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Abstract

Neural text classification models are known to001
explore statistical patterns during supervised002
learning. However, such patterns include spu-003
rious patterns and superficial regularity in the004
training data. In this paper, we exaggerate su-005
perficial regularity in the text to prevent unau-006
thorized exploration of personal data.007

We propose a gradient-based method to con-008
struct text modifications, which can make deep009
neural networks (DNNs) unlearnable. We010
then analyze text modifications exposed by011
the gradient-based method and further propose012
two simple hypotheses to manually craft un-013
learnable text. Experiments on four tasks (sen-014
timent classification, topic classification, read-015
ing comprehension and gender classification)016
validate the effectiveness of our method, by017
which these hypotheses achieve almost un-018
trained performance after training on unlearn-019
able text.020

1 Introduction021

Huge amounts of data is freely available online,022

such as movie reviews and articles on the online023

publishing platforms. Big companies use it to build024

commercial applications without the agreement of025

data contributors via Natural Language Processing026

(NLP) techniques. On the other side, Deep Neural027

Networks (DNNs) empower many modern NLP028

applications by utilizing freely available data. It029

increases the risk of privacy leakage, since DNNs030

are highly capable to learn statistical features in031

the training data (Lin et al., 2021) and memorize032

the information in the training data (Fredrikson033

et al., 2015). The memorized information could034

be extracted by the hacker, such as the leakage of035

name/address from language model (Carlini et al.,036

2020). This particularly happens when users pro-037

vide sensitive data to the trusted parties. Normally,038

users can only rely on the actions of model own-039

ers to alleviate the issue by training models with040

differentially-private techniques (Chaudhuri and 041

Monteleoni, 2009; Shokri and Shmatikov, 2015; 042

McMahan et al., 2018; Abadi et al., 2016). 043

However, deep learning also leverages undesired 044

patterns during training, including annotation arti- 045

facts (Gururangan et al., 2018), syntactic heuristics 046

(McCoy et al., 2019), high-frequency words asso- 047

ciated with the target labels (Wallace et al., 2019), 048

algorithmic biases (Zhang et al., 2018) and shallow 049

shortcuts (Branco et al., 2021). Besides, previ- 050

ous works show that spurious correlations (Wallace 051

et al., 2019; Niven and Kao, 2019) cause adversar- 052

ial examples for a well-trained DNN. For examples, 053

Niven and Kao (2019) shows random accuracy of 054

adversarial examples with spurious statistical cues. 055

In this paper, we investigate superficial patterns 056

to prevent the unauthorized use of data and rad- 057

ically eliminate the risk of privacy leakage. We 058

generate unlearnable features, which can be eas- 059

ily embedded into text to make DNNs unlearnable. 060

The concept of unlearnable examples is spawn from 061

Huang et al. (2021) for computer vision. 062

The main contributions of our work include: 063

• We propose a gradient-based method to ex- 064

plore unlearnable features for three common 065

NLP tasks. Specifically, we adapt the formu- 066

lation of bi-level optimization Huang et al. 067

(2021) to the discrete textual input by intro- 068

ducing a first-order, gradient-based search al- 069

gorithm in Section 3. The optimization pro- 070

cess would generate an effective one-word 071

modification to make data unlearnable, even 072

for models fine-tuned on powerful pre-trained 073

transformers. 074

• We find and verify an effective unlearnable 075

pattern for text classification (Section 4): in- 076

serting simple synthetic characters (e.g., ’a’, 077

’b’, ’c’) into the training data in the class- 078

wise manner could be effective for unlearn- 079

able training, no matter where they are in- 080
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serted.081

