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Abstract

When we execute the typical fine-tuning
paradigm on continuously sequential tasks, the
model will suffer from the catastrophic for-
getting problem (i.e., they forget the param-
eters learned in previous tasks when training
the model on newly emerged tasks). Exist-
ing replay-based methods need extra storage
for old data to update the parameters of the
previous classifier to overcome catastrophic
forgetting. Our work aims to achieve the se-
quential/continual learning of knowledge with-
out accessing the old data. The core idea is
to calibrate the parameters and logits (output)
so that preserving old parameters and general-
ized learning on new concepts can be solved
simultaneously. Our proposed framework in-
cludes two major components, the Logits Cal-
ibration (LC) and Parameter Calibration (PC).
The LC focuses on calibrating the learning of
novel models with old models, and PC aims to
preserve the parameters of old models. These
two operations can maintain the old knowledge
while learning new tasks without storing previ-
ous data. We do experiments on 9 scenarios of
the GLUE (the General Language Understand-
ing Evaluation) benchmark. The experimental
results show that our model achieves state-of-
the-art performance on all scenarios.

1 Introduction

Predicting labels for a large number of in-
stances occurring continuously is a crucial prob-
lem in many real-world applications like online
tweets/news summary, online product classification
in e-commerce systems, and online dialogue learn-
ing systems. In these scenarios, we not only require
the model to learn from its own experiences, but
also expect the model to be capable of continuously
acquiring, fine-tuning, and transferring knowledge
over time (Parisi et al., 2019), which is also known
as continual learning. One of the most essential
existing challenges we aim to solve in the contin-
ual learning is the catastrophic forgetting problem
(McCloskey and Cohen, 1989; Kirkpatrick et al.,
2017a). The forgetting typically happens when we
apply the pre-trained model (e.g., BERT (Devlin
et al., 2018)) on newly emerged tasks, the model

usually forgets the parameters it learned from previ-
ous tasks when we train it on new incoming tasks.

Existing works trying to solve the catastrophic
forgetting problem are varied, which can be di-
vided into three categories: (1) storing exemplars
from previous classes (Rebuffi et al., 2017a; Rol-
nick et al., 2019); (2) regularizing the parameters
when we fine-tune the model on new tasks (Kirk-
patrick et al., 2017b; Li and Hoiem, 2017a; Aljundi
et al., 2018); (3) dedicating different model param-
eters to each task to prevent any possible forgetting
(Mallya and Lazebnik, 2018; Serra et al., 2018).
Such methods aim to transfer or store the knowl-
edge of previous tasks to the newly emerged tasks
and preserve the knowledge learned previously.

Typical replay methods require storing the data
from old or pre-trained tasks, and replay them dur-
ing the fine-tuning. However, this learning pat-
tern does not consider the constraint of memory
resource or privacy issues, e.g., the data of old
tasks is often inaccessible or too large for the con-
tinual adaptation setting. Unlike the replay strat-
egy, here we focus on the calibration of knowledge
gap between different tasks, which can reduce the
catastrophic forgetting without any old data/task re-
play. The proposed calibration framework focuses
on both encoder parameters and output classifiers:
when the new/current task comes, we evaluate the
previous model on current task, and then train a
new model on current task, the differences of out-
put and parameter from the two models (old, new)
are used for calibration. Specifically, for learning
new concepts, we add the logits calibration that can
amplify the softmax output of the previous model,
and overcome the bias towards the current cate-
gory (Zhao et al., 2020). Also, for encouraging the
model to maintain previously learned knowledge,
we propose to calibrate the encoder parameters,
which simulating the training objective using the
parameters of the previous model. Then, during the
training on current tasks, the model will calibrate
parameters with target drift from the previous tasks
to the current tasks to balance new task learning and
old knowledge maintenance. It allows the model
to focus on current tasks by making the learning
objective drifting from the previous tasks to current



tasks gradually.

Our proposed Logits and Parameter Calibra-
tion based continual learning framework (LPC)
is shown in Figure 1, it reduces catastrophic for-
getting without further data storage. The calibra-
tion mechanism includes two components for both
model encoder parameters and output logits, we
finally integrate these two calibrations into a brand-
new optimization algorithm by decoupling them
from the gradient updates in Adam optimizer. We
do experiments on the GLUE benchmark with pre-
trained models BERT-base and ALBERT-xxlarge
and achieve state-of-the-art performance.

The contributions of our work are three folds.
First, we propose LPC, a novel continual learning
framework, which can reduce catastrophic forget-
ting effectively. Second, we develop a new mecha-
nism by calibrating the logits and parameters with
target drifting from previous tasks to current tasks,
thereby alleviating the catastrophic forgetting dur-
ing the model updating. Third, combining with
a parameter regularization based approach, our
model achieves state-of-the-art performance while
addressing the old knowledge forgetting without
data storage. Therefore, the newly proposed LPC
is feasible for researchers to use for further explo-
rations in this field.

2 Related Works

Continual learning is also named as life-long learn-
ing, sequential learning, or incremental learning.
As the name suggests, continual learning aims to
learn tasks in a sequential way. In the online learn-
ing process, data sometimes arrives continuously
in a non i.i.d. way, tasks may change over time,
and entirely new tasks can emerge. (Nguyen et al.,
2017). In the field of biology, biological neural net-
works exhibit continual learning in which they ac-
quire new knowledge over a lifetime (Zenke et al.,
2017). However, continual learning in deep neural
networks suffers from a phenomenon called catas-
trophic forgetting (Shin et al., 2017). Thus, one
of the most essential goals of continual learning
systems is to achieve satisfying performance on all
tasks in an incremental way. Reducing catastrophic
forgetting plays a vital role to achieve it. Current
continual learning approaches can be classified into
the following three families (De Lange et al., 2019):
(1) Replay methods, (2) Regularization-based meth-
ods, and (3) Parameter isolation methods.

