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Abstract

Distributional overlap is a critical determinant of learnability in domain adaptation.
The standard theory quantifies overlap in terms of x? divergence, as this factors
directly into variance and generalization bounds agnostic to the functional form of
the Y- X relationship. However, in many modern settings, we cannot afford this
agnosticism; we often wish to transfer across distributions with disjoint support,
where these standard divergence measures are infinite. In this note, we argue that
“tailored” divergences that are restricted to measuring overlap in a particular func-
tion class are more appropriate. We show how x? (and other) divergences can be
generalized to this restricted function class setting via a variational representation,
and use this to motivate balancing weight-based methods that have been proposed
before, but, we believe, should be more widely used.

1 Introduction

Learning to predict in a target domain using labeled data from a potentially-different source domain is
a fundamental task in reliable machine learning. Successful learning requires that the source domain
is sufficiently representative of the target. This concept is called overlap in the causal inference
literature and typically takes the form of conditions on the likelihood ratio or the x? divergence
between the source and target. The x2 divergence occurs naturally in statistical causal inference
results [Tsiatis, 2006], but also in generalization bounds under covariate shift [Cortes et al., 2010].

An important technical challenge is that overlap breaks down in high dimensional settings: the >
divergence between the source and target densities is likely to be unbounded [D’ Amour et al., 2021].
And yet, we regularly consider applied problems with disjoint support, and in many cases supervised
learning models can transfer without much difficulty. Consider the shift between ImageNet and
ImageNet-R [Hendrycks et al., 2021]. Transfer is still possible even though overlap is violated by
design, as every image in the target domain is a drawing. We therefore need a different notion of
overlap to help explain why the training set is nonetheless informative for the test set.

In this paper, we connect two strands of the literature to make progress on this question. The first strand
derives generalization bounds under covariate shift that remain meaningful even when the source and
target populations are non-overlapping. In particular, we build on Johansson et al. [2022], who use
integral probability metrics (IPMs), which are distances between probability distributions with respect
to a specific function class. The second strand focuses on leveraging variational representations
for training Generalized Adversarial Networks (GANSs). Specifically, Glaser et al. [2021], Birrell
et al. [2022a] develop IPM-analogs of the x? divergence by considering a variational representation
restricted to range over a given function class. Here we show that the function-class-specific x?
divergence is exactly the quantity that controls the generalization error in Johansson et al. [2022]. We
then argue that this quantity is the appropriate measure of overlap in high dimensional settings.
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2 Problem Setup and Notation

Let X C R? denote the covariate (or feature) space, and )V C R denote the outcome (or label) space.
Let P and @ be joint distributions on (X, )) representing the source and target domains respectively.
The likelihood ratio d@/dP is a key measure of the difference between P and Q).

We assume that both covariates and outcomes are observed in the source sample, but that in the
target sample, we only observe the covariates. Our goal is either to estimate the prediction function
wu(z) =Eqg[Y|X = z]; or the mean missing outcome Eg[Y]. In this work, we will assume that only
the covariate distribution shifts (in various literatures called covariate shift, ignorability, exogeneity,
conditional mean independence, or no unobserved confounders).

2.1 Overlap and Learning Under Covariate Shift

The representativeness of the source population for learning the target population is called overlap:'
Definition 1 (Overlap). Distributions P and Q) satisfy overlap if dQ /dP(x) < oo a.s.

This is typically called a continuity assumption in the domain adaptation literature. We can quantify
overlap by computing moments of the likelihood ratio. For example:

Definition 2 (Weak Overlap, x? Divergence). Distributions P and () satisfy weak overlap if
X*(QIIP) = Ep[(dQ/dP(X) — 1)%] < cc.

Such assumptions regularly appear in generalization bounds under covariate shift using importance
weighting.

