
Published as a conference paper at ICLR 2025

DETAILCLIP:
DETAIL-ORIENTED CLIP FOR FINE-GRAINED TASKS

Amin Karimi Monsefi§∗ Kishore Prakash Sailaja§∗ Ali Alilooee§
Ser-Nam Lim‡ Rajiv Ramnath§

{karimimonsefi.1, prakashsailaja.1, alilooeedolatabad.1,
ramnath.6}@osu.edu, sernam@ucf.edu
§The Ohio State University, ‡University of Central Florida

ABSTRACT

In this paper, we introduce DetailCLIP, a self-improving vision-language founda-
tion model designed to enhance fine-grained feature understanding through self-
supervised learning. Foundation models like CLIP have demonstrated strong per-
formance in global image-text alignment but often fail to capture detail-oriented
features necessary for tasks such as segmentation. To address this, DetailCLIP
integrates self-curated learning objectives that iteratively improve both high-level
semantics and detailed visual representations. Specifically, our method employs
patch-level self-distillation and pixel-level reconstruction losses to generate re-
fined internal representations, while an attention-based token filtering mechanism
curates semantically relevant information during training. By generating and re-
fining self-curated learning signals, DetailCLIP improves segmentation perfor-
mance and demonstrates superior generalization across diverse tasks. These task-
agnostic objectives position DetailCLIP as a self-improving foundation model,
enhancing multi-modal systems like CLIP with fine-grained feature understand-
ing. https://github.com/KishoreP1/DetailCLIP

1 INTRODUCTION

The rapid advancements in computer vision have led to the development of foundation models that
can understand visual data with impressive accuracy. Among these, CLIP (Contrastive Language-
Image Pretraining) (Radford et al., 2021) stands out as a pioneering approach that leverages large-
scale contrastive learning between images and text to create a shared embedding space. This has
proven immensely successful in tasks like classification, where the model can understand and relate
visual content to textual descriptions without direct supervision (Yu et al., 2024; Wei et al., 2023;
Lan et al., 2024).

However, while CLIP excels in generalization and high-level semantic understanding, its reliance on
contrastive losses presents significant challenges when adapting the model for more granular tasks
like image segmentation (Wei et al., 2023; Zhou et al., 2023b; Lin et al., 2023; Yang et al., 2023).
Fine-grained tasks like segmentation requires a comprehensive understanding of the entire scene and
the precise delineation of object boundaries at the pixel level. However, the global representations
learned through contrastive learning often fail to capture this level of detail, leading to suboptimal
performance when using CLIP for granular tasks (Jiao et al., 2023; Cha et al., 2023; Zhou et al.,
2023a; Karimi Monsefi et al., 2023; Perera et al., 2024; Wang et al., 2022).

Furthermore, traditional self-supervised learning (SSL) approaches (Zhou et al., 2021; Caron et al.,
2021; Kakogeorgiou et al., 2022; Zhou et al., 2024; Navard & Yilmaz, 2024; Farahani & Monsefi,
2023), which have gained popularity for their ability to learn from unlabeled data, often prove inade-
quate when applied to fine-grained tasks. These methods, including contrastive learning (Oord et al.,
2018; Chen et al., 2020a; Tian et al., 2020; He et al., 2020) or clustering-based techniques (Monsefi
et al., 2024), primarily focus on learning representations that are useful for high-level tasks such
as classification or detection. However, they often fail to capture the intricate details and spatial
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relationships necessary for precise boundary delineation and detailed feature extraction. This limi-
tation is particularly evident in masked image modeling (MIM) approaches such as MAE (He et al.,
2022), SimMIM (Xie et al., 2022), and iBOT (Zhou et al., 2021), which, while effective at learning
global features, struggle to preserve fine-grained details. Consequently, these models often require
extensive training epochs to achieve moderate performance improvements, yet still fall short in tasks
that demand a high degree of granularity. The lack of textual context in these SSL models further
exacerbates their limitations, as they miss the additional semantic guidance that text provides, which
is crucial for enhancing the model’s ability to focus on detail-oriented tasks. Incorporating text in
the pre-training process can significantly improve the model’s performance by aligning visual fea-
tures with rich semantic information, leading to better generalization and more accurate granular
tasks (Bao et al., 2022; Yi et al., 2023; Zakeri et al., 2019).

This underscores the need for self-curated learning mechanisms that provide stronger, task-agnostic
signals, enabling models to refine both high-level and fine-grained representations. To address this,
we introduce DetailCLIP, a self-improving framework that overcomes the limitations of traditional
CLIP-based models and self-supervised approaches for detail-oriented tasks. By enhancing both
semantic understanding and fine-grained feature extraction, DetailCLIP achieves superior perfor-
mance in tasks requiring meticulous attention to detail.