Replay methods store samples in a raw format or

generate pseudo-samples with a generative model.
iCaRL (Rebuffi et al., 2017b) store a subset of ex-
emplars per class. GEM (Lopez-Paz and Ranzato,
2017) projects the estimated gradient direction on
the feasible region outlined by previous task gradi-
ents through first order Taylor series approximation.
A-GEM (Chaudhry et al., 2018) relaxes the prob-
lem to project on one direction estimated by ran-
domly selected samples form a previous task data
buffer. Regularization-based methods eschews stor-
ing raw inputs, prioritizing privacy, and alleviating
memory requirements. Instead, an extra regulariza-
tion term is introduced in the loss function, con-
solidating previous knowledge when learning on
new data. LwF (Li and Hoiem, 2017b) uses the
previous model output as soft labels for previous
tasks. EWC (Kirkpatrick et al., 2017a) penalizes
changes to important parameters. MAS (Aljundi
et al., 2018) suggests unsupervised importance es-
timate, allowing increased flexibility and online
user adaptation. Parameter isolation methods ded-
icate different model parameters to each task to
prevent any possible forgetting. PackNet (Mallya
and Lazebnik, 2018) iteratively assigns parameter
subsets to consecutive tasks by constituting binary
masks. HAT (Serra et al., 2018) requires only one
training phase, incorporating task-specific embed-
dings for attention masking.

Our method is an advanced regularization-based
method based on LCwoF (Kukleva et al., 2021)
and RecAdam (Chen et al., 2020). LCwoF revises
the original cross entropy loss by adding the sum-
mation of the exponential logits of the previous
classes classifier to the denominator to change the
normalization scale. However, the normalization
part of LCwoF is flawed as the summation of all the
normalization items is not 1. RecAdam is a method
based on EWC. However, RecAdam treats each
parameter the same, which ignores that different
parameters weigh differently in a neural network.

3 Proposed Approach

Here we introduce our proposed Logits and Param-
eter Calibration framework, LPC, which includes
two essential parts: (1) Logits Calibration (LC) that
execute calibration on the logits to reduce the logits
forgetting and increase the accuracy, and (2) Param-
eter Calibration (PC) execute the calibration on the
parameters to reduce the parameter forgetting. For
the Logits Calibration, we apply the Cross Entropy
with Logits Calibration (CELC) for classification
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Figure 1: The Overview of LPC Framework. (1) We first train the previous model on the large-scale input texts
and initialize our model (for current tasks) same as the previous one. (2) We do previous parameter preservation
to preserve the parameters of the trained model, and compute the loss for the previous model L p. (3) During the
current task training, we compute logits ¢, and ¢.. (4) We do logits calibration (e.g., cross entropy with logits
calibration for classification tasks) given g, and g. using Logrc or Lyrserc for regression tasks as the loss for
the current model L¢. Then, the objective function drifts from Lp to Lo gradually with the annealing coefficient
A(t). (5) Finally, we perform back propagation to update the parameters of the current model.

tasks (or MSE with Logits Calibration (MSELC)
for regression). For the Parameter Calibration (PC),
it consists of two components: (1) Previous Param-
eter Preservation (PPP) that aims to preserve the
parameters from previous tasks, and (2) Current
Task Training (CTT) that to reduce the drifting
from the previous tasks to current ones gradually,
when update on new task. The LPC algorithm inte-
grating the Logits Calibration (CELC or MSELC)
and Parameter Calibration (PPP and CTT) into a
brand-new optimization algorithm based on the
Adam (Kingma and Ba, 2014) optimizer.

3.1 Logits Calibration

In this section, we introduce our proposed logits
calibration, the Cross Entropy with Logits Calibra-
tion (CELC) for classification tasks. Some other
loss function (e.g., the Mean Squared Error for re-
gression) can also be combined with the Logits
Calibration, in the following paragraph.

3.1.1 Cross Entropy with Logits Calibration

The Cross Entropy (CE) Loss (Zhang and Sabuncu,
2018) is a widely-used loss for classification tasks
in deep learning. It first applies a log softmax
function on the output logits of the neural network.
Then, it computes the negative log likelihood (nll)

loss on the output of the log softmax function. Typ-
ically, the cross entropy loss can be defined as fol-
lows:

& exp(ge.i)
Lop(q) == pi log(%)

=1 > exp(qe,j)
j=1

)]

where N¢ is the total number of classes in the
current tasks. g.; represents the output logits for
class ¢ of the current model on the current tasks. p;
can be considered as the binary label of class ¢. If
the data input = belongs to class i, the value of p;
will be 1, otherwise, the value will be 0.

Nevertheless, the original cross entropy loss only
concerns the performance of the current model.
Thus, the model will suffer the catastrophic for-
getting problem with the step increasing. In order
to reduce the catastrophic forgetting problem, we
consider to simultaneously evaluate the previous
model on the current tasks and compute the output
logits of the previous model g,,.

