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Abstract
This paper proposes echo-attention layers, an001
efficient method for improving the expressive-002
ness of the self-attention layers without in-003
curring significant parameter or training time004
costs. The key idea is to iteratively refine005
the attentional activations via stateful repeated006
computation, i.e., we compute the activations007
once and get N refinements (echo-attentions)008
at a relatively cheap cost. To this end, we009
introduce an update and state transition func-010
tion that operates over these attentional activa-011
tions. Via a set of extensive experiments, we012
show that this the proposed Echoformer model013
demonstrates widespread benefits across 21014
datasets including language modeling, ma-015
chine translation, language understanding and016
question answering.017

1 Introduction018

Transformer architectures (Vaswani et al., 2017)019

have become the defacto model choice for sequence020

modeling and have garnered widespread adoption021

across natural language processing (Devlin et al.,022

2018; Raffel et al., 2019; Brown et al., 2020) and023

computer vision (Dosovitskiy et al., 2020) applica-024

tions. Fundamentally, Transformers are character-025

ized by stacked blocks of self-attention and stan-026

dard transformation layers which repeatedly trans-027

forms the input sequence as it propagates deeper028

into the network hierarchy.029

At each layer of a standard Transformer model,030

the self-attention mechanism acts as a form of mes-031

sage passing (Joshi, 2020) and/or routing operation032

and learns a re-alignment of the intermediate repre-033

sentations. This can also be interpreted as a form034

of contextual mixing of tokens/representations and035

is well-established to be crucial to the reasoning036

capabilities of the Transformer inductive bias. Con-037

ceptually, the depth of a Transformer model is an in-038

triguing and important concept since the maximum039

number of sequential operations in a Transformer040

model is upper bounded by its depth.041

Intuitively, the depth of a Transformer model not 042

only influences its expressiveness but also its abil- 043

ity to handle recursive and/or sequential structures 044

in data. As such, a single layer of self-attention, 045

partially due to its parallel nature, would not be 046

suitable for tasks that require more than a single 047

step of reasoning or processing. Consider the case 048

where a Transformer model has to resolve a nested 049

equation, i.e., S = max(a, b,min(max(c, d), e)), 050

a single layer of self-attention would not be able to 051

process this in a single pass since this requires re- 052

solving segments of S independently and compos- 053

ing them in subsequent steps (e.g., S2 = max(c, d) 054

first and then min(S2, e)). To this end, Transformer 055

models are usually of some minimum depth, say 4 056

or more layers, in order to be viable across a wide 057

range of tasks. 058

In this paper, we propose a new echo-attention 059

layer. The key idea is to have a form of state- 060

ful, sequential and separable self-attention module 061

while retaining efficiency and parallelizablility of 062

the Transformer model. Concretely, we decompose 063

and separate the attention activation process into 064

a multi-step iterative process, enabling it to deal 065

with multiple steps of processing within a single 066

attention layer. In contrast to stacking new layers 067

or repeating computation of entire block (Dehghani 068

et al., 2018), our method is more feasible and effi- 069

cient in practice due to its lightweight nature. We 070

call our model the Echoformer, or echo-attention 071

because the repeated stateful computation resem- 072

bles an echo. 073

To this end, the intermediate and repeated refine- 074

ment of the attention modules in a neural network 075

is well-established to be a useful inductive bias 076

and is often linked to reasoning (Sukhbaatar et al., 077

2015; Cui et al., 2016; Gong and Bowman, 2017; 078

Hu et al., 2017). In our experiments, our qualita- 079

tive and quantiative analysis shows that the pro- 080

posed echo-attention has self-refining properties as 081

it learns to continuously update its activations to 082
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become more confident (sharper) if needed. All in083

