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Abstract

Neural text classification models are known to
explore statistical patterns during supervised
learning. However, such patterns include spu-
rious patterns and superficial regularity in the
training data. In this paper, we exaggerate su-
perficial regularity in the text to prevent unau-
thorized exploration of personal data.

We propose a gradient-based method to con-
struct text modifications, which can make deep
neural networks (DNNs) unlearnable. We
then analyze text modifications exposed by
the gradient-based method and further propose
two simple hypotheses to manually craft un-
learnable text. Experiments on four tasks (sen-
timent classification, topic classification, read-
ing comprehension and gender classification)
validate the effectiveness of our method, by
which these hypotheses achieve almost un-
trained performance after training on unlearn-
able text.

1 Introduction

Huge amounts of data is freely available online,
such as movie reviews and articles on the online
publishing platforms. Big companies use it to build
commercial applications without the agreement of
data contributors via Natural Language Processing
(NLP) techniques. On the other side, Deep Neural
Networks (DNNs) empower many modern NLP
applications by utilizing freely available data. It
increases the risk of privacy leakage, since DNNs
are highly capable to learn statistical features in
the training data (Lin et al., 2021) and memorize
the information in the training data (Fredrikson
et al., 2015). The memorized information could
be extracted by the hacker, such as the leakage of
name/address from language model (Carlini et al.,
2020). This particularly happens when users pro-
vide sensitive data to the trusted parties. Normally,
users can only rely on the actions of model own-
ers to alleviate the issue by training models with

differentially-private techniques (Chaudhuri and
Monteleoni, 2009; Shokri and Shmatikov, 2015;
McMahan et al., 2018; Abadi et al., 2016).

However, deep learning also leverages undesired
patterns during training, including annotation arti-
facts (Gururangan et al., 2018), syntactic heuristics
(McCoy et al., 2019), high-frequency words asso-
ciated with the target labels (Wallace et al., 2019),
algorithmic biases (Zhang et al., 2018) and shallow
shortcuts (Branco et al., 2021). Besides, previ-
ous works show that spurious correlations (Wallace
et al., 2019; Niven and Kao, 2019) cause adversar-
ial examples for a well-trained DNN. For examples,
Niven and Kao (2019) shows random accuracy of
adversarial examples with spurious statistical cues.

In this paper, we investigate superficial patterns
to prevent the unauthorized use of data and rad-
ically eliminate the risk of privacy leakage. We
generate unlearnable features, which can be eas-
ily embedded into text to make DNNs unlearnable.
The concept of unlearnable examples is spawn from
Huang et al. (2021) for computer vision.

The main contributions of our work include:

* We propose a gradient-based method to ex-
plore unlearnable features for three common
NLP tasks. Specifically, we adapt the formu-
lation of bi-level optimization Huang et al.
(2021) to the discrete textual input by intro-
ducing a first-order, gradient-based search al-
gorithm in Section 3. The optimization pro-
cess would generate an effective one-word
modification to make data unlearnable, even
for models fine-tuned on powerful pre-trained
transformers.

* We find and verify an effective unlearnable
pattern for text classification (Section 4): in-
serting simple synthetic characters (e.g., ’a’,
’b’, ’c’) into the training data in the class-
wise manner could be effective for unlearn-
able training, no matter where they are in-



serted.

* We find and verify an effective unlearnable
pattern for reading comprehension (Section 5)
show that: shortcuts can be inserted or substi-
tute the word surrounding the answer spans to
prevent DNNs from comprehending the text.

* We also show the effectiveness of the two
unlearnable patterns above, even though users
can only access and modify a small portion of
data for training (Section 6).

* We demonstrate a practical use case to prevent
social platforms from user profiling (Section
7).

2 Related Work

This section would demonstrate relevant work for
privacy protection, data poison and how gradient-
based methods can modify data for different objec-
tives.

Privacy protection. The concerns of data pri-
vacy has been raised in many areas. For example,
Viejo et al. (2012) had early concern for prevent-
ing social media from profiling users while Shan
et al. (2020) developed Fawkes to prevent unautho-
rized face recognition systems from identifying a
person. Also, different techniques have been de-
veloped for alleviating privacy issues. Shan et al.
(2020); Cherepanova et al. (2021) use adversarial
attacks to generate unidentified images. Machine
unlearning also studies how to protect the privacy
of users’ data. However, different to unlearnable
exmples, it aims to removes training impact of spe-
cific samples provided by a user after models have
successfully learned from the data (Cao and Yang,
2015).