If Q and P have disjoint support, then overlap is violated and the x? divergence is infinite. We
introduce versions of the x? divergence and the likelihood ratio that are tailored to a particular function
class and remain meaningful without shared support. In a similar vein, some recent theoretical work
[Kpotufe and Martinet, 2018, Pathak et al., 2022] considers likelihood ratios over local neighborhoods
of the underlying metric space. However, for high dimensional tasks like image classification, the
source and target populations are likely to be disjoint even with respect to ¢5 or ¢, balls around the
data points — and yet transfer is still possible. Our approach is to choose a notion of locality tailored
to the specific task at hand.

3 Tailored Overlap in High Dimensions

We want to define some notion of overlap that: (1) captures the underlying learnability of the target
using data from the source; and (2) remains useful in high dimensional settings with disjoint support.
Our starting point is the observation that transfer will still be possible under overlap violations if the
outcome function is insensitive to these violations. This might mean that the relationship between
covariates and outcomes only depends on a particular lower-dimensional representation (e.g. semantic
features rather than pixels in an image classification task), or has some functional form restriction
(e.g. linear or belonging to some RKHS). Integral Probability Metrics (IPMs) formalize the concept
of a difference in distributions with respect to a particular outcome function class:

Definition 3 (Integral Probability Metric). The IPM between P and Q) with respect to a function
class F is:

1PM3(P.Q) i= sup {[Erlf(X)] ~ Eqlf (X}

Johansson et al. [2022] gives generalization bounds under covariate shift in terms of an IPM but
between a reweighted source distribution and the target distribution:

Theorem (Johansson et al. 2022, Informal). Let h be any predictor and assume that the loss of h
belongs to some function class L. Let the conditional variance of Y be uniformly bounded by o>.
Let P and Q be the empirical distribution of the source and target samples. For any weights w, let

'The terminology of “weak overlap" comes from its use in the causal inference literature [Tsiatis, 2006].



Err(w) be the difference between the true risk of h on the target population and the empirical risk of
h on the source population reweighted by w. Then,

Err(w) < ¢ IPM(wP, Q) +co 0 Varp|w) + additional terms, (D
—_——— ——
bias variance

where the additional terms and the scalars c1 and co are unrelated to the covariate shifft.

We will show that the sum of the bias and variance terms are exactly equivalent to a variational
representation of the x2 divergence that is tailored to a function class F.

3.1 Defining the Likelihood Ratio and y? Divergence with Respect to a Function Class

The 2 divergence can be written in a variational representation as an optimization problem over
continuous functions [Nguyen et al., 2010, Agrawal and Horel, 2021, Birrell et al., 2022b]. This
representation also implicitly defines the likelihood ratio d@)/d P, which is the unique function that
achieves the optimum. We can define analogous versions of these measures that are tailored to a
particular function class F by restricting the optimization problem as in Birrell et al. [2022a].
Definition 4 (F-y? Divergence and F-Likelihood Ratio with Parameter o). The F-x? Divergence
with parameter o is:

X (QIIP) = min { - Vars[(X)] ~ (Bql7(X)] ~ Ep[(X)))}. @

fer

Denoting the minimizer f*, we define the F-Likelihood Ratio with Parameter o as:
1
(dQ/dP)F o = %(f*—EP[f*])‘Fl. 3)

In the special case where @) and P have common support and F is unrestricted, we recover the x2
divergence: for any cv, (dQ/dP)F o = dQ/dP, so the second term in (2) is zero, and x% , (Q||P) =

ax?(Q||P). However, when the infimum is restricted to F, x% ,,(Q||P) will not generally be linear
in o and the second term will not generally be zero. Instead, for each «, the infimum will be achieved
by different witness functions that are not equal up to constants. In other words, the constrained
optimization problem now must trade off the first and second terms in the objective with the strength
of the trade-off governed by «. Notice that, even if () and P have disjoint support, the minimum in
(2) will still be finite when JF is sufficiently constrained.

3.2 The Tailored x? Divergence Controls Generalization Under Covariate Shift

The sum of the bias and variance terms in (1) is exactly equal to the tailored x? divergence defined in
(2). In fact, with proper tuning of o, w = (dQ/dP) ., gives the tightest possible bound. To see this,
consider the following result, proved in Bruns-Smith and Feller [2022] and Birrell et al. [2022a]:

Proposition 1 (Bruns-Smith and Feller, 2022).

