The vision-friendly

transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
589–598.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale

hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee.

Dong, X. and Yang, Y. (2020). Nas-bench-201: Extending the scope of reproducible neural architec-

ture search. arXiv preprint arXiv:2001.00326.

Elsken, T., Metzen, J. H., and Hutter, F. (2018). Efficient multi-objective neural architecture search

via lamarckian evolution. arXiv preprint arXiv:1804.09081.

Fang, J., Sun, Y., Zhang, Q., Li, Y., Liu, W., and Wang, X. (2020). Densely connected search space for

more flexible neural architecture search. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10628–10637.

13

Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., and Sun, J. (2020). Single path one-shot neural

architecture search with uniform sampling. In European conference on computer vision, pages
544–560. Springer.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

He, X., Zhao, K., and Chu, X. (2021). Automl: A survey of the state-of-the-art. Knowledge-Based
Systems, 212:106622.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam,

H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications.

arXiv preprint arXiv:1704.04861.

Hu, H., Langford, J., Caruana, R., Horvitz, E., and Dey, D. (2018). Macro neural architecture search

revisited. In 2nd Workshop on Meta-Learning at NeurIPS.

Hu, H., Langford, J., Caruana, R., Mukherjee, S., Horvitz, E. J., and Dey, D. (2019). Efficient forward

architecture search. Advances in Neural Information Processing Systems, 32.

Hu, S., Wang, R., Hong, L., Li, Z., Hsieh, C.-J., and Feng, J. (2022). Generalizing few-shot nas with

gradient matching. arXiv preprint arXiv:2203.15207.

Jang, D.-H., Chu, S., Kim, J., and Han, B. (2022). Pooling revisited: Your receptive field is suboptimal.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
549–558.

Jin, C., Tanno, R., Mertzanidou, T., Panagiotaki, E., and Alexander, D. C. (2021). Learning to

downsample for segmentation of ultra-high resolution images. arXiv preprint arXiv:2109.11071.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Le, H. and Borji, A. (2017). What are the receptive, effective receptive, and projective fields of

neurons in convolutional neural networks? arXiv preprint arXiv:1705.07049.

Leclerc, G., Ilyas, A., Engstrom, L., Park, S. M., Salman, H., and Madry, A. (2022). FFCV: Accelerating

training by removing data bottlenecks. https://github.com/libffcv/ffcv/. commit xxxxxxx.

Li, G., Qian, G., Delgadillo, I. C., Muller, M., Thabet, A., and Ghanem, B. (2020a). Sgas: Sequential

greedy architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1620–1630.

Li, L., Khodak, M., Balcan, M.-F., and Talwalkar, A. (2020b). Geometry-aware gradient algorithms

for neural architecture search. arXiv preprint arXiv:2004.07802.

Li, L. and Talwalkar, A. (2020). Random search and reproducibility for neural architecture search.

In Uncertainty in artificial intelligence, pages 367–377. PMLR.

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.-J., Fei-Fei, L., Yuille, A., Huang, J., and

Murphy, K. (2018a). Progressive neural architecture search. In Proceedings of the European
conference on computer vision (ECCV), pages 19–34.

Liu, H., Simonyan, K., and Yang, Y. (2018b). Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055.

14

https://github.com/libffcv/ffcv/

Liu, J., Zhang, K., Hu, W., and Yang, Q. (2022). Improve ranking correlation of super-net through

training scheme from one-shot nas to few-shot nas. arXiv preprint arXiv:2206.05896.

Liu, S., Lin, Z., Wang, Y., Zhang, J., Perazzi, F., and Johns, E. (2020). Shape adaptor: A learnable

resizing module. In European Conference on Computer Vision, pages 661–677. Springer.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). Swin transformer: Hi-

erarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 10012–10022.

Lopes, V. and Alexandre, L. A. (2022). Towards less constrained macro-neural architecture search.

arXiv preprint arXiv:2203.05508.