Data Poisoning. Data poisoning, another mali-
cious attack by modifying training text, aims to
manipulate model behaviors at the inference time.
Similar to unlearnable examples, poison data is nor-
mally generated during training (Mufioz-Gonzalez
et al., 2017; Huang et al., 2020; Kurita et al., 2020;
Yang et al., 2021; Wallace et al., 2021), although
the attack could be performed for the final models
(Gu et al., 2017). Our work distinguishes from the
poison attack since unlearnable text only prevents
the learning rather than maliciously compromises
the model performance or even manipulates model
behaviours.

Gradient-based methods. Gradient-based
methods have been shown effective to perturb data
for different objectives. Gradient-based methods
(Ebrahimi et al., 2018; Wallace et al., 2020, 2019)
generate adversarial examples by maximizing the
cross-entropy loss of clean examples (error-max)
(Goodfellow et al., 2015), while poison data are
generated to maximize the loss of test data. Both
attacks target the malicious behaviour of test data
(min-max) (Mufoz-Gonzdlez et al., 2017). In
contrast, unlearnable examples minimize the loss
of (partial) training data during training (min-min)
(Huang et al., 2021). Although the effectiveness
is also evaluated on evaluation/test data, unlike
adversarial and data poison, they are not included
in the unlearnable objective.

There are two specific gradient-based methods
for word substitutions: (1) Ebrahimi et al. (2018);
Wallace et al. (2019, 2021) searched over potential
substitutions via the first-order approximation. (2)
Behjati et al. (2019); Cheng et al. (2020) applied
projected gradient descend to update continuous
representations in the embedding space and per-
form projected operation for the textual input. In
this paper, we use the first-order approximation for
unlearnable objective.

3 Generating Unlearnable Text

This section formulates the unlearnable objective,
demonstrates text modifications for the objective
and devises an algorithm to generate unlearnable
text.

3.1 Problem Formulation

Consider the training data D with a set of (x,y)
and a DNN model f mapping from the input x
to the output y. For NLP models, y could be ei-
ther a label for text classification, an answer span
for question answering or a textual sequence for
summarization or translation.

To achieve our goal of making data unlearnable,
we inject noise into the original training data, which
is transformed by an operation ®. We can then op-
timize ® to stop DNNs from learning transferable
generalizations, which causes low model perfor-
mance on the test data. As demonstrated by Huang
et al. (2021), we need a bi-level optimization, as
shown in Equation 1.

arg;ninE(xyy)ND [arg(r)ginﬁ(f(‘b(x))a y)] (1)



Why would the min-min optimization work?
The inner minimization would decrease the train-
ing loss £ by modifying clean data. Therefore, it
would decrease the sensitivity of the outer mini-
mization, since both optimizations have the same
objective L. Specifically, when we use gradient de-
scent for model training, the gradients for updating
model parameters would be small and contain less
transferable information. Consequently, the final
models should return low performance on test data.

Unrolling the training steps. The bi-level opti-
mization has been commonly solved by unrolling
the training steps to perform an optimization for
another set of parameters (Finn et al., 2017; Huang
et al., 2020, 2021), which is the original text x in
our case. Therefore, the main challenge is how to
instantiate unlearnable modifications ® (see Sec-
tion 3.2) and update ® every M training steps (see
Section 3.3), which is demonstrated in the rest of
this section. The process is summarized in Algo-
rithm 1.

3.2 Instantiating Text Modifications

We have to instantiate modifications ¢ to embed
the unlearnable patterns into texts. Words are the
smallest semantic units in English. We aim to find
word substitutions for the inner objective 1. For-
mally, we optimize unlearnable modification (p, s)
where the position p informs where to modify and
the substitution s suggests what to modify.

3.3 Optimizing Text Modifications

This section would introduce how to optimize
(P, S) for unlearnable dataset D,, for error mini-
mization (the inner objective).

Challenges compared to unlearnable images.
Huang et al. (2021) generates pixel-wise noise
which can be directly applied to clean images via
pixel-wise addition. Since the noise is continuous
and differentiable, it can be directly optimized via
gradient descent and simple norm constraints can
make noised images imperceptible.

However, due to the discrete nature of text, we
cannot optimize text or an applicable noise in the
discrete embedding space via gradient descent.
Also changing multiple positions would result in
meaningless text. To avoid these two-fold chal-
lenges, we apply the first-order approximation and
perceptibility constraints for text modifications.