Inspired by the idea from LCwoF (Kukleva et al.,
2021), we add the logits information of the previ-
ous model into the cross entropy loss. Different
from LCwoF, we do logits calibration by adding



the difference between each logits of the current
model and the previous model (g.; —gp,;) to the cor-
responding output logits ¢.; of the current model
for class 7. In this way, the model can preserve im-
portant output logits information of each class for
the previous model in an element-wise way. Our
proposed Cross Entropy with Logits Calibration
(CELC) Loss is shown in Equation 2:

N,
RS exp(qe,i + 1(qei — pi)
Lcelc - - Zpi lOg( No )
=1 exp(Ge,j + 11(qe,j — Gp,j))
=1
)

where we multiply the difference between the
logits for the current model and the previous model
(ge — gp) by a weight item p € [0, 1] to control
the calibration degree. By employing this new loss
function, we can also increase the accuracy of the
model through training process by giving a reward
to the logits for the correct class if g..; is larger than
qp.i» otherwise, giving a penalty to the logits for the
correct class if g, ; is smaller than g, ;.

J

3.1.2 Mean Squared Error with Logits
Calibration

Mean Squared Error (MSE) Loss (Fisher, 1922)
is the most commonly-used loss function for re-
gression tasks. It computes the squared L2 norm
between output logits and the true values and takes
the mean of the full batch. Follow the idea of the
logits calibration on cross entropy loss, we evaluate
the previous model on current tasks and take out
the output logits g,. We measure the difference be-
tween the output logits of the current model and the
previous model by adding a squared L2 norm on
the difference between logits of the current model
and the previous model (g. — g,)? to the origi-
nal function. The proposed Mean Squared Error
with Logits Calibration Loss Ljssgrc is shown in
Equation 3:

Luserc(q) = (¢ —p)* + pulge — ¢p)*  (3)

3.2 Parameter Calibration

In this section, we introduce the second module
of our model, Parameter Calibration (PC). Our
proposed Parameter Calibration method can effec-
tively reduce the catastrophic forgetting by giving
a penalty to the prediction if the parameters of

the current model are different from the previous
model by adding the squared difference between
the parameters of the current model and the previ-
ous model to the training loss. It includes two parts:
(1) Previous Parameter Preservation (PPP), and (2)
Current Task Training (CTT).

3.2.1 Previous Parameter Preservation

As shown in Figure 1, in Previous Parameter Preser-
vation, we try to maintain the parameters of the pre-
vious model. Here, we add a regularization to the
posterior of parameters given data. The Previous
Parameter Preservation method can be regarded as
an improved method derived from RecAdam (Kirk-
patrick et al., 2017b). Different from RecAdam,
PPP measures the importance of each parameter
by introducing the importance weights 2. During
training, the current model preserves the informa-
tion of the most important parameters to a great
extent by penalizing the changes to those important
parameters more severely. The detailed derivation
of our proposed loss function Lp is shown in Equa-
tion 4:

Lp = —logp(d|Dp)

~ —logp(0*|Dp) + 6(6 — 6*)TH(6*)Q(6) (6 — 6%)

~ 8(0 — 0T H(6*)Q(6) (6 — %)

~ 5(0 — ) (NF(8") + Hyrior (67))226) (6 — 67)

~ON Y Fiii(0i5 — 05;)°
ij
~ 5NFZ Qij(aij — 92})2

v
=67 Q03 — 05)°
ij

“)

where § is a hyperparameter for the regularizer.
H(0*) is the Hessian matrix of the optimization
objective with respect to #*. We can approximate
H (0*) with the empirical Fisher information ma-
trix F'(0*) (Martens, 2014). N is the total num-
ber of data inputs in Dp. Hppior (6*) is the Hes-
sian matrix of the negative log prior probability
—logp(#). EWC ignores Hy,io-(0*) and approx-
imates H (60*) by assigning the diagonal values of
F(6*) to H(#*). Thus, we replace NF with a
constant value ~y at the end of the derivation. We
can consider 7 as a coefficient of the quadratic
penalty. During the derivation, we can simply ig-
nore — log p(6*|Dp) as it is a constant term with
respect to 0*. () is estimated by the sensitivity



Algorithm 1 -

1: given initial learning rate @ € R, momentum factors 5; =

0.9, B2 = 0.999, ¢ = 1078, pre-trained

parameter vector §* € R", hyperparameter for the regularizer 6 € R, coefficient of the quadratic
penalty v € R, hyperparameter controlling the annealing rate r € R, hyperparameter controlling the

timesteps to € N.

2: initialize timestep ¢ + 0, parameter vector 6;—g € R",

importance weights ) < 1, first moment

vector mi—q <— 0, second moment vector v;—q <— 0, schedule multiplier 7;—¢ € R.

3: repeat

4: t—t+1
5 x < SelectBatch(x)
6

7:

8: V(ft($, et_l))

9:

10: for k < O0to N do

13: end for
15: ) 1/(1 +exp(—r
16: gt — )\( )Vft(a:, 6’t_1)
17: my < Prmy—1 + (1 — B1)gs
18: vy < Bovi—1 + (1 — B2)g?
19: e < my/(1— BY)

20: Vg — ’Ut/(l — ﬁé)

21 ne < SetScheduleMultiplier(t)

- (t —t0))

23: until stopping criterion is met
24: return optimized parameters 6;

= VlLenro(en gpa) | Larsmrc(te doe))

> update timestep
> select batch data

> compute output logits for the current model
> compute output logits for the previous model

> compute gradients

> compute importance weights after each update epochs

> compute annealing coefficient
> compute new gradients

> update biased first moment estimate
> update biased second raw moment estimate
> compute bias-corrected first moment estimate

> compute bias-corrected second raw moment estimate
> can be fixed, decay, or also be used for warm restarts

220 Oy = 01 — ne(A(t)oring / (VO + €)+ _)

> update parameters

of the squared L2 norm of the function output to
their changes. We can obtain (2;; by accumulating

the gradients over the given data points by Equation
5:

L
= 2 lgii(z)] 5)
k=1
where g;; () = w is the gradients of

the squared L2 norm of the learned neural network
with respect to the parameter ¢;;. The output of
f(zk; 6) is the loss of the network.