DetailCLIP introduces an attention-based token removal mechanism that selectively retains the most
relevant image regions, guided by task-specific and textual information. As shown in Figure 3, this
mechanism focuses the model on critical areas, enhancing its ability to capture and represent subtle
details accurately in the output.

DetailCLIP improves pixel-level accuracy through a pixel-level reconstruction feature that preserves
detailed image features, enabling it to handle fine-grained tasks requiring precision. Unlike mod-
els like MAE (He et al., 2022) and SimMIM (Xie et al., 2022), which use random token removal,
DetailCLIP employs an attention-based token removal mechanism to retain only the most relevant
features. This targeted approach enhances performance on tasks demanding high pixel-level accu-
racy, setting DetailCLIP apart from previous methods.

DetailCLIP incorporates a self-distillation strategy (Caron et al., 2021), where the student model
reconstructs masked images under the guidance of a teacher model using unmasked images. This
iterative process refines intricate features, enhancing both segmentation accuracy and performance
on classification tasks by preserving semantic integrity and detailed feature recognition. Unlike
previous models such as SLIP (Mu et al., 2022), MaskCLIP (Dong et al., 2023), and A-CLIP (Yang
et al., 2023), which focus on coarse-grained comparisons, DetailCLIP combines both coarse-grained
and fine-grained self-distillation, enabling superior performance in tasks requiring high precision.

Finally, similar to CLIP-based models (Radford et al., 2021; Luo et al., 2023), DetailCLIP empha-
sizes the crucial connection between vision and language, which is essential for tasks that require a
deep understanding of visual content and its associated textual concepts.

To summarize, our contributions are fourfold:

• A self-improving token filtering mechanism driven by attention, which selectively retains
tokens with strong semantic relevance to both textual descriptions and fine-grained tasks.

• A patch-level self-distillation strategy, where the model learns from masked images by
comparing internal representations.

• A pixel-level reconstruction of masked images to provide a stronger self-supervised learn-
ing signal, enabling accurate recovery of intricate details for precision tasks.

• Integration of these objectives makes DetailCLIP an effective self-improving vision-
language model, excelling in zero-shot and fine-tuning for detail-oriented tasks.

2 RELATED WORK

2.1 SELF SUPERVISED LEARNING

Self-Supervised Learning (SSL) has emerged as a dominant force in visual pre-training, with various
strategies driving its success across different pretext tasks (Ben-Shaul et al., 2024; Su et al., 2024;
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Almalki & Latecki, 2024; Oord et al., 2018; Chen et al., 2020a; Tian et al., 2020; He et al., 2020;
Bao et al., 2022; He et al., 2022; Xie et al., 2022; Monsefi et al., 2024). These approaches enable
SSL to extract meaningful visual features from large-scale unlabeled image datasets (Oquab et al.,
2024; Xie et al., 2023; Liu et al., 2023; Zheng et al., 2024; Kakogeorgiou et al., 2022; Zhou et al.,
2021; Chen et al., 2020b; Chen & He, 2021; Caron et al., 2021). Among the key methodologies are
contrastive learning, Masked Image Modeling (MIM), Masked Frequency Modeling (MFM), and
self-supervised Knowledge Distillation (KD), each designed to optimize representation learning in
different ways.

Contrastive learning, a popular SSL technique, aligns different views of the same image within a
shared embedding space while distinguishing them from views of other images (Oord et al., 2018;
Chen et al., 2020a). Although this approach is effective for learning global features, it often faces
challenges in handling tasks that require detailed precision, such as image segmentation. The reason
is that contrastive learning primarily focuses on aligning overall image representations, which can
lead to the neglect of fine-grained, pixel-level details.

On the other hand, Masked Image Modeling (MIM) has shown greater promise for tasks requiring
detailed feature extraction. MIM involves masking portions of an image and training models to
reconstruct or predict the missing parts, encouraging the model to understand the intricate relation-
ships between visible and hidden regions (Bao et al., 2022; Xie et al., 2022; He et al., 2022; Yi et al.,
2023).

2.2 CLIP-BASED APPROACHES

The integration of self-supervised learning with vision-language pre-training has driven the devel-
opment of several CLIP-based models, each striving to bridge the gap between visual and textual
data (Cha et al., 2023; Zhou et al., 2023a; Li et al., 2023; Jia et al., 2021). These models build on
the original CLIP framework, introducing innovations to enhance the quality of representations and
improve alignment between images and text.