Lu, Z., Whalen, I., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., and Banzhaf, W. (2019). Nsga-net:

neural architecture search using multi-objective genetic algorithm. In Proceedings of the genetic
and evolutionary computation conference, pages 419–427.

Luo, W., Li, Y., Urtasun, R., and Zemel, R. (2016). Understanding the effective receptive field in deep

convolutional neural networks. Advances in neural information processing systems, 29.

Pham, H., Guan, M., Zoph, B., Le, Q., and Dean, J. (2018). Efficient neural architecture search via

parameters sharing. In International conference on machine learning, pages 4095–4104. PMLR.

Pintea, S. L., Tömen, N., Goes, S. F., Loog, M., and van Gemert, J. C. (2021). Resolution learning in

deep convolutional networks using scale-space theory. IEEE Transactions on Image Processing,
30:8342–8353.

Qian, G., Zhang, X., Li, G., Zhao, C., Chen, Y., Zhang, X., Ghanem, B., and Sun, J. (2022). When nas

meets trees: An efficient algorithm for neural architecture search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2782–2787.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2019). Regularized evolution for image classifier

architecture search. In Proceedings of the aaai conference on artificial intelligence, volume 33,

pages 4780–4789.

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L., Tan, J., Le, Q. V., and Kurakin, A. (2017).

Large-scale evolution of image classifiers. In International Conference on Machine Learning, pages
2902–2911. PMLR.

Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Chen, X., and Wang, X. (2021). A comprehensive

survey of neural architecture search: Challenges and solutions. ACM Computing Surveys (CSUR),
54(4):1–34.

Riad, R., Teboul, O., Grangier, D., and Zeghidour, N. (2022). Learning strides in convolutional neural

networks. arXiv preprint arXiv:2202.01653.

Richter, M. L. and Pal, C. (2022). Receptive field refinement for convolutional neural networks

reliably improves predictive performance. arXiv preprint arXiv:2211.14487.

Romero, D. W., Bruintjes, R.-J., Tomczak, J. M., Bekkers, E. J., Hoogendoorn, M., and van Gemert,

J. C. (2021). Flexconv: Continuous kernel convolutions with differentiable kernel sizes. arXiv
preprint arXiv:2110.08059.

Siems, J., Zimmer, L., Zela, A., Lukasik, J., Keuper, M., and Hutter, F. (2020). Nas-bench-301 and the

case for surrogate benchmarks for neural architecture search. arXiv preprint arXiv:2008.09777.

15

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556.

Stamoulis, D., Ding, R., Wang, D., Lymberopoulos, D., Priyantha, B., Liu, J., and Marculescu,

D. (2020). Single-path nas: Designing hardware-efficient convnets in less than 4 hours. In

Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2019,
Würzburg, Germany, September 16–20, 2019, Proceedings, Part II, pages 481–497. Springer.

Su, X., Huang, T., Li, Y., You, S., Wang, F., Qian, C., Zhang, C., and Xu, C. (2021a). Prioritized

architecture sampling with monto-carlo tree search. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10968–10977.

Su, X., You, S., Zheng, M., Wang, F., Qian, C., Zhang, C., and Xu, C. (2021b). K-shot nas: Learnable

weight-sharing for nas with k-shot supernets. In International Conference on Machine Learning,
pages 9880–9890. PMLR.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and

Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1–9.

Wang, L., Zhao, Y., Jinnai, Y., Tian, Y., and Fonseca, R. (2020). Neural architecture search using deep

neural networks and monte carlo tree search. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 9983–9991.

Wang, R., Cheng, M., Chen, X., Tang, X., and Hsieh, C.-J. (2021). Rethinking architecture selection

in differentiable nas. arXiv preprint arXiv:2108.04392.

Xia, X., Xiao, X., Wang, X., and Zheng, M. (2022). Progressive automatic design of search space

for one-shot neural architecture search. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 2455–2464.

Xie, L. and Yuille, A. (2017). Genetic cnn. In Proceedings of the IEEE international conference on
computer vision, pages 1379–1388.

