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Abstract

Deep learning (DL) systems obtain high accuracy on digital pathology datasets that are
within the same distribution as the training set, but when applied to unseen datasets there
can be a reduction in performance due to differences in acquisition hardware/software and
staining protocols/vendors. This is a barrier to translation since developed models cannot
be readily deployed at new labs. To overcome this challenge, we present silver standard
(SS) annotations as a method to improve the performance of deep learning architectures
on unseen Ki67 pathology images. An unsupervised technique called IHCCH was used to
generate SS masks for Ki67+ and Ki67- nuclei from the target lab. A previously validated
architecture for Ki67, UV-Net, is trained with gold standard (GS) images and a combination
of SS and GS masks to evaluate performance. It was found that adding SS masks from
the unseen center to the training pool improved performance over clinically relevant PI
ranges. The SS model with equal amounts of SS and GS (310 patches each) was shown to
significantly improve PI estimation consistency over all PI ranges. Since SS masks are easy
to generate, this method can be used for per-centre calibration to improve consistency and
reliability of Ki67 quantification which is paramount for wide-scale adoption.

Keywords: Computational pathology, silver standards, Ki67, UV-Net, deep learning.

1. Introduction

Breast cancer is the second most commonly diagnosed cancer among women worldwide (Bray
et al., 2018). Invasive ductal carcinoma (IDC) accounts for 80% of breast cancer cases,
making it the most invasive type in breast cancers. If IDC is remained untreated, it can
metastasize to other regions of the body (Mohan, 2018). Hence, the survival rate of patients
suffering from this cancer type is heavily attributed to precise and timely diagnosis. An
accurate diagnosis depends on analyzing important features such as tumor cell prolifera-
tion index (PI), tumor size, and its morphological features (Walters et al., 2013). Grading
criteria such as the Modified Bloom-Richardson are used to evaluate nuclear grades and
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mitotic index in breast cancer (Elston and Ellis, 1991). Immunohistochemical biomarkers
can potentially enhance tumor characterization and response to therapy (Veronese et al.,
1993). The MIKB (Ki67) biomarker has been gaining interest for assessing the proliferation
and aggressiveness of breast cancer tumors. The accurate calculation of Ki67 PI can be
used as a key metric for diagnosis and treatment planning (Dowsett et al., 2011; Jalava
et al., 2006). While this biomarker can potentially improve patient care, manual counting
of cells is time-consuming, costly, and laborious. With the advent of whole slide imaging
(WSI) scanners along with advances in computational resources and artificial intelligence
algorithms, these technologies can be used to deliver more objective, efficient and quantita-
tive Ki67 scoring. Deep learning techniques show much potential for automated processing
of different biomarkers in histopathology images (Srinidhi et al., 2020; Van der Laak et al.,
2021; Amgad et al., 2021; Graham et al., 2019). Deep learning architectures such as piNet
(Geread et al., 2021), KiNet (Xing et al., 2019), and UV-Net (Mirjahanmardi et al., 2022)
have been specifically developed for Ki67 PI quantification. KiNet was developed for pan-
creatic cancer and PiNet and UV-Net have been developed for breast cancer. As was shown
in (Geread et al., 2021) and (Mirjahanmardi et al., 2022), while piNet and UV-Net achieved
high accuracy on multi-institutional datasets, there was reduced performance and consis-
tency on unseen datasets. This is largely due to the fact that labs generate images from
different acquisition systems and staining vendors/protocols (Van der Laak et al., 2021)
which can create generalization issues for deep learning systems. Therefore, this causes
deployment challenges and is a barrier to wide-scale adoption.

