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Abstract

This paper proposes echo-attention layers, an
efficient method for improving the expressive-
ness of the self-attention layers without in-
curring significant parameter or training time
costs. The key idea is to iteratively refine
the attentional activations via stateful repeated
computation, i.e., we compute the activations
once and get N refinements (echo-attentions)
at a relatively cheap cost. To this end, we
introduce an update and state transition func-
tion that operates over these attentional activa-
tions. Via a set of extensive experiments, we
show that this the proposed Echoformer model
demonstrates widespread benefits across 21
datasets including language modeling, ma-
chine translation, language understanding and
question answering.

1 Introduction

Transformer architectures (Vaswani et al., 2017)
have become the defacto model choice for sequence
modeling and have garnered widespread adoption
across natural language processing (Devlin et al.,
2018; Raffel et al., 2019; Brown et al., 2020) and
computer vision (Dosovitskiy et al., 2020) applica-
tions. Fundamentally, Transformers are character-
ized by stacked blocks of self-attention and stan-
dard transformation layers which repeatedly trans-
forms the input sequence as it propagates deeper
into the network hierarchy.

At each layer of a standard Transformer model,
the self-attention mechanism acts as a form of mes-
sage passing (Joshi, 2020) and/or routing operation
and learns a re-alignment of the intermediate repre-
sentations. This can also be interpreted as a form
of contextual mixing of tokens/representations and
is well-established to be crucial to the reasoning
capabilities of the Transformer inductive bias. Con-
ceptually, the depth of a Transformer model is an in-
triguing and important concept since the maximum
number of sequential operations in a Transformer
model is upper bounded by its depth.

Intuitively, the depth of a Transformer model not
only influences its expressiveness but also its abil-
ity to handle recursive and/or sequential structures
in data. As such, a single layer of self-attention,
partially due to its parallel nature, would not be
suitable for tasks that require more than a single
step of reasoning or processing. Consider the case
where a Transformer model has to resolve a nested
equation, i.e., S = max(a, b, min(max(c, d), e)),
a single layer of self-attention would not be able to
process this in a single pass since this requires re-
solving segments of .S independently and compos-
ing them in subsequent steps (e.g., So = max(c, d)
first and then min(.S, €)). To this end, Transformer
models are usually of some minimum depth, say 4
or more layers, in order to be viable across a wide
range of tasks.

In this paper, we propose a new echo-attention
layer. The key idea is to have a form of state-
ful, sequential and separable self-attention module
while retaining efficiency and parallelizablility of
the Transformer model. Concretely, we decompose
and separate the attention activation process into
a multi-step iterative process, enabling it to deal
with multiple steps of processing within a single
attention layer. In contrast to stacking new layers
or repeating computation of entire block (Dehghani
et al., 2018), our method is more feasible and effi-
cient in practice due to its lightweight nature. We
call our model the Echoformer, or echo-attention
because the repeated stateful computation resem-
bles an echo.

To this end, the intermediate and repeated refine-
ment of the attention modules in a neural network
is well-established to be a useful inductive bias
and is often linked to reasoning (Sukhbaatar et al.,
2015; Cui et al., 2016; Gong and Bowman, 2017;
Hu et al., 2017). In our experiments, our qualita-
tive and quantiative analysis shows that the pro-
posed echo-attention has self-refining properties as
it learns to continuously update its activations to



become more confident (sharper) if needed. All in
all, the proposed echo-attention is more expressive
and flexible, and subsumes the vanilla attention by
having the capability to revert to it if need be.

We conduct extensive experiments across 21 di-
verse datasets and tasks in the areas of natural lan-
guage processing such as machine translation, lan-
guage modeling (Chelba et al., 2013), question
answering (Rajpurkar et al., 2016), summariza-
tion (See et al., 2017), and language understand-
ing (Wang et al., 2019). Our overall finding is
that Echoformer consistently outperforms vanilla
Transformers on all 21 tasks/datasets.