Xie, S., Zheng, H., Liu, C., and Lin, L. (2018). Snas: stochastic neural architecture search. arXiv
preprint arXiv:1812.09926.

Xue, C., Wang, X., Yan, J., Hu, Y., Yang, X., and Sun, K. (2021). Rethinking bi-level optimization in

neural architecture search: a gibbs sampling perspective. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 10551–10559.

Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., and Hutter, F. (2019). Nas-bench-101:

Towards reproducible neural architecture search. In International Conference on Machine Learning,
pages 7105–7114. PMLR.

You, S., Huang, T., Yang, M., Wang, F., Qian, C., and Zhang, C. (2020). Greedynas: Towards fast

one-shot nas with greedy supernet. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1999–2008.

Yu, K., Sciuto, C., Jaggi, M., Musat, C., and Salzmann, M. (2019). Evaluating the search phase of

neural architecture search. arXiv preprint arXiv:1902.08142.

Zhang, M., Su, S. W., Pan, S., Chang, X., Abbasnejad, E. M., and Haffari, R. (2021). idarts: Differ-

entiable architecture search with stochastic implicit gradients. In International Conference on
Machine Learning, pages 12557–12566. PMLR.

16

Zhao, G., Wang, J., Zhang, Z., et al. (2017). Random shifting for cnn: a solution to reduce information

loss in down-sampling layers. In IJCAI, pages 3476–3482.

Zhao, Y., Wang, L., Tian, Y., Fonseca, R., and Guo, T. (2021). Few-shot neural architecture search. In

International Conference on Machine Learning, pages 12707–12718. PMLR.

Zhong, Z., Yan, J., Wu, W., Shao, J., and Liu, C.-L. (2018). Practical block-wise neural network

architecture generation. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2423–2432.

Zhou, Y., Xie, X., and Kung, S.-Y. (2021). Exploiting operation importance for differentiable neural

architecture search. IEEE Transactions on Neural Networks and Learning Systems.

Zoph, B. and Le, Q. V. (2016). Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). Learning transferable architectures for

scalable image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 8697–8710.

17

A Related Work

Optimal Scale for CNN Feature Maps Some recent work have addressed the optimization of feature

map scales in CNN design by adapting dynamic kernel shapes (Romero et al., 2021; Pintea et al.,

2021), learning resizing modules (Liu et al., 2020; Riad et al., 2022; Jang et al., 2022) or receptive

field analysis (Richter and Pal, 2022). Feature map sizes as well as receptive field are controlled by

kernel sizes, and number and position of down-sampling layers in a CNN.

Among the works that indirectly learn feature map scales by learning kernel sizes, N-Jet (Pintea

et al., 2021) uses Gaussian derivative filters to dynamically adapt kernel size during training, using

scale space theory and employs a safe-sub-sampling alternative. Flexconv (Romero et al., 2021)

learns long range dependencies without using pooling and replaces them with multiplication of

continuous kernels and a Gaussian mask and learns the parameters of the mask. However, these

methods often struggle with large kernel sizes(Pintea et al., 2021) or use uses several techniques

such as Fourier transformation and training on down-sampled images to reduce the cost (Romero

et al., 2021).

Another work introduces a resizing module, ShapeAdaptor (Liu et al., 2020) that learns the

scale and mixing weight of linear combination of two feature map sizes in differentiable manner.

However, the number of shape adaptor modules is a fixed hyperparameter that limits the placement

of down-sampling layers, and the framework only works with max-pooling operations. DiffStride

(Riad et al., 2022) proposes a down-sampling layer with learnable fractional strides by casting

down-sampling in spatial domain as cropping in frequency domain and show that on CIFAR10 and

CIFAR100 dataset with ResNet18, lower layers tend to preserve more details while the pooling is

performed more aggressively at later layers. However, the placement of down-sampling layers

remains fixed and the pooling is performed in spectral domain resulting in higher cost and involving

complex valued operations that are not optimized on GPU. DynOPool Jang et al. (2022) relaxes the

problem by using bi-linear interpolation to allow for non integer feature map sizes and learns the

resizing scale in differentiable manner. In these models, learning the resizing factor and network

weights are performed simultaneously on training set, which can render the optimization hard

and introduce bias towards non-optimal solutions (He et al., 2021). Furthermore, these approaches

are outside the NAS framework often cannot easily find a single architecture and might introduce

additional costs at run-time.

