
Published in Transactions on Machine Learning Research (03/2024)

Pseudo-Differential Neural Operator: Generalized Fourier
Neural Operator for Learning Solution Operators of Partial
Differential Equations

Jin Young Shin∗ sjy6006@postech.ac.kr
Department of Mathematics
Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.

Jae Yong Lee∗ jaeyong@cau.ac.kr
Artificial Intelligence Graduate School
Chung-Ang University, Seoul 06974, Republic of Korea.

Hyung Ju Hwang† hjhwang@postech.ac.kr
Department of Mathematics
Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.

Reviewed on OpenReview: https: // openreview. net/ forum? id= 805jKZ0Gqf

Abstract

Learning the mapping between two function spaces has garnered considerable research
attention. However, learning the solution operator of partial differential equations (PDEs)
remains a challenge in scientific computing. Fourier neural operator (FNO) was recently
proposed to learn solution operators, and it achieved an excellent performance. In this study,
we propose a novel pseudo-differential integral operator (PDIO) to analyze and generalize the
Fourier integral operator in FNO. PDIO is inspired by a pseudo-differential operator, which
is a generalized differential operator characterized by a certain symbol. We parameterize
this symbol using a neural network and demonstrate that the neural network-based symbol
is contained in a smooth symbol class. Subsequently, we verify that the PDIO is a bounded
linear operator, and thus is continuous in the Sobolev space. We combine the PDIO with
the neural operator to develop a pseudo-differential neural operator (PDNO) and learn the
nonlinear solution operator of PDEs. We experimentally validate the effectiveness of the
proposed model by utilizing Darcy flow and the Navier-Stokes equation. The obtained results
indicate that the proposed PDNO outperforms the existing neural operator approaches in
most experiments.

1 Introduction

In science and engineering, several physical systems and natural phenomena are described by partial differential
equations (PDEs) (Courant & Hilbert, 1953). Approximating the solution of the underlying PDEs is crucial
to understanding and predicting a system. Conventional numerical methods, such as finite difference methods
(FDMs) and finite element methods, involve a trade-off between accuracy and the time required. In several
complex systems, it may be excessively time-consuming to employ numerical methods to obtain accurate
solutions. Furthermore, in some cases, the underlying PDE may be unknown.

With remarkable advancements in deep learning, several studies have focused on utilizing deep learning to
solve PDEs (Nabian & Meidani, 2018; E & Yu, 2018; Sirignano & Spiliopoulos, 2018; Raissi et al., 2019;

∗Equal contribution.
†Corresponding author.

1

https://openreview.net/forum?id=805jKZ0Gqf

Published in Transactions on Machine Learning Research (03/2024)

Hwang et al., 2020; Lee et al., 2021). An example is an operator learning (Guo et al., 2016; Bhatnagar
et al., 2019; Khoo et al., 2021), which utilizes neural networks to parameterize mapping from the parameters
(external force, initial, and boundary condition) of the given PDE to the solutions of that PDE. In addition,
several studies have employed different convolutional neural networks as surrogate models to solve various
problems, such as the uncertainty quantification tasks for PDEs (Zhu & Zabaras, 2018; Zhu et al., 2019)
and PDE-constrained control problems (Holl et al., 2020; Hwang et al., 2021). Based on the universal
approximation theorem of the operator (Chen & Chen, 1995), DeepONet was introduced by Lu et al. (2019).
In follow-up studies, extension models of the DeepONet were proposed (Wang et al., 2021; Kissas et al., 2022;
Lee et al., 2023).

Another approach to operator learning is via neural operator, proposed by Li et al. (2020c;b;a). Li et al.
(2020c) proposed an iterative architecture inspired by Green’s function of elliptic PDEs. The iterative
architecture comprises a linear transformation, an integral operator, and a nonlinear activation function,
allowing the architecture to approximate complex nonlinear mapping. As an extension of this research, Li
et al. (2020b) adopted a multi-pole method to develop a multi-scale graph structure. Gupta et al. (2021)
approximated the kernel of the integral operator using the multiwavelet transform. Recently, various operator
learning models based on neural operators have emerged, such as those presented by Tripura & Chakraborty
(2023) and Rahman et al. (2022). The review papers (Lu et al., 2022; Goswami et al., 2023), along with their
references, encompass a diverse range of operator learning models.

As one of such models, Li et al. (2020a) proposed a Fourier integral operator using fast Fourier transform
(FFT) to minimize the cost of approximating the integral operator. They directly parameterized the kernel in
the Fourier integral operator by its Fourier space coefficients, which only depend on frequency mode. Here, we
analyze the Fourier integral operator from the perspective of pseudo-differential operators (PDOs). PDOs are
generalized linear partial differential operators and have been extensively studied mathematically (Boutet de
Monvel, 1971; Hörmander, 2007; Ruzhansky & Turunen, 2009; Taylor, 2017). A pseudo-differential integral
operator (PDIO) is proposed to generalize the Fourier integral operator in the FNO based on the PDO. A
neural network called a symbol network is utilized to approximate the PDO symbols 1 The proposed symbol
network is contained in a toroidal class of symbols; hence, a PDIO is a continuous operator in the Sobolev
space. Furthermore, the PDIO can be applied to the solution operator of time-dependent PDEs using a
time-dependent symbol network.

The main contributions of this study are as follows.

• The Fourier integral operator proposed in Li et al. (2020a) is interpreted from a PDO perspective.
The symbol of the Fourier integral operator only depends on frequency domain ξ, rather than position
x. Furthermore, the symbol may not be contained in a toroidal symbol class; hence, the Fourier
integral operator cannot be guaranteed to be a continuous operator.

• A novel PDIO is proposed based on the PDO to generalize the Fourier integral operator. PDIO
approximates the PDO using symbol networks. We demonstrate that the proposed symbol network is
contained in a toroidal symbol class of PDOs, thus implying that the PDIO with the symbol network
is a continuous operator in the Sobolev space.

• Time-dependent PDIO, a PDIO with time-dependent symbol networks, can be utilized to approximate
the solution operator of time-dependent PDEs. It approximates the solution operator, including
the solution for time t, which is not in the training data. Furthermore, it is a continuous-in-time
operator.

• A pseudo-differential neural operator (PDNO), which comprises a linear combination of our PDIOs
and the neural operator proposed in Li et al. (2020c), is developed. PDNO outperforms the existing
operator learning models, such as the FNO by Li et al. (2020a) and the multiwavelet-based operator
by Gupta et al. (2021), in hard problems (Darcy flow and Navier-Stokes equation). In particular, the
PDNO reduces overfitting better than other models (Figure 1).

1Guibas et al. (2021) proposed adaptive FNO (AFNO), which adopts a single layer neural network in the Fourier domain.
Our application of a neural network differs from AFNO. Although we utilized neural networks to parameterize the PDO symbol,
AFNO adopts a neural network that directly takes frequency variable as input (Refer to Figure 2).

2

Published in Transactions on Machine Learning Research (03/2024)

Figure 1: Comparison of the train and the test relative L2 error by time horizon t = 10, ..., 19 on the
Navier-Stokes equation with viscosity ν = 10−5. FNO and MWT are highly overfitted, while PDNO is not.
See Section 5.2 for detailed experimental setups regarding the Navier-Stokes equation.

2 Fourier integral operator and PDO

Here, we attempt to approximate an operator G : A → U between two function spaces A and U . The operator
G can be considered as the solution operators of various parametric PDEs (kindly refer to Section 5 for
examples). To determine a map from the function f(x) ∈ A to the solution u(x) ∈ U , we introduce a neural
operator architecture to effectively learn infinite-dimensional operators.