In Equation 4, 0;; is the parameter of the current
model of the connections between pairs of neurons
n; and n; in two consecutive layers. 6* represents
parameters of the previous model, which can be
assumed as a local minimum of the parameter space
as shown in Equation 6:

0" = argmin{—logp(6|Dp)} (6)
3.2.2 Current Task Training with Continual
Learning

In the current task training process, we train the
current model and evaluate the previous model on
current tasks simultaneously. In the continual learn-
ing setting, first, we train with Task 77, then evalu-
ate on Task 7T7. Second, our current task training
will cover T5 task, and then evaluate on instances
related to Task 77 and T5. Next, our current task
training will focus on Task 73 and then evaluate
on instances related to Task 73, 75 and 75 and so
on. Here, we present the detail of one particular
current task where how we incorporate drift from
previous tasks to the current task. The function of
the neural network whose output is the loss of the



Table 1: Experimental Results on Single Task. All of results are the medians over 5 runs. The metric for CoLA is
mcc (Matthew Correlation Coefficient). The metric for STS-B is corr (Average of Pearson and Spearman Correlation
Coefficient). All other metrics are acc (Accuracy). The train-test split of the datasets is shown as (# train samples / #

test samples) in the third row.

CoLA MNLI MRPC

QNLI

QQP RTE  SST-2  STS-B  WNLI

Avg Avg Avg
Model mec acc acc acc acc acc acc corr acc ace mee cort
85k/ 1k 393k/20k 3.7k/L7k 105k/54k 364k/391k 25k/3k 67k/18k 7k/14k 634/ 146
BERT-base + Adam (rerun) i/egian 57.1 84.2 813 91.0 90.7 63.9 93.1 892 563  80.1 ST.1 892
BERT-base + EWC (terun) ycgion 540 845 83.4 914 90.6 67.9 927 896 338 778 540 896
BERT-base + MAS (rerun) regian 58.0 835 84.9 91.2 91.0 722 91.9 895 521 810 580 895
BERT-base + SI (rerun) y/cgian 58.8 83.6 843 91.0 912 711 91.9 898 563 813 588 898
BERT-base + RecAdam (rerun) ycgian 599 826 85.7 914 889 708 93.1 900 563 813 599 900
BERT-base + LPC y/cgian 618 85.0 86.1 915 915 4.7 93.2 90.3 620 834 618 90.3
ALBERT-xxlarge + Adam (erun) fegion 70.5 83.0 838 937 813 729 oL1 922 690 85 705 922
ALBERT-xxlarge + EWC (rerun) pzedian 70.5 88.2 85.0 94.2 88.5 74.0 93.9 914 63.4 839 705 914
ALBERT-xxlarge + MAS (rerun) yfegian 714 89.4 836 942 9.1 84.1 944 920 761 884 714 920
ALBERT-xxlarge + SI (terun) p7cgian 69.8 88.1 89.0 942 917 874 95.0 922 746 886 698 922
ALBERT-xxlarge + RecAdam (rerun) pzedian 70.5 88.5 87.5 93.9 87.5 89.5 93.9 92.8 789 88.5 705 92.8
ALBERT-xxlarge + LPC 3/cqian 74.1 89.8 89.4 943 923 89.5 95.8 933 817 904 741 933
model can be represented as follows: 0.5Lc 4+ 0.5Lp. Finally, if 0 < r < oo, then
0 < A < 1. With time goes by, the objective
Lo = fi(x;04-1) (7)  of the model drifts from previous tasks to current

where ¢ is the timestep. We compute the loss
by the proposed Cross Entropy with Logits Cali-
bration (CELC) for classification tasks and Mean
Squared Error with Logits Calibration (MSELC)
for regression tasks as follows:

ft = Loerc(Q(x;0:-1)) || Lmserc(Q(x; 0i-1))

®)

where Q)(x; 0;—1) represents the function of the

current model and the previous model whose output

are logits with data inputs « and parameters 6;_1
of the model in timestep ¢ — 1.

To adapt the target task from previous tasks to
current tasks, we introduce a method allowing the
objective function to gradually drift from Lp to L¢
with the annealing coefficient A(¢):

Lr=Mt)Le+(1—AE)Lp (9

where ¢ refers to the timestep during the training
process. We compute \(t) = m as
the sigmoid annealing function (Kiperwasser and
Ballesteros, 2018), where 7 is the hyperparameter
controlling the annealing rate and ¢ is the hyper-
parameter controlling the timesteps.

When t < tg, —r - (t — to) will be positive. In
this case, if r — oo, then exp(—r - (¢t — tp)) —
o0, )\(t) — 0, L = Lp. Whent > tg, —7 -
(t — to) will be negative. In this case, if r — oo,
then exp(—r - (t — t9)) — 0, A(t) = 1, Lt
L¢. Otherwise, if r — 0, then —r - (t — tg) —
0, exp(—r - (t —to)) — 1, A(t) — 0.5, Ly

tasks gradually. Finally, by doing back propagation,
we update parameters of the current model with
parameter calibration.

