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Abstract
Foundation models for structured time series
data must contend with a fundamental challenge:
observations often conflate the true underlying
physical phenomena with systematic distortions
introduced by measurement instruments. This
entanglement limits model generalization, espe-
cially in heterogeneous or multi-instrument set-
tings. We present a causally-motivated founda-
tion model that explicitly disentangles physical
and instrumental factors using a dual-encoder
architecture trained with structured contrastive
learning. Leveraging naturally occurring obser-
vational triplets (i.e., where the same target is
measured under varying conditions, and distinct
targets are measured under shared conditions) our
model learns separate latent representations for
the underlying physical signal and instrument
effects. Evaluated on simulated astronomical
time series designed to resemble the complex-
ity of variable stars observed by missions like
NASA’s Transiting Exoplanet Survey Satellite
(TESS), our method significantly outperforms
traditional single-latent space foundation models
on downstream prediction tasks, particularly in
low-data regimes. These results demonstrate that
our model supports key capabilities of foundation
models, including few-shot generalization and ef-
ficient adaptation, and highlight the importance
of encoding causal structure into representation
learning for structured data.

1. Introduction
Observational datasets across scientific and industrial do-
mains often conflate two distinct sources of variation: (i) the
true underlying signal of interest, and (ii) distortions intro-
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duced by measurement tools, such as sensor drift, calibration
offsets and environmental or observing conditions. This
entanglement poses a fundamental challenge to building
foundation models that can generalize across instruments,
domains, or modalities.

In astronomy, the availability of petabyte-scale, open-access
time series data (e.g., The Multimodal Universe Collabora-
tion et al., 2024) has recently spurred a rapid development
of foundation models (e.g., Parker et al., 2024; Rizhko &
Bloom, 2024; Zhang et al., 2024; Euclid Collaboration et al.,
2025). However, astrophysical signals are often deeply en-
tangled with systematic instrumental effects. This entangle-
ment limits the interpretability and generalization of learned
representations. For example, in Euclid Collaboration et al.
(2025) the instrumental properties were found to be sepa-
rated in the latent space. Fortunately, many astronomical
surveys provide natural experimental structure: the same
star is frequently observed under different instrument con-
figurations, and the same configuration observes many stars.
This recurring observational pattern offers a unique oppor-
tunity to disentangle underlying physical dynamics from
instrumental signatures.

In this work, we leverage these structural properties to de-
velop a foundation model that explicitly separates physical
and instrumental factors. Our method is inspired by causal
representation learning (Schölkopf et al., 2016; 2021) and
contrastive learning (Chen et al., 2020). We validate our
approach on a simulated dataset designed to resemble the
complexity of variable star light curves (brightness over
time) observed by the Transiting Exoplanet Survey Satellite
(TESS; Ricker et al., 2015). By learning general-purpose,
causally disentangled representations that support few-shot
learning and transfer across conditions, our model exhibits
key capabilities of foundation models for structured time
series. We can train downstream tasks from either of our
physics or instrument latent representations. The remainder
of this paper is organized as follows: Section 2 introduces
the simulation framework. Section 3 describes the model
architecture and contrastive training strategy. Section 4
evaluates the learned latent spaces and their utility in down-
stream prediction tasks.
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Causal Foundation Models

2. Data
We construct a simulated dataset of time series observations
designed to emulate the causal structure of real-world astro-
nomical surveys, where each observed light curve reflects
both intrinsic stellar variability and systematic effects intro-
duced by measurement instruments. This controlled setting
enables direct evaluation of a model’s ability to disentangle
physical and instrumental factors in the latent space.

Each synthetic observation F
(n)
observed(t) is generated by mod-

ulating a true stellar signal F
(s)
true(t) with an instrument-

specific scale Sm(t) and offset Om(t), followed by the
addition of Gaussian noise:

F
(n)
observed(t) = clip[−1,1]

(
Sm(t) · F (s)

true(t) +Om(t)
)
+ ε,

(1)

where s and m index the star and instrument, respectively,
ε ∼ N (0, 0.032) adds observational noise, and clip[−1,1]

bounds the signal amplitude to the range [−1, 1].

