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ABSTRACT

The noise in stochastic gradient descent (SGD) provides a crucial implicit regu-
larization effect, previously studied in optimization by analyzing the dynamics of
parameter updates. In this paper, we are interested in learning with noisy labels,
where we have a collection of samples with potential mislabeling. We show that a
previously rarely discussed SGD noise, induced by stochastic label noise (SLN),
mitigates the effects of inherent label noise. In contrast, the common SGD noise
directly applied to model parameters does not. We formalize the differences and
connections of SGD noise variants, showing that SLN induces SGD noise depen-
dent on the sharpness of output landscape and the confidence of output probability,
which may help escape from sharp minima and prevent overconfidence. SLN not
only improves generalization in its simplest form but also boosts popular robust
training methods, including sample selection and label correction. Specifically,
we present an enhanced algorithm by applying SLN to label correction. Our code
is released1.

1 INTRODUCTION

The existence of label noise is a common issue in classification since real-world samples unavoid-
ably contain some noisy labels, resulting from annotation platforms such as crowdsourcing sys-
tems (Yan et al., 2014). In the canonical setting of learning with noisy labels, we collect samples
with potential mislabeling, but we do not know which samples are mislabeled since true labels are
unobservable. It is troubling that overparameterized Deep Neural Networks (DNNs) can memo-
rize noise in training, leading to poor generalization performance (Zhang et al., 2017; Chen et al.,
2020b). Thus, we are urgent for robust training methods that can mitigate the effects of label noise.

The noise in stochastic gradient descent (SGD) (Wu et al., 2020) provides a crucial implicit reg-
ularization effect for training overparameterized models. SGD noise is previously studied in opti-
mization by analyzing the dynamics of parameter updates, whereas its utility in learning with noisy
labels has not been explored to the best of our knowledge. In this paper, we find that the com-
mon SGD noise directly applied to model parameters does not endow much robustness, whereas
a variant induced by controllable label noise does. Interestingly, inherent label noise is harmful to
generalization, while we can mitigate its effects using additional controllable label noise. To prevent
confusion, we use stochastic label noise (SLN) to indicate the label noise we introduce. Inherent la-
bel noise is biased and unknown, fixed when the data is given. SLN is mean-zero and independently
sampled for each instance in each training step. Our main contributions are as follows.

• We formalize the differences and connections of three SGD noise variants (Proposition 1-
3) and show that SLN induces SGD noise that is dependent on the sharpness of output
landscape and the confidence of output probability.

∗Corresponding to: gy.chen@siat.ac.cn, junjie.ye@vivo.com.
1https://github.com/chenpf1025/SLN
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Figure 1: Test accuracy and training loss, averaged in 5 runs.

• Based on the noise covariance, we analyze and illustrate two effects of SLN (Claim 1 and
Claim 2): escaping from sharp minima2 and preventing overconfidence3.

• We empirically show that SLN not only improves generalization in its simplest form but
also boosts popular robust training methods, including sample selection and label correc-
tion. We present an enhanced algorithm by applying SLN to label correction.

In Fig. 1, we present a quick comparison between models trained with/without SLN on CIFAR-10
with symmetric/asymmetric/instance-dependent/open-set label noise. Throughout this paper, we use
CE to indicate a model trained with standard cross-entropy (CE) loss without any robust learning
techniques, while the standard CE loss is also used by default for methods like SLN. In Section 4, we
will provide more experimental details and more results that comprehensively verify the robustness
of SLN on different synthetic noise and real-world noise. Here, the test curves in Fig. 1 show
that SLN avoids the drop of test accuracy, with converged test accuracy even higher than the peak
accuracy of the model trained with CE. The right two subplots in Fig. 1 show the average loss on
clean and noisy samples. When trained with CE, the model eventually memorizes noise, indicated
by the drop of average loss on noisy samples. In contrast, SLN largely avoids fitting noisy labels.

2 RELATED WORK

2.1 SGD NOISE AND THE REGULARIZATION EFFECT

The noise in SGD (Wu et al., 2020; Wen et al., 2019; Keskar et al., 2016) has long been studied
in optimization. It is believed to provide a crucial implicit regularization effect (HaoChen et al.,
2020; Arora et al., 2019; Soudry et al., 2018) for training overparameterized models. The most
common SGD noise is spherical Gaussian noise on model parameters (Ge et al., 2015; Neelakan-
tan et al., 2015; Mou et al., 2018), while empirical studies (Wen et al., 2019; Shallue et al., 2019)
demonstrate that parameter-dependent SGD noise is more effective. It is shown that the noise covari-
ance containing curvature information performs better for escaping from sharp minima (Zhu et al.,
2019; Daneshmand et al., 2018). On a quadratically-parameterized model (Vaskevicius et al., 2019;
Woodworth et al., 2020), HaoChen et al. (2020) prove that in an over-parameterized regression set-
ting, SGD with label perturbations recovers the sparse groundtruth, whereas SGD with Gaussian
noise directly added on gradient descent overfits to dense solutions. In the deep learning scenario,
HaoChen et al. (2020) present primary empirical results showing that SGD noise - induced by Gaus-
sian noise on the gradient of the loss w.r.t. the model’s output - avoids performance degeneration of
large-batch training. Xie et al. (2016) discuss the implicit ensemble effect of random label perturba-
tions and demonstrate better generalization performance. In this paper, we provide new insights by
analyzing SGD noise variants and the effects, and showing the utility in learning with noisy labels.