2.1 Neural operator

Inspired by Green’s functions of elliptic PDEs, Li et al. (2020c) proposed an iterative neural operator
to approximate the solution operators of parametric PDEs. First, the input f(x) was lifted to a higher
representation f0(x) = P (f(x)). Next, the iterations f0 7→ f1.... 7→ fT were applied using the update
ft 7→ ft+1 formulated by Eq.1::

ft+1(x) = σ (Wft(x) + Kϕ[ft](x)) , (1)

for t = 0, ..., T − 1, where W is a local linear transformation and σ is a nonlinear activation function. Kϕ

denotes an integral operator K parameterized by ϕ and expressed as

Kϕ[ft](x) =
∫

D

κϕ(x, y)ft(y)dy, (2)

where D represents a bounded domain of the input function. The output u(x) = Q(fT (x)) is the projection
of fT (x) by the local transformation Q. Several studies have considered the best approach to choosing the
kernel function κϕ and computing the corresponding integral operator. The integral operator Kϕ can be
parameterized using message passing on graph networks (Li et al., 2020c). Here, we focused on the Fourier
integral operator proposed by Li et al. (2020a).

3

Published in Transactions on Machine Learning Research (03/2024)

2.2 Fourier integral operator

Li et al. (2020a) proposed a neural operator structure with the integral operator KR called Fourier integral
operator. By letting κ(x, y) = κ(x− y) and utilizing the convolution theorem, they define the Fourier integral
operator as

KR[ft](x) = F−1 [F [κ] · F [ft](ξ)] (x) = F−1 [R(ξ) · F [ft](ξ)] (x), (3)

where F denotes the Fourier transform and F−1 is its inverse. Note that the parameter R(ξ) is directly
parameterized on the discrete space ξ ∈ Zn. The Fourier integral operator can be extended as the generalization
concept of a differential operator, PDO.

2.3 PDO

PDOs have been studied since the 1960’s. We consider a PDE La[u(x)] = f(x) with a linear differential
operator La =

∑
α cαD

α. To determine a map T from f to u, we apply the Fourier transform to obtain the
following:

a(ξ)û def=
(∑

α

cα(iξ)α

)
û = f̂ , (4)

where ξ ∈ Rn represents variables in the Fourier space and f̂(ξ) denotes a Fourier transform of function f(x).
If a(ξ) never attains zero, we obtain the solution operator of the PDE as

u(x) = T (f)(x) def=
∫
Rn

1
a(ξ) f̂(ξ)e2πiξxdξ. (5)

A PDO can be defined as a generalization of differential operators by replacing 1
a(ξ) with a(x, ξ), called a

symbol (Hörmander, 2003; 2007). First, we define a symbol a(x, ξ) and a class of symbols.
Definition 1. Let 0 < ρ ≤ 1 and 0 ≤ δ < 1. A function a(x, ξ) is called a Euclidean symbol on Tn × Rn

in a class Sm
ρ,δ(Tn × Rn), where Tn is n-dimensional torus if a(x, ξ) is smooth on Tn × Rn and satisfies the

following inequality:
|∂β

x∂
α
ξ a(x, ξ)| ≤ cαβ⟨ξ⟩m−ρ|α|+δ|β|, (6)

for all α, β ∈ Nn
0 , and for all x ∈ Tn and ξ ∈ Rn, where a constant cαβ may depend on α and β but not on x

and ξ. Here, ⟨ξ⟩ def= (1 + ∥ξ∥2)1/2 with the Euclidean norm ∥ξ∥.

Note that m, ρ, and δ are related to the regularity of the symbol. The PDO corresponding to the symbol
class Sm

ρ,δ(Tn × Rn) can be defined as follows.
Definition 2. The Euclidean PDO Ta : A → U with the Euclidean symbol a(x, ξ) ∈ Sm

ρ,δ(Tn × Rn) is defined
as

Ta(f)(x) =
∫
Rn

a(x, ξ)f̂(ξ)e2πiξxdξ, (7)

where f̂(ξ) denotes the Fourier transform of function f(x).

The Euclidean PDO can be re-written using the Fourier transform as

Ta(f)(x) = F−1 [a(x, ξ)F [f](ξ)] . (8)

2.4 Difference between Fourier integral operator and PDO

Comparing the Fourier integral operator KR in (3) and Euclidean PDO Ta in (8), there are two main
differences. There is a question about whether it is appropriate to parameterize R(ξ) directly on the discrete
space ξ ∈ Zn without treating ξ as a continuous variable. Furthermore, parameters R(ξ) only consider the
dependency on ξ, while the symbol a(x, ξ) has a dependency on x. To generalize the Fourier integral operator
based on PDO, the key idea of our method is to parameterize the Euclidean symbol using neural networks to

4

Published in Transactions on Machine Learning Research (03/2024)

Figure 2: An architecture of a PDIO with symbol networks ann
θ1

(x) and ann
θ2

(ξ). Considering that FFT and
inverse FFT are used, both the input and output are in the form of uniform mesh. Each value ann

θ1
(x) and

ann
θ2

(ξ) is obtained from separate neural networks.

render the symbol smooth. This makes the model smooth, thereby mitigating overfitting by smoothening the
symbols (Figure 1 and Proposition 1).

The following section introduces the PDO theory and proposed model based on the PDO. We also derive the
proposed model’s smoothness from the neural network’s smoothness.

3 Proposed integral operator : PDIO

In this section, we cover three parts. First, we discuss the relationship between the symbols and smoothness
of PDOs that have been studied in the past. Next, we turn to the relationship between FNOs and PDOs. It
is important to note that, although FNOs can be considered discrete versions of PDOs, they do not possess
sufficiently smooth symbols. In the final part, we propose a PDIO model that has a sufficiently smooth
symbol. We present concrete evidence that a neural network using a GELU-like activation function can
generate such a smooth symbol (Appendix E).

3.1 Symbol network and PDIO

The primary idea in our study is to parameterize the Euclidean symbol a(x, ξ) using neural networks ann
θ (x, ξ).

This network is called a symbol network. The symbol network ann
θ (x, ξ) is assumed to be factorized into

ann
θ (x, ξ) = ann

θ1
(x)ann

θ2
(ξ) (refer to B.1). Both smooth functions ann

θ1
(x) and ann

θ2
(ξ) are parameterized by

fully connected neural networks. We propose a PDIO to approximate the Euclidean PDO using the symbol
network and Fourier transform as follows:

Ka[f](x) := F−1 [ann
θ (x, ξ)F [f](ξ)] = ann

θ1
(x)F−1 [ann

θ2
(ξ)F [f](ξ)

]
, (9)

where F denotes the Fourier transform and F−1 is its inverse. The diagram of the PDIO is presented in
Figure 2.

Practically, F and F−1 in (9) are approximated by the FFT, which is an effective algorithm that computes
the discrete Fourier transform (DFT). Although the symbol network ann

θ2
(ξ) is defined on Rn, the inverse DFT

is evaluated only on the discrete space Zn. Therefore, the symbol network ann
θ (x, ξ) should be considered on

the restricted domain Tn × Zn (kindly refer to B.2 for details). The following section details the definitions
and properties of the symbol and PDO on Tn ×Zn to elucidate the PDIO on the domain Tn ×Zn. Moreover,
we introduce a theorem that bridges the gap between the Euclidean symbol and the restricted Euclidean
symbol.

3.2 PDOs on Tn × Zn

The discretization of the Euclidean symbol and Euclidean PDO are defined in this section.

5

Published in Transactions on Machine Learning Research (03/2024)

Definition 3. A toroidal symbol class is a set Sm
ρ,δ(Tn × Zn) comprising toroidal symbols a(x, ξ), which are

smooth in x for all ξ ∈ Zn, and satisfy the following inequality:

| △α
ξ ∂

β
xa(x, ξ)| ≤ cαβ⟨ξ⟩m−ρ|α|+δ|β|, (10)

for all α, β ∈ Nn
0 , and for all (x, ξ) ∈ Tn × Zn. Here, △α

ξ represents the difference operators.