On machine translation and language model-
ing, we perform systematic studies pertaining to
compute-performance trade-offs. We find that on
these tasks, Echoformers can outperform Trans-
formers that are deeper and/or have more param-
eters. For instance, 4L Echoformers can outper-
form 5L Transformers on machine translation tasks
while being more compute efficient. More often
than not, Echoformers with L layers are more per-
formant yet compute efficient as compared to us-
ing Transformer model with L + 1 layers. This
demonstrates the improved expressiveness of the
Echoformer model. Notably on machine trans-
lation tasks, a 4L Echoformer can outperform a
Transformer model with twice its number of layers
(i.e., 8L).

Our contributions The overall contributions of
this work can be summarized as follows:

e We propose echo-attention layers and
Echoformer, a new efficient way of imbuing
sequential order, state and repeated compu-
tation within the self-attention layer. This is
achieved by learning to echo, reusing existing
activations and iteratively refining them via
repeated computation.

e The proposed echo-attention is relatively
lightweight and has negligible parameter costs.
On three systematic studies, we demonstrate
that Echoformer can outperform Transformer
models that have additional layers. Moreover,
with the same number of layers, our experi-
ments show that Echoformers always outper-
form Transformers.

e We conduct extensive experiments on 21 NLP
tasks and datasets. Echoformer consistently
outperforms Transformers on all 21 NLP
tasks.

2 Echoformers

This section introduces Echoformers and echo-
attention. Figure 1 provides a brief illustration
of the echo-attention layer.

2.1 Vanilla Self-Attention

We first describe the vanilla self-attention mech-
anism (Vaswani et al., 2017). The self-attention
module first projects the input tensor X to query,
key and values. Namely, for each head / and each
layer ¢, this is written as:

Qnts Koy Ve = Wy n o X, Wi o X, W e X,
(H

where W 1, ¢, Wi p.0, Wy he are learned parame-
ters. Recall that in the vanilla scaled dot-product
self-attention (Vaswani et al., 2017), for layer ¢ and
head h, this can be also written as:

N
Yhei = Z @ijhe Vihes ()
=0
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where Ay, ¢ = Softmax W‘Z . Ap g acts as

a form of routing matrix, that guides the routing of
representations at layer £. The output at each layer
¢ is defined as o, = W, concat (Y1 ¢+ - Yr.0) + bo.
A layer normalization and residual connector to
the previous layer wraps around this module, fol-
lowed by a two-layer positional-wise feed-forward
network with ReLLU activations.

2.2 Echo Attention

The key idea is to learn to echo, in which we reuse
the logits Ay, ¢ and construct an interpolation (or
mixture) of echoed activations as the final output.
The echo-attention layer similarly acts upon query,
keys and values, which are first learned via linear
transformations.
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Figure 1: Overview of the proposed Echo-Attention
mechanism with two echoes (iterations).



Echoed attention activations are lightweight
echos of the original attention activations that con-
structed in a sequential fashion. There are two
design principles and motivators for echo attention.

Learning what to Echo At each step, we learn
what to echo. Activations that are selected in step
k are already activated and have lesser presence in
subsequent echoes. In short, echos are sequentially
activated with Eg j, ¢ = Ap 0.

Stateful Echo The echo-attention is stateful, i.e.,
echos are step k are distinct from other steps. We
use a state function U(.) to distinguish between
echos at each step. The model learns to control of
activation strength across echoes.

Generally, for a single head h and layer /, the
overall echo attention is defined as:

Yo = Softmax(Eo ¢ + E1pe + - Es o) Vi,

where final S is the number of echo steps and Ey 5, ¢
is the initial activations defined as Qp, (K ,1— ;- The
function defining Ej 1 p ¢ is defined as:

Eiti,he =he (Erne Qne)-

In short, the F}1 5 ¢ echo is conditioned and pro-
duced from E}, p, ¢. p¢(.) is a parameterized func-
tion that accepts the previous Fj, 5, , and query ten-
sor as an input. The function , ¢(.) is responsible
for (1) learning what to echo and (2) producing the
echo activations for step k.

2.2.1 Learning What to Echo

In each step, we learn what to echo. When activa-
tions are echo-ed, they are softly erased (gated)
from the matrix and have a lesser presence in
the next echo step. The echo-ed attention can be
seen as selectively choosing activations to activate
(echo) across multiple steps and acts as a form of
gating mechanism.