Ga@IP) = _inf  {IPMF(wP, Q)+ aVarp(u]}. @

w:Ep[w]=1
Furthermore, (dQ/dP) r o is the unique w which achieves the infimum.

Then we have the following connection to Johansson et al. [2022]:

Proposition 2. Consider the setting in (1). Let c1,co = 1, otherwise the same result holds for a
different scaling factor. Then:

Err(w) < X%,a2(Q||P) + additional terms,

where the additional terms are unrelated to covariate shift. Furthermore, X2 P) is the tightest
XL.U 8
possible bound over all choices of w in (1) given these assumptions.

Proof. The inequality follows from (1) with w = (dQ/dP) . ,2. Then from Proposition 1, these
weights give the smallest bound over all w. O



And so, with proper tuning of «, the tailored x? divergence in Definition 4 precisely controls the
difficulty of learning under covariate shift. Indeed, Proposition 1 shows that the tailored x? divergence
is equivalent to the balancing weights optimization problem used as an estimator in Johansson et al.
[2022]. The resulting optimization problem is strictly convex for &« > 0, and so can be solved
efficiently. We consider implications of this in Section 4.

3.3 Example: A Toy Problem

Here we introduce a simple toy problem that shows how restrictions on JF can flexibly incorporate
dimensionality reduction and functional form restrictions. Let X = {1, 2, 3}. The source and target
populations are shown in lefthand panel of Figure 1.
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Figure 1: Source and target distributions and tailored likelihood ratio for the toy example.

Here dQ)/dP(1) = oo and the x? divergence is unbounded. But suppose we were interested in the
function class F = {f : f(1) = f(2)}; for example, as a model for E[Y|X] as in Bruns-Smith
and Feller [2022] or for the loss of a predictor as in Johansson et al. [2022]. Then for all «, the
tailored density ratio is the same, and is illustrated in the righthand panel of Figure 1; the tailored
x? divergence is the variance of this ratio. Unlike the unconstrained divergence, the constrained
divergence is finite due to the lower-dimensional representation defined by the choice of F.

Even so, this function class does not admit a bias-variance tradeoff because the functions in F can be
arbitrarily large. If we knew instead that 7 = {f : f(1) = f(2), ||f|lcc < B}, we would then obtain
a continuum of tailored ratios for o € (0, 00), each defined by the convex optimization problem (2).
Thus, adding the norm restriction introduces a bias-variance tradeoff: choosing oz = o2 gives the best
generalization bound from Johansson et al. [2022]. Other values of « give a different tradeoff.

4 Discussion

While this brief note focuses on a technical connection, we argue this has broader implications for
practical learning under distribution shift when source and target have disjoint support.

First, we argue that the finite-sample x? divergence tailored to a function class of interest is a natural
diagnostic tool that remains meaningful even in high dimensions. Likewise, the tailored likelihood
ratio can be inspected for overlap violations, as in Lei et al. [2022], or used to extract the most
anomalous examples with respect to F, as in Rabanser et al. [2019].

Second, the optimization problem expressed in Equation 4 is known as balancing weights [Ben-
Michael et al., 2021, Johansson et al., 2022]. Above we give an additional interpretation of that
objective as the tailored x? divergence for a given F. Thus, balancing weights are an appropriate high-
dimensional generalization of directly estimating the likelihood ratio that controls the generalization
error under covariate shift even with disjoint support.

Finally, the push to specify an outcome function F when considering overlap is a departure from
current practice. We argue, however, that this is inevitable: while “untailored” X2 divergences allow
for arbitrary outcome functions, the corresponding bounds are entirely uninformative in many modern
ML tasks. Thus, in some sense, we always need to take a stand on F to make progress. This raises
several important points: (1) how do we choose F? (2) what choices of F are practically useful in
various domains? and (3) what if our choice of F is wrong? These are critical questions for future
study. In general, the choice of F induces a bias-variance trade off that will be different in different
settings. We can also conduct formal sensitivity analyses to the choice of F.
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