One possible way to minimize the generalization gap for digital pathology and deep
learning could be to obtain a small dataset from the institution of interest, and retrain the
model to include some data from that centre. This can be considered as a per-center fine-
tuning and calibration. We hypothesize that including images from the unseen centre into
the training mix can improve performance and consistency of the tool for the target lab.
However, generating large amounts of ground truth data, especially pixel-wise annotations
for many cells is a time-consuming task, which also requires specialist expertise. To over-
come these challenges, this paper evaluates the use of silver-standard (SS) ground truths
from unseen centers for Ki67 PI quantification. Sliver standards are ground truths that are
noisy or generated by an unsupervised automated or semi-automated tool, i.e. they are
less than ideal compared to the ”gold standard” (GS) which is exhaustive annotations per-
formed by the pathologist. SS annotations can be quickly generated and in large amounts,
which is more cost-effective and reduces development time significantly. They can be added
to the GS training pool for retraining and fine-tuning on a lab basis, which would accelerate
translation.

2. Dataset

This work uses Ki67 stained breast cancer images obtained from different institutions. A to-
tal of 500 patches with size 256×256 extracted whole slide images (WSI) from two sources
are used, one from the St. Michael’s Hospital (SMH) in Toronto, and an open-source
”Deepslide” (Senaras, 2018) with ×20 Aperio AT Turbo and ×40 Aperio ScanScope scan-
ners, respectively. The Deepslide images are down-sampled to ×20 to be compatible with
other datasets. The images were annotated by marking Ki67− and Ki67+ centroids (Geread
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Figure 1: Patches with artifacts: dust, folding, blur/dust, overstaining.

et al., 2021). Centroid annotations were converted into a Gaussian kernel which includes
surrounding regions to improve learning. This dataset is used primarily for training (62%),
validation (20%), and testing (18%). Noise and artifacts including overstaining, background,
folders, blur, and dust are common in tissue slides. Therefore, 15% of the training dataset
includes tiles with artifacts to reduce false positives. Examples of such images are shown in
Figure1. University Health Network (UHN) is the last dataset which contains 411 tissue mi-
croarrays (TMA) from 175 patients for a total of 26,304 patches. Each TMA is 2000×2000
and an expert PI estimate is available for each patient. 381 TMAs are used for testing and
the remaining 30 were used to create SS ground truths.

3. Methods

This work evaluates the application of SS for Ki67 nuclei detection and PI quantification. An
unsupervised method is used to generate the SS masks, and deep learning models are trained
with GS masks, as well as GS and SS masks combined. SS are created from the unseen
dataset (UHN) and performance on the held-out test set for all models is investigated.

3.1. Deep Learning Framework

The UV-Net architecture, developed for Ki67 PI quantification in breast cancer, and vali-
dated on a large multi-institutional dataset with high performance, is the model of interest
in this work. The pipeline is shown in Figure 6. UV-Net has shown high accuracy with
strong generalization capabilities that outperforms other networks such as U-Net, DenseU-
Net, and MultiresU-Net (Mirjahanmardi et al., 2022). The model is shown in Figure 2
which has seven stages with multiple V-Blocks in the encoding and decoding arms. The V-
Block connections are utilized to preserve high-resolution details related to nuclear features
and each V-Block has an input with n channels and output with 2n channels (creating a
”V” shape) through four successive stages. Two hyperparameters, f and k, are defined for
each V-Block as the number of input channels, and the output channels at the end of each
stage, respectively. The hyper-parameters f and k in the V-Blocks vary over each stage
with their values shown in Figure 2. Figure 2b shows a V-Block wherein f = 16 and k = 4.
In each stage, the input feature is processed by a 1×1 convolution with f = 16 filters, then
transformed to the output with k = 4 filters. The output of this step is concatenated to
the input, creating a matrix with 20 filters which are fed to the second stage. This process
is repeated for a total of four times to generate an output with 2×f filters. A regression
loss is used and the output channels contain background as well as the predicted Ki67−

and Ki67+ nuclei. Each channel is post processed (Otsu thresholding, median filtering, and
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Figure 2: The UV-Net architecture that is made up of encoding and decoding arms. a.
network b. One V-Block example where f=16, and k=4, composed of four stages.

morphological processing) to isolate Ki67− and Ki67+ cells. To separate nuclei that are
overlapping, the watershed algorithm is used. Centroids are compared with the GS ground
truths (testing set) to evaluate the models with the F1-score:

F1 =
2× TP

2× TP + FP + FN
. (1)

where TP, FP, and FN represent the number of true positives, false positives, and false
negatives, respectively. To measure PI quantification performance, the PI is estimated

PI =
# Ki67+ cells

#(Ki67+ + Ki67−) cells
(2)

and the difference in PI between manual and automated is measured, |∆PI|. To investi-
gate prediction consistency, the coefficient of variation (CoV) is examined for |∆PI|. The
difference in CoV, |∆CoV |, for two PI ranges i, j, is computed to measure the variation
between intervals, and the mean |∆CoV | is computed.

3.2. Unsupervised Ki67 Nuclei Detection (IHCCH)

The immunohistochemical (IHC) color histogram (IHCCH) approach is the unsupervised
method that is compared to the deep learning-based methods, and also used to generate
SS masks. Preprocessing for this method is vector median filtering and background sub-
traction. The algorithm relies on an unsupervised thresholding method in the b* channel
from the L*a*b* space. The L*a*b* space correlates well with human color perception
and the b* channel strongly separates between blue and brown pixels, which correspond
to the hematoxylin (H) and DAB stains (Geread et al., 2019). An adaptive b* threshold
is found using the rolling ball method which operates on the b* histogram and finds local
minima. The threshold is used to separate the IHC images into H and DAB channels and
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nuclei detection is performed separately on each channel. To detect nuclei, first all objects
are detected with connected components the the nuclei radius is estimated based on a per-
centile of the smaller objects. Nuclei are detected using the gradient and the estimated
nuclei radius, more details can be found in (Geread et al., 2019). The block diagram for
this algorithm is shown in Figure 7. Code for the IHCCH algorithm will be available at:
at https://github.com/IAMLAB-Ryerson/IHCCH.

3.3. Experimental Setup

The GS data from Deepslide/SMH (310 patches) was used to train the models and the SS
masks were generated from the unseen UHN dataset (310 patches). To select SS images,
TMAs were tiled into patches of 256x256 in size, and patches with at least ∼80% tumorous
tissue were selected, which took less than five minutes. SS masks were generated by the
unsupervised IHCCH algorithm and nuclei centroids were marked up by a Gaussian circular
kernel. UV-NET and comparison models are trained with GS and SS masks in an incremen-
tal manner and the performance is analyzed. A total of 50, 140, 186, and 310 SS generated
masks are added to the 310 GS patches and the deep learning models are retrained each
time. Each model is then tested on 90 held-out patches from Deepslide/SMH and F1 score is
measured. To examine generalization capabilities, the models are tested on the 381 heldout
TMAs from UHN and performance is evaluated with respect to PI quantification accuracy
(∆PI) and consistency (CoV,∆CoV ). The comparison architectures include MultiResU-
Net (Ibtehaz and Rahman, 2020), U-Net(Ronneberger et al., 2015), and piNet (developed
specifically for breast Ki67 quantification) and they are trained with GS data. Experiments
are conducted on the same machine with an NVIDIA GeForce RTX 2080 Ti. A total of 100
epochs are used with an Adam optimizer, batch size=16, and learning rate=10−3. Huber
loss function was used for all architectures to predict nuclei centroids. Data augmentations
such as horizontal/vertical flips and scaling are used.

4. Results and Discussion

Nuclei detection performance, quantified by F1 score, for the SMH/Deepslide test set with
nuclei annotations is shown in Table 1 for all experiments (Figure 5 shows the corresponding
F1 distributions). UV-Net 310GS-50SS is the naming convention used to indicate UV-NET
was trained with 50 SS and 310 GS masks. As compared to the traditional models (UNET,
PiNET, MultiResU-Net), UV-NET has the highest performance over all GS models. The
lowest F1 score is achieved by the IHCCH method with a mean F1 of 63.5% on Ki67−

and 61.8% on Ki67+. UV-NET with 50 SS shows reduced performance compared to the
GS-only model for both cell types. However, increasing the number of SS masks improves
performance. In particular, when 310SS are added, the model achieves the top F1 score on
the Ki67− channel (F1=83.7%) and the model with 140SS shows the highest performance,
with a relatively large margin, for the Ki67+ channel (F1=84.5%).