• We find and verify an effective unlearnable082

pattern for reading comprehension (Section 5)083

show that: shortcuts can be inserted or substi-084

tute the word surrounding the answer spans to085

prevent DNNs from comprehending the text.086

• We also show the effectiveness of the two087

unlearnable patterns above, even though users088

can only access and modify a small portion of089

data for training (Section 6).090

• We demonstrate a practical use case to prevent091

social platforms from user profiling (Section092

7).093

2 Related Work094

This section would demonstrate relevant work for095

privacy protection, data poison and how gradient-096

based methods can modify data for different objec-097

tives.098

Privacy protection. The concerns of data pri-099

vacy has been raised in many areas. For example,100

Viejo et al. (2012) had early concern for prevent-101

ing social media from profiling users while Shan102

et al. (2020) developed Fawkes to prevent unautho-103

rized face recognition systems from identifying a104

person. Also, different techniques have been de-105

veloped for alleviating privacy issues. Shan et al.106

(2020); Cherepanova et al. (2021) use adversarial107

attacks to generate unidentified images. Machine108

unlearning also studies how to protect the privacy109

of users’ data. However, different to unlearnable110

exmples, it aims to removes training impact of spe-111

cific samples provided by a user after models have112

successfully learned from the data (Cao and Yang,113

2015).114

Data Poisoning. Data poisoning, another mali-115

cious attack by modifying training text, aims to116

manipulate model behaviors at the inference time.117

Similar to unlearnable examples, poison data is nor-118

mally generated during training (Muñoz-González119

et al., 2017; Huang et al., 2020; Kurita et al., 2020;120

Yang et al., 2021; Wallace et al., 2021), although121

the attack could be performed for the final models122

(Gu et al., 2017). Our work distinguishes from the123

poison attack since unlearnable text only prevents124

the learning rather than maliciously compromises125

the model performance or even manipulates model126

behaviours.127

Gradient-based methods. Gradient-based 128

methods have been shown effective to perturb data 129

for different objectives. Gradient-based methods 130

(Ebrahimi et al., 2018; Wallace et al., 2020, 2019) 131

generate adversarial examples by maximizing the 132

cross-entropy loss of clean examples (error-max) 133

(Goodfellow et al., 2015), while poison data are 134

generated to maximize the loss of test data. Both 135

attacks target the malicious behaviour of test data 136

(min-max) (Muñoz-González et al., 2017). In 137

contrast, unlearnable examples minimize the loss 138

of (partial) training data during training (min-min) 139

(Huang et al., 2021). Although the effectiveness 140

is also evaluated on evaluation/test data, unlike 141

adversarial and data poison, they are not included 142

in the unlearnable objective. 143

There are two specific gradient-based methods 144

for word substitutions: (1) Ebrahimi et al. (2018); 145

Wallace et al. (2019, 2021) searched over potential 146

substitutions via the first-order approximation. (2) 147

Behjati et al. (2019); Cheng et al. (2020) applied 148

projected gradient descend to update continuous 149

representations in the embedding space and per- 150

form projected operation for the textual input. In 151

this paper, we use the first-order approximation for 152

unlearnable objective. 153

3 Generating Unlearnable Text 154

This section formulates the unlearnable objective, 155

demonstrates text modifications for the objective 156

and devises an algorithm to generate unlearnable 157

text. 158

3.1 Problem Formulation 159

Consider the training data D with a set of (x,y) 160

and a DNN model f mapping from the input x 161

to the output y. For NLP models, y could be ei- 162

ther a label for text classification, an answer span 163

for question answering or a textual sequence for 164

summarization or translation. 165

To achieve our goal of making data unlearnable, 166

we inject noise into the original training data, which 167

is transformed by an operation Φ. We can then op- 168

timize Φ to stop DNNs from learning transferable 169

generalizations, which causes low model perfor- 170

mance on the test data. As demonstrated by Huang 171

et al. (2021), we need a bi-level optimization, as 172

shown in Equation 1. 173

arg min
θ

E(x,y)∼D[arg min
Φ(x)

L(f(Φ(x)), y)] (1) 174
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Why would the min-min optimization work?175