Given Ej_1 j, ¢ for the (k — 1)-th echo step for
head h and layer ¢, we first learn a priority score for
each activation that denotes an activation’s involve-
ment in the current echo. This can be done for each
activation, or across row/column dimensions. For
simplicity, we tie the priority scores at the token-
level so all P;, have the same values for all values
of j. To learn the associated priority scores of the
i7-th logit at the k-th iteration, we adopt a simple
linear projection to a scalar value:

Prijht = WiheQkine),

where Wi, 50 € R? are learnable parameters. In-
tuitively pg; j»,¢ can be interpreted as a form of
gating mechanism that learns to re-weight the atten-
tion matrix. Given the priority matrix, the echo-ed
logits at step k is defined as:

Epne=Prne®© Ex_1ne

where Ek—l is the activation matrix passed to the
next echo step after taking into consideration the
decision made at step k. This can be expressed as:

Byt =Ukne((1 = Peo140) @ Ex—1.0)),
3)

where U maps from RV*N — R¥XN g 3 param-
eterized function that maps an N x N matrix to
another N x N matrix. Uy, 5, ¢ is the state function
that is used to denote a transition from step k to
step k + 1.

Notably, equation (3) is also reminiscent of the
gated linear unit formulation (Dauphin et al., 2017),
ie., F = Fi(.)©F2(.). Moreover, this step infuses
nonlinearity into Fy, ;, ¢, which is eventually passed
to the Softmax function. Infusing nonlinearity in
the Softmax formulation, i.e., % improves
the expressiveness of the model by enhancing the
output set (range) of the log-softmax activation, as
demonstrated in the sigsoftmax activation (Kanai
et al., 2018).

State Transition Our choice of function Uy, 1, ¢(.)
is a simple learned scaling of its input. The model
has the flexibility to learn to control this knob in
which the activations can either become stronger
or weaker. This can be interpreted as a form of
temperature. We denote this by:

U he(X) = appeX. )

We experiment with multiple choices where av € R
can be a scalar parameter that is used to scale the
matrix X up or down. We also consider row or
column wise position based scaling where oy, , ¢ €
R¥ is a vector and is either broadcast in a row or
column fashion. In short, with U(.), we learn to
assign a specific magnitude (large or small) with
each echo. The model has the flexibility to anneal
the activation strength, or learn to increase it over
echoes.

Parameter and Computation Costs A defining
characteristic of echo-attention layers is that they
are very lightly parameterized. For each layer, each



head, each echo step adds dj, parameters for learn-
ing Py ;p¢. The state update function Uy p ¢(.)
only costs 1 parameter for the scalar version of
a and N parameters for the vector (row or column)
variation. To keep the echo steps efficient, we do
not use a matrix variation of N x N. In the end,
each echo attention layer only adds kdj, parameters
which is often extremely negligible in the grand
scheme of things as most models are in the range
of millions of parameters. Echo-attention layers are
also relatively cheap, adding h x dj, operations for
learning Py ; j ¢, N X N operations for summing
Ej p . and N? operations for scaling via Uk,he(.)

2.3 Discussion

This section discusses several interpretations and
qualities of the proposed echo-attention layer.

2.3.1 Echoformer is more expressive and
subsumes Transformers

This section shows that Echoformer is more expres-
sive (or at least equally expressive) than vanilla
self-attention. We first show that echo-attention
subsumes the vanilla self-attention by setting
Pk,h,f =1 AND Ak ht = 1, Vk > 1

we recover the vanilla self-attention model. Hence,
the model has the option to (learn to) revert back
to the vanilla self-attention model.

2.3.2 Relation to Sparse and Hard Attention

Sparse and hard attention (Xu et al., 2015) is a form
of attention mechanism where attention weights
concentrate on minimal number of tokens. The at-
tention distribution is sharper with more probability
mass concentrated on some tokens instead of being
more uniformly distributed. This section shows
that the echo-attention is better at express sparse
and/or hard attention, largely due to the iterative
updating using the function and the properties of
the sigmoid activation.