The corresponding models are tested on the held-out UHN TMA data set (381 TMAs)
to further analyze the effect of adding SS from the same data distribution. The PI differ-
ence between automated and expert PI estimates, |∆PI| is shown in Figure 3. The mean
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Table 1: Mean F1-score for SMH/Deepslide test data.
Architecture # of SS masks F1(Ki67−) F1(Ki67+)

IHCCH - 0.635 0.618
piNet GS - 0.749 0.783

MultiResU-Net GS - 0.0.777 0.0.807
U-Net GS - 0.747 0.782
UV-Net GS - 0.833 0.820

UV-Net 310GS-50SS 50 0.739 0.801
UV-Net 310GS-140SS 140 0.818 0.845
UV-Net 310GS-186SS 186 0.811 0.827
UV-Net 310GS-310SS 310 0.837 0.817

performance of models with SS+GS are similar to the GS only model, with the best per-
formance seen by UV-Net GS with an average PI difference of 4.86%. MultiResU-Net and
U-Net show the lowest performance over all PI intervals. As shown by Figure 3b, the PI
differences are lowest in the clinically important ranges ([10-20] and [20-30]%) for the SS
model UV-Net 310GS-186SS. A meta-analysis (Petrelli et al., 2015) shows high Ki-67 PI
levels (> 10%) are associated with > 50% risk of death among patients with early breast
cancer, particularly in those with ER(estrogen receptors)+ disease. For any 10% increase
of Ki-67 level, there is a significant 19% increase in mortality (Petrelli et al., 2015). A PI
> 25% is associated with a greater risk of death (Petrelli et al., 2015). A Ki-67 threshold
of > 25% is associated with the most powerful outcome when prognostication is of concern
(Petrelli et al., 2015). Therefore, the 186SS model has optimal performance in these clini-
cally relevant ranges which could positively impact patient care. Shortly behind the 186SS
model, is the 310SS model, with similar accuracy in associated ranges.

To analyze consistency in the PI ranges, the CoV of |∆PI| is shown in Figure 4a and
the difference in CoV |∆CoV | for two neighboring PI ranges is explored in Figure 4b. The
consistent models score low CoV over different PI intervals. The model with 310 SS masks
consistently has lower variability compared to UV-Net with GS masks demonstrating that
adding SS masks has improved consistency over all PI ranges. When considering the CoV
difference, |∆CoV |, highly consistent methods would have low differences in CoV between
PI ranges. This indicates that the error rate and the prediction performance is comparable
over all PI ranges and is therefore, more reliable and repeatable. UV-Net 310GS-310SS
scores the highest consistency by achieving |∆CoV | near zero for over clinically relevant
ranges (PI > 10%), which was not achieved by UV-Net GS. Thus, with the addition of SS
masks, there is an increase in performance consistency (see Figure 4b), in that the algorithm
behaves the same over all disease levels with a significant improvement comparing to UV-
Net GS. This is at the expense of a slightly lower PI estimation performance. Therefore,
one suggestion might be to match the number of GS masks with that of SS ones, although
this needs to be tested further in the future.

Ideally, a clinical tool should have high and similar performance, i.e. produces consistent
results, over different clinically relevant ranges to ensure reliability and repeatably. If a tool
is consistent, the same diagnostic accuracy and management would be offered to patients,
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regardless of the PI. However, if the tool has variable performance over different PI ranges,
there is variability in the predictions which reduces quality of care. Deep learning is known
to suffer from generalization issues for images that are out-of-distribution. This can manifest
in different ways, including unwanted variability in the predictions. For medical imaging
applications, this can be a significant barrier for practical deployment at new labs, which
have different scanners and staining protocols. Therefore, this work proposes a way to
mitigate these challenges for Ki-67 PI estimation. For qualitative purposes Figure 8 shows
an example TMA, processed by UV-Net GS and UV-Net 310GS-186SS. Additionally, Figure
9 shows three patches across all architectures.