Macro Search in NAS While early NAS works focused on a global search space Zoph and

Le (2016), containing both micro and macro search space, the complexity of the search space

contributed to their great computational cost. NASNet (Zoph et al., 2018) proposed a cell-based

search space, reducing the search space size from the entire network to only a set of operations in

cells with many recent works (Liu et al., 2018b,a; Real et al., 2019; Zhong et al., 2018; Ying et al.,

2019; Dong and Yang, 2020; Siems et al., 2020) using cell-based search spaces due to its efficiency.

In terms of search strategy (Zoph and Le, 2016; Pham et al., 2018; Baker et al., 2016; Cai et al.,

2018) use reinforcement learning, while (Elsken et al., 2018; Lu et al., 2019; Real et al., 2017; Lopes

and Alexandre, 2022; Xie and Yuille, 2017) use evolutionary algorithms (EA) and (Hu et al., 2019,

2018) use random search to perform macro search. Several of the early works (Baker et al., 2016;

Zoph and Le, 2016; Real et al., 2017) however, required hundreds of GPUdays to perform the search.

To navigate the huge search space, progressive NAS methods (Liu et al., 2018a; Chen et al., 2019)

were proposed that progressively add layers to the a shallow network, while (You et al., 2020; Li

et al., 2020a) drop unpromising architectures progressively. Among works that perform NAS on

the entire network, MCTS (Su et al., 2021a) uses Monte-Carlo tree search algorithm to establish a

benchmark in MobileNetV2 search space. While, this model is not cell-base, the feature map sizes

and downasmpling locations are still fixed. Some of these works (Su et al., 2021a; Xia et al., 2022)

search on all layers of a CNN, however they still use a fixed template for the CNN’s outer-skeleton.

18

DenseNAS (Fang et al., 2020) proposes a densely connected search space by designing routing

blocks. The routing blocks contain shape alignment layers that perform convolutions on different

shaped inputs (channels and spatial dimension) and are the sum of the results. Both, basic blocks

(containing operations) and routing blocks are relaxed and perform a gradient based optimization

of mixing weights. Several blocks at the same resolution are searched as well as number of channels

per layer. The position to downsampling is determined along with the block count search.

TNAS (Qian et al., 2022) factorizes the space in a hierarchical manner by designing an operation

space (by a binary operation tree), and architecture layers (by a architecture tree) and performs a

bilevel search on both trees. LCMNAS (Lopes and Alexandre, 2022) autonomously generates search

spaces by creating weighted directed graphs with hidden properties from existing architectures

and performs search using EA and evaluation using a performance predictor. Compared to these

approaches, ours is more general, the models are specialized automatitically and does not require

prior knowledge about search space.

Weight Sharing in NAS The problem of how to efficiently evaluating candidate architectures

has been a bottleneck of NAS research (Ren et al., 2021; Cha et al., 2022). Training each candidate

architecture from scratch to convergence provides the true performance of the architecture, however

that was one of the reasons for significant cost of early NAS methods (Baker et al., 2016; Zoph

and Le, 2016; Real et al., 2017; Xie and Yuille, 2017). A great improvement in this regard was

using weight sharing (Pham et al., 2018) among architectures in one-shot methods, where the

search space is defined as an oveparametrized SuperNet, from which every possible architecture

can be derived. After training the SuperNet, the candidate architectures are evaluated without

any additional training by inheriting the weights from the SuperNet. One of the most influential

works that is based on SuperNet training is DARTS (Liu et al., 2018b), which relaxed the discrete