At each echo step, P, applies a gating to the
attentional activations in order to select which ac-
tivations to echo in that current step k. Let o be
the activations at activation j, then the Softmax
function is written as: Softmax(0z) = = e
Doy €7
With o € [0, 1], the summation denominator of the
Softmax function decreases, the weights that are
selected in the echo step k will have sharper distri-
butions than in standard attention. Since the func-
tion is biased towards [0, 1], this would intuitively
make the distribution of each echo-attention even

sharper. We show in our qualitative analysis that

echo-attention has the capability to refine and pro-
duce sharper distributions when necessary. Like-
wise, when Py ; ; ¢ 18 equal to 1, the echo-attention
reverts the vanilla self-attention model. Hence, the
echo-attention has the option of maintaining the
same extent of sparsity as the vanilla attention.

2.3.3 On levels of abstraction: From
token-token attention to
token-sequence attention

Many early works use attention mechanism as
a means to learn relative importance (Nadaraya,
1964; Bahdanau et al., 2014). Given a sequence of
tokens, this often refers to a form of parameterized
pooling, i.e., y = ZN a;x;. That said, in modern
self-attention, this notion of relative comparison
is shifted to the foken-token level. Essentially, the
activations in self-attention dictate a routing path
for each token in the sequence and is normalized
(via Softmax) as such. Here, it is easy to see that
the model loses relative importance at the roken-
sequence level as routing decisions are made at
the token-level. There is no relative importance
amongst routing paths.

In echo-attention, the function provides an in-
ductive bias to learn relative importance at a differ-
ent level of abstraction. In this case, this refers to
the token-sequence level since the values of py, 5, ¢
are tied for each token i. Hence, the design of the
proposed inductive bias brings back some flavour
of the standard vanilla attention.

2.3.4 Quasi-depth vs Real depth

It is clear that the induced echo-attention mech-
anism creates a form of pseudo quasi-depth. To
simulate ‘real’ depth, one would have to use in-
termediate echo-attentions to create new repesen-
tations, i.e., by multiplying by V' before the next
echo-step. Our implementation parallelizes this by
a initializing a lightweight stateful transition func-
tion and avoids this multiplication. We note that
this is the intended functionality of the proposed
echo-attention as one of its main goals is to remain
efficient. We postulate that a lightweight stateful
mechanism can already bring benefits without hav-
ing to explicitly create ‘real’ depth.

3 Experiments

This section describes our experiments. Overall,
we conduct experiments on language modeling,
machine translation and large-scale pretraining and



Table 1: Controlled experiments on One Billion language modeling (LM1B) benchmark. Keeping the number
of params constant, we evaluate the effect of Echo-Attention compared with several alternatives of improving

representation capability.

L =4 L=6 L=38

Model #Params Perplexity ‘ #Params Perplexity ‘ #Params Perplexity
Transformer (L) 45M 34.97 5IM 3341 58M 31.65
Transformer (L + 1) 46M 34.86 51IM 33.34 58M 31.54
Echoformerg (x2) 45M 34.35 (+1.8%) 5IM 32.77 (+2.0%) 58M 31.60 (+0.2%)
Echoformerg (x4) 45M 34.87 (+0.3%) 51M 33.06 (+1.1%) 58M 31.17 (+1.5%)
Echoformerg (x6) 45M 35.13 (- 0.5%) 51IM 32.74 (+2.0%) 58M 31.22 (+1.4%)
Echoformery (x2) 45M 34.97 (+0.0%) 51IM 32.74 (+1.8%) 58M 29.37 (+7.7%)
Echoformery, (x4) 45M 34.95 (+0.1%) 51IM 32.87 (+1.6%) 58M 31.14 (+1.6%)
Echoformery, (x6) 45M 34.87 (+0.3%) 51IM 32.62 (+2.4%) 58M 29.06 (+8.9%)

finetuning experiments using state-of-the-art TS
models (Raffel et al., 2019).

3.1 Language Modeling Experiments

We conduct experiment on the Google One Billion
Language Modeling benchmark (LM1B) (Chelba
et al., 2013).

3.1.1 Experimental Setup

We train models for 30K steps with a batch size of
256. The maximum sequence length is 256. Mod-
els have 8 heads, d,,04¢; 0f 1024 and d 7, of 2048.
We vary the number of layers L € {4,6,8} and
the number of echoes for Echoformer in {2, 4,6}.
We implement our models in FLAX (Heek et al.,
2020) and JAX (Bradbury et al., 2018) and train
them on 16 TPUv3 chips. We train models for a
total of 30K steps and report validation (subword)
perplexity. In order to verify that echo-attention
layers are more efficient as compared to stacking
layers, we compare with L + 1 under equal param-
eterization. We do this by scaling d s, accordingly.
We experiment with both .S (scalar) and V' (vector)
variants of Echoformers.