The inner minimization would decrease the train-176

ing loss L by modifying clean data. Therefore, it177

would decrease the sensitivity of the outer mini-178

mization, since both optimizations have the same179

objective L. Specifically, when we use gradient de-180

scent for model training, the gradients for updating181

model parameters would be small and contain less182

transferable information. Consequently, the final183

models should return low performance on test data.184

Unrolling the training steps. The bi-level opti-185

mization has been commonly solved by unrolling186

the training steps to perform an optimization for187

another set of parameters (Finn et al., 2017; Huang188

et al., 2020, 2021), which is the original text x in189

our case. Therefore, the main challenge is how to190

instantiate unlearnable modifications Φ (see Sec-191

tion 3.2) and update Φ every M training steps (see192

Section 3.3), which is demonstrated in the rest of193

this section. The process is summarized in Algo-194

rithm 1.195

3.2 Instantiating Text Modifications196

We have to instantiate modifications Φ to embed197

the unlearnable patterns into texts. Words are the198

smallest semantic units in English. We aim to find199

word substitutions for the inner objective 1. For-200

mally, we optimize unlearnable modification (p, s)201

where the position p informs where to modify and202

the substitution s suggests what to modify.203

3.3 Optimizing Text Modifications204

This section would introduce how to optimize205

(P, S) for unlearnable dataset Du for error mini-206

mization (the inner objective).207

Challenges compared to unlearnable images.208

Huang et al. (2021) generates pixel-wise noise209

which can be directly applied to clean images via210

pixel-wise addition. Since the noise is continuous211

and differentiable, it can be directly optimized via212

gradient descent and simple norm constraints can213

make noised images imperceptible.214

However, due to the discrete nature of text, we215

cannot optimize text or an applicable noise in the216

discrete embedding space via gradient descent.217

Also changing multiple positions would result in218

meaningless text. To avoid these two-fold chal-219

lenges, we apply the first-order approximation and220

perceptibility constraints for text modifications.221

First-order approximation. We approximate 222

the change of the training loss for all possible mod- 223

ifications in the first order. This approach has been 224

used for generating text adversaries for adversarial 225

attacks (Wallace et al., 2019; Cheng et al., 2020; 226

Ebrahimi et al., 2018). 227

Specifically, consider a word in the input xp 228

which is indexed by its position p. The loss change 229

of substituting it with the word s can be measured 230

by the inner product of the s embeddings (es) and 231

the gradient of loss w.r.t. xp (∇xpL). And our goal 232

is to minimize the loss change for model unlearn- 233

ability. 234

arg min
s

es
T∇xpL(x, y) (2) 235

The gradients for all the positions of the original 236

example ∇xL can be acquired by one forward and 237

backward pass. We can efficiently measure the loss 238

change for all possible modifications (P, S) with 239

the vocabulary of the possible substitutions S and 240

the gradients ∇xL can be efficiently computed via 241

matrix multiplication. 242

Perceptibility Constraints. Due to the discrete 243

nature of text, word substitutions easily result in 244

perceptible changes in terms of grammar and se- 245

mantics. In order to maintain data utility, the fol- 246

lowing constraints for positions P and substitutions 247

S are applied: 248

• Constraint 1: We only allow modifying one 249

position, since the optimized positions dur- 250

ing iterations are likely to be different. We 251

cannot accumulate modifications at different 252

positions in case of nonsense sentences. We 253

do not keep modifications for the next opti- 254

mization step and always modify on a clean 255

data for each iteration, which means min-min 256

modifications is a specific error-min modifi- 257

cations for a checkpoint of the model during 258

training. 259

• Constraint 2: We block positions of answer 260

spans for reading comprehension. we only set 261

constraints for P to exclude answer spans, oth- 262

erwise positions of answer spans are always 263

selected for modifications either generated via 264

gradient norm or our min-min method. 265

• Constraint 3: We disable the modifications of 266

proper nouns since words with this part-of- 267

speech contain important information of the 268

text. 269
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Algorithm 1 demonstrates the whole process.270

Algorithm 1 Generating Unlearnable Modifica-
tions: This process shows how to find a modifi-
cation for one example at one iteration.

Require: max_swap, neural network f , a clean
sample (X, y) tranining loss L, embedding ma-
trix E

1: Generate the gradient ∇xL(f(x), y)
## gradients for all the samples can be
generated in only one forward and backward
pass if the memory allows.