all, the proposed echo-attention is more expressive084

and flexible, and subsumes the vanilla attention by085

having the capability to revert to it if need be.086

We conduct extensive experiments across 21 di-087

verse datasets and tasks in the areas of natural lan-088

guage processing such as machine translation, lan-089

guage modeling (Chelba et al., 2013), question090

answering (Rajpurkar et al., 2016), summariza-091

tion (See et al., 2017), and language understand-092

ing (Wang et al., 2019). Our overall finding is093

that Echoformer consistently outperforms vanilla094

Transformers on all 21 tasks/datasets.095

On machine translation and language model-096

ing, we perform systematic studies pertaining to097

compute-performance trade-offs. We find that on098

these tasks, Echoformers can outperform Trans-099

formers that are deeper and/or have more param-100

eters. For instance, 4L Echoformers can outper-101

form 5L Transformers on machine translation tasks102

while being more compute efficient. More often103

than not, Echoformers with L layers are more per-104

formant yet compute efficient as compared to us-105

ing Transformer model with L + 1 layers. This106

demonstrates the improved expressiveness of the107

Echoformer model. Notably on machine trans-108

lation tasks, a 4L Echoformer can outperform a109

Transformer model with twice its number of layers110

(i.e., 8L).111

Our contributions The overall contributions of112

this work can be summarized as follows:113

• We propose echo-attention layers and114

Echoformer, a new efficient way of imbuing115

sequential order, state and repeated compu-116

tation within the self-attention layer. This is117

achieved by learning to echo, reusing existing118

activations and iteratively refining them via119

repeated computation.120

• The proposed echo-attention is relatively121

lightweight and has negligible parameter costs.122

On three systematic studies, we demonstrate123

that Echoformer can outperform Transformer124

models that have additional layers. Moreover,125

with the same number of layers, our experi-126

ments show that Echoformers always outper-127

form Transformers.128

• We conduct extensive experiments on 21 NLP129

tasks and datasets. Echoformer consistently130

outperforms Transformers on all 21 NLP131

tasks.132

2 Echoformers 133

This section introduces Echoformers and echo- 134

attention. Figure 1 provides a brief illustration 135

of the echo-attention layer. 136

2.1 Vanilla Self-Attention 137

We first describe the vanilla self-attention mech- 138

anism (Vaswani et al., 2017). The self-attention 139

module first projects the input tensor X to query, 140

key and values. Namely, for each head h and each 141

layer `, this is written as: 142

Qh,`,Kh,`, Vh,` =Wq,h,`X,Wk,h,`X,Wv,h,`X,
(1)

143

where Wq,h,`,Wk,h,`,Wv,h,` are learned parame- 144

ters. Recall that in the vanilla scaled dot-product 145

self-attention (Vaswani et al., 2017), for layer ` and 146

head h, this can be also written as: 147

Yh,`,i =

N∑
j=0

aij,h,` · Vj,h,`, (2) 148

where Ah,` = Softmax

(
Qh,`K

>
h,`√

dk

)
. Ah,` acts as 149

a form of routing matrix, that guides the routing of 150

representations at layer `. The output at each layer 151

` is defined as o` =Wo concat (Y1,` · · ·YH,`)+ bo. 152

A layer normalization and residual connector to 153

the previous layer wraps around this module, fol- 154

lowed by a two-layer positional-wise feed-forward 155

network with ReLU activations. 156

2.2 Echo Attention 157

The key idea is to learn to echo, in which we reuse 158

the logits Ah,` and construct an interpolation (or 159

mixture) of echoed activations as the final output. 160

The echo-attention layer similarly acts upon query, 161

keys and values, which are first learned via linear 162

transformations. 163
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Figure 1: Overview of the proposed Echo-Attention
mechanism with two echoes (iterations).
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Echoed attention activations are lightweight164