For instance, SLIP (Mu et al., 2022) enhances CLIP by incorporating self-supervised learning with
image-to-image contrastive learning, resulting in richer and more robust visual representations.
MaskCLIP (Dong et al., 2023) advances this concept by integrating masked image modeling, which
refines visual features by focusing on specific image regions, ensuring they are more closely aligned
with the accompanying text. A-CLIP (Yang et al., 2023) further refines this approach by implement-
ing an attentive token removal strategy, selectively preserving tokens that are semantically relevant
to the text, thereby enhancing the precision of the visual-text alignment.

While these methods enhance the original CLIP model by improving representation learning and
efficiency, they primarily focus on global alignment between images and text. This emphasis on
global features makes them less effective for detail-oriented tasks, where capturing and preserv-
ing fine-grained visual details is crucial (Jiao et al., 2023; Wei et al., 2023; He et al., 2023; Zhou
et al., 2023b). In many of these models, token removal is often random or solely based on textual
information (Dong et al., 2023; Yang et al., 2023). In contrast, DetailCLIP addresses these limi-
tations by employing an attention-based mechanism that incorporates both textual information and
fine-grained tasks, ensuring better performance in detail-sensitive applications.

3 METHOD

3.1 PRELIMINARY AND BACKGROUND

CLIP, developed by Radford et al. (2021), is a vision-language model that aligns visual and textual
representations through large-scale contrastive learning. It trains an image and text encoder jointly
to maximize similarity between matching image-text pairs and minimize it for mismatched ones.
The training objective uses a symmetric cross-entropy loss on the cosine similarity between image
and text embeddings, encouraging correct pairs to have higher similarity than incorrect pairs. Let
Ii and Tj represent the embeddings of the i-th image and j-th text in a batch. The cosine similarity
between them is defined as:

si,j =
Ii · Tj

∥Ii∥∥Tj∥
, (1)
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Figure 1: Using a teacher-student architecture, the teacher processes two views of an input image
to generate attention values, guiding token removal in the student model. The student reconstructs
the image with a vision decoder while optimizing classification loss (LCLS), patch contrastive loss
(LPatch), and reconstruction loss (LRec). The CLIP loss (LCLIP ) ensures alignment between vision
and text encoders, enhancing segmentation. In the figure, g is the vision encoder, h the projection
head, d the decoder, and e the text encoder.

The logits are scaled by a learnable parameter τ :

logitsi,j =
si,j
τ

, (2)

Let N be the number of pairs of image-text in a batch. The loss function for the image-to-text
matching is defined as:

LI2T = − 1

N

N∑
i=1

log

(
exp(logitsi,i)∑N
j=1 exp(logitsi,j)

)
, (3)

Similarly, the loss function for the text-to-image matching is:

LT2I = − 1

N

N∑
i=1

log

(
exp(logitsi,i)∑N
j=1 exp(logitsj,i)

)
, (4)

Finally, the overall loss for CLIP is the average of the two losses:

LCLIP =
1

2
(LI2T + LT2I), (5)

3.2 DETAILCLIP FRAMEWORK

As shown in Figure 1, our framework can be outlined through the following steps, which will be
discussed in greater detail. Additionally, Section A.3 of the appendix provides a pytorch-like pseu-
docode of the forward pass.

3.2.1 PATCH-LEVEL COMPARISON

We employ a teacher-student framework in which the student model is trained to predict both fine-
grained and coarse-grained features of images generated by the teacher model. The teacher model
provides ”target” features for the student to learn. For each input, we consider two views: the
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original views are fed into the teacher model, while their masked versions are used as input for the
student model. For further details on the masking process, refer to Section 3.2.3. The student model
is tasked with predicting both the masked tokens and the global features generated by the teacher.

Similar to methods used in previous works like DINO (Caron et al., 2021), the teacher model’s
parameters are updated using an exponential moving average (EMA) of the student model’s param-
eters and its own. Specifically, if θ represents a parameter of the teacher model and ϕ represents a
parameter of the student model, the update rule for θ is θ ← (1− λ)ϕ+ λθ, that λ starting at 0.996
and gradually increasing to 1.0, following a cosine scheduling approach as outlined in previous
works (Chen et al., 2021; Dong et al., 2023; Yang et al., 2023). This strategy ensures that the EMA
model remains stable and effective in capturing the most relevant features during training (Grill
et al., 2020).

We employ two primary loss functions to train the student model to ensure both global and fine-
grained feature learning are effectively captured.

Global Loss (CLS Token): The global loss, applied to the [CLS] token, measures the difference
between the probability distribution of the [CLS] token in the student model and the [CLS] token in
the teacher model using KL divergence:

LCLS = DKL

(
p[CLS]

s ∥p[CLS]
t

)
(6)

where p[CLS]
s is the predicted probability distribution of the [CLS] token from the student model,

p[CLS]
t is the target probability distribution of the [CLS] token from the teacher model, DKL repre-

sents the Kullback-Leibler divergence (Kullback & Leibler, 1951).