2: (reading comprehension) Find valid positions
P satisfying Constraints 2

3: Generate approximation scores A via Eq. (2)
for all the candidate modifications (P, S)

4: Sort (P, S) in the ascending order of A
5: for each candidate modification (p, s) ∈

(P, S) do
6: if (p, s) satisfies Constraint 2, 3 then
7: return (p, s)
8: end if
9: end for

3.4 General Experimental Setup271

Small surrogate models for transformers. The272

advent of pre-trained transformers has revolution-273

ized the NLP applications. Therefore, we would274

maker pre-trained transformer models unlearnable275

during their common fine-tuning paradigm.276

However, although the current downstream NLP277

models based on pre-trained transformers are of-278

ten optimized via the pre-training and fine-tuning279

paradigm, generating effective modifications is280

very computationally expensive during training. In281

practice, due to the constraint of the computation282

resource, optimizating over the large pre-trained283

language models become more unrealistic. Hence,284

we perform the gradient-based approach on simple285

neural nets to explore unlearnable patterns. We286

assume that statistical features can be common in a287

architecture-invariant manner.288

Implementations. Our codebase benefits from289

AllenNLP framework and can be flexibly extended290

to other datasets and all the AllenNLP and Hug-291

gingface transformers. 1292

1Our code would be available in the future.

Figure 1: Distribution of relative positions for modifi-
cations. The relative position is calculated by dividing
the length of the sequence by the index of position.

4 Unlearnable Text Classification 293

4.1 Experimental Setup 294

Models. We use CNN (Kim, 2014), LSTM 295

(Hochreiter and Schmidhuber, 1997), self-attention 296

models and BERT (Devlin et al., 2018) . 297

Tasks and Datasets. We choose two datasets for 298

sentiment anlysis and topic classification respec- 299

tively, each with its own training, development and 300

test datasets. 301

• SST-2 for Sentiment Analysis: It contains 302

movie reviews from the Stanford Sentiment 303

Treebank (SST-2) dataset and labels (positive 304

or negative) for binary classification (Socher 305

et al., 2013) 306

• AGNews: It consists of news articles, which 307

are classified into the following 4 topics : 308

World, Sports, Business and Sci/Tech. It in- 309

volves 10,800 training samples, 12,000 vali- 310

dation samples and 7,600 test samples. 311

4.2 Results and Analyses 312

We generate modifications via Algorithm 1 within 313

1 epoch of training. M is randomly chosen as 30. 314

The result shows that (1) text tend to be modified 315

at end, as shown in Figure 1. In fact, all the ex- 316

amples are modified at the last two words. (2) 317

substitution words are generated in the class-wise 318

manner (e.g, "and" for positive class, "or" for nega- 319

tive class). The class-wise pattern is automatically 320

explored by our algorithm, which is distinct from 321

class-wise noise for image classifier generated by 322

(Huang et al., 2021). 323

Class-wise, position agnostic insertion. Since 324

our algorithm exposes class-wise patterns for un- 325

learnability, we consider the operation of insertion 326
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Task Model Orig Min-
min

Untrained
Accuracy

SST-2
LSTM 0.84 0.5 0.5
CNN 0.83 0.5 0.5
BERT 0.91 0.63 0.5

SQuAD-1000
BiDAF 0.25 0.035 0
RoBERTa 0.73 0.024 0.01

(a) Gradient-based Methods

Task Model Orig Heuristics Untrained
Accuracy

AG-News
LSTM 0.91 0.35 0.25
CNN 0.92 0.25 0.25
self-
attention

0.90 0.25 0.25

BERT 0.94 0.28 0.26

SQuAD
BiDAF 0.74 0.06 0.01
RoBERTa 0.96 0.07 0.01

(b) Heuristics.

We insert one class-wise character (’a’, ’b’, ’c’, ’d’ in the middle) for AG-News and a shortcut (a single number ’2’) in front of

answer span for SQuAD.

Table 1: The performance of DNNs trained on unlearanble text. We report accuracy on SST-2 and AG-News,
and F1 scores for SQuAD. Modifications on BERT and RoBERTa are generated by surrogate models LSTM and
BiDAF respectively. We show random/untrained accuracy to verify the unlearnability.