echos of the original attention activations that con-165

structed in a sequential fashion. There are two166

design principles and motivators for echo attention.167

Learning what to Echo At each step, we learn168

what to echo. Activations that are selected in step169

k are already activated and have lesser presence in170

subsequent echoes. In short, echos are sequentially171

activated with E0,h,` = Ah,`.172

Stateful Echo The echo-attention is stateful, i.e.,173

echos are step k are distinct from other steps. We174

use a state function U(.) to distinguish between175

echos at each step. The model learns to control of176

activation strength across echoes.177

Generally, for a single head h and layer `, the178

overall echo attention is defined as:179

Yh,` = Softmax(E0,h,` + E1,h,` + · · ·ES,h,`)Vh,`,180

where final S is the number of echo steps andE0,h,`181

is the initial activations defined as Qh,`K>h,`. The182

function defining Ek+1,h,` is defined as:183

Ek+1,h,` =h,` (Ek,h,`, Qh,`).184

In short, the Ek+1,h,` echo is conditioned and pro-185

duced from Ek,h,`. h,`(.) is a parameterized func-186

tion that accepts the previous Ek,h,` and query ten-187

sor as an input. The function h,`(.) is responsible188

for (1) learning what to echo and (2) producing the189

echo activations for step k.190

2.2.1 Learning What to Echo191

In each step, we learn what to echo. When activa-192

tions are echo-ed, they are softly erased (gated)193

from the matrix and have a lesser presence in194

the next echo step. The echo-ed attention can be195

seen as selectively choosing activations to activate196

(echo) across multiple steps and acts as a form of197

gating mechanism.198

Given Ek−1,h,` for the (k − 1)-th echo step for199

head h and layer `, we first learn a priority score for200

each activation that denotes an activation’s involve-201

ment in the current echo. This can be done for each202

activation, or across row/column dimensions. For203

simplicity, we tie the priority scores at the token-204

level so all Pi∗ have the same values for all values205

of j. To learn the associated priority scores of the206

ij-th logit at the k-th iteration, we adopt a simple207

linear projection to a scalar value:208

pk,ij,h,` = (Wk,h,`Qk,i,h,`),209

where Wk,h,` ∈ Rd are learnable parameters. In- 210

tuitively pk,i,j,h,` can be interpreted as a form of 211

gating mechanism that learns to re-weight the atten- 212

tion matrix. Given the priority matrix, the echo-ed 213

logits at step k is defined as: 214

Ek,h,` = Pk,h,` � Êk−1,h,` 215

where Êk−1 is the activation matrix passed to the 216

next echo step after taking into consideration the 217

decision made at step k. This can be expressed as: 218

Êk−1,h,` = Uk,h,`((1− Pk−1,h,`))� Ek−1,h,`)),
(3)

219

where U maps from RN×N → RN×N is a param- 220

eterized function that maps an N × N matrix to 221

another N ×N matrix. Uk,h,` is the state function 222

that is used to denote a transition from step k to 223

step k + 1. 224

Notably, equation (3) is also reminiscent of the 225

gated linear unit formulation (Dauphin et al., 2017), 226

i.e.,F = F1(.)�F2(.). Moreover, this step infuses 227

nonlinearity into Ek,h,`, which is eventually passed 228

to the Softmax function. Infusing nonlinearity in 229

the Softmax formulation, i.e., σ(x)ex∑
σ(x)ex improves 230

the expressiveness of the model by enhancing the 231

output set (range) of the log-softmax activation, as 232

demonstrated in the sigsoftmax activation (Kanai 233

et al., 2018). 234

State Transition Our choice of functionUk,h,`(.) 235

is a simple learned scaling of its input. The model 236

has the flexibility to learn to control this knob in 237

which the activations can either become stronger 238

or weaker. This can be interpreted as a form of 239

temperature. We denote this by: 240

Uk,h,`(X) = αk,h,`X. (4) 241

We experiment with multiple choices where α ∈ R 242

can be a scalar parameter that is used to scale the 243

matrix X up or down. We also consider row or 244

column wise position based scaling where αk,h,` ∈ 245

RN is a vector and is either broadcast in a row or 246

column fashion. In short, with U(.), we learn to 247

assign a specific magnitude (large or small) with 248

each echo. The model has the flexibility to anneal 249

the activation strength, or learn to increase it over 250

echoes. 251

Parameter and Computation Costs A defining 252

characteristic of echo-attention layers is that they 253

are very lightly parameterized. For each layer, each 254
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head, each echo step adds dk parameters for learn-255