search space of NAS, and enabled using backpropagation to jointly learn SuperNet weights and

architecture parameters. However, several works show that the architecture parameters fail to

reflect the importance of them (Wang et al., 2021; Yu et al., 2019; Zhou et al., 2021) as well as facing

challenges in generalizing (Chen et al., 2019; Li et al., 2020a; Xie et al., 2018; Yu et al., 2019) and

stability (Chen and Hsieh, 2020; Wang et al., 2021; Arber Zela et al., 2020; Zhang et al., 2021) and high

memory requirements to perform backward pass through all configurations. Poor rank correlation

is the result of coupling between the architecture and network weights as well as coupling of

weights among architectures. Training architecture weights simultaneously results in introducing

bias by favoring certain architectures during training. These weights can be decoupled by uniform

sampling and single path methods (Guo et al., 2020), which has been shown to outperform training a

SuperNet as a whole as in DARTS. One direction to reduce one-shot methods suffer from poor rank

correlation (Yu et al., 2019) and performance degradation due to the co-adaptation of weights among

architectures (Bender et al., 2018), is reducing the amount of weight shared among architectures.

Among works that directly reduce weight sharing, few-shot NAS (Zhao et al., 2021; Su et al.,

2021b) was proposed to partition SuperNet to multiple sub-SuperNets. The split is performed

by random selection of an edge in SuperNet and dividing all operation on that edged into sub-

SuperNets. While this setup reduces weight sharing and improves the performance over one-shot

methods, the partitioning criteria is inefficient as it fails to identify similar and dissimilar models and

whether the partitioning of specific regions results in any meaningful gain. To address this issue,

(Hu et al., 2022) address these issues by proposing a gradient matching score that decides which

candidate network should share weights, while (Liu et al., 2022) propose a gradual training from

one-shot to few-shot NAS. However, these works focus on finding operations in a micro-search

space, the SuperNet partitioning is not automatic (Zhao et al., 2021), and focus on NAS benchmarks

that are not applicable to the specific application addressed in this work.

19

Table 5: Search space design for experiments conducted in paper. We consider the same number of

downsampling operations as a default network (no. pooling) and exclude from the search

space the first pooling layer as the it corresponds to a manipulation of the input image. For

larger input images (ImageNet and Food101), we keep the first layer (conv and maxpooling)

predefined for computational efficiency and only search the pooling locations among layers

after the predefined maxpooling layers. The search space size is then the combination(𝐿𝑎𝑦𝑒𝑟𝑠−1
𝑝𝑜𝑜𝑙𝑖𝑛𝑔

)
Backbone Dataset Searched feature map sizes no. searched layers no. pooling Search Space Size

ResNet20 CIFAR10 [32,16,8] 10 2 36

ResNet18 CIFAR10 [32,16,8,4] 9 3 56

ResNet50 CIFAR100 [32,16,8,4] 17 3 560

ResNet50 Food101 [56,28,14,7] 16 3 455

ResNet18 ImageNet [56,28,14,7] 8 3 35

B Experimental Setup and Details

B.1 Datasets and Hyperparameters

All datasets in our experiments were split 50/50 for NAS training and validation. Unless otherwise

specified, all experiments were run 3 times with random seeds and average and standard deviations

are reported. For ResNet18 and Resnet50 tests we use mixed-precision operations and FFCV (Leclerc

et al., 2022) library to increase training efficiency.

We tuned the hyperparameters either by grid search for our experiments or when compared

with other work, used similar hyperparameters. We used SGD with learning rate scheduling and

weight decay for all our experiments. For ResNet20 we used learing rate of 0.1 with cosine annealing

and weight decay 1e-3 and batch size 256. For DARTS experiments, we used Adam for architecture

parameters with learning rate 1e-2. For our Balance Mixture of SuperNets, the number of training

epochs is set proportional to number of models to ensure sufficient training. Furthermore, we

initialize 𝜏 = 1 and decrease it linearly during the training with minimum value of 1/(100𝑀) with
𝑀 the number of models. For experiments on CIFAR10 and CIFAR100 with ResNet18, we train for

400 epochs, with learning rate of 0.1 and reduced it by factor of 0.1 on epochs [200,300] and weight

decay of 5e-3. For ResNet50 experiments on CIFAR100 we trained for 250 epochs and changed the

scheduling to reducing by factor 0.2 at epochs [60,120,160]. For Food101 we used learning rate of

0.1, cosine annealing and batch size 256.