Fine-grained Loss (Patch): The patch loss also utilizes KL divergence, comparing the distribution
of patch tokens in the student model to those in the teacher model:

Lpatch =
1

|M|
∑
j∈M

DKL

(
pjs∥p

j
t

)
(7)

whereM is the set of indices corresponding to the masked patches, pjs is the predicted probability
distribution of the j-th masked patch from the student model, pjt is the target probability distribution
of the j-th masked patch from the teacher model, DKL represents the Kullback-Leibler divergence.

3.2.2 PIXEL-LEVEL RECONSTRUCTION

As illustrated in Figure 1, following token removal, we employ an autoencoding method (gϕ-dϕ)
(MAE (He et al., 2022)) to reconstruct the original signal from a partially observed input. By
processing only visible patches, the encoder reduces data handling and improves efficiency. The
decoder reconstructs the original image using the encoded visible patches and mask tokens repre-
senting the masked areas. Since the decoder is smaller and used only during pre-training, most
computational effort is focused on training a more powerful encoder.

This process is especially well-suited for fine-grained tasks because it pushes the encoder to extract
detailed information from the limited visible patches, sharpening its ability to recognize intricate
features. By concentrating on these visible patches, the encoder becomes skilled at capturing subtle
details that are critical in precision-demanding tasks like segmentation or detailed object recognition.
The decoder’s responsibility in reconstructing the masked portions of the image ensures that these
fine details are preserved and accurately restored. The loss function (LRec) employed during this
training is the Mean Squared Error (MSE) between the reconstructed and original images, calculated
solely on the masked patches:

LRec =
1

|M|
∑
i∈M
∥X̂i −Xi∥2 (8)

whereM is the indices corresponding to the masked patches, X̂i is the reconstructed patch for the
i-th masked patch, Xi is the original patch for the i-th masked patch, ∥ · ∥ represents the Euclidean
norm (or ℓ2 norm).
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3.2.3 TOKEN REMOVAL

Token removal in ViT refines the attention mechanism by eliminating less relevant tokens, reducing
computational load, prioritizing important patches, and improving downstream performance. Exist-
ing methods include random token removal (Kakogeorgiou et al., 2022) and attentive removal (Yang
et al., 2023). Our approach, tailored to the model’s tasks—textual processing, patch comparison,
and image reconstruction—outperforms these methods by effectively handling both fine-grained
and coarse-grained details (see Section A.1 for more detail).

As shown in Figure 1, our token removal process begins by passing an image view through the
teacher encoder (gθ). The attention values generated by the encoder are used to mask the 50% of
patches with the lowest values. For each patch pt, the attention values are computed as:

AVpt =
1

N

N∑
i=1

Softmax
(
Qi ·Ki(pt)√

d

)
(9)

where N is the total number of attention heads across all layers, Qi is the query of the [CLS] from
the i-th attention head, Ki(pt) is the key of the patch at position pt from the i-th attention head, d is
the dimensionality of the query and key.

As shown in Figure 3 of the appendix, masking image patches by removing the lowest half of the
attention values (AV) calculated by the teacher encoder results in the images displayed in the figure.

3.2.4 INTEGRATED LOSS FUNCTION

We introduce the formulation of a comprehensive loss function that combines the various loss com-
ponents essential for effective multi-task learning. The integrated loss function is defined as:

Ltot = α1 × LCLS + α2 × LPatch + α3 × LRec + LCLIP, (10)

In this equation, the hyperparameters α1, α2, and α3 determine the relative importance of each loss
term. These weights are set to 1 in our experiments unless specified otherwise. The comprehensive
loss function is designed to enable the model to concurrently learn across the four tasks introduced
in previous sections, ensuring a balanced and integrated training process. In Section A.4 of the
appendix, we explore the impact of different hyper-parameter choices, demonstrating how varying
these weights can influence the overall model performance.

4 EXPERIMENTS

4.1 SETUP

Our experiments were conducted on a setup with four nodes, each equipped with four NVIDIA
A100 GPUs (80GB). For details on computational efficiency, see Section A.2 in the appendix.

4.1.1 TRAINING DATA AND AUGMENTATION STRATEGY

Our model is trained on a carefully curated 15 million image subset of the YFCC100M
dataset (Thomee et al., 2016), which contains only English-language titles and descriptions. For
each image, a valid caption—either a title or description—is randomly selected during training,
following the methodology used in SLIP (Mu et al., 2022).