Begin Middle End
0.508 0.5 0.501

Table 2: Positions of trigger insertion. The result is
acquired during fine-tuning BERT on SST-2.

Clean Begin Middle End
CNN 0.91 0.25 0.28 0.26

LSTM 0.92 0.35 0.25 0.23
Self-attention 0.90 0.25 0.25 0.26

Table 3: Effectiveness of different posistions. The re-
sults are evaluated on AG_News for topic classification.
All three neural nets are trained from scratch.

so that we can avoid the risk of substituting im-327

portant words, which are not detected by our con-328

straints. We also study whether the end of samples329

would cause better unlearnability by inserting sub-330

stitution words at different positions. Tables 3 and331

2 reveal that inserting class-wise words at all the332

positions can be effective. Since they are position-333

agnostic, adding them in the middle of each text334

can make them more invisible.335

Which triggers are more effective? Class-wise 336

triggers have been studied for adversarial text and 337

are effective to cause adversarial behaviours (Wal- 338

lace et al., 2019; Behjati et al., 2019). They find the 339

optimal triggers for adversarial attacks via the iter- 340

ative optimization. We can search optimal triggers 341

in the unlearnable settings. To do this, we insert 342

a words t at the beginning of each samples and 343

then optimize t. Compared to sample-wise word 344

substitutions, we only optimize substitutions s for 345

fixed positions p. 346

For comparison, we also randomly select ex- 347

tremely simple triggers (’a’ for positive class and 348

’b’ for negative class) for SST-2 during fine-tuning 349

BERT. Both optimized triggers and randomly se- 350

lected class-wise triggers achieve untrained accu- 351

racy ( 50%). 352

According to the above analyses, we propose an 353

unlearnable hypothesis for text classifiers 354

355

inserting class-wise, small characters into 356

the middle of text. 357

358

To evaluate the hypothesis, we present the effec- 359
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tiveness on the AG-news topic classification task360