The PDO corresponding to the symbol class Sm
ρ,δ(Tn × Zn) can be defined as follows:

Definition 4. The toroidal PDO Ta : A → U with the toroidal symbol a(x, ξ) ∈ Sm
ρ,δ(Tn × Zn) is defined by

the following equation:
Ta(f)(x) =

∑
ξ∈Zn

a(x, ξ)f̂(ξ)e2πiξx. (11)

It is well-known that the toroidal PDO Ta(f) with f ∈ C∞(Tn) is well defined and Ta(f) ∈ C∞(Tn)
(Ruzhansky & Turunen, 2009).

Here, it is necessary to prove that the restricted symbol network ann
θ |Tn×Zn belongs to a certain toroidal

symbol class. To connect the symbol network ann
θ and restricted symbol network ann

θ |Tn×Zn , we introduce an
appropriate theorem that connects the symbols between the Euclidean and toroidal symbols.
Theorem 1. (Ruzhansky & Turunen, 2009) (Connection between two symbols) Let 0 < ρ ≤ 1 and
0 ≤ δ ≤ 1. A symbol ã ∈ Sm

ρ,δ(Tn × Zn) is a toroidal symbol if and only if there exists a Euclidean symbol
a ∈ Sm

ρ,δ(Tn × Rn) such that ã = a|Tn×Zn .

Therefore, it is sufficient to consider whether the symbol network ann
θ (x, ξ) belongs to a certain Euclidean

symbol class.

3.3 Propositions on the symbol network and PDIO

We demonstrate that the symbol network ann
θ (x, ξ) with the Gaussian error linear unit (GELU) activation

function Hendrycks & Gimpel (2016) is contained in a certain Euclidean symbol class using the following
proposition:
Proposition 1. Suppose the symbol networks ann

θ1
(x) and ann

θ2
(ξ) are fully connected neural networks with

nonlinear activation GELU. Then, the symbol network ann
θ (x, ξ) = ann

θ1
(x)ann

θ2
(ξ) is in S1

1,0(Tn×Rn). Therefore,
the restricted symbol network ãnn

θ

def= ann
θ |Tn×Zn is in a toroidal symbol class S1

1,0(Tn × Zn).
Remark 1. Here, we focus on the most important case where ρ = 1 and δ = 0, because Sm

ρ,δ ⊃ Sm
1,0 for

0 < ρ ≤ 1 and 0 ≤ δ < 1 (Hörmander, 2007). Although the proposition only considers the symbol network
with GELU, it can be verified for various activation functions (refer to E).

Proof. The fully connected neural network for the symbol network ann
θ1

(x) is denoted as follows:

Z
[l]
1 = W

[l]
1 A

[l−1]
1 + b

[l]
1 (l = 1, 2, ..., L1), A

[l]
1 = σ(Z [l]

1) (l = 1, 2, ..., L1 − 1),

where W [l]
1 is a weight matrix, b[l]

1 denotes a bias vector in the l-th layer of the network, σ represents an
element-wise activation function, A[0]

1 = x is an input feature vector, and Z
[L1]
1 = ann

θ1
(x) denotes an output

of the network with θ1 = {W [l]
1 , b

[l]
1 }L1

l=1. Similarly, we define W [l]
2 , b[l]

2 , Z [l]
2 and A

[l]
2 (l = 1, 2, ..., L2) for the

neural network ann
θ2

(ξ).

The neural network ann
θ1

(x) and its derivative are continuous on a compact set Tn. Therefore, |∂β
xa

nn
θ1

(x)| ≤ cβ

for some constant cβ > 0 and for all β ∈ Nn
0 . For the case |α| = 0,

|∂α
ξ a

nn
θ2

(ξ)| = |ann
θ2

(ξ)| = |W [L2]
2 σ(Z [L2−1]

2) + b
[L2]
2 | ≤ cα⟨ξ⟩, (12)

for some constant cα > 0 because the absolute value of GELU σ(z) is bounded by a linear function |z|.
Notably,

∂ei

ξ a
nn
θ2

(ξ) = W
[L2]
2 diag

(
σ′
(
Z

[L2−1]
2

))
× · · · ×W

[2]
2 diag

(
σ′
(
Z

[1]
2

))
W

[1]
2 ei.

6

Published in Transactions on Machine Learning Research (03/2024)

This result implies that the multi-derivatives of symbol ∂α
ξ a

nn
θ2

(ξ) with |α| ≥ 1 comprises the product of the
weight matrix and the first or higher derivatives of the activation functions. Furthermore, the derivative of
GELU is bounded, and the second or higher derivatives of the function asymptotically become zero rapidly,
i.e., σ(k) ∈ S(R) when k ≥ 2 (refer to Definition 5). Accordingly, we have the following inequality:

|∂α
ξ a

nn
θ2

(ξ)| ≤ cα⟨ξ⟩1−|α|, (13)

for all α ∈ Nn
0 with |α| ≥ 1 for some positive constants cα. We bound the derivative of the symbol network

ann
θ (x, ξ) as follows:

|∂β
x∂

α
ξ a(x, ξ)| = |∂β

xa
nn
θ1

(x)||∂α
ξ a

nn
θ2

(ξ)| ≤ cαcβ︸︷︷︸
=cαβ

⟨ξ⟩1−|α|. (14)

Therefore, the symbol network ann
θ (x, ξ) is in S1

1,0(Tn ×Rn) as defined in Definition 1. Finally, using Theorem
1, we deduce that ãnn = ann|Tn×Zn is in S1

1,0(Tn × Zn).

We introduce the theorem on the boundedness of a toroidal PDO as follows:
Theorem 2. (Ruzhansky & Turunen, 2009) (Boundedness of a toroidal PDO in the Sobolev space)
Let m ∈ R and k ∈ N, which is the smallest integer greater than n

2 , and let a : Tn × Zn → C such that

|∂β
x △α

ξ a(x, ξ)| ≤ C⟨ξ⟩m−|α| for all (x, ξ) ∈ Tn × Zn, (15)

and all multi-indices α such that |α| ≤ k and all multi-indices β. Then, the corresponding toroidal PDO Ta

defined in Definition 4 extends to a bounded linear operator from the Sobolev space W p,s(Tn) to the Sobolev
space W p,s−m(Tn) for all 1 < p < ∞ and any s ∈ R.

The restricted symbol network ãnn
θ is in a toroidal symbol class S1

1,0(Tn × Zn) from Proposition 1. Hence, it
satisfies the condition in Theorem 2. Therefore, the PDIO Ka (9) with the restricted symbol network ãnn

θ is
a bounded linear operator from W p,s(Tn) to W p,s−1(Tn) for all 1 < p < ∞ and s ∈ R. This implies that
the PDIO is a continuous operator between the Sobolev spaces. Therefore, we expect that the PDIO can
be applied to a neural operator (1) to obtain a smooth and general solution operator. A description of its
application to the neural operator is presented in Section 4.1.

4 Neural operator with PDIOs

4.1 PDNO

Using the proposed integral operator (9) with the neural operator (1), the combined model is called a PDNO.
Consider the general case in which the input function ft(x) and output function ft+1(x) are vector functions.
Let ft(x) = [ft,i(x) : Rn → R]cin

i=1 ∈ Rcin with the number of input channels cin and x ∈ Rn. Then, the PDIO
Ka is expressed as:

Ka(ft)(x) =
[

cin∑
i=1

ann
θ1,ij(x)F−1 [ann

θ2,ij(ξ)F [ft,i](ξ)
]

(x)
]cout

j=1

, (16)

where θ1, θ2 denote the parameters of each symbol network and cout represents the number of output channels
with ft+1(x) ∈ Rcout . Certainly, the symbol network has cin × cout outputs for each channel as illustrated in
Figure 6. In the experiments, we use three separate symbol networks ann

θ1
(x), Re

(
ann

θ2
(ξ)
)
, and Im

(
ann

θ2
(ξ)
)
.

Each symbol network takes x ∈ Rn and ξ ∈ Rn as input, and generate cin × cout values.