The true stellar signal is modeled as a complex Fourier
series:

F
(s)
true(t) = Re

[
K−1∑
k=1

θs,k · eiϕn,k−1

kα
· ei2πkt/Ls

]
, (2)

where θs,k are stellar parameters, ϕn,k are observation-
specific phases, α controls the power-law decay of frequency
components, and Ls = T · eθs,0 · λ is the star’s period mod-
ulated by a reduction factor λ.

Instrumental distortions are also constructed as Fourier se-
ries:

Sm(t) = 1 + 0.05 · Re

M−1∑
j=0

βm,j · eiπjt/T
 , (3)

Om(t) = 0.05 · Re

M−1∑
j=0

γm,j · eiπjt/T
 , (4)

with βm,j , γm,j ∼ N (0, 1) serving as instrument-specific
parameters.

Each observation n is uniquely defined by a star–instrument
pair (s,m). We generate large datasets with multiple re-
peated measurements of the same star under different instru-
ments, and different stars observed with the same instrument.
This structure mirrors the observing strategy of surveys like
TESS, and is crucial to enabling the contrastive learning
framework used in our method.

The resulting dataset contains 40,000 light curves, 2000
unique stars, 17 instrument configurations (M = 17), and
13 stellar parameters (K = 13). Each observation consists

of T = 100 time steps. This scale provides sufficient sta-
tistical diversity while allowing for efficient training and
evaluation. Example simulations are illustrated in Figure 4.

3. Methods
We propose a causal foundation model for structured time
series that disentangles physical properties of the observed
system from systematic effects introduced by the measure-
ment process. Our method builds on the assumption com-
mon in astronomical and other sensor-driven domains that
observations are conditionally independent mixtures of un-
derlying generative sources (e.g., stellar parameters) and
instrument-specific transformations. Our method uses the
common structure of many observations, in which the same
underlying physical object (e.g. a star) is observed repeat-
edly under different sensor configurations, and the same
sensor observes multiple physical systems. This data struc-
ture enables a novel form of contrastive supervision.

Triplet-based contrastive learning. We leverage the
causal structure of astronomical observations through triplet-
based contrastive learning. Each training example consists
of three observations: (F (anchor), F (same star), F (same inst)),
where the anchor and same-star observations share stel-
lar identity but differ in instrumentation, while the anchor
and same-instrument observations share instrumentation but
differ in stellar identity. This triplet construction directly
encodes our modeling assumptions: stellar latent represen-
tations should be invariant across instrument changes, while
instrumental representations should be invariant across stars.

Architecture. The architecture of our model is shown in
Fig. 1. Given an observed time series F (n)

observed(t) generated
from star s observed by instrument m, the model learns two
latent representations: a stellar encoding z

(n)
star and an instru-

mental encoding z
(n)
instr. Both are produced from the same

input via two separate encoders with identical architecture
but untied parameters:

z
(n)
star = Estar(F

(n), t), z
(n)
instr = Einstr(F

(n), t). (5)

Each encoder follows a Conformer-based architecture (Gu-
lati et al., 2020), incorporating temporal self-attention,
LSTM recurrence, and depthwise convolution to capture pat-
terns across a range of timescales. The outputs are globally
pooled and projected into a fixed-dimensional latent space.
To reconstruct the original input, the decoder first projects
each latent representation into a shared hidden space via
learned nonlinear transformations, and then combines them
multiplicatively:

F̂
(n)
observed = D (gstar ⊙ ginstr) , (6)

where gstar and ginstr are projections of the respective la-
tent parameters zstar and zinstr mapped a small MLP pro-
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Causal Foundation Models

jection head, and ⊙ denotes element-wise multiplication
(Hadamard product). The decoder then maps the fused
embedding back to the time series domain.