3.1.2 Experimental Results on Autoregressive
Language Modeling

Table 1 reports our results on the LM1B bench-
mark. We report a systematic study of varying
number of layers and comparing Echoformers with
Transformers at L and L + 1 (one additional Trans-
former layer). Across L € {4, 6,8} we find that (1)
Echoformers consistently outperform Transform-
ers at both L and L + 1. This ascertains that echo-
attention layers are powerful enough to emulate
the stacking of an additional Transformer layer.

Table 2: Experimental results on WMT English Ger-
man. We report quality (BLEU) along with speed
(steps per second). Echoformer outperforms Trans-
formers at all levels. Models with % are Echoformer
models that outperform Transformers at L+1.

Quality (Bleu) Speed
# Layer | Trans. Echo. ‘ Trans. Echo.
3 26.88 2740 | 343  3.06
4 28.10 28.17* | 2.89 243
5 27.70 28.59* | 2.19  2.16
6 28.36 2853 | 1.93 1.84

At the same number of layers, Echoformer also
outperforms Transformer of up to +8.9% relative
improvement in terms of validation perplexity at 8
layers. In terms of relative gains across different
number of layers, we observe that the gains at 8
layers is much greater than at 6 layers and like-
wise 4 layers. The relationship between gains from
echo-attention and number of standard layers is
clearly non-linear. Moreover, the trend of number
of echo steps and the number of standard layers is
also interesting. Increasing echoes at L = 4 seems
to degrade performnance while the converse is true
for L = {6, 8}. Hence, we believe the ratio of echo
layers to standard layers is quite crucial to the ef-
fect on model quality. We conduct more extensive
studies regarding number of echoes in subsequent
sections.

3.2 Machine Translation Experiments

We conduct experiments on machine translation on
the WMT’16 English-German task.
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Figure 2: Comparison of 4 layer Echoformer against
Transformers of 4, 7,8 layers. y-axis denotes BLEU
score and y-axis denotes training steps (in thousands).

3.2.1 Experimental Setup

We train on WMT’16 and evaluate on new-
stest2014 set. We implement large Transformer and
Echoformer models with varied number of layers
from {3,4,5,6}. We use a sequence length of 512
and batch size of 256. Models have d t,, of 4096,
16 heads, dropout of 0.1 and d,,,4e; of 1024. We
train models with bfloatl16 optimizations and report
BLEU scores using sacrebleu (Post, 2018) with
beam size 4 and length penalty 0.6 at 50K steps.
Models are trained on 16 TPUvV3 chips. Echoform-
ers are implemented with 4 echoes using the vector
variant of the state function. We implement models
in Python and JAX (Bradbury et al., 2018). Note
that the purpose of this attempt was not to go for
state-of-the-art performance, but to understand the
effect of echo attention on performance with re-
spect to the number of layers.

3.2.2 Experimental Results on Machine
Translation

Table 2 reports results (quality and speed) on our
MT experiments. When varying the number of
layers, we find that Echoformer outperforms Trans-
formers with the same number of layers. Notably,
Echoformers with 4 and 5 layers can outperform
Transformers with L + 1 layers. This is similarly
observed to the experiments in language model-
ing. As for speed, the cost of using 4 echoes per
layer is not substantial and is faster than adding
one more Transformer layer. This is even when
using 4 echoes per layer and both the encoder and
decoder. Hence, we believe that echo-attentions
are relatively cost-negligible.

Table 3: Experimental results on question answering,
SuperGLUE and summarization tasks.