4.2 Time-dependent PDIO

Consider the time-dependent PDE

∂u

∂t
= Lu, u(x, 0) = u0(x), (x, t) ∈ Tn × [0,∞). (17)

7

Published in Transactions on Machine Learning Research (03/2024)

This is well-posed and has a unique solution, provided that the operator L is semi-bounded (Hesthaven et al.,
2007). The solution is given by u(x, t) = etLu0(x). Regarding the 1D heat equation, L is c∂xx with diffusivity
constant c. Then, the solution of the heat equation is given by

u(x, t) =
∑
ξ∈Z

e−4π2ξ2ctû0(ξ)e2πixξ. (18)

This indicates that the mapping from u0(x) to u(x, t) is the PDO with the symbol e−4π2ξ2ct. Consequently,
we propose the time-dependent PDIOs given as follows:

Ka[f](x, t) := ann
θ1

(x, t)F−1 [ann
θ2

(ξ, t)F [f](ξ)
]
, (19)

where ann
θ1

(x, t) and ann
θ2

(ξ, t) represent time-dependent symbol networks. For the heat equation, we verify
that the time-dependent PDIOs approximate the time-dependent symbol accurately even in a finer time grid
than a time grid employed for training. Furthermore, the time-dependent PDIO is applied to obtain the
continuous-in-time solution operator of the PDEs (refer to the experiment on the Navier-Stokes equation).

5 Experiments

5.1 Toy example : 1D heat equation

In this experiment, we verify whether the proposed time-dependent PDIO learns the symbol of the analytic
PDO. We consider the 1D heat equation provided in (17). The solution operator of the 1D heat equation is a
PDO, which is provided in (18). We attempt to learn the mapping from the initial state and time (u0(x), t) to
the solution u(x, t). The initial state u0(x) is generated from the Gaussian random field N (0, 74(−∆+72)−2.5)
with the periodic boundary conditions. ∆ denotes the Laplacian. The diffusivity constant c and spatial
resolution are set to 0.05 and 210 = 1024, respectively. We utilize 1000 pairs of training data, with inputs at
t = 0 and outputs at 10 time grids of t = 0.05 + 0.1n (n = 0, 1, ..., 9) for each of the 100 initial states. We
conduct testing with 20 initial states, using inputs at t = 0 and outputs at finer time grids of t = 0.05 + 0.05n
(n = 0, 1, ..., 19). The time-dependent PDIO (19) is employed and achieves a relative L2 error lower than
0.01 on both the training and test sets. Figure 3 illustrates the symbol network and the analytic symbol
provided in (18) on (ξ, t) ∈ [−12, 12] × [0.05, 1]. Although the PDIO learns from a sparse time grid, it obtains
an accurate symbol for all t ∈ [0.05, 1].

5.2 Nonlinear solution operators of PDEs

In this section, we verify the PDNO on a nonlinear PDE dataset. For all the experiments, we employ the
PDNO that comprises four layers of the network described in Figure 6 and (16) with a nonlinear activation
GELU. Fully connected neural networks are utilized for symbol networks up to layer 3 and hidden dimension
64. The relative L2 error is adopted for the loss function. Detailed hyperparameters are contained in C. We
do not truncate the Fourier coefficient in any of the layers, thus indicating that we utilize all of the available
frequencies from −[s

2] to ⌈ s
2 ⌉−1. This is because PDNO does not require additional learning parameters, even

if all frequencies are utilized. However, because evaluations are required at numerous grid points, considerable
memory is required in the learning process. In practical settings, it is recommended to truncate the frequency
space into appropriate maximum modes kmax. We observed a negligible degradation in performance even
when truncation was utilized (refer to F.3). All experiments were conducted using up to five NVIDIA A5000
GPUs with 24 GB memory.

Benchmark models We compare the proposed model with the multiwavelet-based model (MWT) and
the FNO, which are the advanced approaches based on the neural operator architecture. For the difference
between PDNO (a(x, ξ)) and PDNO (a(ξ)), refer to Section 5.3. We conducted the experiments on
Darcy flow and the Navier-Stokes equation. Regarding the Navier-Stokes equation, we utilized the same
data presented by Li et al. (2020a). For Darcy flow, we regenerated the data according to the same data
generation scheme.

8

Published in Transactions on Machine Learning Research (03/2024)

Figure 3: Visualization of the learned symbol from the time-dependent PDIO ann
θ1

(x, t)ann
θ2

(ξ, t) (top) and
analytic symbol a(x, ξ, t) = e−4×0.05π2ξ2t (bottom) of the solution operator of the 1D heat equation. Note
that learned ann

θ1
(x, t) is a constant function according to x. i.e. ann

θ1
(x, t) = c(t) (See Figure 7). Therefore, it

does not require an x-coordinate to plot the learned symbol.

Darcy flow The Darcy flow problem is a diffusion equation with an external force, which describes the
flow of a fluid through a porous medium. The steady state of the Darcy flow on the unit box is expressed as

{
∇ · (a(x)∇u(x)) = f(x), x ∈ [0, 1]2

u(x) = 0, x ∈ ∂(0, 1)2,
(20)

where u, a(x), and f(x) denote the density of the fluid, diffusion coefficient, and external force, respectively.
We attempt to learn the nonlinear mapping from a(x) to the steady state u(x), fixing the external force
f(x) = 1. The diffusion coefficient a(x) is generated from ψ#N (0, (−∆ + 9I)−2), where ∆ is the Laplacian
with zero Neumann boundary conditions, and ψ# is the pointwise push forward, defined by ψ(x) = 12 if
x > 0, 3 elsewhere. The coefficient imposes the ellipticity on the differential operator ∇ · (a(x)∇)(·). We
generate a(x) and u(x) using the second-order FDM on a 512 × 512 grid. The lower-resolution dataset is
obtained by subsampling. We utilized 1000 training pairs and 100 test pairs and fixed the hyperparameters
for all resolutions.

The results on the Darcy flow are presented in Table 1 for various resolutions s. The proposed model achieves
the lowest relative error for all resolutions. Regarding s = 32, particularly, MWT and FNO exhibited the
highest errors. Furthermore, the proposed model maintains its performance even at low resolutions.

9

Published in Transactions on Machine Learning Research (03/2024)

Table 1: Benchmark (relative L2 error) on Darcy flow on different resolution s.

Resolution Data PDNO (a(x, ξ)) PDNO (a(ξ)) MWT Leg FNO

s = 32 train 3.52 × 10−3 4.08 × 10−3 1.17 × 10−3 2.65 × 10−3

test 3.34 × 10−3 3.82 × 10−3 1.62 × 10−2 1.78 × 10−2

s = 64 train 2.59 × 10−3 2.98 × 10−3 1.81 × 10−3 2.93 × 10−3

test 2.52 × 10−3 2.85 × 10−3 1.08 × 10−2 1.12 × 10−2

s = 128 train 1.58 × 10−3 2.57 × 10−3 1.49 × 10−3 2.77 × 10−3

test 1.62 × 10−3 2.45 × 10−3 9.27 × 10−3 1.04 × 10−2

s = 256 train 1.54 × 10−3 2.62 × 10−3 1.34 × 10−3 2.78 × 10−3

test 1.41 × 10−3 2.54 × 10−3 8.83 × 10−3 1.01 × 10−2

s = 512 train 1.98 × 10−3 2.25 × 10−3 1.32 × 10−3 2.80 × 10−3

test 1.93 × 10−3 2.17 × 10−3 9.27 × 10−3 1.02 × 10−2

Table 2: Benchmark (relative L2 error) on the Navier-Stokes equation on the various viscosity ν, the time
horizon T , and the number of data N .