To enhance model robustness, we employ a data augmentation strategy similar to that of SLIP. Im-
ages are randomly resized and cropped to a size between 50% and 100% of their original dimensions.
This augmentation is applied to the images in the online training branches, allowing the model to
learn from varied perspectives of the same image. For the teacher branch, we use a larger randomly
cropped sub-image compared to the online views, which allows us to accurately compute attention
value.
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4.1.2 ARCHITECTURE AND TRAINING SETTING

Figure 1 illustrates the architecture of the DetailCLIP framework, which is composed of six key
components: two visual encoders, denoted as gθ, and gϕ, a text encoder named eγ , a vision decoder
named dϕ, and two heads referred to as hθ and hϕ.

To ensure a fair comparison with existing models, our visual encoders (gθ and gϕ) are based on
the Vision Transformer (ViT-B/16) (DOSOVITSKIY, 2020) architecture. This model features 12
layers, each with a width of 768 and 12 attention heads.

For the text encoder (eγ), we adopted a 12-layer Transformer architecture with a width of 512 and 8
attention heads, following the design principles established by CLIP (Radford et al., 2021).

The decoder (dϕ) itself is composed of a series of transformer blocks like MAE He et al. (2022).
The decoder handles the entire set of input patches, including both the attention-masked and retained
patches. Positional embeddings are added to each token in the set to preserve the spatial information.

The projection heads (hθ and hϕ) in our framework are implemented as 3-layer MLPs, featuring an
L2-normalized bottleneck, similar to the approach used in DINO (Caron et al., 2021). The output
dimension of the shared projection head is set to 8192 like iBOT paper (Zhou et al., 2021), for robust
feature representation and alignment during training.

For our experiments, we employ the AdamW optimizer (Loshchilov & Hutter, 2017) with a learning
rate of 5e − 4 and a weight decay of 0.5. The training is conducted with a substantial batch size of
4096.

4.2 EXPERIMENTAL ANALYSIS

Additional experiments and analyses are provided in the appendix due to page limitations: Sec-
tion A.1 (attention-based token removal), Section A.2 (compute efficiency), Section A.3 (pseu-
docode), Section A.4 (ablation studies), and Section A.5 (visual comparison of model outputs).

4.2.1 DETAIL-ORIENTED VISUAL TASKS

ADE20K COCO
Methods Dataset Epoch Effective View UperNet Linear AP b APm

Self-Supervised
DeiT IN-1K 300 720M 47.4 - 44.1 39.8
MAE IN-1K 800 960M 46.5 34.3 46.2 39.1
DINO IN-1K 800 9600M 46.8 34.5 47.4 40.1
iBOT IN-1K 300 720M 47.3 34.7 48.4 42.1

AttMask IN-1K 300 4320M 47.5 35.2 48.9 42.2
CLIP-Based Model

CLIP 400M - - 46.4 34.2 43.6 39.5
SLIP YFCC-15M 25 750M 46.6 36.1 44.0 40.3

MaskCLIP YFCC-15M 25 750M 47.5 36.3 45.4 40.9
A-CLIP YFCC-15M 25 750M 47.0 34.7 45.8 41.7

DetailCLIP YFCC-15M 25 750M 48.1 37.3 48.9 42.5
DetailCLIP YFCC-15M 50 1500M 48.8 39.3 50.1 43.3

Table 1: Performance comparison on segmentation (ADE20K) and object detection (MS COCO)
tasks using the ViT-B architecture. Segmentation results are based on UperNet and linear decoders,
while object detection uses bounding box Average Precision. “Effective View” indicates the model’s
training exposure, calculated as views per image × epochs × dataset size.

We evaluated DetailCLIP on detail-oriented visual tasks to test its ability to capture fine-grained
details in complex visual environments.

Semantic Segmentation on ADE20K: We evaluated DetailCLIP on the ADE20K dataset (Zhou
et al., 2017) using both UperNet (Xiao et al., 2018) and linear decoders. UperNet assessed the
model’s ability to capture detailed object boundaries, while the linear decoder tested performance
under minimal architectural complexity. Input images had a resolution of 512 × 512 pixels, and
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Image Ground Truth A-Clip SLIP DetailCLIP

Figure 2: Visual comparison of segmentation results using the Linear decoder across different
models. The comparison includes SLIP, Attentive Mask CLIP, and DetailCLIP at 25 epochs.

training was conducted for 160k iterations. Performance was measured using the mean Intersection
over Union (mIoU) metric.

Object Detection and Instance Segmentation on COCO: We evaluated DetailCLIP using the
Cascade Mask R-CNN model (Cai & Vasconcelos, 2019; He et al., 2017), following iBOT, to gen-
erate bounding boxes and instance masks on the COCO dataset (Lin et al., 2014). Performance was
measured using Average Precision for bounding boxes (AP b) and masks (APm).