B.2 Search Space Details

Summary of search space design for the experimetns is provided in tab. 5. ResNet20 (He et al.,

2016) architecture consists of one convolutional layer followed by 9 ResNet layers. The original

structure consists of [32, 16, 8] feature map sizes and [16, 32, 64] number of filters respectively,

with [3,3,3] blocks per resolution. In our implementation, fully connected layer is removed and

strided convolutions are replaced by maxpooling.

C Comparison With Other NAS Methods (Details)

DARTS: Differentiable approaches first proposed by DARTS (Liu et al., 2018b) has been commonly

used in recent years for NAS problems. As one of the most efficient and reliable NAS methods, we

utilize DARTS for our problem. In terms of optimization, we use the same differentiable principle

for architecture search as DARTS (Liu et al., 2018b). Instead of learning weights for different

networks branches, we learn weights for different feature map resolutions by learning associated

architecture parameter 𝛼 . Since changing the position of the pooling layer in the network changes

the size of a feature map and therefore it invalidates all the subsequent blocks, we need to find a

way to achieve this without without changing the feature map resolution. Therefore, we introduce

20

a multi-resolution block 𝑀 defined as the weighted combination of convolutions 𝑉 at different

resolutions 𝑟 of the same filters 𝑓𝑙 at a given layer 𝑙 :

ℎ𝑙+1(𝑥,𝑦) = M(ℎ𝑙 (𝑥,𝑦))

=

𝑅∑︁
𝑟=1

𝛼𝑙,𝑟U2
𝑟 (V(S2𝑟 (ℎ𝑙 (𝑥,𝑦)), 𝑓𝑙 (ℎ,𝑤))).

(4)

The resulting feature map is the sum of the feature map at each resolution multiplied by a

coefficient 𝛼𝑙,𝑟 and rescaled to the initial feature map resolution (𝑥,𝑦) resolution with an upsampling

operation U.
The normalized coefficient 𝛼𝑙,𝑟 learns the relative strength of a certain resolution with respect

to the others for a given layer 𝑙 and is computed as a softmax over feature map resolutions:

𝛼𝑙,𝑟 =
exp(𝛼𝑙,𝑟)∑
𝑠 exp(𝛼𝑙,𝑠)

. (5)

This approach allows us to train a model that can learn the convolutional filters, but at the

same time, with a marginal increase in computation and memory can also learn the best feature

resolution to use at each layer.

To make the search space as similar to out method as possible we manually select highest

resolution for first layer of the network, however imposing further restrictions on the search space

is more difficult. At the end of training we select maximum 𝛼𝑙,𝑟 for each layer as final architecture to

retrain. We used ADAM (Kingma and Ba, 2014) optimizer to train 𝛼 and SGD with cosine learning

rate for CNN weights. Furthermore, We used another standard optimizer and GAEA(Li et al.,

2020b) which both fail on this task as it finds sub-optimal architectures. As seen in section 3.5, the

architectures found by this approach are atypical for classification task as they utilize upsampling

in several later layers, resulting in lower accuracy of final architecture.

Monte-Carlo Tree Search: Several recent works (Su et al., 2021a; Wang et al., 2020) have used

MCTS for NAS problem both in training and search stage of NAS. As MCT captures dependencies

amongst layers (Su et al., 2021a), it is viable candidate for our task. We designed the same search

space as 2.1 as a binary tree. Each layer 𝑙 of CNN correspond to generations of tree, at each layer

maximum of two nodes exist, 1) same resolution and 2) downampling . By fixing the leaf nodes at

minimum resolution and first layer at highest resolution, we design an asymmetric tree with 36

leaves.