ν = 1e− 3 ν = 1e− 4 ν = 1e− 4 ν = 1e− 5
Networks T = 50 T = 30 T = 30 T = 20

N = 1000 N = 1000 N = 10000 N = 1000
PDNO (a(x, ξ)) 0.00903 0.1320 0.0679 0.1093
PDNO (a(x, ξ, t)) 0.0299 0.2296 0.1605 0.1852
MWT Leg 0.00625 0.1518 0.0667 0.1541
MWT Chb 0.00720 0.1574 0.0720 0.1667
FNO-2D 0.0128 0.1559 0.0973 0.1556
FNO-3D 0.0086 0.1918 0.0820 0.1893

Navier-Stokes equation Navier-Stokes equation describes the dynamics of a viscous fluid. In the vorticity
formulation, the incompressible Navier-Stokes equation on the unit torus can be expressed as

∂w
∂t + u · ∇w − ν∆w = f, (x, t) ∈ (0, 1)2 × (0, T],
∇ · u = 0, (x, t) ∈ (0, 1)2 × [0, T],
w(x, 0) = w0(x), x ∈ (0, 1)2,

(21)

where w, u, ν, and f denote the vorticity, velocity field, viscosity, and external force, respectively. We utilize
the same Navier-Stokes data used in Li et al. (2020a) to learn the nonlinear mapping from w(x, 0),, w(x, 9)
to w(x, 10), ..., w(x, T), fixing the force f(x) = 0.1(sin(2π(x1 + x2)) + cos(2π(x1 + x2))). The initial condition
w0(x) is sampled from N (0, 71.5(−∆ + 72I)−2.5) with periodic boundary conditions. We experiment with four
Navier-Stokes datasets:(ν, T,N) = (10−3, 50, 1000), (10−4, 30, 1000), (10−4, 30, 10000), and (10−5, 20, 1000),
where ν, T , and N denote the viscosity, final time to predict, and number of training samples, respectively.
Notably, the lower the viscosity, the more difficult the prediction. All datasets comprise 64 × 64 resolutions.

We employ a recurrent architecture to propagate along the time domain. From w(x, 0),, w(x, 9), the model
predicts the vorticity at t = 10, w̄(x, 10). Then, from w(x, 1), ..., w(x, 9), w̄(x, 10), the model predicts the
next vorticity w̄(x, 11). We repeat this process until t = T .

For each experiment, we utilize 200 test samples. For (ν, T,N) = (10−3, 50, 1000), we utilize a batch size of
10 or 20 otherwise. Furthermore, we empoly fixed hyperparameters for the four experiments.

The results of the Navier-Stokes equation are presented in Table 2. In all four datasets, the proposed
model exhibits comparable or superior performances. Notably, the relative error improves considerably for

10

Published in Transactions on Machine Learning Research (03/2024)

Figure 4: Example of a prediction on the Navier-Stokes data with ν=1e-5 showing the prediction w(x, 19)
from inputs [w(x, 0), ..., w(x, 9)]. Each value on the top of the figure is the relative L2 error between the true
w(x, 19) and each prediction. A prediction of FNO is more granular than PDNO. We suspect that this is due
to non-smooth symbols of FNO.

Table 3: Benchmark (relative L2 error) on Burgers’ equation on different resolution s.

Equation Resolution PDNO (a(x, ξ)) PDNO (a(ξ)) MWT Leg MWT Chb FNO

Burgers

s = 256 6.85 × 10−4 9.03 × 10−4 1.99 × 10−3 4.02 × 10−3 6.49 × 10−4

s = 512 8.49 × 10−4 1.22 × 10−3 1.85 × 10−3 3.81 × 10−3 6.47 × 10−4

s = 1024 1.10 × 10−3 1.25 × 10−3 1.84 × 10−3 3.36 × 10−3 6.40 × 10−4

s = 2048 1.18 × 10−3 1.29 × 10−3 1.86 × 10−3 3.95 × 10−3 6.47 × 10−4

s = 4096 1.78 × 10−3 1.91 × 10−3 1.85 × 10−3 2.99 × 10−3 6.53 × 10−4

(ν, T,N) = (10−5, 20, 1000), thereby exhibiting the lowest viscosity. Figure 4 displays a sample prediction at
t = 19, which is highly unpredictable.

5.3 Additional experiments

Darcy flow. On Darcy flow, we perform an additional experiment, which does not utilize a symbol network
ann

θ1
(x), but ann

θ2
(ξ). In this case, the PDNO has the same structure as FNO except for symbol networks.

Refer to PDNO (a(ξ)) in Table 1. Although less than the original PDNO, the results of the PDNO without
the dependency of the x-symbol perform better than the other models, including FNO. This explains why
the smoothness of the symbol of PDNO is important.

Navier-Stokes equation. On the Navier-Stokes equation, we also present the results with time-dependent
PDIO (Section 4.2) in Table 2. This exhibits a relatively high error but has the advantage of not using a
recursive structure. In addition, for the Navier-Stokes equation with ν = 1e− 5, we compare the training and
test relative L2 errors along time t in Figure 1. All models demonstrate that the test errors grow exponentially
according to time t. Among them, PDNO consistently demonstrates the least test errors for all time t. More
notable is the difference between the solid and dashed lines, which indicates that MWT and FNO suffer from
overfitting, whereas PDNO does not. The same trend is observed for Darcy flow (refer Table 1). This might
be related to the smoothness of the models’ symbols. Furthermore, the symbols of PDNO and FNO are
visualized in Figure 5.

Non-smooth solution operator for Burgers’ equation. We expect that the PDNO based on the
PDO theory will provide a more accurate operator approximation compared to the conventional FNO when
handling a smooth solution operator. To obtain a more precise understanding, we conducted additional
experiments to approximate the solution operator of the Burgers’ equation. The 1D Burgers’ equation is a
nonlinear PDE, which describes the interaction between the effects of nonlinear convection and diffusion as

11

Published in Transactions on Machine Learning Research (03/2024)

Figure 5: Examples of the real part of learned symbol ann
ij (ξ) from the Navier-Stokes data with ν = 1e− 5.

x-axis and y-axis represent frequency domains. As we used real valued functions, the second coordinate is
half the first.

follows: {
∂u
∂t = −u · ∂u

∂x + ν ∂2u
∂x2 , (x, t) ∈ (0, 1) × (0, 1],

u(x, 0) = u0(x), x ∈ (0, 1),
(22)

where u0 is the initial state and ν denotes the viscosity. We attempt to learn the nonlinear mapping from the
initial state u0(x) to the solution u(x, 1) at t = 1. The Burgers’ equation with a small viscosity parameter
ν generates sharp shocks over time. In such cases, the solution operator becomes less smooth, and it is
conceivable that in such scenarios, PDNO may provide a less accurate operator approximation than the FNO.
The results from the Burgers data are presented in Table 3 along with different resolutions s. As expected,
in the case of the Burgers’ equation with non-smooth solutions, the PDNO demonstrated errors that were
either comparable to or even higher than those of the FNO. In addition to theoretical analysis in Section 3,
this additional experiment confirms that PDNO is more beneficial when approximating smoother and more
continuous solution operators. Refer to Appendix F.2 for more details.

6 Conclusion

Based on the PDO theory, we developed a novel PDIO and PDNO framework that efficiently learns mappings
between function spaces. The proposed symbol networks are in a toroidal symbol class that renders the
corresponding PDIOs continuous between Sobolev spaces on the torus, which can considerably improve the
learning of the solution operators in most experiments. This study revealed an excellent ability for learning
operators based on the theory of PDO. However, there is room for improvement in highly complex PDEs such
as the Navier-Stokes equation, and the time-dependent PDIOs are difficult to apply to nonlinear architecture.
We expect to solve these problems by employing advanced operator theories (Duistermaat, 1996; Hörmander,
1971; Duistermaat & Hörmander, 1972), which will ultimately address engineering and physical problems.

12

Published in Transactions on Machine Learning Research (03/2024)

Acknowledgments

Jin Young Shin and Hyung Ju Hwang were supported by the National Research Foundation of Korea(NRF)
grant funded by the Korea government(MSIT) (No. RS-2023-00219980 and RS-2022-00165268) and by
Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea
government(MSIP) (No.2019-0-01906, Artificial Intelligence Graduate School Program (POSTECH)). Jae
Yong Lee was supported by a KIAS Individual Grant (AP086901) via the Center for AI and Natural Sciences
at Korea Institute for Advanced Study and by the Center for Advanced Computation at Korea Institute for
Advanced Study.