Evaluating Task Outcomes: Table 1 shows DetailCLIP’s strong performance across detail-oriented
visual tasks. Using the ViT-B architecture, DetailCLIP achieved a mIoU of 48.8 on ADE20K with
UperNet, surpassing MaskCLIP by 1.3 points. In the linear decoder setting, DetailCLIP’s mIoU
of 39.3 outperformed SLIP by 3.2 points. In object detection on MS COCO, DetailCLIP achieved
48.9 AP b for bounding boxes, surpassing ACLIP by 3.1 points, and 42.5 APm for masks, 0.8
points higher than the best alternative. These improvements highlight DetailCLIP’s effectiveness in
capturing both high-level semantics and fine-grained details.

Visual Comparative Analysis: Figure 2 shows the result of our model compared to the other base-
lines. Additionally, we invite you to refer to Section A.5 of the appendix, where we cover segmen-
tation and object detection tasks.

4.2.2 IMAGE CLASSIFICATION

Zero-shot on Text-Image Retrieval: We also present the zero-shot text-image retrieval on 3
benchmark datasets: Flickr30K (Young et al., 2014), MS-COCO (Lin et al., 2014), and ImageNet-
1K (Deng et al., 2009). Our findings indicate that using plain text, without any added prefixes or
suffixes, consistently yields strong performance across all models evaluated. Table 2 comprehen-
sively evaluates different models on text-image retrieval tasks, explicitly focusing on Flickr30K and
MS-COCO datasets, also a zero-shot evaluation on ImageNet-1K.

At 25 epochs, DetailCLIP demonstrates the highest performance across most metrics, achieving
the best results in Flickr I2T (62.8), T2I (42.2), COCO I2T (38.3), and zero-shot on IN-1K (43.9),
closely matching A-CLIP. For 50 epochs, DetailCLIP maintains its superior performance, particu-
larly in the COCO dataset, where it ties in with A-CLIP for the best I2T score (39.8) and surpasses
A-CLIP in T2I with a score of 24.9. The results suggest that DetailCLIP is particularly strong in
tasks that require detailed matching between text and images. DetailCLIP outperforms other models
in both datasets’ I2T and T2I retrieval tasks, indicating its effectiveness in text-image association.

Additionally, in Section A.4 of the appendix, we also provide the effect of different hyperparameter
settings on ImageNet-1K’s zero-shot scores.
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Zero-Shot Classification Performance Evaluation on Diverse Benchmarks: We evaluated De-
tailCLIP’s zero-shot classification performance on 13 tasks, following SLIP’s (Mu et al., 2022)
evaluation protocols with identical prompts for fair comparison. The results in the table 3 demon-
strate that DetailCLIP consistently outperforms its competitors. Specifically, DetailCLIP achieved
the highest performance in 12 out of 26 evaluation scenarios and secured the second-best position in
5 additional cases. DetailCLIP also achieved the highest average scores in both the 25-epoch (37.3)
and 50-epoch (37.6) settings.

Flickr30K COCO IN-1KMethods E I2T T2I I2T T2I 0-Shot
CLIP 25 51.4 32.6 27.9 17.6 37.6
SLIP 25 57.2 41.2 33.6 21.9 42.8

MaskCLIP 25 60.0 38.8 34.1 21.2 42.7
A-CLIP 25 62.7 42.1 38.0 23.2 43.9

DetailCLIP 25 62.8 42.2 38.3 22.9 43.9
CLIP 50 53.9 35.8 30.2 19.2 39.4
SLIP 50 60.6 41.1 33.2 22.3 44.1

A-CLIP 50 66.7 43.2 39.8 24.4 46.3
DetailCLIP 50 65.9 44.7 39.8 24.9 46.2

Table 2: Comparison of model performance on text-image retrieval for Flickr30K, MS COCO, and
zero-shot ImageNet-1K (IN-1K). Metrics for image-to-text (I2T) and text-to-image (T2I) retrieval
are shown after 25 and 50 epochs (E), based on results from A-CLIP Yang et al. (2023).
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A-CLIP 58.7 10.2 27.7 40.5 61.0 9.4 11.3 95.5 23.3 14.4 63.7 19.6 52.3 37.550

DetailCLIP 57.5 11.0 29.8 40.8 64.1 7.3 10.8 95.8 30.9 13.3 63.9 12.7 50.1 37.6

Table 3: Zero-shot performance evaluation across multiple classification benchmarks. Epochs indi-
cate the total number of training epochs. The results were collected in the A-CLIP paper Yang et al.
(2023).