First-order approximation. We approximate
the change of the training loss for all possible mod-
ifications in the first order. This approach has been
used for generating text adversaries for adversarial
attacks (Wallace et al., 2019; Cheng et al., 2020;
Ebrahimi et al., 2018).

Specifically, consider a word in the input x,,
which is indexed by its position p. The loss change
of substituting it with the word s can be measured
by the inner product of the s embeddings (es) and
the gradient of loss w.r.t. x;, (Vx,£). And our goal
is to minimize the loss change for model unlearn-
ability.

argmin  eg' Vi, £(x,y) (2)

S

The gradients for all the positions of the original
example V ;L can be acquired by one forward and
backward pass. We can efficiently measure the loss
change for all possible modifications (P, S) with
the vocabulary of the possible substitutions .S and
the gradients V. £ can be efficiently computed via
matrix multiplication.

Perceptibility Constraints. Due to the discrete
nature of text, word substitutions easily result in
perceptible changes in terms of grammar and se-
mantics. In order to maintain data utility, the fol-
lowing constraints for positions P and substitutions
S are applied:

* Constraint 1: We only allow modifying one
position, since the optimized positions dur-
ing iterations are likely to be different. We
cannot accumulate modifications at different
positions in case of nonsense sentences. We
do not keep modifications for the next opti-
mization step and always modify on a clean
data for each iteration, which means min-min
modifications is a specific error-min modifi-
cations for a checkpoint of the model during
training.

* Constraint 2: We block positions of answer
spans for reading comprehension. we only set
constraints for P to exclude answer spans, oth-
erwise positions of answer spans are always
selected for modifications either generated via
gradient norm or our min-min method.

* Constraint 3: We disable the modifications of
proper nouns since words with this part-of-
speech contain important information of the
text.



Algorithm 1 demonstrates the whole process.

Algorithm 1 Generating Unlearnable Modifica-
tions: This process shows how to find a modifi-
cation for one example at one iteration.

Require: max_swap, neural network f, a clean
sample (X, y) tranining loss £, embedding ma-
trix £

1I: Generate the gradient VyL(f(x),y)
## gradients for all the samples can be
generated in only one forward and backward
pass if the memory allows.

2: (reading comprehension) Find valid positions
P satisfying Constraints 2

3: Generate approximation scores A via Eq. (2)
for all the candidate modifications (P, .S)

4: Sort (P, S) in the ascending order of A

for each candidate modification (p,s) €

(P,S) do
if (p, s) satisfies Constraint 2, 3 then

return (p, s)
end if

end for

b

B

3.4 General Experimental Setup

Small surrogate models for transformers. The
advent of pre-trained transformers has revolution-
ized the NLP applications. Therefore, we would
maker pre-trained transformer models unlearnable
during their common fine-tuning paradigm.

However, although the current downstream NLP
models based on pre-trained transformers are of-
ten optimized via the pre-training and fine-tuning
paradigm, generating effective modifications is
very computationally expensive during training. In
practice, due to the constraint of the computation
resource, optimizating over the large pre-trained
language models become more unrealistic. Hence,
we perform the gradient-based approach on simple
neural nets to explore unlearnable patterns. We
assume that statistical features can be common in a
architecture-invariant manner.

Implementations. Our codebase benefits from
AllenNLP framework and can be flexibly extended
to other datasets and all the AllenNLP and Hug-
gingface transformers. !

'Our code would be available in the future.
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Figure 1: Distribution of relative positions for modifi-
cations. The relative position is calculated by dividing
the length of the sequence by the index of position.

4 Unlearnable Text Classification

4.1 Experimental Setup

Models. We use CNN (Kim, 2014), LSTM
(Hochreiter and Schmidhuber, 1997), self-attention
models and BERT (Devlin et al., 2018) .

Tasks and Datasets. We choose two datasets for
sentiment anlysis and topic classification respec-
tively, each with its own training, development and
test datasets.

* SST-2 for Sentiment Analysis: It contains
movie reviews from the Stanford Sentiment
Treebank (SST-2) dataset and labels (positive
or negative) for binary classification (Socher
et al., 2013)

* AGNews: It consists of news articles, which
are classified into the following 4 topics :
World, Sports, Business and Sci/Tech. It in-
volves 10,800 training samples, 12,000 vali-
dation samples and 7,600 test samples.