References
Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Prediction of

aerodynamic flow fields using convolutional neural networks. Comput. Mech., 64(2):525–545, 2019. ISSN
0178-7675. doi: 10.1007/s00466-019-01740-0. URL https://doi.org/10.1007/s00466-019-01740-0.

Louis Boutet de Monvel. Boundary problems for pseudo-differential operators. Acta Math., 126(1-2):11–51,
1971. ISSN 0001-5962. doi: 10.1007/BF02392024. URL https://doi.org/10.1007/BF02392024.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks with
arbitrary activation functions and its application to dynamical systems. IEEE Transactions on Neural
Networks, 6(4):911–917, 1995.

R. Courant and D. Hilbert. Methods of mathematical physics. Vol. I. Interscience Publishers, Inc., New York,
N.Y., 1953.

J. J. Duistermaat. Fourier integral operators, volume 130 of Progress in Mathematics. Birkhäuser Boston,
Inc., Boston, MA, 1996. ISBN 0-8176-3821-0.

J. J. Duistermaat and L. Hörmander. Fourier integral operators. II. Acta Math., 128(3-4):183–269, 1972.
ISSN 0001-5962. doi: 10.1007/BF02392165. URL https://doi.org/10.1007/BF02392165.

Weinan E and Bing Yu. The deep Ritz method: a deep learning-based numerical algorithm for solving varia-
tional problems. Commun. Math. Stat., 6(1):1–12, 2018. ISSN 2194-6701. doi: 10.1007/s40304-018-0127-z.
URL https://doi.org/10.1007/s40304-018-0127-z.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In Proceedings
of the fourteenth international conference on artificial intelligence and statistics, pp. 315–323. JMLR
Workshop and Conference Proceedings, 2011.

Somdatta Goswami, Aniruddha Bora, Yue Yu, and George Em Karniadakis. Physics-informed deep neural
operator networks. In Machine Learning in Modeling and Simulation: Methods and Applications, pp.
219–254. Springer, 2023.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catanzaro. Adaptive
fourier neural operators: Efficient token mixers for transformers. arXiv preprint arXiv:2111.13587, 2021.

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow approximation. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining,
pp. 481–490, 2016.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differential
equations. Advances in Neural Information Processing Systems, 34, 2021.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

Jan S Hesthaven, Sigal Gottlieb, and David Gottlieb. Spectral methods for time-dependent problems, volume 21.
Cambridge University Press, 2007.

13

https://doi.org/10.1007/s00466-019-01740-0
https://doi.org/10.1007/BF02392024
https://doi.org/10.1007/BF02392165
https://doi.org/10.1007/s40304-018-0127-z

Published in Transactions on Machine Learning Research (03/2024)

Philipp Holl, Vladlen Koltun, and Nils Thuerey. Learning to control pdes with differentiable physics. arXiv
preprint arXiv:2001.07457, 2020.

Lars Hörmander. Fourier integral operators. I. Acta Math., 127(1-2):79–183, 1971. ISSN 0001-5962. doi:
10.1007/BF02392052. URL https://doi.org/10.1007/BF02392052.

Lars Hörmander. The analysis of linear partial differential operators. I. Classics in Mathematics. Springer-
Verlag, Berlin, 2003. ISBN 3-540-00662-1. doi: 10.1007/978-3-642-61497-2. URL https://doi.org/10.
1007/978-3-642-61497-2. Distribution theory and Fourier analysis, Reprint of the second (1990) edition
[Springer, Berlin; MR1065993 (91m:35001a)].

Lars Hörmander. The analysis of linear partial differential operators. III. Classics in Mathematics. Springer,
Berlin, 2007. ISBN 978-3-540-49937-4. doi: 10.1007/978-3-540-49938-1. URL https://doi.org/10.1007/
978-3-540-49938-1. Pseudo-differential operators, Reprint of the 1994 edition.

Hyung Ju Hwang, Jin Woo Jang, Hyeontae Jo, and Jae Yong Lee. Trend to equilibrium for the kinetic
Fokker-Planck equation via the neural network approach. J. Comput. Phys., 419:109665, 25, 2020. ISSN
0021-9991. doi: 10.1016/j.jcp.2020.109665. URL https://doi.org/10.1016/j.jcp.2020.109665.

Rakhoon Hwang, Jae Yong Lee, Jin Young Shin, and Hyung Ju Hwang. Solving pde-constrained control
problems using operator learning. arXiv preprint arXiv:2111.04941, 2021.

Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving parametric PDE problems with artificial neural networks.
European J. Appl. Math., 32(3):421–435, 2021. ISSN 0956-7925. doi: 10.1017/S0956792520000182. URL
https://doi.org/10.1017/S0956792520000182.

Georgios Kissas, Jacob Seidman, Leonardo Ferreira Guilhoto, Victor M Preciado, George J Pappas, and Paris
Perdikaris. Learning operators with coupled attention. arXiv preprint arXiv:2201.01032, 2022.

Jae Yong Lee, Jin Woo Jang, and Hyung Ju Hwang. The model reduction of the Vlasov-Poisson-Fokker-
Planck system to the Poisson-Nernst-Planck system via the deep neural network approach. ESAIM
Math. Model. Numer. Anal., 55(5):1803–1846, 2021. ISSN 0764-583X. doi: 10.1051/m2an/2021038. URL
https://doi.org/10.1051/m2an/2021038.

Jae Yong Lee, SungWoong CHO, and Hyung Ju Hwang. HyperdeepONet: learning operator with complex
target function space using the limited resources via hypernetwork. In The Eleventh International Conference
on Learning Representations, 2023. URL https://openreview.net/forum?id=OAw6V3ZAhSd.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. arXiv
preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Multipole graph neural operator for parametric partial differential equations.
arXiv preprint arXiv:2006.09535, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Neural operator: Graph kernel network for partial differential equations. arXiv
preprint arXiv:2003.03485, 2020c.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for identi-
fying differential equations based on the universal approximation theorem of operators. arXiv preprint
arXiv:1910.03193, 2019.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and George Em
Karniadakis. A comprehensive and fair comparison of two neural operators (with practical extensions)
based on fair data. Computer Methods in Applied Mechanics and Engineering, 393:114778, 2022.

Mohammad Amin Nabian and Hadi Meidani. A deep neural network surrogate for high-dimensional random
partial differential equations. arXiv preprint arXiv:1806.02957, 2018.

14

https://doi.org/10.1007/BF02392052
https://doi.org/10.1007/978-3-642-61497-2
https://doi.org/10.1007/978-3-642-61497-2
https://doi.org/10.1007/978-3-540-49938-1
https://doi.org/10.1007/978-3-540-49938-1
https://doi.org/10.1016/j.jcp.2020.109665
https://doi.org/10.1017/S0956792520000182
https://doi.org/10.1051/m2an/2021038
https://openreview.net/forum?id=OAw6V3ZAhSd

Published in Transactions on Machine Learning Research (03/2024)

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural operators. arXiv
preprint arXiv:2204.11127, 2022.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: a deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations.
J. Comput. Phys., 378:686–707, 2019. ISSN 0021-9991. doi: 10.1016/j.jcp.2018.10.045. URL https:
//doi.org/10.1016/j.jcp.2018.10.045.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

Michael Reed and Barry Simon. Methods of modern mathematical physics. I. Functional analysis. Academic
Press, New York-London, 1972.

Michael Ruzhansky and Ville Turunen. Pseudo-differential operators and symmetries: background analysis
and advanced topics, volume 2. Springer Science & Business Media, 2009.

Justin Sirignano and Konstantinos Spiliopoulos. DGM: a deep learning algorithm for solving partial differential
equations. J. Comput. Phys., 375:1339–1364, 2018. ISSN 0021-9991. doi: 10.1016/j.jcp.2018.08.029. URL
https://doi.org/10.1016/j.jcp.2018.08.029.