3.3 LPC Algorithm

In this section, we combine the Logits Calibration
(CELC or MSELC) with Parameter Calibration
(PPP and CTT) into a brand-new optimization algo-
rithm as shown in Algorithm 1. The Logits Calibra-
tion (LC) part is shown from line 6 to line 8. The
Parameter Calibration (PC) part is shown from line
9 to line 16 and line 22. Here, we introduce LPC
Algorithm which integrates the quadratic penalty
with importance weights and the annealing coef-
ficient into a complete optimization algorithm by
decoupling them from the gradient update in Adam
optimization algorithm (Kingma and Ba, 2014).
The orange part in Algorithm 1 depicts how LPC is
different from RecAdam (Chen et al., 2020), more
specific description could be viewed in Appendix.

4 Evaluations

In this section, we evaluate LPC on the Gen-
eral Language Understanding Evaluation (GLUE)
(Wang et al., 2018) benchmark. We compare our
model with Adam (Kingma and Ba, 2014), EWC
(Kirkpatrick et al., 2017b), MAS (Aljundi et al.,
2018), SI (Zenke et al., 2017), and RecAdam (Chen
et al., 2020).



Table 2: Experimental Results on Sequentially Emerged Classification Tasks (The order of emergence: CoLA,
MRPC, QNLI, QQP, RTE, SST-2, and WNLI). The results are the validation results on all the 7 classification tasks
using the model sequentially trained on all the 7 classification tasks. All of results are the medians over 10 runs.
The metric for CoLA is mcc (Matthew Correlation Coefficient). All other metrics are acc (Accuracy). The train-test
split of the datasets is shown as (# train samples / # test samples) in the third row.

CoLA MRPC QNLI QQpP RTE SST-2 WNLI Avg Avg
Model mcc / fgt acc/ fgt acc / fgt acc / fgt acc/fgt  acc/fgt  acc/fgt acc/fot  mec /fat
8.5k/1k 3.7k/1.7k 105k/5.4k 364k/391k 2.5k/3k 67k/1.8k 634/146
BERT-base + EWC (rerun) psedian 2.8/49.0 573/214 442/455 703/203 469/9.8 72.6/18.2 225/0.0 523/19.2 2.8/49.0
BERT-base + MAS (rerun) pzegian 20.1/30.7 63.7/208 70.1/34 481/21.1 520/15 673/79 29.1/00 551/9.1 20.1/30.7
BERT-base + SI (rerun) predian 11.3/46.6 52.7/29.8 819/77 57.7/252 578/9.0 86.7/1.1 282/0.0 60.8/12.1 11.3/46.6
BERT-base + RecAdam (rerun) predian 2.0/58.6  51.1/19.7 4947115 50.1/253 498/33 48.7/318 11.3/0.0 434/153 20/58.6
BERT-base + LPC p/egian 271/258 639/188 83.0/22 705/11.7 585/65 873/04 324/00 659/6.6 27.1/258

Table 3: The Results of Ablation Study on Adam, Logits Calibration (LC), Parameter Calibration (PC), and Logits
and Parameter Calibration (LPC). All of results are the medians over 5 runs. The metric for CoLA is mcc (Matthew
Correlation Coefficient). The metric for STS-B is corr (Average of Pearson and Spearman Correlation Coefficient).
All other metrics are acc (Accuracy). The train-test split of the datasets is shown as (# train samples / # test samples)

in the third row.

CoLA MRPC RTE SST-2 STS-B WNLI

Avg Avg Avg

Model mcc acc acc acc corr acc ace  mee  corr
8.5k/1k 3.7k/1.7k 2.5k/3k 67k/1.8k 7k/1.4k 634/146

BERT-base + Adam (rerun) pedian 57.1 81.3 63.9 93.1 89.2 56.3 73.7 57.1 89.2
BERT-base + Adam + LC psegian 61.2 82.8 66.8 92.3 89.3 56.3 74.6 61.2 89.3
BERT-base + PC j/cdian 61.4 85.3 72.2 92.8 90.2 57.7 77.0 61.4 90.2
BERT-base + LPC predian 61.8 86.1 74.7 93.2 90.3 62.0 79.0 61.8 90.3

4.1 Dataset

We evaluate our approach LPC on the GLUE bench-
mark, which is a collection of resources for train-
ing, evaluating, and analyzing in the NLU systems
(Wang et al., 2018). It contains the following 9
different scenarios: (1) Single-Sentence Scenar-
ios: CoLA The Corpus of Linguistic Acceptability
(Warstadt et al., 2019), and SST-2 The Stanford
Sentiment Treebank (Socher et al., 2013); (2) Sim-
ilarity and Paraphrase Senarios: MRPC The Mi-
crosoft Research Paraphrase Corpus (Dolan and
Brockett, 2005), QQP The Quora Question Pairs
dataset!, and STS-B The Semantic Textual Simi-
larity Benchmark (Cer et al., 2017); (3) Inference
Scenarios: MNLI The Multi-Genre Natural Lan-
guage Inference Corpus (Williams et al., 2017),
QNLI The Stanford Question Answering Dataset
(Rajpurkar et al., 2016), RTE The Recognizing
Textual Entailment datasets (Dagan et al., 2005)
(Haim et al., 2006) (Giampiccolo et al., 2007) (Ben-
tivogli et al., 2009), and WNLI The Winograd
Schema Challenge (Levesque et al., 2012). We
perform our experiments on 9 out of 9 corpora.

"https://www.quora.com/q/quoradata/First-Quora-
Dataset-Release-Question-Pairs

4.2 Experimental Setup

We perform the experiments based on deep pre-
trained language models BERT-base? (Devlin et al.,
2018) and ALBERT-xxlarge (Lan et al., 2019),
respectively. BERT is a multi-layer bidirec-
tional Transformer encoder using bidirectional self-
attention to learn a Transformer encoder for rep-
resenting texts. ALBERT is an advanced deep
pre-trained language model with lower memory
consumption and faster training speed than BERT.
ALBERT improves BERT using parameter reduc-
tion techniques and employing self-supervised loss
for sentence-order prediction (SOP).