ing Pk,i,h,`. The state update function Uk,h,`(.)256

only costs 1 parameter for the scalar version of257

α and N parameters for the vector (row or column)258

variation. To keep the echo steps efficient, we do259

not use a matrix variation of N × N . In the end,260

each echo attention layer only adds kdk parameters261

which is often extremely negligible in the grand262

scheme of things as most models are in the range263

of millions of parameters. Echo-attention layers are264

also relatively cheap, adding h× dk operations for265

learning Pk,i,j,h,`, N ×N operations for summing266

Ek,h,`. and N2 operations for scaling via Uk,h,`(.).267

2.3 Discussion268

This section discusses several interpretations and269

qualities of the proposed echo-attention layer.270

2.3.1 Echoformer is more expressive and271

subsumes Transformers272

This section shows that Echoformer is more expres-273

sive (or at least equally expressive) than vanilla274

self-attention. We first show that echo-attention275

subsumes the vanilla self-attention by setting276

Pk,h,` = 1 AND αk,h,` = 1, ∀k ≥ 1277

we recover the vanilla self-attention model. Hence,278

the model has the option to (learn to) revert back279

to the vanilla self-attention model.280

2.3.2 Relation to Sparse and Hard Attention281

Sparse and hard attention (Xu et al., 2015) is a form282

of attention mechanism where attention weights283

concentrate on minimal number of tokens. The at-284

tention distribution is sharper with more probability285

mass concentrated on some tokens instead of being286

more uniformly distributed. This section shows287

that the echo-attention is better at express sparse288

and/or hard attention, largely due to the iterative289

updating using the function and the properties of290

the sigmoid activation.291

At each echo step, Pk,` applies a gating to the292

attentional activations in order to select which ac-293

tivations to echo in that current step k. Let σj be294

the activations at activation j, then the Softmax295

function is written as: Softmax(σx) = eσixi∑N
j=1 e

σjxj
.296

With σ ∈ [0, 1], the summation denominator of the297

Softmax function decreases, the weights that are298

selected in the echo step k will have sharper distri-299

butions than in standard attention. Since the func-300

tion is biased towards [0, 1], this would intuitively301

make the distribution of each echo-attention even302

sharper. We show in our qualitative analysis that303

echo-attention has the capability to refine and pro- 304

duce sharper distributions when necessary. Like- 305

wise, when Pk,i,j,` is equal to 1, the echo-attention 306

reverts the vanilla self-attention model. Hence, the 307

echo-attention has the option of maintaining the 308

same extent of sparsity as the vanilla attention. 309

2.3.3 On levels of abstraction: From 310

token-token attention to 311

token-sequence attention 312

Many early works use attention mechanism as 313

a means to learn relative importance (Nadaraya, 314

1964; Bahdanau et al., 2014). Given a sequence of 315

tokens, this often refers to a form of parameterized 316

pooling, i.e., y =
∑N aixi. That said, in modern 317

self-attention, this notion of relative comparison 318

is shifted to the token-token level. Essentially, the 319

activations in self-attention dictate a routing path 320

for each token in the sequence and is normalized 321

(via Softmax) as such. Here, it is easy to see that 322

the model loses relative importance at the token- 323

sequence level as routing decisions are made at 324

the token-level. There is no relative importance 325

amongst routing paths. 326

In echo-attention, the function provides an in- 327

ductive bias to learn relative importance at a differ- 328

ent level of abstraction. In this case, this refers to 329

the token-sequence level since the values of pk,h,` 330

are tied for each token i. Hence, the design of the 331

proposed inductive bias brings back some flavour 332

of the standard vanilla attention. 333

2.3.4 Quasi-depth vs Real depth 334

It is clear that the induced echo-attention mech- 335

anism creates a form of pseudo quasi-depth. To 336

simulate ‘real’ depth, one would have to use in- 337

termediate echo-attentions to create new repesen- 338

tations, i.e., by multiplying by V before the next 339

echo-step. Our implementation parallelizes this by 340

a initializing a lightweight stateful transition func- 341

tion and avoids this multiplication. We note that 342

this is the intended functionality of the proposed 343

echo-attention as one of its main goals is to remain 344

efficient. We postulate that a lightweight stateful 345

mechanism can already bring benefits without hav- 346

ing to explicitly create ‘real’ depth. 347

3 Experiments 348

This section describes our experiments. Overall, 349

we conduct experiments on language modeling, 350

machine translation and large-scale pretraining and 351
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Table 1: Controlled experiments on One Billion language modeling (LM1B) benchmark. Keeping the number
of params constant, we evaluate the effect of Echo-Attention compared with several alternatives of improving
representation capability.