Michael Eugene Taylor. Pseudodifferential Operators (PMS-34). Princeton University Press, 2017.

Tapas Tripura and Souvik Chakraborty. Wavelet neural operator for solving parametric partial differential
equations in computational mechanics problems. Computer Methods in Applied Mechanics and Engineering,
404:115783, 2023. ISSN 0045-7825. doi: https://doi.org/10.1016/j.cma.2022.115783. URL https://www.
sciencedirect.com/science/article/pii/S0045782522007393.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial
differential equations with physics-informed deeponets. arXiv preprint arXiv:2103.10974, 2021.

Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder-decoder networks for surrogate
modeling and uncertainty quantification. J. Comput. Phys., 366:415–447, 2018. ISSN 0021-9991. doi:
10.1016/j.jcp.2018.04.018. URL https://doi.org/10.1016/j.jcp.2018.04.018.

Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-constrained
deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled
data. J. Comput. Phys., 394:56–81, 2019. ISSN 0021-9991. doi: 10.1016/j.jcp.2019.05.024. URL
https://doi.org/10.1016/j.jcp.2019.05.024.

15

https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.08.029
https://www.sciencedirect.com/science/article/pii/S0045782522007393
https://www.sciencedirect.com/science/article/pii/S0045782522007393
https://doi.org/10.1016/j.jcp.2018.04.018
https://doi.org/10.1016/j.jcp.2019.05.024

Published in Transactions on Machine Learning Research (03/2024)

A Notations

The main notations employed throughout this paper are presented in Table 4.

Table 4: Notations

Notations Descriptions
A an input function space
U an output function space
G : A → U an operator from A to U
x ∈ Rn or Tn a variable in the spatial domain
ξ ∈ Rn or Zn a variable in the Fourier space
f̂(ξ) Fourier transform of function f(x)
Sm

ρ,δ an Euclidean (or toroidal) symbol class
a(x, ξ) ∈ Sm

ρ,δ an Euclidean (or toroidal) symbol
ann

θ (x, ξ) a symbol network parameterized by θ
Ta : A → U a PDO with the symbol a(x, ξ)
Ka : A → U a PDIO with a symbol network aθ(x, ξ)
KR : A → U a Fourier integral operator (Li et al., 2020a)
F : A → U ,F−1 : U → A Fourier transform and its inverse
∥ξ∥ Euclidean norm
⟨ξ⟩ (1 + ∥ξ∥2) 1

2

△α
ξ a difference operator of order α on ξ

kmax the maximum number of Fourier modes

B Analysis on symbol a(x, ξ)

B.1 Decomposable assumption ann(x, ξ) = ann(x)ann(ξ)

The symbol was assumed to be decomposable because of computational costs. With a decomposable symbol
network ann(x)ann(ξ), we only needed one IFFT computation

Ka(f)(x) = ann(x)
∑

ξ∈Zn

ann(ξ)f̂(ξ)e2πiξx

︸ ︷︷ ︸
IFFT

= ann(x)F−1
[
ann(ξ)f̂(ξ)

]
.

With the symbol network ann(x, ξ), an input of IFFT depends on the spatial domain x. Hence, we need
IFFT computations as many times as the number of grids in the spatial domain x.

Ka(f)(x) =
∑

ξ∈Zn

ann(x, ξ)f̂(ξ)e2πiξx

︸ ︷︷ ︸
IFFT

= F−1
[
ann(x, ξ)f̂(ξ)

]
.

Therefore, the non-decomposable symbols require the number of x grid points multiplied by the cost of
decomposable symbols.

B.2 Reason for considering the symbol network on domain Tn × Zn

In this section, we explain why the proposed model should be addressed in Tn × Zn instead of Tn × Rn. For
convenience, we assume that n = 1. Let f : T → R and its N points discretization f(1

N) = y0, f(2
N) = y1, ...

f(N
N) = y(1) = yN−1. Then, the DFT of the sequence {yn}0≤n≤N−1 is expressed as

ξk = 1
N

N−1∑
n=0

yne
−2πik n

N (23)

16

Published in Transactions on Machine Learning Research (03/2024)

and the inverse DFT of {ξk}0≤k≤N−1 is expressed as

yn =
N−1∑
k=0

ξke
2πik n

N . (24)

As N tends to ∞, it can be deduced that

lim
N→∞

ξk = lim
N→∞

1
N

N−1∑
n=0

f(n+ 1
N

)e−2πik n
N →

∫ 1

0
f(x)e−2πikx dx = f̂(k)

and

lim
N→∞

yn = lim
N→∞

f(n

N︸︷︷︸
x

+ 1
N

) = lim
N→∞

N−1∑
k=0

ξke
2πik n

N →
∞∑

k=0
f̂(k)e2πikx = f(x),

where x = n
N . Hence, DFT is an approximation of integral on T and IDFT is an approximation of the infinity

sum on Z. Therefore, the PDO theory on Tn × Zn is more suitable for our model.

C Hyperparameters

Table 5: Hyperparameters for learning PDNOs on each dataset. # layers, # hidden and activation are for
symbol networks.

Data Batch size LR Weight decay Epochs Step size # Channel # Layers # Hidden Activation

Heat 20 1e−2 1e−6 10000 2000 1 2 40 GELU
Darcy 20 1e−2 1e−6 1000 200 20 3 32 GELU
N-S 20 5e−3 1e−6 1000 200 20 2 32 GELU
Burgers 20 5e−3 0 1000 100 64 2 64 TANH

D Resource requirements

Table 6: Resource comparison of PDNO and FNO on NS data. PDNO uses a two-layer symbol network with
hidden dimension 32. The memory requirements are obtained from nvidia-smi command. We used a single
NVIDIA A5000 GPU.

Model kmax # Channel Memory (train) # Parameter Time (sec/epoch)

PDNO 12 20 9939 MB 1.90 × 105 20.77
PDNO 12 30 17819 MB 3.91 × 105 40.73
PDNO 32 20 10143 MB 1.90 × 105 22.05
FNO 12 20 3625 MB 4.66 × 105 4.58
FNO 12 30 3941 MB 1.05 × 106 5.49
FNO 32 20 3957 MB 3.28 × 106 4.80

In Table 6, we compared the memory requirement, the number of parameters, and the training time of PDNO
and FNO. PDNO requires more memory than FNO in training because it needs to compute the symbol
networks ann(x) and ann(ξ). However, PDNO has fewer parameters than FNO; hence, it requires lower
storage to save the trained model. If a faster inference is required, the evaluated values of symbol network
may be stored. To reduce memory resources and time consumption during training, one possible future work
is to smoothen the symbol network via regularization on the parametric symbol Rij in 3.

17

Published in Transactions on Machine Learning Research (03/2024)

E Activation functions for symbol network

In this section, we discuss the activation function for the symbol network. We proved the Proposition 1 when
the GELU activation function was utilized for the symbol network. In addition to GELU, other activation
functions can be used for the symbol network. To explain this, we first define the Schwartz space (Reed &
Simon, 1972) as follows:
Definition 5. The Schwartz space S(Rn) is the topological vector space of functions f : Rn → C such that
f ∈ C∞(Rn) and

zα∂βf(z) → 0, as |z| → ∞, (25)

for every pair of multi-indices α, β ∈ Nn
0 .

In other words, the Schwartz space comprises smooth functions whose derivatives decay at infinity faster than
any power. As mentioned in the proof of Proposition 1, it can be easily demonstrated that the second or
higher derivatives of GELU are in the Schwartz space S(R). Because GELU is defined as σ(z) = zΦ(z) with
Φ(z) = 1√

2π

∫ z

−∞ exp(−u2/2)du, the second or higher derivatives of GELU is the sum of exponential decay
functions exp(−z2/2). Hence, the second or higher derivatives of the function are in the Schwartz space, i.e.,
σ(k) ∈ S(R) when k ≥ 2.