Figure 1. Causal autoencoder architecture for light curve disentan-
glement. The model employs dual encoders (stellar and instrumen-
tal) that process the same input independently to learn separate
latent representations. The decoder combines these representations
through an element-wise multiplicative interaction. Projection
heads (dashed lines) enable contrastive learning during training
but are not used for inference.

Contrastive objectives. To encourage disentanglement,
we apply contrastive losses in both latent spaces. For each
anchor embedding a, we define sets of positives P(a) and
negatives N (a) based on metadata: for the stellar latent
space, positives are light curves of the same star observed
under different instruments; for the instrument latent space,
positives are from the same instrument observing different
stars.

We minimize a generalized InfoNCE loss LInfoNCE(a):

− log

∑
p∈P(a) exp(a

⊤p/τ)∑
p∈P(a) exp(a

⊤p/τ) +
∑

n∈N (a) exp(a
⊤n/τ)

,

(7)
where τ is a temperature parameter and all vectors are ℓ2
normalized. We compute this loss across all anchor samples

in the batch for both latent spaces:

Lstar =
1

B

B∑
n=1

LInfoNCE(p
(n)
star ), (8)

Linstr =
1

B

B∑
n=1

LInfoNCE(p
(n)
instr), (9)

where B is the number of anchor samples in the training
batch, and pstar and pinstr are projections of the respective
latent parameters zstar and zinstr mapped by a small MLP
projection head as described in Chen et al. (2020).

This formulation generalizes the InfoNCE loss used in Sim-
CLR (Chen et al., 2020) to allow multiple positives per
anchor selected via structured metadata.

Full objective. We train the model with a weighted sum
of reconstruction and contrastive objectives:

Ltotal = λreconLrecon + λstarLstar + λinstrLinstr, (10)

where the reconstruction loss is defined as a masked mean
squared error:

Lrecon =
1

T

T∑
t=1

(
F̂

(n)
observed[t]− F

(n)
observed[t]

)2

. (11)

At inference time, the projection heads used for contrastive
training are discarded. Downstream tasks operate on the
disentangled latent representations, which we demonstrate
are interpretable and predictive of physical parameters, par-
ticularly in low-data regimes.

4. Results & Discussion
We evaluate our causal foundation model by exploring the
quality of its learned latent spaces and its performance on
downstream predictive tasks. We compare against a founda-
tion model baseline with identical architecture but a single
shared latent space, trained with contrastive learning over
same-star pairs only (no instrumental disentanglement).

4.1. Quality of the embedding

To assess whether the model successfully disentangles stel-
lar and instrumental factors, we analyze the learned latent
spaces zstar and zinstr using UMAP (McInnes et al., 2018)
and their correlation with ground-truth parameters. Each
embedding is projected to 2D, and color-coded by either
instrument ID (m) or stellar properties (θs,0).

As illustrated in Fig. 2, the stellar latent space exhibits strong
alignment with intrinsic physical property θs,0 and shows
minimal clustering by instrument. In contrast, the instru-
ment latent space is well-structured by instrument configura-
tion m, as expected. However, we also observe a moderate

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Causal Foundation Models

correlation between θs,0 and the instrument latent space,
indicating some leakage of physical information into zinstr.

It may be that the recorded brightness can exhibit depen-
dencies that couple stellar and instrumental properties (e.g.,
brighter stars may be more affected by certain instrumental
distortions). In future work, we will explore minimizing the
mutual information between the latent spaces to improve
the seperations.

Figure 2. UMAP projections of stellar (zstar, left) and instrumental
(zinstr, right) latent spaces. Top: colored by instrument configu-
ration. Bottom: colored by primary stellar parameter θs,0. The
stellar space captures physical properties while minimizing in-
strument clustering. The instrument space reveals strong sector
structure but shows partial leakage of stellar information.