with large-scale training data in Table 1.361

5 Unlearnable Text for Reading362

Comprehension363

Reading comprehension can be useful for informa-364

tion extraction, which is a common component for365

search engine and voice assistants. Given a passage366

of text P and questions Q, models can select the367

answers A = from P . We assume that users know368

which part of information they want to protect.369

5.1 Experimental Setup370

Dataset. We use the Stanford Question Answer-371

ing Dataset (SQuAD) v1.1 dataset (Rajpurkar et al.,372

2016), which contains 100K+ question-answer373

pairs based on 500+ articles. The question-answer374

pairs are generated by crowd-workers. Dev/test375

splits from Du et al. (2017) are derived from the376

original development set, since the SQuAD test set377

is not publicly available. Since it is time consum-378

ing to apply gradient-based optimization on large379

dataset, we down-sample 1,000 question-answer380

pairs from the training set for the analyses.381

Models. We use Bidirectional Attention Flow382

(BiDAF) model (Seo et al., 2016) ( 2.5M parame-383

ters) along with the GloVe embeddings and trans-384

former models. BiDAF is the most popular end-385

to-end neural net before the rising of transformers.386

It uses two bidirectional LSTMs to represent each387

context and question and applies attention mecha-388

nism to generate question-aware context represen-389

tations. In contrast, transformer models inherently390

have special tokens to separate the context and391

question. Therefore, such representations can be392

generated with the concatenation of context and the393

question as the input to the transformer, which is394

RoBERTa (Liu et al., 2019) in our experiment. We395

then apply a matrix MHx2 (a linear layer) where H396

is the hidden size on top and use softmax function397

to calculate the probability distributions pstart and398

pend for the begin and end of the answer span. Dur-399

ing training, the cross-entropy loss is calculated by400

adding negative log likelihoods of pstart and pend.401

Evaluation metrics. For all experiments, we402

measure exact match (EM), span accuracy and F1403

score, which is the harmonic mean of recall (the404

percent of words in the predicted answer span that405

are in the gold span) and precision (the percent of406

words in the gold span that are in the predicted 407

span). 408

5.2 Results 409

According to all the three metrics, min-min mod- 410

ifications effectively prevent the learning process 411

of the reading comprehension model, as shown 412

in Figure 2. To verify the importance of the bi- 413

level formalization, the error-min modifications 414

are generated by performing Algorithm 1 on the 415

well-trained models. Also, following Huang et al. 416

(2021), error-max modifications, which expose vul- 417

nerability for adversarial attack, are also generated 418

for comparison (Ebrahimi et al., 2018; Wallace 419

et al., 2019). Figure 2 shows that error-min and 420

error-max modifications have little effect compared 421

to min-min modifications. 422

5.3 Why Are The Min-min Modifications 423

Effective? 424

By analyzing the positions and subsitutions, we 425

find that: (1) the positions P of min-min modifi- 426

cations are always identified within the one-word 427

distance of the answers. (2) The substitutions S 428

tend to be a few unique words. Figure 3 shows that 429

5 words are used for substitutions of 98% of 1000 430

samples. 431

we also find substitution words of error-min and 432

error-max modifications sometimes appear on ques- 433

tions. It is in accord with the finding that well- 434

trained DNNs learn how to locate answers with 435

question tokens, i.e., context matching. (Jia and 436

Liang, 2017). For example, "because to kill ameri- 437

can people." can be inserted into context passages 438

as adversarial triggers for all the "why" questions. 439

However, min-min substitutions never include ques- 440

tion words. And after the min-min modifications, 441

the model locates answer that surround the substi- 442

tution words rather than question tokens. 443

This leads to the hypothesis: 444

445

inserting a unique word around the answers 446

can protect text from reading comprehension. 447

448

It prevents models from learning generalized rules 449

like context/type matching. 450

We design several experiments to verify this hy- 451

pothesis, we (1) fix substitutions as "the", which 452

achieves the very similar effectiveness; (2) ran- 453

domly select the modification positions P exclud- 454

ing the answer spans, which barely has no effective- 455

ness. Both results support our assumption; (3) We 456
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Figure 2: Comparison of min-min, error-min and error-max modifications. All the metrics are computed on test
data for BiDAF. Min-min modifications is most effective to make training data unlearnable according to all three
metrics. We run all the training for 20 epochs while the training on min-min modifications halts at the 12th epoch
due to early stopping.

Figure 3: Distribution of substitution words for
SQuAD. There are totally eight words generated for
min-min modifications by our optimization process.
The graph shows the probabilities of all the substitu-
tion words and the top-5 words appear in the 98% of
1000 samples.

add substitution words (e.g., ’product’) to arbitrary457

positions of test examples and find that the mod-458

els trained/fine-tuned on unlearnable texts always459

predict phrases surrounding substitution word as460

answers, which further verifies the hypothesis.461

Finally, we use the hypothesis on the whole462

SQuAD training set by simply inserting the short-463

cut word "2" in front of answers. The result in464

Table 1 shows the effectiveness of unlearnable text.465

6 Unlearnable Percentage466

Although Table 1 verifies the effectiveness of our467

hypotheses, the defenders, in practice, can only468

modify their own data, which means that a small469

portion of training data can be transformed into470

unlearnable text. Therefore, we also evaluate the471

Span
Accuracy EM F1

Min-min 0.012 0.023 0.035
Fixed S 0.006 0.011 0.038
Random P 0.58 0.61 0.72

Table 4: Evaluating the importance of substitutions and
position for min-min modifications. The table reports
metrics on test data when we fix substitutions to one
word or select random positions to modify. It shows
that the modifications are effective as long as we put
common substitution word(s) surrounding answers.