L = 4 L = 6 L = 8
Model #Params Perplexity #Params Perplexity #Params Perplexity

Transformer (L) 45M 34.97 51M 33.41 58M 31.65
Transformer (L+ 1) 46M 34.86 51M 33.34 58M 31.54

EchoformerS (x2) 45M 34.35 (+1.8%) 51M 32.77 (+2.0%) 58M 31.60 (+0.2%)
EchoformerS (x4) 45M 34.87 (+0.3%) 51M 33.06 (+1.1%) 58M 31.17 (+1.5%)
EchoformerS (x6) 45M 35.13 (- 0.5%) 51M 32.74 (+2.0%) 58M 31.22 (+1.4%)

EchoformerV (x2) 45M 34.97 (+0.0%) 51M 32.74 (+1.8%) 58M 29.37 (+7.7%)
EchoformerV (x4) 45M 34.95 (+0.1%) 51M 32.87 (+1.6%) 58M 31.14 (+1.6%)
EchoformerV (x6) 45M 34.87 (+0.3%) 51M 32.62 (+2.4%) 58M 29.06 (+8.9%)

finetuning experiments using state-of-the-art T5352

models (Raffel et al., 2019).353

3.1 Language Modeling Experiments354

We conduct experiment on the Google One Billion355

Language Modeling benchmark (LM1B) (Chelba356

et al., 2013).357

3.1.1 Experimental Setup358

We train models for 30K steps with a batch size of359

256. The maximum sequence length is 256. Mod-360

els have 8 heads, dmodel of 1024 and dffn of 2048.361

We vary the number of layers L ∈ {4, 6, 8} and362

the number of echoes for Echoformer in {2, 4, 6}.363

We implement our models in FLAX (Heek et al.,364

2020) and JAX (Bradbury et al., 2018) and train365

them on 16 TPUv3 chips. We train models for a366

total of 30K steps and report validation (subword)367

perplexity. In order to verify that echo-attention368

layers are more efficient as compared to stacking369

layers, we compare with L+ 1 under equal param-370

eterization. We do this by scaling dffn accordingly.371

We experiment with both S (scalar) and V (vector)372

variants of Echoformers.373

3.1.2 Experimental Results on Autoregressive374

Language Modeling375

Table 1 reports our results on the LM1B bench-376

mark. We report a systematic study of varying377

number of layers and comparing Echoformers with378

Transformers at L and L+1 (one additional Trans-379

former layer). Across L ∈ {4, 6, 8} we find that (1)380

Echoformers consistently outperform Transform-381

ers at both L and L+ 1. This ascertains that echo-382

attention layers are powerful enough to emulate383

the stacking of an additional Transformer layer.384

Table 2: Experimental results on WMT English Ger-
man. We report quality (BLEU) along with speed
(steps per second). Echoformer outperforms Trans-
formers at all levels. Models with ∗ are Echoformer
models that outperform Transformers at L+1.

Quality (Bleu) Speed
# Layer Trans. Echo. Trans. Echo.

3 26.88 27.40 3.43 3.06
4 28.10 28.17∗ 2.89 2.43
5 27.70 28.59∗ 2.19 2.16
6 28.36 28.53 1.93 1.84

At the same number of layers, Echoformer also 385

outperforms Transformer of up to +8.9% relative 386

improvement in terms of validation perplexity at 8 387

layers. In terms of relative gains across different 388

number of layers, we observe that the gains at 8 389

layers is much greater than at 6 layers and like- 390

wise 4 layers. The relationship between gains from 391

echo-attention and number of standard layers is 392

clearly non-linear. Moreover, the trend of number 393

of echo steps and the number of standard layers is 394

also interesting. Increasing echoes at L = 4 seems 395

to degrade performnance while the converse is true 396

for L = {6, 8}. Hence, we believe the ratio of echo 397

layers to standard layers is quite crucial to the ef- 398

fect on model quality. We conduct more extensive 399

studies regarding number of echoes in subsequent 400

sections. 401

3.2 Machine Translation Experiments 402

We conduct experiments on machine translation on 403

the WMT’16 English-German task. 404
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Figure 2: Comparison of 4 layer Echoformer against
Transformers of 4, 7, 8 layers. y-axis denotes BLEU
score and y-axis denotes training steps (in thousands).