4.2. Downstream tasks

To assess the utility of the learned representations, we eval-
uate performance on a supervised downstream task: predict-
ing the primary stellar parameter θs,0 from limited labeled
data. We train a lightweight MLP regressor using four dif-
ferent input representations: (i) raw light curves (baseline),
(ii) latent embeddings from a baseline foundation model
with a single shared latent space trained using a contrastive
loss on same-star pairs, and (iii) our proposed disentangled
representations from the stellar latent space (zstar) and (iv)
the instrument latent space (zinstr).

Fig. 3 shows the R2 scores between the predicted and
ground-truth stellar parameters for each input across dif-
ferent training set sizes. Models trained on zstar consistently
outperform those using raw data or baseline latent spaces,
especially in the few-shot regime. The model trained on our
stellar or physics latent space performs as well or better than
the normal foundation model with ten times less training
data. These results demonstrate that our model captures

meaningful stellar properties in its latent space, enabling
effective few-shot learning and strong generalization from
unlabeled, heterogeneous observational data to predictive
downstream tasks.

Figure 3. Comparison of prediction performance across limited
training sample sizes. The plots show the R2 for predicting the
stellar parameter using four approaches: MLP on raw light curves
(baseline), MLP on a baseline foundation model (single latent
space with contrastive loss on same-star pairs), MLP on the stellar
latent space, and MLP on the instrument latent space. Data points
indicate mean and standard deviation across five evaluation runs.
The latent space-based methods demonstrate superior performance,
especially with limited training data.

5. Conclusions
Our results suggest that incorporating causal structure
into foundation models–specifically through a dual-latent
design that separately encodes physical and instrumen-
tal components–can significantly outperform conventional
foundation models with a single latent space, particularly in
limited-data regimes. The model’s use of structured triplet-
based contrastive learning enables effective disentanglement
of generative factors, leveraging observational metadata
rather than requiring explicit supervision. Although our re-
sults are based on a conformer encoder, we observed similar
results with simpler MLP-based architectures, suggesting
that the disentanglement is due to the contrastive learning
objective rather than architectural complexity.

Beyond astronomy, this methodology is broadly applicable
to domains where observational confounding is a concern
and where structured triplet relationships can be inferred or
constructed, such as biomedicine, remote sensing, or climate
forecasting. Our preliminary experiments on NASA TESS
light curves demonstrate the method’s potential for real-
world application. Future work will explore improved dis-
entanglement strategies, deployment on large mission-scale
datasets, and extensions to multimodal and cross-domain
foundation models.
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Software and Data
We used Pytorch and JAX to develop the model and simu-
lations and will make the full code publicly available after
acceptance.

Impact Statement
This paper presents work whose goal is to advance the field
of machine learning, signal processing and astrophysics.
There are many potential societal consequences of our work,
none which we feel must be specifically highlighted here.
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A. Simulated data
We show an example triplet of our simulated time series in Fig. 4. The top row is the anchor, middle row the same star but
observed by different instrument and the bottom row a random star observed by the same instrument as the anchor.

Figure 4. Example of simulated triplet data, as explained in Section. 2.
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B. Encoder architecture
The detailed encoder architecture is shown in Fig. 5. The time series encoding architecture was originally developed as a
time series classifier for the TESS mission (Anonymized reference), inspired by the the conformer architecture (Gulati et al.,
2020) for astronomical data from Pan et al. (2024).

Implementation Details: Each encoder (as illustrated in Fig. 5) consists of 4 conformer blocks with 64-dimensional
embeddings, 4 attention heads, and 128-dimensional feed-forward networks. The stellar and instrumental latent spaces each
have dimensionality 20. We train with Adam optimizer (learning rate=0.001), early-stopping based on the validation loss,
and loss weights λrecon = 1.0, λstar = 1.0, λinstr = 1.0.

Figure 5. Encoder architecture.
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