4.2 Results and Analyses

We generate modifications via Algorithm 1 within
1 epoch of training. M is randomly chosen as 30.
The result shows that (1) text tend to be modified
at end, as shown in Figure 1. In fact, all the ex-
amples are modified at the last two words. (2)
substitution words are generated in the class-wise
manner (e.g, "and" for positive class, "or" for nega-
tive class). The class-wise pattern is automatically
explored by our algorithm, which is distinct from
class-wise noise for image classifier generated by
(Huang et al., 2021).

Class-wise, position agnostic insertion. Since
our algorithm exposes class-wise patterns for un-
learnability, we consider the operation of insertion



Task Model Orig Min- | Untrained
min Accuracy
LSTM 0.84 0.5 0.5
SST-2 CNN 0.83 0.5 0.5
BERT 0.91 0.63 0.5
BiDAF 0.25 0.035 |0
SQUAD-1000 RoBERTa | 0.73 0.024 | 0.01
(a) Gradient-based Methods
Task Model Orig Heuristics | Untrained
Accuracy
LSTM 0.91 0.35 0.25
AG-News CNN 0.92 0.25 0.25
self- 0.90 0.25 0.25
attention
BERT 0.94 0.28 0.26
BiDAF 0.74 0.06 0.01
SQuAD RoBERTa | 096 | 0.07 0.01

(b) Heuristics.
We insert one class-wise character (a’, ’b’, ’c’, ’d’ in the middle) for AG-News and a shortcut (a single number ’2’) in front of

answer span for SQuAD.

Table 1: The performance of DNNs trained on unlearanble text. We report accuracy on SST-2 and AG-News,
and F1 scores for SQuAD. Modifications on BERT and RoBERTa are generated by surrogate models LSTM and
BiDAF respectively. We show random/untrained accuracy to verify the unlearnability.

’ Begin ‘ Middle ‘ End ‘
10508 | 05 [0.501 |

Which triggers are more effective? Class-wise
triggers have been studied for adversarial text and
are effective to cause adversarial behaviours (Wal-
lace et al., 2019; Behjati et al., 2019). They find the
optimal triggers for adversarial attacks via the iter-
ative optimization. We can search optimal triggers
in the unlearnable settings. To do this, we insert

Table 2: Positions of trigger insertion. The result is
acquired during fine-tuning BERT on SST-2.

‘ Clean ‘ Begin ‘ Middle ‘ End

CNN 091 0.25 028 | 026 | a words t at the beginning of each samples and
LSTM 092 | 035 025 | 023 | then optimize t. Compared to sample-wise word
Self-attention | 0.90 | 0.25 025 | 0.26 | substitutions, we only optimize substitutions s for

fixed positions p.
Table 3: Effectiveness of different posistions. The re-
sults are evaluated on AG_News for topic classification.
All three neural nets are trained from scratch.

For comparison, we also randomly select ex-
tremely simple triggers ("a’ for positive class and
’b’ for negative class) for SST-2 during fine-tuning
BERT. Both optimized triggers and randomly se-
lected class-wise triggers achieve untrained accu-
racy ( 50%).

According to the above analyses, we propose an
unlearnable hypothesis for text classifiers

so that we can avoid the risk of substituting im-
portant words, which are not detected by our con-
straints. We also study whether the end of samples
would cause better unlearnability by inserting sub-
stitution words at different positions. Tables 3 and
2 reveal that inserting class-wise words at all the
positions can be effective. Since they are position-
agnostic, adding them in the middle of each text
can make them more invisible.

inserting class-wise, small characters into

the middle of text.

To evaluate the hypothesis, we present the effec-



tiveness on the AG-news topic classification task
with large-scale training data in Table 1.

5 Unlearnable Text for Reading
Comprehension

Reading comprehension can be useful for informa-
tion extraction, which is a common component for
search engine and voice assistants. Given a passage
of text P and questions (), models can select the
answers A = from P. We assume that users know
which part of information they want to protect.

5.1 Experimental Setup

Dataset. We use the Stanford Question Answer-
ing Dataset (SQuAD) v1.1 dataset (Rajpurkar et al.,
2016), which contains 100K+ question-answer
pairs based on 500+ articles. The question-answer
pairs are generated by crowd-workers. Dev/test
splits from Du et al. (2017) are derived from the
original development set, since the SQuAD test set
is not publicly available. Since it is time consum-
ing to apply gradient-based optimization on large
dataset, we down-sample 1,000 question-answer
pairs from the training set for the analyses.