We have two different experimental settings: (1)
single task setting, and (2) continual learning set-
ting. In the single task setting, we treat the pretrain-
ing as the previous task, and choose one of the tasks
as the current task. In the continual learning set-
ting, we train the model on several different tasks
sequentially in a given order. Each time after train-
ing, we evaluate the current model on all the tasks
we have trained on. For example, if our current
model is trained on QNLI and previously trained
with CoLA and MRPC. During evaluation, we use
instances related to all 3 tasks (CoLA, MRPC, and

Zhttps://huggingface.co/transformers/model_doc/bert.html



Table 4: Different Task Sequences Used for Continual
Classification Setting

Order # Task Sequence
1 CoLA — MRPC — QNLI — QQP — RTE — SST-2 — WNLI
2 | QNLI — QQP — CoLA — MRPC — RTE — SST-2 — WNLI
3 | RTE — SST-2 — WNLI — QNLI — QQP — CoLA — MRPC

QNLI) so far we observed. After the last task train-
ing as a current model, we report the evaluation
results based on all the tasks that we have seen so
far. For the continual learning setting, we focus
on evaluating the overall performance on classifi-
cation as same as existing work (Kirkpatrick et al.,
2017b), so we not use STS-B (regression) under
this setting. The forgetting metric (Chaudhry et al.,
2019) fgt for a given task is measured by the differ-
ence between results of the validation metrics (e.g.,
accuracy) when the task is first validated and last
validated.

4.3 Results

We perform single task experiments on 9 scenar-
ios of the GLUE benchmark as shown in Table
1. From the experimental results with BERT-base
model, we outperform BERT-base with Adam,
EWC, MAS, SI, and RecAdam models on 9 out
of 9 scenarios of the GLUE benchmark. From the
experimental results on ALBERT-xxlarge model,
we also outperform ALBERT-xxlarge with Adam,
EWC, MAS, SI, and RecAdam on 9 out of 9 sce-
narios of the GLUE benchmark. In both cases, we
achieve the best average acc, mcc and corr com-
pared to the other 5 models. For the result under
the continual learning setting, we try different task
sequence to evaluate the performance of our work
with EWC, MAS, SI, and RecAdam, the descrip-
tion of task sequences is in Table 4, We show the
result of sequence 1 in Table 2, other results are
listed in the Appendix. From the experimental re-
sults, we can see our model achieves less forgetting
than EWC, MAS, SI, and RecAdam especially for
older tasks like CoLA, MRPC, QNLI and QQP. In
general, we achieve the best average acc on MRPC,
QNLI, QQP, RTE, SST-2, and WNLI, and the best
mcc on CoLA. We also achieve the least average
forgetting on all the 7 classification tasks. The re-
sults of continual learning setting show that our
method can achieve the best performance and for-
get less than other methods, which demonstrate the
effectiveness of our method to address the catas-
trophic forgetting problem in continual learning.
What is more, there is no obvious relationship

between the size of the datasets and the results.
Namely, our model performs well on both large
datasets and small datasets.

4.4 Ablation Study

As we have mentioned, our model (LPC) has two
important components, Logits Calibration (LC) and
Parameter Calibration (PC). Thus, we do ablation
study on these two components separately with
BERT-base pre-trained model on the 6 scenarios of
the GLUE benchmark. The results of ablation study
is shown in Table 3. We can see both of LC and PC
achieve better results than the baseline Adam. LPC
achieves the best results among all three models.
Compared with Adam, LC achieves 1.2% improve-
ments on average measured by acc on MRPC, RTE,
SST-2, and WNLI, 7.2% improvements measured
by mcc on CoLA, and 0.1% improvements mea-
sured by corr on STS-B. Compared with Adam,
PC achieves 4.5% improvements on average mea-
sured by acc on MRPC, RTE, SST-2, and WNLI,
7.5% improvements measured by mcc on CoLLA,
and 1.1% improvements measured by corr on STS-
B. Compared with Adam, LPC achieves 7.2% im-
provements on average measured by acc on MRPC,
RTE, SST-2, and WNLI, 8.2% improvements mea-
sured by mcc on CoLLA, and 1.2% improvements
measured by corr on STS-B.

5 Conclusion

In this paper, we propose Logits and Parameter Cal-
ibration (LPC) framework on continual learning to
deal with the catastrophic forgetting problem. The
proposed framework includes two important com-
ponents, Logits Calibration (LC) and Parameter
Calibration (PC). We introduce LPC algorithm by
integrating the Logits Calibration and Parameter
Calibration into a brand-new optimization algo-
rithm based on the well-known Adam optimization
algorithm. We do experiments with single task
setting on 9 scenarios of GLUE benchmark and
achieve state-of-the-art performance. We also do
experiments with continual learning setting and
achieve the best average accuracy and mcc, and the
least forgetting. The limitation of our work is that
when data comes in an online manner (sometimes
without labels), we have no technique to handle it.
Thus, our future direction is to make our model fit
the online learning settings. We also release the
open-source LPC Algorithm to further benefit the
continual learning research community.
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Figure 2: Comparison of Parameter Forgetting and
Model Performance with the Epoch Increasing on CoLA
Corpus with BERT-base Pre-trained Model.