5 CONCLUSION

In this paper, we introduce DetailCLIP, a self-improving vision-language framework designed to
overcome the limitations of traditional CLIP-based models in both fine- and coarse-grained tasks.
While CLIP excels at aligning global image-text representations, it often misses the fine-grained
details needed for tasks like segmentation and object detection. To address this, DetailCLIP in-
corporates self-curated learning objectives—patch-level self-distillation, pixel-level reconstruction,
and attention-based token filtering—to iteratively refine both high-level semantics and detailed fea-
tures. Experiments show that DetailCLIP generalizes well across tasks, surpassing state-of-the-art
models on detail-focused benchmarks like ADE20K and MS COCO, while also delivering strong
performance on coarse-grained tasks such as zero-shot classification.
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Methods Training Time GPU Memory
CLIP 1.00x 14G
SLIP 2.67x 30G

MaskCLIP 1.56x 16G
A-CLIP 1.16x 14G

DetailCLIP 1.16x 24G

Table 4: Training time and GPU memory usage of various models, measured consistently on the
same device. Training time is reported relative to the baseline CLIP (1.00x), and GPU memory is
shown in gigabytes (GB) Yang et al. (2023).

A APPENDIX

A.1 ATTENTION TOKEN REMOVAL

a person crafting pottery on a potter’s
wheel, installed in a lowered section of

the floor.

Two dogs sitting on the grass; one is a
golden retriever, and the other is a

basset hound.

A black bird with a red beak perched
on a tree branch against a blue sky.

A large stupa with a golden spire in a
mountainous landscape under a blue

sky.

Figure 3: Illustration of the token removal mechanism, which retains semantically significant tokens
to focus on critical input aspects while discarding unnecessary details.

In Figure 3, the mechanism of token removal is illustrated. The process selectively eliminates less
relevant tokens, retaining only those with strong semantic significance. This approach enhances
the model’s focus on the most important aspects of the input, ensuring that critical information is
preserved while unnecessary details are discarded. The current settings of the model use a 50% mask
ratio, preserving only the semantically relevant details of the image. For example, in the image with
the two dogs, the grass background is removed as it is less important to the overall image. Similarly,
in the image of the black bird, the tree and branches are ignored while preserving the bird, as it is
central to the image. In the DetailCLIP model, the attention scores are derived from the teacher
network and are used to guide the student network during training.

A.2 COMPUTATIONAL EFFICIENCY

Our model demonstrates an effective balance between performance and efficiency, as highlighted
in Table 4 and Table 2. It requires only 24G of GPU memory, significantly less than SLIP (30G),
while achieving a training time of 1.16x—closely aligned with CLIP (1.00x) and notably faster
than SLIP (2.67x) and MaskCLIP (1.56x). Our resource usage and training speed make DetailCLIP
highly suitable for applications with limited GPU resources, while offering strong performance on
downstream tasks.

A.3 PSEUDOCODE

Algorithm 1 presents the pseudocode for the DetailCLIP algorithm, which integrates CLIP, self-
distillation, and pixel-level loss. The steps include updating the momentum encoder using EMA,
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generating teacher embeddings for both views (without gradients), and creating attention-based
masks with a 50% mask ratio. Student embeddings are then obtained after applying the masks
and projected using CLIP projections alongside text embeddings. The model produces outputs for
student distillation and reconstruction, followed by computing classification, patch-level, and recon-
struction losses to calculate the total loss.

Algorithm 1 Pytorch-like code for DetailCLIP

# u, v: view 1 and view 2 of the image
# s_visual, t_visual: student and teacher image encoders
# t_dist_head, s_dist_head: teacher and student distillation heads
# encode_image, encode_text: students CLIP image and text projections

# reconstr_head: pixel-level reconstruction head
def forward(u, v, text, momentum):

# Update momentum encoder using EMA
update_momentum_encoder(momentum)

# Teacher embeddings for both views (no gradient)
with no_grad():

t_embed_u, attn_u = t_visual(u)
t_embed_v, attn_v = t_visual(v)
t_dist_out = t_dist_head(concat(t_embed_u, t_embed_v))

# Generate masks from attention using 50% mask ratio
mask_u, mask_v = get_att_mask(attn_u), get_att_mask(attn_v)

# Get student embeddings after applying masks
s_embed_u = s_visual(u, mask=mask_u)
s_embed_v = s_visual(v, mask=mask_v)

# Project student embeddings using CLIP projections
img_emb_u = encode_image(s_embed_u)
img_emb_v = encode_image(s_embed_v)

# Get text embedding
text_emb = encode_text(tokenize(text))

# Student distillation output
s_dist_out = s_dist_head(concat(s_embed_u, s_embed_v))

# Reconstruction
s_dec_u = decoder(s_embed_u)
s_dec_v = decoder(s_embed_v)
u_rec = h_reconst(s_dec_u)
v_rec = h_reconst(s_dec_v)