Models. We use Bidirectional Attention Flow
(BiDAF) model (Seo et al., 2016) ( 2.5M parame-
ters) along with the GloVe embeddings and trans-
former models. BiDAF is the most popular end-
to-end neural net before the rising of transformers.
It uses two bidirectional LSTMs to represent each
context and question and applies attention mecha-
nism to generate question-aware context represen-
tations. In contrast, transformer models inherently
have special tokens to separate the context and
question. Therefore, such representations can be
generated with the concatenation of context and the
question as the input to the transformer, which is
RoBERTa (Liu et al., 2019) in our experiment. We
then apply a matrix M %2 (a linear layer) where H
is the hidden size on top and use softmax function
to calculate the probability distributions pg,t and
Pend for the begin and end of the answer span. Dur-
ing training, the cross-entropy loss is calculated by
adding negative log likelihoods of pgarr and peng.

Evaluation metrics. For all experiments, we
measure exact match (EM), span accuracy and F1
score, which is the harmonic mean of recall (the
percent of words in the predicted answer span that
are in the gold span) and precision (the percent of

words in the gold span that are in the predicted
span).

5.2 Results

According to all the three metrics, min-min mod-
ifications effectively prevent the learning process
of the reading comprehension model, as shown
in Figure 2. To verify the importance of the bi-
level formalization, the error-min modifications
are generated by performing Algorithm 1 on the
well-trained models. Also, following Huang et al.
(2021), error-max modifications, which expose vul-
nerability for adversarial attack, are also generated
for comparison (Ebrahimi et al., 2018; Wallace
et al., 2019). Figure 2 shows that error-min and
error-max modifications have little effect compared
to min-min modifications.

5.3 Why Are The Min-min Modifications
Effective?

By analyzing the positions and subsitutions, we
find that: (1) the positions P of min-min modifi-
cations are always identified within the one-word
distance of the answers. (2) The substitutions S
tend to be a few unique words. Figure 3 shows that
5 words are used for substitutions of 98% of 1000
samples.

we also find substitution words of error-min and
error-max modifications sometimes appear on ques-
tions. It is in accord with the finding that well-
trained DNNs learn how to locate answers with
question tokens, i.e., context matching. (Jia and
Liang, 2017). For example, "because to kill ameri-
can people." can be inserted into context passages
as adversarial triggers for all the "why" questions.
However, min-min substitutions never include ques-
tion words. And after the min-min modifications,
the model locates answer that surround the substi-
tution words rather than question tokens.

This leads to the hypothesis:

inserting a unique word around the answers
can protect text from reading comprehension.

It prevents models from learning generalized rules
like context/type matching.

We design several experiments to verify this hy-
pothesis, we (1) fix substitutions as "the", which
achieves the very similar effectiveness; (2) ran-
domly select the modification positions P exclud-
ing the answer spans, which barely has no effective-
ness. Both results support our assumption; (3) We
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Figure 2: Comparison of min-min, error-min and error-max modifications. All the metrics are computed on test
data for BiDAF. Min-min modifications is most effective to make training data unlearnable according to all three
metrics. We run all the training for 20 epochs while the training on min-min modifications halts at the 12th epoch

due to early stopping.
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Figure 3: Distribution of substitution words for

SQuAD. There are totally eight words generated for
min-min modifications by our optimization process.
The graph shows the probabilities of all the substitu-
tion words and the top-5 words appear in the 98% of
1000 samples.

add substitution words (e.g., 'product’) to arbitrary
positions of test examples and find that the mod-
els trained/fine-tuned on unlearnable texts always
predict phrases surrounding substitution word as
answers, which further verifies the hypothesis.
Finally, we use the hypothesis on the whole
SQuAD training set by simply inserting the short-
cut word "2" in front of answers. The result in
Table 1 shows the effectiveness of unlearnable text.

6 Unlearnable Percentage

Although Table 1 verifies the effectiveness of our
hypotheses, the defenders, in practice, can only
modify their own data, which means that a small
portion of training data can be transformed into
unlearnable text. Therefore, we also evaluate the

Span oy g
Accuracy
Min-min 0.012 0.023 0.035
Fixed S 0.006 0.011 0.038
Random P | 0.58 0.61 0.72

Table 4: Evaluating the importance of substitutions and
position for min-min modifications. The table reports
metrics on test data when we fix substitutions to one
word or select random positions to modify. It shows
that the modifications are effective as long as we put
common substitution word(s) surrounding answers.

| 95% | 90% | 80% | 0 |

0.86 | 0.88 | 0.89 | 0.91
0.85 | 0.87 | 0.89 | 0.91

Modify
Skip

Table 5: Test accuracy during fine-tuning of BERT with
different unlearnable percentages. We fine-tune the
model for 10 epochs to the convergence in all the cases.
The results show that it makes no difference whether
we modify a fixed percent of training data into unlearn-
able data or just skip them.

unlearnable effectiveness for training on partial un-
learnable samples.