A.1 Specific Desription of Algorithm 1

From line 9 to line 14, we show how we calculate
) by initializing €2 as a tensor filled with the scalar
value one. The size of ) are the same as that of
parameter size of the previous model and the cur-
rent model. From line 10 to line 13, we accumulate
the gradients of the squared L2 norm of the learned
neural network over the given data inputs to obtain
importance weights ();; for parameter ¢;;. In line
14, we compute the mean value of €);; by dividing
it by N. Here, N is the total number of data in-
puts at a given phase. In line 16, we compute the
gradients of the loss function as a weighted combi-
nation of the gradients of Lo and Lp. In line 22,
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we update the network parameters 6 by the gradient
descent method.

A.2 Forgetting Analysis

In addition to computing accuracy, we also mea-
sure the forgetting by computing the euclidean dis-
tance between the parameters of the current model
and the previous model on CoL A corpus. Figure
2 shows the comparison of parameter forgetting
from the first epoch to the last epoch and the cor-
responding accuracy with epoch increasing among
LPC, RecAdam and Adam. In Figure 2 chart (1),
with epoch increasing, the euclidean distance of
Adam increases a lot, which means the forgetting
of Adam is huge with the epoch increasing. How-
ever, our model (LPC) reduces the forgetting in
a large extent compared with Adam and achieves
similar forgetting with RecAdam, another baseline
trying to reduce carastrophic forgetting. Here, the
forgettnig of our model is a little bit worse than
RecAdam is because our model tries to remember
the most important parameters while forget unim-
portant parameters. Furthermore, in Figure 2 chart
(3), we can see our model (LPC) achieves the best
accuracy compared to RecAdam and Adam all the
time after Epoch 4. Figure 2 chart (2) shows results
of all models starting from Epoch 0.

A.3 Hyperparameter Analysis

In this section, we analyze the most essential hy-
perparameters we set in the LPC model. ¢ is a
hyperparameter controlling the level of regulariza-
tion. Setting d between 1 and 2 balances the level
of regularization. () is a parameter measuring the
importance of different parameters in the model.
Initializing €2 as ones makes the importance of each
parameter more balanced. The hyperparameter u_e
controls the updating epochs of 2. Typically, u_e
is between 1 and 16. w_s is a hyperparameter con-
trolling the number of steps of updating with low
learning rate before/at the beginning of the train-
ing process. We set w_s as 0, 320 or 640. After
these warmup steps, we will use the regular learn-
ing rate to train our model until convergence. In
other words, we have a few steps adjustment before
we actually train the model. From our experiments,
we find that the hyperparameters 9, u_e, and w_s
have great influences on the experimental results.

Figure 3 shows the comparison of different hy-
perparameter (J, u_e, and w_s) initializations on
CoLA, MRPC, and STS-B corpora with BERT-
base pre-trained model.
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Figure 3: Comparison of Different Hyperparameter Initializations on CoLA, MRPC, and STS-B Corpora with
BERT-base Pre-trained Model. The metric for CoLA, MRPC, and STS-B are mcc (Matthew Correlation Coefficient),
acc (Accuracy), and corr (Average of Pearson and Spearman Correlation Coefficient), respectively.

Table 5: The Results of Ablation Study on Adam, Logits Calibration (LC), Parameter Calibration (PC), and Logits
and Parameter Calibration (LPC) with ALBERT-xxlarge Pre-trained Model. All of results are the medians over 5
runs. The metric for CoLA is mcc (Matthew Correlation Coefficient). The metric for STS-B is corr (Average of
Pearson and Spearman Correlation Coefficient). All other metrics are acc (Accuracy). The train-test split of the
datasets is shown as (# train samples / # test samples) in the third row.

CoLA MRPC QNLI RTE SST-2 STS-B WNLI

Avg Avg Avg

Model mcc acc acc acc acc corr acc ace mee corr
8.5k/1k 3.7k/1.7k 105k /5.4k 2.5k/3k 67k/1.8k 7k/1.4k 634/146

ALBERT-xxlarge + Adam (rerun) pedian 70.5 88.0 93.7 729 91.1 922 69.0 829 705 922
ALBERT-xxlarge + Adam + LC predian 71.0 88.5 93.8 88.4 95.5 923 70.4 87.3 71.0 923
ALBERT-xxlarge + PC pregian 74.1 88.6 94.0 88.4 95.7 92.9 74.6 88.3 741 929
ALBERT-xxlarge + LPC pedian 74.1 89.4 94.3 89.5 95.8 93.3 81.7 90.1 741 933

In Figure 3 chart (1), we setu_e = 2 and w_s =
320. We can see when ¢ increases from 1 to 1.2,
the performance of the model decreases on CoLA
and STS-B corpora while increases on the MRPC
corpus. After that, the performance of the model
increases with ¢ increasing. The model achieves
the best results when = 2 on all the three corpora.

In Figure 3 chart (2), we set 6 = 2 and w_s =
320. We can see the performance of the model
varies with different values of u_e. Specifically,
when u_e increases from 1 to 2, the performance of
the model improves on CoLLA and STS-B corpora
while decreases on the MRPC corpus. When u_e
increases from 2 to 4, the performance decreases in
a large extent especially on the CoLLA corpus. How-
ever, when u_e increases from 4 to 8, the model
performance increases again. When u_e increases
from 8 to 16, there is no obvious difference on the
performance.