# Compute losses
clip_loss = compute_clip_loss(img_emb_u, img_emb_v, text_emb)
distill_loss = compute_distill_loss(s_dist_out, t_dist_out)
recon_loss = compute_recon_loss(u_rec, v_rec, mask_u, mask_v)

# Total loss
total_loss = clip_loss + distill_loss + recon_loss
return total_loss

A.4 ABLATION STUDY ON LOSS WEIGHT

In this ablation study, we investigate the impact of different weight configurations on the compre-
hensive loss function Ltot introduced in Eq. 10. We aim to identify the optimal values for the
hyperparameters α1, α2, and α3 that effectively balance the various losses.
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α1 = 1 α1 = 1 α1 = 1 α1 = .5 α1 = 0
α2 = 1 α2 = 1 α2 = 1 α2 = .5 α2 = 0
α3 = 1 α3 = 0 α3 = 2 α3 = .5 α3 = 1

Acc 43.9 42.9 43.2 43.3 42.6

Table 5: Impact of varying α values on the zero-shot accuracy of ImageNet-1k after 25 epochs of
training with the DetailCLIP.

Table 5 presents the results of this exploration, showing how different combinations of these weights
influence the zero-shot accuracy on the ImageNet-1k dataset after 25 epochs of training. The accu-
racy values reflect the model’s performance under varying degrees of emphasis on each loss term.

Analyzing the results, we find that the baseline configuration, where all weights are set to 1, achieves
the highest accuracy of 43.9%, suggesting that equal emphasis on all loss components provides a
robust performance baseline. When α3 is reduced to 0, thereby ignoring the reconstruction loss, the
accuracy slightly decreases to 42.9%, indicating that while this loss component is not critical, it still
positively influences overall model performance. Doubling α3 to 2 results in a marginal accuracy
decrease to 43.2%, implying that an overemphasis on the reconstruction loss can detract slightly
from the model’s effectiveness in other tasks. Lowering the weights of α1 and α2 to 0.5 yields
an accuracy of 43.3%, demonstrating that moderate weight reductions do not significantly impact
performance. However, eliminating these (α1 = 0 and α2 = 0) reduces accuracy further to 42.6%,
underscoring their essential role in the model’s learning process.

A.5 VISUAL ANALYSIS

This section presents a comprehensive comparative analysis of DetailCLIP’s performance against
several baseline models, primarily focusing on segmentation and object detection tasks. Through a
series of detailed visualizations, we provide side-by-side comparisons that emphasize the superior
capability of DetailCLIP in capturing and reconstructing fine-grained details, which is crucial for
achieving high segmentation accuracy. Specifically, Figure 4 showcases the semantic segmentation
results using the UPerNet decoder, while Figure 5 highlights the results with a linear decoder. These
figures emphasize the notable improvements achieved by DetailCLIP in handling complex images,
particularly when it comes to accurately delineating boundaries and preserving detailed features,
areas where baseline models often struggle. The segmentation comparisons are conducted using the
ADE20K dataset.

In addition to segmentation, Figures 6 and 7 present the object detection results using the MS COCO
dataset, further demonstrating the effectiveness of DetailCLIP across multiple vision tasks. By
visualizing these outputs, we showcase DetailCLIP’s enhanced performance and shed light on the
limitations of other models, such as SLIP and A-CLIP. These comparisons underscore the significant
advancements made by DetailCLIP in tackling detail-oriented tasks, solidifying its robustness and
versatility in a wide array of visual challenges.

Overall, these visual and quantitative evaluations illustrate the significant advancements made by
DetailCLIP in addressing detail-oriented challenges across both segmentation and object detection.
The side-by-side comparisons solidify DetailCLIP’s robustness and adaptability, making it a more
effective and versatile solution for a wide range of fine-grained vision tasks.
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Image Ground Truth A-Clip SLIP DetailCLIP-25 DetailCLIP-50

Figure 4: Visual comparison of segmentation results using the UPerNet decoder across different
models. The comparison includes SLIP, A-CLIP, DetailCLIP at 25 epochs, and DetailCLIP at 50
epochs.

17



Published as a conference paper at ICLR 2025

Image Ground Truth A-Clip SLIP DetailCLIP

Figure 5: Visual comparison of segmentation results using the Linear decoder across different mod-
els. The comparison includes SLIP, A-CLIP, and DetailCLIP at 25 epochs.
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Image + Objects Image + Objects

Figure 6: Object detection results using DetailCLIP after 50 training epochs. The image highlights
DetailCLIP’s ability to detect objects accurately, showcasing its precision and effectiveness in com-
plex scenes
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Image + Objects Image + Objects

Figure 7: Object detection results using DetailCLIP after 50 training epochs. The image highlights
DetailCLIP’s ability to detect objects accurately, showcasing its precision and effectiveness in com-
plex scenes
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