The model cannot learn generalized informa-
tion from partial unlearnable data. As shown
in Table 5, we find that the model accuracy keeps
consistent, no matter whether we modify a fixed
N% of training data into unlearnable data or just
skip them. In other words, the model only learns
from another 1-N% clean data, and adding unlearn-
able text would not increase any generalized infor-
mation on test data.

Trigger one class to be unlearnable. To fur-
ther prove the effectiveness of partial unlearnable



data for training, we make one class of examples
("World’ in the AG News) unlearnable by adding
a trigger (’a’) and evaluate the test accuracy. The
results of low accuracy on the unlearnable class
(0.015) and high accuracy on others (0.93) strongly
indicate the effectiveness of a small portion of un-
learnable text.

Partial unlearnable data for SQuAD. To avoid
expensive computation, we design a different ex-
periment to evaluate the effectiveness of partial
unlearnable data for SQuAD.

We construct two sets for training Dy, D>, each
of which consists of 1000 samples. We protect D;
to be an unlearnable set D,;. We then fine-tune the
transformer with D,,; U Ds.

We compare the model performance on Dy and
Dy to evaluate whether D,,; can protect D;. We
also report unseen test data D,.; as the reference.
As shown in Table 6, the model performs much
worse on D,,; than Ds. Hence, it can be effective
to make partial data unlearnable for SQuAD.

] \ Span accuracy \ EM \ F1 \

Dy 0.59 0.66 | 0.79
Dy 0.69 0.75 | 0.86
Diest 0.68 0.74 | 0.83

Table 6: The RoBERTa has poor performance on the
protected data D1, after fine-tuned on D,,; U D5, where
D, is one version of D; with a shortcut.

7 Case Study: Preventing User Profiling

Users’ data in social media (e.g., Facebook/twitter)
is popularly used to characterize and profile the
users (Farnadi et al., 2018), including gender pre-
dictions (Suman et al., 2021), political preference.
It has been reported that the malicious use can
cause unfair intervention for political voting or in-
ternet bully.

Text classification via deep learning is one of
common tools to determine their demographics
for assisting user profiling (Nicolds Sayago et al.,
2020). In this section, we show that how easy
unlearnable patterns can be inserted into the users’
descriptions to prevent gender predictions, which
is a salient task of user profiling.

Experimental settings. The dataset > comes
from the Twitter’s user descriptions. It contains

“https://www.kaggle.com/crowdflower/twitter-user-
gender-classification

= Male:

'a' Female: 'b' = Clean

0.6

Figure 4: The test accuracy during training on clean
data or data applied with class-wise triggers. We insert
’a’ for male and °b’ for female in the middle of text. The
test accuracy is measured after each update of model
parameters, since the loss reaches convergence within
one epoch of training.

11,194 samples, which are split for training, vali-
dation and test by the ratio of 7:2:1. We fine-tune
BERT on the training set and report the result on
the test set.

Effectiveness of unlearnable patterns. Accord-
ing to previous findings, we add simple, class-wise
triggers to the middle of their descriptions ("a’ for
male and ’b’ for female). Figure 4 compares the
test accuracy during training on clean data or data
with the class-wise triggers. Since the loss reaches
convergence within one epoch of training, the test
accuracy is measured after each update of model
parameters. The simple, class-wise triggers suc-
cessfully make the fine-tuning process of BERT-
based classifier fail.

8 Conclusion

By exploring how to make NLP models unlearn-
able, we conclude that presenting superficial fea-
tures can effectively make data unlearnable, includ-
ing class-wise word insertion for classification and
answer surrounding substitutions for reading com-
prehension. As for the futher work, we have two
directions: First, using more advanced linguistic
patterns. Our experiments show that unlearnable
word substitutions/insertions can be effective for
text classification models. There may be other sen-
sitive, linguistic forms for unlearnable objective:
syntactic structure, commonsense, text style. Sec-
ond, exploring unlearnable text on text generation
models. This is also closely related to fact check in
tasks like text summarization and machine transla-
tion.
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