Model ‘ Transformer Echoformer
SQuAD 82.2/89.7 82.8/90.5
TriviaQA 22.7/27.0 22771271
WebQA 28.1/34.9 28.6 / 35.5
CosmosQA 69.4 69.9
SGLUE 71.2 72.8
BoolQ 78.9 79.7

CB 84.8/91.1 89.0/91.1
CoPA 63 65
MultiRC 74.5/34.1 74.5 /1 34.6
Record 71.0/70.0 71.3/70.4
RTE 79.8 80.9
WiC 66.1 67.2
WSC 69.2 74.0
XSum 39.3/17.3/32.0 39.4/17.4/32.1
CNN/DM 40.9/19.0/38.4  41.2/19.2/38.6
MultiNews | 35.3/13.5/20.4 35.5/13.7/20.6

Convergence and Stability Figure 2 compares
a 4L Echoformer with deep Transformers. We plot
the results on machine translation of the four com-
pared models across training iterations. Out of
the four variants, we find that the 4L Echoformer
performs the best, even outperforming deep Trans-
formers of 7 or 8 layers. Moreover, we find that
the Echoformer maintains stability across train-
ing epoches, unlike the 8 layer Transformer which
demonstrated some extent of instability (fluctuating
performance). We also note that the 4L Echoformer
takes a little longer to converge, but ends up tak-
ing a good position with respect to overall (final)
performance.

3.3 Large-Scale Pretraining and Finetuning
Experiments

We conduct pretraining and finetuning experiments
based on the state-of-the-art TS5 model (Raffel et al.,
2019) using the open source Mesh Tensorflow! and
T5? library (Shazeer et al., 2018). Specifically, we
replace the Transformers in TS with Echoformers.

3.3.1 Experimental Setup

This section desribes the experimental setup for
large-scale experiments.

"https://github.com/tensorflow/mesh
https://github.com/google-research/
text-to-text-transfer-transformer
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Pretraining We pretrain on a mixture of unsuper-
vised C4 (Collosal Cleaned Common Crawl cor-
pus) (Raffel et al., 2019) and Glue/SuperGLUE
tasks for one million (1M) steps with a batch size
of 65536 and sequence length of 512. Experiments
are run on 16 TPU-V3 chips and each pretraining
takes roughly around 36 hours for pretraining. We
adopt Adafactor (Shazeer and Stern, 2018) as the
optimizer and use a learning rate schedule inversely
proportionate to the square root of the number of
steps.

Finetuning This section describes our finetuning
experiments. We finetune on SuperGLUE (Wang
et al., 2019), which comprises of 8 difficult lan-
guage understanding benchmarks. Additionally,
we also finetune on four question answering bench-
marks, (SQuAD (Rajpurkar et al., 2016), TriviaQA
(Joshi et al., 2017), WebQA (Berant et al., 2013)
and CosmosQA (Huang et al., 2019)), along with
three summarization benchmarks (XSum (Narayan
et al., 2018), CNN/Dailymail (See et al., 2017)
and MultiNews (Fabbri et al., 2019)). All datasets

can be found on https://www.tensorflow.

org/datasets/catalog/overview. In to-
tal, evaluate on 17 challenging NLP tasks for fine-
tuning experiments. We train all models for a max-
imum of 200K steps with a constant learning rate
tuned amongst {0.001,0.0005}. We report peak
validation performance.

Model Details We generally use the Transformer
base model for experiments which have approxi-
mately 220M parameters, have 12 layers, 12 heads,
dfpn = 3076 and dyyoqer = 768. Models are
sequence to sequence models with both an en-
coder and decoder. In Echoformer, we replace
both encoder and decoder attention with the pro-
posed method. We tune the number of echo layers
amongst {2,3,4}. In general, we use the scalar
variation of the echo-attention.

3.3.2 Experimental Results on Large-Scale
Finetuning

Table 3 report results on large-scale pretraining and
finetuning. For QA, we report EM/F1 metrics ex-
cept for CosmoQA where we only report accuracy.
For summarization, we report Rouge-1/2/L. Super-
GLUE tasks are mainly accuracy metrics except for
Record and MultiRC where we report EM/F1. Re-
sults show that Echoformer outperforms a strong
Transformer baseline on 17 challenging and dif-
ficult NLP tasks. While, performance gains are

relatively modest across certain collections of tasks
(i.e., summarization), we believe the consistent im-
provement here relays the strength of the proposed
inductive bias.

3.4 Analysis

In this section, we study the effects of echo-
attention. We are primarily interested in the inner
workings of the echo-attention mechanism.

3.4.1 Effect of State Transition Parameters o

In this section, we study the effect of o across echo
steps. We analyze a model trained on language
modeling task for 30K steps and plot values of
learned «r. We plot values of « from two different
heads across all 6 layers. Figure 3 illustrates the
learned o values for a model with 4 echoes.