3.2.1 Experimental Setup405

We train on WMT’16 and evaluate on new-406

stest2014 set. We implement large Transformer and407

Echoformer models with varied number of layers408

from {3, 4, 5, 6}. We use a sequence length of 512409

and batch size of 256. Models have dffn of 4096,410

16 heads, dropout of 0.1 and dmodel of 1024. We411

train models with bfloat16 optimizations and report412

BLEU scores using sacrebleu (Post, 2018) with413

beam size 4 and length penalty 0.6 at 50K steps.414

Models are trained on 16 TPUv3 chips. Echoform-415

ers are implemented with 4 echoes using the vector416

variant of the state function. We implement models417

in Python and JAX (Bradbury et al., 2018). Note418

that the purpose of this attempt was not to go for419

state-of-the-art performance, but to understand the420

effect of echo attention on performance with re-421

spect to the number of layers.422

3.2.2 Experimental Results on Machine423

Translation424

Table 2 reports results (quality and speed) on our425

MT experiments. When varying the number of426

layers, we find that Echoformer outperforms Trans-427

formers with the same number of layers. Notably,428

Echoformers with 4 and 5 layers can outperform429

Transformers with L+ 1 layers. This is similarly430

observed to the experiments in language model-431

ing. As for speed, the cost of using 4 echoes per432

layer is not substantial and is faster than adding433

one more Transformer layer. This is even when434

using 4 echoes per layer and both the encoder and435

decoder. Hence, we believe that echo-attentions436

are relatively cost-negligible.437

Table 3: Experimental results on question answering,
SuperGLUE and summarization tasks.

Model Transformer Echoformer

SQuAD 82.2 / 89.7 82.8 / 90.5
TriviaQA 22.7 / 27.0 22.7 / 27.1
WebQA 28.1 / 34.9 28.6 / 35.5
CosmosQA 69.4 69.9

SGLUE 71.2 72.8
BoolQ 78.9 79.7
CB 84.8 / 91.1 89.0 / 91.1
CoPA 63 65
MultiRC 74.5 / 34.1 74.5 / 34.6
Record 71.0 / 70.0 71.3 / 70.4
RTE 79.8 80.9
WiC 66.1 67.2
WSC 69.2 74.0

XSum 39.3/17.3/32.0 39.4/17.4/32.1
CNN/DM 40.9/19.0/38.4 41.2/19.2/38.6
MultiNews 35.3/13.5/20.4 35.5/13.7/20.6

Convergence and Stability Figure 2 compares 438

a 4L Echoformer with deep Transformers. We plot 439

the results on machine translation of the four com- 440

pared models across training iterations. Out of 441

the four variants, we find that the 4L Echoformer 442

performs the best, even outperforming deep Trans- 443

formers of 7 or 8 layers. Moreover, we find that 444

the Echoformer maintains stability across train- 445

ing epoches, unlike the 8 layer Transformer which 446

demonstrated some extent of instability (fluctuating 447

performance). We also note that the 4L Echoformer 448

takes a little longer to converge, but ends up tak- 449

ing a good position with respect to overall (final) 450

performance. 451

3.3 Large-Scale Pretraining and Finetuning 452

Experiments 453

We conduct pretraining and finetuning experiments 454

based on the state-of-the-art T5 model (Raffel et al., 455

2019) using the open source Mesh Tensorflow1 and 456

T52 library (Shazeer et al., 2018). Specifically, we 457

replace the Transformers in T5 with Echoformers. 458

3.3.1 Experimental Setup 459

This section desribes the experimental setup for 460

large-scale experiments. 461

1https://github.com/tensorflow/mesh
2https://github.com/google-research/

text-to-text-transfer-transformer
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Pretraining We pretrain on a mixture of unsuper-462