Next, we prove that another activation function ϕ(z) is in symbol class S1
1,0(Tn × Rn) if the difference

between the function ϕ(z) and GELU σ(z) is in the Schwartz space. We refer to a function like ϕ(z) as
the GELU-like activation function. It can be easily demonstrated that the function ϕ(z) is bounded by the
linear function |z| because GELU is bounded by the linear function. Because the Schwartz space is closed
under differentiation, ϕ(z) − σ(z) ∈ S(R) implies ϕ(k)(z) − σ(k)(z) ∈ S(R) for k ∈ N. Because GELU satisfies
σ′(z) ≤ cα and σ(k) ∈ S(R) when k ≥ 2, the activation function ϕ(z) also satisfies ϕ′(z) ≤ cα and ϕ(k) ∈ S(R)
when k ≥ 2. Therefore, the proof of Proposition 1 can be obtained by altering another activation function
ϕ(z) instead of GELU σ(z). GELU-like activation functions, such as the Softplus (Glorot et al., 2011), and
Swish (Ramachandran et al., 2017) etc., satisfy the aforementioned assumption, such that it can be used for
the symbol network in our PDIO.

We can easily demonstrate that the symbol network ann
θ (x, ξ) with tanh(z) = ez−e−z

ez+e−z is in S0
1,0(Tn × Rn). In

the proof of Proposition 1, we adopted the characteristic of GELU and its high derivatives. The tanh function
is bounded and the first or higher derivatives of the tanh function are in the Schwartz space. Therefore,
neural network ann

θ2
(ξ) satisfies the following boundedness:

|∂α
ξ a

nn
θ2

(ξ)| ≤ cα, if |α| = 0, (26)
|∂α

ξ a
nn
θ2

(ξ)| ≤ cα⟨ξ⟩−|α|, if |α| ≥ 1. (27)

Note that the boundedness of the neural network ann
θ1

(x) is same in the case of GELU. Hence, we can bound
the derivative of the symbol network ann

θ (x, ξ) as

|∂β
x∂

α
ξ a(x, ξ)| ≤ cαβ⟨ξ⟩−|α|. (28)

Therefore, the symbol network with the tanh activation function is in S0
1,0(Tn × Rn). Similarly, it is easy to

prove that the sigmoid function 1
1+e−z is also in a symbol class S0

1,0(Tn × Rn). Therefore, the PDIOs with
these two activation functions are bounded linear operators from the Sobolev space W p,s(Tn) to the Sobolev
space W p,s(Tn) for all 1 < p < ∞ and any s ∈ R.

F Additional figures and experiments

F.1 1D heat equation : Symbol network ann
θ1

(x, t).

In 1D heat equation experiments, we assume that the symbol is decomposed by a(x, ξ, t) ≈ ann
θ1

(x, t)×ann
θ2

(ξ, t).
Figure 7 illustrates the learned symbol network ann

θ1
(x, t) on (x, t) ∈ T × [0.05, 1].Evidently, ann

θ1
(·, t) is almost

18

Published in Transactions on Machine Learning Research (03/2024)

Figure 6: Structure of (1) using the integral operator Ka in (16) with cin = 3 and cout = 2. Each black solid
line represents a PDIO with symbol network ann

ij .

Figure 7: Learned symbol ann
θ1

(x, t) from 1D heat equation.

a constant function for each t ∈ [0.05, 1]. Accordingly, ann
θ1

(x, t) is considered a function of t by taking the
average along the x-dimension to visualize ann

θ1
(x, t)ann

θ2
(ξ, t) in Figure 3.

In addition, Figure 8 visualizes a sample prediction on the 1D heat equation.

F.2 Details of experiments on 1D Burgers’ equation.

Here, we employ the same Burgers’ data utilized in Li et al. (2020a). The initial state u0(x) is generated
from the Gaussian random field N (0, 54(−∆ + 25I)−2) with the periodic boundary conditions. The viscosity
ν and finest spatial resolution are set to 0.1 and 213 = 8192, respectively. The lower-resolution dataset is
obtained via subsampling. We experiment with the same hyperparameters for all resolutions. In addition, we
utilize 1000 train pairs and 100 test pairs.

19

Published in Transactions on Machine Learning Research (03/2024)

Figure 8: A sample of prediction on 1D heat equation from a PDIO. The model is trained on 1024 × 10
dataset and evaluated on 1024 × 20. Dashed lines on the surface are contour lines.

Figure 9: Test relative L2 error that depends on maximum modes kmax of PDNO on Darcy flow (resolution
s = 256).

F.3 Changes in errors according to kmax.

As mentioned in Section 5.2, we utilize all possible modes. Although PDNO does not require additional
parameters to employ all modes, it demands more memory in the learning process. Hence, we conduct
additional experiments on Darcy flow by limiting the number of modes kmax. In Figure 9, changes in test
relative L2 error along kmax are illustrated. Even with small kmax, it still outperforms MWT and FNO (Table
1). In addition, for kmax ≥ 20, PDNO obtains a comparably relative L2 error on the Darcy flow problem.

20

Published in Transactions on Machine Learning Research (03/2024)

Figure 10: Train and test error of the proposed model and FNO on Navier-Stokes data with ν = 1e − 5
according to the number of channels.

Figure 11: Training and test errors of PDNO on Darcy flow according to the resolution of data using GELU
and ReLU activation functions for the symbol network.

F.4 Changes in activation of the symbol network.

We attempt to investigate how experimental results differ when using a Rectified Linear Unit (ReLU)
activation function, as opposed to the smooth activation functions discussed in Appendix E, for the symbol
network. Figure 11 illustrates the training and test relative L2 errors as data resolution varies when employing
GELU and ReLU activation functions in the symbol network for the Darcy problem. As demonstrated in
Proposition 1, using the GELU activation function helps reduce the overfitting of the solution operator, while
employing the ReLU activation function results in a notable disparity between the training and test relative
L2 errors.

21

Published in Transactions on Machine Learning Research (03/2024)

Figure 12: Comparison of the prediction on Navier-Stokes equation with ν = 1e− 5. This test sample shows
the lowest relative L2 error on average of three models.

F.5 Navier-Stokes equation with ν = 1e− 5

Samples with the lowest and highest error Figures 12 and Figures 13 present the samples with the
highest and the lowest errors, respectively. PDNOs consistently obtain the lowest error at all time steps of
both samples.

PDNO and FNO with different number of channels We compare the performance of PDNO and
FNO, which varies depending on the number of channels. For a fair comparison, the truncation is not utilized
in the Fourier space for both FNO and PDNO. Furthermore, PDNO utilizes only a single symbol network
ann

θ2
(ξ), not ann

θ1
(x). In Figure 10, as the number of channels increases, the test error decreases in both models.

PDNO achieves lower test errors than FNO and also exhibits a negligible gap between the training and test
errors.

22

Published in Transactions on Machine Learning Research (03/2024)

Figure 13: Comparison of the prediction on Navier-Stokes equation with ν = 1e− 5. This test sample shows
the greatest relative L2 error on average of three models.

23

	Introduction
	Fourier integral operator and PDO
	Neural operator
	Fourier integral operator
	PDO
	Difference between Fourier integral operator and PDO

	Proposed integral operator : PDIO
	Symbol network and PDIO
	PDOs on Lg
	Propositions on the symbol network and PDIO

	Neural operator with PDIOs
	PDNO
	Time-dependent PDIO

	Experiments
	Toy example : 1D heat equation
	Nonlinear solution operators of PDEs
	Additional experiments

	Conclusion
	Notations
	Analysis on symbol Lg
	Decomposable assumption Lg
	Reason for considering the symbol network on domain Lg

	Hyperparameters
	Resource requirements
	Activation functions for symbol network
	Additional figures and experiments
	1D heat equation : Symbol network Lg.
	Details of experiments on 1D Burgers' equation.
	Changes in errors according to Lg.
	Changes in activation of the symbol network.
	Navier-Stokes equation with Lg