95% 90% 80% 0
Modify 0.86 0.88 0.89 0.91

Skip 0.85 0.87 0.89 0.91

Table 5: Test accuracy during fine-tuning of BERT with
different unlearnable percentages. We fine-tune the
model for 10 epochs to the convergence in all the cases.
The results show that it makes no difference whether
we modify a fixed percent of training data into unlearn-
able data or just skip them.

unlearnable effectiveness for training on partial un- 472

learnable samples. 473

The model cannot learn generalized informa- 474

tion from partial unlearnable data. As shown 475

in Table 5, we find that the model accuracy keeps 476

consistent, no matter whether we modify a fixed 477

N% of training data into unlearnable data or just 478

skip them. In other words, the model only learns 479

from another 1-N% clean data, and adding unlearn- 480

able text would not increase any generalized infor- 481

mation on test data. 482

Trigger one class to be unlearnable. To fur- 483

ther prove the effectiveness of partial unlearnable 484
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data for training, we make one class of examples485

(’World’ in the AG News) unlearnable by adding486

a trigger (’a’) and evaluate the test accuracy. The487

results of low accuracy on the unlearnable class488

(0.015) and high accuracy on others (0.93) strongly489

indicate the effectiveness of a small portion of un-490

learnable text.491

Partial unlearnable data for SQuAD. To avoid492

expensive computation, we design a different ex-493

periment to evaluate the effectiveness of partial494

unlearnable data for SQuAD.495

We construct two sets for training D1, D2, each496

of which consists of 1000 samples. We protect D1497

to be an unlearnable set Du1. We then fine-tune the498

transformer with Du1 ∪ D2.499

We compare the model performance on D1 and500

D2 to evaluate whether Du1 can protect D1. We501

also report unseen test data Dtest as the reference.502

As shown in Table 6, the model performs much503

worse on Du1 than D2. Hence, it can be effective504

to make partial data unlearnable for SQuAD.505

Span accuracy EM F1
D1 0.59 0.66 0.79
D2 0.69 0.75 0.86
Dtest 0.68 0.74 0.83

Table 6: The RoBERTa has poor performance on the
protected data D1, after fine-tuned on Du1∪D2, where
Du1 is one version of D1 with a shortcut.

7 Case Study: Preventing User Profiling506

Users’ data in social media (e.g., Facebook/twitter)507

is popularly used to characterize and profile the508

users (Farnadi et al., 2018), including gender pre-509

dictions (Suman et al., 2021), political preference.510

It has been reported that the malicious use can511

cause unfair intervention for political voting or in-512

ternet bully.513

Text classification via deep learning is one of514

common tools to determine their demographics515

for assisting user profiling (Nicolás Sayago et al.,516

2020). In this section, we show that how easy517

unlearnable patterns can be inserted into the users’518

descriptions to prevent gender predictions, which519

is a salient task of user profiling.520

Experimental settings. The dataset 2 comes521

from the Twitter’s user descriptions. It contains522

2https://www.kaggle.com/crowdflower/twitter-user-
gender-classification

Figure 4: The test accuracy during training on clean
data or data applied with class-wise triggers. We insert
’a’ for male and ’b’ for female in the middle of text. The
test accuracy is measured after each update of model
parameters, since the loss reaches convergence within
one epoch of training.

11,194 samples, which are split for training, vali- 523

dation and test by the ratio of 7:2:1. We fine-tune 524

BERT on the training set and report the result on 525

the test set. 526

Effectiveness of unlearnable patterns. Accord- 527

ing to previous findings, we add simple, class-wise 528

triggers to the middle of their descriptions (’a’ for 529

male and ’b’ for female). Figure 4 compares the 530

test accuracy during training on clean data or data 531

with the class-wise triggers. Since the loss reaches 532

convergence within one epoch of training, the test 533

accuracy is measured after each update of model 534

parameters. The simple, class-wise triggers suc- 535

cessfully make the fine-tuning process of BERT- 536

based classifier fail. 537

8 Conclusion 538

By exploring how to make NLP models unlearn- 539

able, we conclude that presenting superficial fea- 540

tures can effectively make data unlearnable, includ- 541

ing class-wise word insertion for classification and 542

answer surrounding substitutions for reading com- 543

prehension. As for the futher work, we have two 544

directions: First, using more advanced linguistic 545

patterns. Our experiments show that unlearnable 546

word substitutions/insertions can be effective for 547

text classification models. There may be other sen- 548

sitive, linguistic forms for unlearnable objective: 549

syntactic structure, commonsense, text style. Sec- 550

ond, exploring unlearnable text on text generation 551

models. This is also closely related to fact check in 552

tasks like text summarization and machine transla- 553

tion. 554
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