vised C4 (Collosal Cleaned Common Crawl cor-463

pus) (Raffel et al., 2019) and Glue/SuperGLUE464

tasks for one million (1M) steps with a batch size465

of 65536 and sequence length of 512. Experiments466

are run on 16 TPU-V3 chips and each pretraining467

takes roughly around 36 hours for pretraining. We468

adopt Adafactor (Shazeer and Stern, 2018) as the469

optimizer and use a learning rate schedule inversely470

proportionate to the square root of the number of471

steps.472

Finetuning This section describes our finetuning473

experiments. We finetune on SuperGLUE (Wang474

et al., 2019), which comprises of 8 difficult lan-475

guage understanding benchmarks. Additionally,476

we also finetune on four question answering bench-477

marks, (SQuAD (Rajpurkar et al., 2016), TriviaQA478

(Joshi et al., 2017), WebQA (Berant et al., 2013)479

and CosmosQA (Huang et al., 2019)), along with480

three summarization benchmarks (XSum (Narayan481

et al., 2018), CNN/Dailymail (See et al., 2017)482

and MultiNews (Fabbri et al., 2019)). All datasets483

can be found on https://www.tensorflow.484

org/datasets/catalog/overview. In to-485

tal, evaluate on 17 challenging NLP tasks for fine-486

tuning experiments. We train all models for a max-487

imum of 200K steps with a constant learning rate488

tuned amongst {0.001, 0.0005}. We report peak489

validation performance.490

Model Details We generally use the Transformer491

base model for experiments which have approxi-492

mately 220M parameters, have 12 layers, 12 heads,493

dffn = 3076 and dmodel = 768. Models are494

sequence to sequence models with both an en-495

coder and decoder. In Echoformer, we replace496

both encoder and decoder attention with the pro-497

posed method. We tune the number of echo layers498

amongst {2, 3, 4}. In general, we use the scalar499

variation of the echo-attention.500

3.3.2 Experimental Results on Large-Scale501

Finetuning502

Table 3 report results on large-scale pretraining and503

finetuning. For QA, we report EM/F1 metrics ex-504

cept for CosmoQA where we only report accuracy.505

For summarization, we report Rouge-1/2/L. Super-506

GLUE tasks are mainly accuracy metrics except for507

Record and MultiRC where we report EM/F1. Re-508

sults show that Echoformer outperforms a strong509

Transformer baseline on 17 challenging and dif-510

ficult NLP tasks. While, performance gains are511

relatively modest across certain collections of tasks 512

(i.e., summarization), we believe the consistent im- 513

provement here relays the strength of the proposed 514

inductive bias. 515

3.4 Analysis 516

In this section, we study the effects of echo- 517

attention. We are primarily interested in the inner 518

workings of the echo-attention mechanism. 519

3.4.1 Effect of State Transition Parameters α 520

In this section, we study the effect of α across echo 521

steps. We analyze a model trained on language 522

modeling task for 30K steps and plot values of 523

learned α. We plot values of α from two different 524

heads across all 6 layers. Figure 3 illustrates the 525

learned α values for a model with 4 echoes. 526

We observe that learned α differs across lay- 527

ers and heads, i.e., there is a sufficiently distinct 528

behaviour across different heads and layers. We 529

observe that there is both increasing and decreas- 530

ing echoes, i.e., the trend is not strictly going up or 531

going down for each α value. Moroever, we also 532

observe that most the model learns to diminish α 533

at the fourth echo. We find this intriguing, as this is 534

reminiscent of soft adaptive computation (Graves, 535

2016) - if the model does not require echoes ≥ N , 536

it has the complete flexibility to assign a low α to 537

echoes beyond that point. 538

1 2 3 4
echo steps

0.0

0.5

1.0

1.5

2.0

2.5

al
ph

a

layer 1 head=1
layer 2 head=1
layer 3 head=1
layer 4 head=1
layer 5 head=1
layer 6 head=1
layer 1 head=2
layer 2 head=2
layer 3 head=2
layer 4 head=2
layer 5 head=2
layer 6 head=2

Figure 3: Effect of state transition parameter α across
echoes.