To balance exploration and exploitation we use Upper Confidence Bound (UCB) to calculate

sampling probabilities as:

𝑈𝐶𝐵(𝑟 𝑙𝑖) =
𝑎(𝑟 𝑙𝑖)
𝑛𝑙
𝑖

+ 𝑐

√√
𝑙𝑜𝑔(𝑛𝑙−1𝑝)

𝑛𝑙
𝑖

(6)

Where 𝑝 corresponds to the parent node and 𝑎 is the reward and 𝑐 is a hyperparameter constant

controlling the trade-off. In our experiments we use validation accuracy on minibatches as reward.

We considered two settings: sampling with UCB from the beginning and sampling with a

uniform warm-up. By using UCB it is expected that training will focus more on better performing

architectures compared to uniform sampling, therefore improving the ranking of top architectures.

At the end of the training phase we evaluate the found architecture by on validation set. Results in

tab. 2 shows MCT finds sub-optimal architecture in both cases.

Boltzmann Softmax Exploration (BSE): BSE is one of the simplest reinforcement learning

exploration strategies. For sampling an architecture 𝑐 we use:

21

epochs

C

M

Figure 5: Progress of 𝑝 (𝑐 |𝑚) during training for a mixture of M=4 SuperNets and 36 pooling config-

urations. As temperature 𝜏 in equation 3 is linearly decreased, the distribution transitions

from uniform (left) to concentrated (right).

𝑝 (𝑐) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜏 𝑎𝑐) (7)

Where 𝑝 (𝑐) is the probability of selecting architecture 𝑐 , and 𝑎𝑐 is the reward (here the validation
accuracy) and 𝜏 is the inverse temperature, controlling exploration and exploitation. We increase 𝜏

from 1 linearly during the experiment.

With the defined search space of 36 architectures, we choose a linear schedule for the inverse

temperature that balances exploration and exploitation. Furthermore we considered another option

with a uniform warm-up. However, the appropriate scheduling is difficult as the model can either

continue to explore sup-optimal solutions or commit to one solution too early (Cesa-Bianchi et al.,

2017).

D Comparison With Other Methods (Details)

D.1 Comparison With DiffStride, DynOPool and ShapeAdaptor

To compare with DiffStride (Riad et al., 2022) we ResNet18 architecture where original structure

consists of 8 blocks With 4 resolutions as [2,2,2,2], resulting in the search space of 56 configurations.

To compare with DynOPool (Jang et al., 2022) and Shape Adaptor (Liu et al., 2020) we used

ResNet50. Since ResNet50 for CIFAR does not include initial downsampling layers, the search space

consist of 560 configurations with default configuration of [4,4,6,3]. It should be noted that the

search space of these methods are not identical with ours.

E Extended Results

In tab. 6 we present ground truth accuracy of all configurations in our searrch space for ResNet20,

as described in 3.1. In figure 5 we show the progress of 𝑝 (𝑚 |𝑐) for our method described in 2.3.

22

Table 6: CIFAR10 accuracies for all configurations with ResNet20 Backbone. Architectures are dis-

played in terms of number of blocks associates with feature map sizes of [32, 16, 8]. Architec-

ture 24 is the original ResNet20 architecture pooling configuration.