In the future, there are a number of ways to improve on the work. First, additional
tests will be conducted to determine the optimal of number of SS for the tasks, perhaps by
considering both consistency and accuracy at the same time, only in the clinically relevant
intervals. However, we believe that the relationship will not be a linear one, due to the
non-linearity of the systems, as well as the fact that there are separate predictions for
both Ki67+ and Ki67- nuclei. Additionally, it is possible to increase the number of SS
images in smaller increments and also include a total amount that is larger than the GS
dataset to determine the impact on prediction performance when the SS masks dominate
the training mix. It is also worth consider refining the patches that were selected for the
SS mask generation, or manual removal of poor SS masks as well as other unsupervised
tools to improve SS mask generation (although there are minimal works in the literature
for Ki67). Other ideas include sampling more patients to enhance the dataset variability
since currently, we only used 31 TMAs to develop the 310 patches. Perhaps more patient-
diversity would improve generalization further. Lastly, a final goal of this work will be to
test the SS framework for per-site calibration for whole slide images, over multiple labs. If
time permits, we may compare this to style-transfer and GAN-based domain adaptation
techniques.

5. Conclusion

This paper introduces the integration of silver standard (SS) masks from an unseen cen-
ter, generated by an unsupervised Ki67 nuclei detection algorithm (IHCCH), along with
gold standard (GS) masks from a different site, generated by expert pathologists for Ki67
PI quantification. It was found that adding SS masks from the unseen center to the deep-
learning model UV-Net improved performance over clinically relevant PI ranges. The archi-
tecture with 310 SS shows a remarkable consistency for PI ranges above 10% while a slight
degradation of F1-score accuracy. Since the SS masks are simple and fast to generate, it is
possible to use this method to fine-tune algorithms and at new centers that are deploying
AI algorithms to improve consistency and reliability of Ki67 quantification. This will be
key for clinical translation.
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Figure 3: UHN TMA dataset: a. PI difference across all architectures and b. PI ranges.
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Figure 4: Coefficient of variation. a. across different ranges b. CoV difference, |∆CoV |.
PI1-PI2 refers to the calculated |∆CoV | across [0-10] and [10-20]%
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0.0

0.2

0.4

0.6

0.8

1.0

F1
_S

co
re

Source = Ki67- Source = Ki67+
IHCCH
piNET_GS
MultiResU-NET_GS
U-Net_GS
UV-Net_GS
UV-Net_310GS-50SS
UV-Net_310GS-140SS
UV-Net_310GS-186SS
UV-Net_310GS-310SS

a

0.0

0.2

0.4

0.6

0.8

1.0

F1
_S

co
re

Source = Ki67- Source = Ki67+
IHCCH
piNET_GS
MultiResU-NET_GS
U-Net_GS
UV-Net_GS
UV-Net_310GS-50SS
UV-Net_310GS-140SS
UV-Net_310GS-186SS
UV-Net_310GS-310SS

b

Figure 5: F1 distribution of trained architectures when different amount of SS masks are
added to GS data and tested on SMH/Deepslide dataset. a. Ki67− b. Ki67+.
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Figure 6: Processing pipeline. The process includes three steps, pre-processing (GT, Gaus-
sian GT), deep learning framework, and post-processing (channel separation,
Otsu thresholding, median filter, and watershed).
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Figure 7: IHCCH unsupervised processing pipeline. The process includes vector median
filtering, background subtraction, channel separation, and adaptive radius nuclei
detection. No ground truth mask is needed here. More information can be found
in (Geread et al., 2019).

a b

Figure 8: An example of one TMA image with ground truth PI=25. a. UV-Net GS b.
UV-Net 310GS-186SS. Ki67− nuclei are marked with green and Ki67+ with red.
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Figure 9: Qualitative results obtained on multiple tiles from SMH/Deepslide dataset. α
stands for UV-Net 310GS.
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