3.4.2 Analysis of Attention Activations 539

Figure 4 and Figure 5 illustrates the attention ac- 540

tivations Ek,h,` for k ∈ {0, 1, 2, 3}, h = 0 and 541

` = {2, 4}. From the activations, we observe that 542

echo-attention has an effect that forces a sharper 543

distribution of attention scores as opposed the stan- 544

dard attention (k = 0). Hence, this reinforces the 545

idea that echo-attention learns to refine and itera- 546

tively updates the attention weights across echoes. 547
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Figure 4: Effect of Ek,0,2 matrix after each echo step
(head 0, layer 2) for k = {0, 1, 2, 3}.

Figure 5: Effect of Ek,0,4 matrix after each echo step
(head 0, layer 4) for k = {0, 1, 2, 3}.

3.4.3 Analysis of echo priority P548

Figure 6 depicts examples of the priority scores P549

created from the selection function. We extracted550

weights for 3 samples (denoted sample {1, 2, 3}551

and extract the P values across 4 echoes. Based552

on our observation, we find that (1) there is a di-553

verse value of P at every echo step, i.e., the echo-554

attention has a diverse selection of row (token) at555

each echo step. However, this does not prevent556

it from putting weight on similar rows, as shown557

in Figure 6. Next, we also find that the priority558

distribution across samples is quite different. This559

perhaps demonstrates that the conditioning on Q560

enables the model to learn context-dependent pri-561

ority scores.562

Figure 6: Effect of P matrix across echoes.

4 Related Work563

Transformer models (Vaswani et al., 2017) are the564

dominant choice for sequence processing and has565

made a tremendous impact on countless of machine566

learning applications and domains such as natural 567

language processing (Devlin et al., 2018; Brown 568

et al., 2020; Raffel et al., 2019) and computer vision 569

(Dosovitskiy et al., 2020). 570

Despite the success of Transformers in a wide 571

range of applications, there are some limitations 572

that drive researchers to improve this class of mod- 573

els, hoping to address these constraints. One of 574

the studied aspects is the computational power and 575

expressivity of Transformers (Pérez et al., 2019; 576

Hahn, 2020; Bhattamishra et al., 2020). Hahn 577

(2020) showed that self-attention is computation- 578

ally restricted and cannot model periodic finite- 579

state languages, nor hierarchical structure, unless 580

the number of layers or heads increases with input 581

length. Some prior works (Tran et al., 2018; Abnar 582

et al., 2020) empirically showed that feed-forward 583

self-attention based models are not as capable as re- 584

current models in modeling hierarchical structure, 585

which can be crucial in solving some tasks. 586

To address this issue, Dehghani et al. (2018) 587

proposed the Universal Transformer, introducing a 588

recurrence in depth by repeating the computation 589

of the whole block of a Transformer iterative (Lan 590

et al., 2019), which not only injects a new form of 591

inductive bias into the model, but also increase its 592

computational power. Although this might enables 593

Transformers to better model inherently sequen- 594

tial/hierarchical inputs, it comes with a computa- 595

tional cost that is not necessarily needed to gain 596

such a benefit. 597

5 Conclusion 598

We proposed a new echo-attention mechanism. The 599

key idea behind echo-attention is to repeatedly and 600

iteratively refine the attention activations, simu- 601

lating multiple layers of self-attention within a 602

single layer. This is done in an efficient manner 603

without incurring significant parameter or runtime 604

costs. In order to do so, we introducing priority 605

scoring and state update (transition) functions for 606

modifying the logits. We evaluate Echoformers 607

on 21 diverse and challenging NLP tasks ranging 608

from NLU and commonsense reasoning (i.e., Su- 609

perGLUE), generation, question answering, sum- 610

marization, machine translation and language mod- 611

eling. For most tasks, we conduct experiments with 612

both large scale pre-training and fine-tuning. On 613

all 21 tasks, Echoformer consistently outperforms 614

a competitive pre-trained T5 Transformer. 615
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