We observe that learned « differs across lay-
ers and heads, i.e., there is a sufficiently distinct
behaviour across different heads and layers. We
observe that there is both increasing and decreas-
ing echoes, i.e., the trend is not strictly going up or
going down for each « value. Moroever, we also
observe that most the model learns to diminish «
at the fourth echo. We find this intriguing, as this is
reminiscent of soft adaptive computation (Graves,
2016) - if the model does not require echoes > NV,
it has the complete flexibility to assign a low « to
echoes beyond that point.

Figure 3: Effect of state transition parameter o across
echoes.

3.4.2 Analysis of Attention Activations

Figure 4 and Figure 5 illustrates the attention ac-
tivations Ej ¢ for k € {0,1,2,3}, h = 0 and
¢ = {2,4}. From the activations, we observe that
echo-attention has an effect that forces a sharper
distribution of attention scores as opposed the stan-
dard attention (k = 0). Hence, this reinforces the
idea that echo-attention learns to refine and itera-
tively updates the attention weights across echoes.
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step=1 step=2 step=3

Figure 5: Effect of Ej, ¢ 4 matrix after each echo step
(head 0, layer 4) for k = {0, 1, 2, 3}.

“"‘H‘n )

3.4.3 Analysis of echo priority P

Figure 6 depicts examples of the priority scores P
created from the selection function. We extracted
weights for 3 samples (denoted sample {1,2,3}
and extract the P values across 4 echoes. Based
on our observation, we find that (1) there is a di-
verse value of P at every echo step, i.e., the echo-
attention has a diverse selection of row (token) at
each echo step. However, this does not prevent
it from putting weight on similar rows, as shown
in Figure 6. Next, we also find that the priority
distribution across samples is quite different. This
perhaps demonstrates that the conditioning on )
enables the model to learn context-dependent pri-
ority scores.
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Figure 6: Effect of P matrix across echoes.

4 Related Work

Transformer models (Vaswani et al., 2017) are the
dominant choice for sequence processing and has
made a tremendous impact on countless of machine

learning applications and domains such as natural
language processing (Devlin et al., 2018; Brown
etal., 2020; Raffel et al., 2019) and computer vision
(Dosovitskiy et al., 2020).

Despite the success of Transformers in a wide
range of applications, there are some limitations
that drive researchers to improve this class of mod-
els, hoping to address these constraints. One of
the studied aspects is the computational power and
expressivity of Transformers (Pérez et al., 2019;
Hahn, 2020; Bhattamishra et al., 2020). Hahn
(2020) showed that self-attention is computation-
ally restricted and cannot model periodic finite-
state languages, nor hierarchical structure, unless
the number of layers or heads increases with input
length. Some prior works (Tran et al., 2018; Abnar
et al., 2020) empirically showed that feed-forward
self-attention based models are not as capable as re-
current models in modeling hierarchical structure,
which can be crucial in solving some tasks.

To address this issue, Dehghani et al. (2018)
proposed the Universal Transformer, introducing a
recurrence in depth by repeating the computation
of the whole block of a Transformer iterative (Lan
et al., 2019), which not only injects a new form of
inductive bias into the model, but also increase its
computational power. Although this might enables
Transformers to better model inherently sequen-
tial/hierarchical inputs, it comes with a computa-
tional cost that is not necessarily needed to gain
such a benefit.

5 Conclusion

We proposed a new echo-attention mechanism. The
key idea behind echo-attention is to repeatedly and
iteratively refine the attention activations, simu-
lating multiple layers of self-attention within a
single layer. This is done in an efficient manner
without incurring significant parameter or runtime
costs. In order to do so, we introducing priority
scoring and state update (transition) functions for
modifying the logits. We evaluate Echoformers
on 21 diverse and challenging NLP tasks ranging
from NLU and commonsense reasoning (i.e., Su-
perGLUE), generation, question answering, sum-
marization, machine translation and language mod-
eling. For most tasks, we conduct experiments with
both large scale pre-training and fine-tuning. On
all 21 tasks, Echoformer consistently outperforms
a competitive pre-trained TS5 Transformer.
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