In Figure 3 chart (3), weset 6 = 1 and u_e = 1.
We can see when w_s increases from 0 to 320,
there is an increase on all the three corpora. How-
ever, when w_s increases from 320 to 640, the
performance decreases slightly, instead.
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A.4 Ablation Study with ALBERT-xxlarge
Model

As we have mentioned, our model (LPC) has two
important components, Logits Calibration (LC) and
Parameter Calibration (PC). In addition to doing
ablation study with BERT-base pre-trained model,
we also do ablation study on these two compo-
nents separately with ALBERT-xxlarge pre-trained
model on the 7 scenarios of the GLUE benchmark.
The results of ablation study with ALBERT-xxlarge
pre-trained model is shown in Table 5. We can see
with ALBERT-xxlarge pre-trained model, both of
LC and PC achieve better results than the baseline
Adam. LPC achieves the best results among all
three models. Compared with Adam, LC achieves
5.3% improvements on average measured by acc on
MRPC, QNLI, RTE, SST-2, and WNLI, 0.7% im-
provements measured by mcc on CoLA, and 0.1%
improvements measured by corr on STS-B. Com-
pared with Adam, PC achieves 6.5% improvements
on average measured by acc on MRPC, QNLI, RTE,
SST-2, and WNLI, 5.1% improvements measured
by mcc on CoLA, and 0.8% improvements mea-
sured by corr on STS-B. Compared with Adam,



Table 6: Experimental Results on Sequentially Emerged Classification Tasks (The order of emergence: QNLI, QQP,
CoLA, MRPC, RTE, SST-2, and WNLI). The results are the validation results on all the 7 classification tasks using
the model sequentially trained on all the 7 classification tasks. All of results are the medians over 10 runs. The
metric for CoLA is mcc (Matthew Correlation Coefficient). All other metrics are acc (Accuracy). The train-test split
of the datasets is shown as (# train samples / # test samples) in the third row.

QNLI QQpP CoLA MRPC RTE SST-2 WNLI Avg Avg
Model acc / fgt acc / fgt mcc / fgt acc/fgt  acc/fgt  acc/fgt  acc/fgt ace / fet mee / fat
105k /5.4k 364k /391k  85k/1k 3.7k/1.7k 2.5k/3k 67k/18k 634/146
BERT-base + EWC (rerun) psedian 65.4/254 604/30.0 59/387 364/463 57.0/51 66.5/24.6 26.6/00 521/219 59/38.7
BERT-base + MAS (rerun) pzegian 56.2/340 575/122 63/33 632/38 477/57 555/18 208/00 502/9.6 63/33
BERT-base + SI (rerun) predian 78.1/12.8 522/319 35/438 403/388 574/94 833/33 268/0.0 564/16.0 3.5/43.8
BERT-base + RecAdam (rerun) pregian 49.1/422  47.0/285 0.6/14.6 54.7/11.4 53.1/23 49.0/31.7 21.1/0.0 457/194 0.6/14.6
BERT-base + LPC predian 86.8/41 63.7/227 15.7/253 409/377 603/22 83.5/17 352/00 617/114 15.7/253

Table 7: Experimental Results on Sequentially Emerged Classification Tasks (The order of emergence: RTE, SST-2,
WNLI, QNLI, QQP, CoLA, and MRPC). The results are the validation results on all the 7 classification tasks using
the model sequentially trained on all the 7 classification tasks. All of results are the medians over 10 runs. The
metric for CoLA is mcc (Matthew Correlation Coefficient). All other metrics are acc (Accuracy). The train-test split
of the datasets is shown as (# train samples / # test samples) in the third row.

RTE SST-2 WNLI QNLI QQP CoLA MRPC Avg Avg
Model acc / fgt acc/fgt  acc/fgt acc / fgt acc / fgt mec/fgt  acc/fgt acc/fot  mec/ fat
25k/3k  67k/18k 634/146 105k/5.4k 364k/391k 85k/1k 3.7k/ 1.7k
BERT-base + EWC (rerun) pzedian 50.9/188 46.8/43.0 43.7/70 427/474 758/150 414/56 795/00 56.6/219 414/56
BERT-base + MAS (rerun) p/edian 48.7/163 1751/13.1 38.0/50 569/179 446/296 6.1/31 685/00 553/13.7 6.1/3.1
BERT-base + SI (rerun) aredian 42.6/259 52.0/402 479/28 279/61.1 67.8/147 322/62 83.0/0.0 535/241 322/62
BERT-base + RecAdam (rerun) pregion  51.6/18.4 50.8/29.5 49.3/7.0 51.4/9.7 444/31.1 -63/180 649/00 52.1/160 -6.3/18.0
BERT-base + LPC j/edian 56.7/54 674/234 517/14 664/11.0 709/79 469/12 799/0.0 66.5/82 46.9/1.2

LPC achieves 8.7% improvements on average mea-
sured by acc on MRPC, QNLI, RTE, SST-2, and
WNLI, 5.1% improvements measured by mcc on
CoLA, and 1.2% improvements measured by corr
on STS-B. Thus, we can conclude that our model
can achieve state-of-the-art results with different
pre-trained model. These results prove the scalabil-
ity of our model.

A.5 Experimental Results on Sequentially
Emerged Classification Tasks with
Different Orders of Emergence

For continual learning setting, in addition to the
original order of emergence, we also do experi-
ments on sequentially emerged classification tasks
with different orders of emergence. The results are
shown in Table 6 and Table 7. In both cases, even
with different orders of emergence, LPC achieves
the best average accuracy and mcc. The results
demonstrate the superiority and robustness of LPC
on continual learning setting.

A.6 Hyper-parameters for the Rerun of
Baselines

For all the baselines, we use standard hyper-
parameters. For example, for BERT-base model,

the learning rate of all the baseline models is 2e-5.
For ALBERT-xxlarge model, the learning rate of
all the baseline models is 1e-5. The max sequence
length of all the models is 128. For RecAdam,
the annealing k is 0.1, the pretrain coefficient is
5000. For EWC, MAS, and SI, the regularization
coefficient is 150.
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