no. Architecture Accuracy no. Architecture Accuracy

1 [1 , 1 , 8] 87.45 ± 0.06 19 [3 , 4 , 3] 90.92 ± 0.1

2 [1 , 2 , 7] 87.69 ± 0.08 20 [3 , 5 , 2] 90.88 ± 0.08

3 [1 , 3 , 6] 87.89 ± 0.17 21 [3 , 6 , 1] 90.14 ± 0.16

4 [1 , 4 , 5] 88.6 ± 0.15 22 [4 , 1 , 5] 89.68 ± 0.14

5 [1 , 5 , 4] 89.38 ± 0.07 23 [4 , 2 , 4] 90.34 ± 0.13

6 [1 , 6 , 3] 90.13 ± 0.14 24 [4 , 3 , 3] 90.52 ± 0.15

7 [1 , 7 , 2] 90.16 ± 0.1 25 [4 , 4 , 2] 90.85 ± 0.12

8 [1 , 8 , 1] 89.41 ± 0.15 26 [4 , 5 , 1] 89.71 ± 0.16

9 [2 , 1 , 7] 88.78 ± 0.1 27 [5 , 1 , 4] 91.05 ± 0.15

10 [2 , 2 , 6] 89.03 ± 0.12 28 [5 , 2 , 3] 90.96 ± 0.15

11 [2 , 3 , 5] 90.42 ± 0.1 29 [5 , 3 , 2] 91.55 ± 0.09

12 [2 , 4 , 4] 90.57 ± 0.11 30 [5 , 4 , 1] 89.84 ± 0.08

13 [2 , 5 , 3] 90.89 ± 0.07 31 [6 , 1 , 3] 91.78 ± 0.11

14 [2 , 6 , 2] 91.01 ± 0.13 32 [6 , 2 , 2] 91.83 ± 0.13

15 [2 , 7 , 1] 90.22 ± 0.18 33 [6 , 3 , 1] 90.96 ± 0.12

16 [3 , 1 , 6] 89.1 ± 0.06 34 [7 , 1 , 2] 92.01 ± 0.18

17 [3 , 2 , 5] 89.7 ± 0.1 35 [7 , 2 , 1] 90.47 ± 0.11

18 [3 , 3 , 4] 90.61 ± 0.17 36 [8 , 1 , 1] 89.99 ± 0.12

Table 7: Resnet18 on ImageNet. We report best architectures, their accuracy after retraining for

different number of Mixtures (M) of our SuperNets. As the ranking is noisy, we retrained the

best 3 architectures based on our ranking and report top-1 and top-3 accuracies.

Models top-1 Arch. top-1 top-3 Best top-3 average

Default [2,2,2,2] 68.32 ± 0.24 NA NA

M = 1 [1,3,1,3] 62.21 ± 0.26 65.91 ± 0.21 63.51 ± 1.56

M = 2 [3,1,1,3] 62.56 ± 0.18 68.32 ± 0.24 64.70 ± 2.57

M = 4 [5,1,1,1] 65.88 ± 0.24 66.12 ± 0.18 64.73 ± 1.78

M = 8 [2,3,2,1] 64.81 ± 0.11 66.12 ± 0.23 64.15 ± 2.98

E.1 Experiment on ImageNet (Deng et al., 2009)

We used ResNet18 architecture as backbone for ImageNet dataset. We trained the top-1 and top-3

best architectures found by our method with (N=1,2,4,8) for 100 epochs and report mean and std

on 3 runs in tab. 7. We note that the baseline is the superior architecture among the trained

architecture and

Nevertheless, using our method with M=2, we were able to recover the default architecture.

We hypothesise that the reason for default architecture having the best performance is that current

ResNet architecture is highly optimized for ImageNet dataset.

23

	Introduction
	Our Approach: Balanced Mixture of SuperNets
	Search Space
	SuperNet
	Balanced Mixture of SuperNets

	Experiments
	Performance of individually trained Models
	Balanced Mixture of SuperNets
	Relaxing the full weight sharing
	Comparison with NAS-based methods
	Comparison with other methods
	Larger Dataset and Model

	Conclusion
	Broader Impact
	Submission Checklist
	Related Work
	Experimental Setup and Details
	Datasets and Hyperparameters
	Search Space Details

	Comparison With Other NAS Methods (Details)
	Comparison With Other Methods (Details)
	Comparison With DiffStride, DynOPool and ShapeAdaptor

	Extended Results
	Experiment on ImageNet deng2009imagenet