2Around sharp minima, the output changes rapidly (Hochreiter & Schmidhuber, 1997; Keskar et al., 2017).
3The prediction probability on some class approaches 1.
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2.2 ROBUST TRAINING METHODS

Mitigating the effects of label noise is a vital topic in classification, which has a long history (Ekholm
& Palmgren, 1982; Natarajan et al., 2013) and attracts much recent interest with several directions
explored. 1) Malach & Shalev-Shwartz (2017); Han et al. (2018b); Yu et al. (2019); Chen et al.
(2019a); Wei et al. (2020) propose sample selection methods that train on trusted samples, identified
according to training loss, cross-validation or (dis)agreement between two models. 2) Liu & Tao
(2015); Jiang et al. (2018); Ren et al. (2018); Shu et al. (2019); Li et al. (2019a) develop sample-
weighting schemes that aim to add higher weights on clean samples. 3) Sukhbaatar et al. (2015);
Patrini et al. (2017); Hendrycks et al. (2018); Han et al. (2018a) apply loss-correction based on an
estimated noise transition matrix. 4) Reed et al. (2015); Tanaka et al. (2018); Arazo et al. (2019);
Zheng et al. (2020); Chen et al. (2020a) propose label correction based on the model’s predictions.
5) Ghosh et al. (2017); Zhang & Sabuncu (2018); Xu et al. (2019); Wang et al. (2019); Lyu & Tsang
(2020); Ma et al. (2020) study robust loss functions that have a theoretical guarantee for noisy risk
minimization, typically with the assumption that the noise is class-conditional (Scott et al., 2013;
Natarajan et al., 2013). 6) Chen et al. (2019b); Menon et al. (2020); Hu et al. (2020); Harutyun-
yan et al. (2020); Lukasik et al. (2020) apply regularization techniques to improve generalization
under label noise, including explicit regularizations such as manifold regularization (Belkin et al.,
2006) and virtual adversarial training (Miyato et al., 2018), and implicit regularizations such as
dropout (Srivastava et al., 2014), temporal ensembling (Laine & Aila, 2017), gradient clipping (Pas-
canu et al., 2012; Zhang et al., 2019; Menon et al., 2020) and label smoothing (Szegedy et al., 2016).
7) One can combat label noise with refined training strategies (Li et al., 2019b; 2020; Nguyen et al.,
2020) that potentially incorporate several techniques, including sample selection/weighting, label
correction, meta-learning (Li et al., 2019b) and semi-supervised learning (Tarvainen & Valpola,
2017; Berthelot et al., 2019). Among these methods, regularization techniques are closely related to
the essence of training networks, and studying robustness under label noise provides a new lens of
understanding the regularization apart from the optimization lens.

3 METHOD

3.1 THE DIFFERENCES AND CONNECTIONS OF SGD NOISE VARIANTS

Notations. LetD = {(x(i), y(i))}ni=1 be a dataset with noisy labels. For each sample (x, y), its label
y may be incorrect and the true label is unobservable. Let f(x; θ) be the neural network model with
trainable parameter θ ∈ Rp. For a c-class classification problem, we have the output f(x; θ) ∈ Rc.
We use a softmax function S(f(x; θ)) ∈ [0, 1]c to obtain the probability of each class. The loss
on a sample is denoted as `(f, y). For classification, we use the cross-entropy (CE) loss by default.
In parameter updates, a sample contributes ∇θ`(f, y) to the gradient descent. With SGD noise, the
model is trained with a noisy gradient ∇̃θ`(f, y). Following the standard notation of the Jacobian
matrix, we have ∇θ` ∈ R1×p, ∇f ` ∈ R1×c,∇θf ∈ Rc×p, ∇θif ∈ Rc and∇θfi ∈ R1×p.

Gaussian noise on the gradient of loss w.r.t. parameters. The most common SGD noise is the
spherical Gaussian noise directly added to the gradient to parameters (Neelakantan et al., 2015) as
follow,

∇̃θ`(f, y) = ∇θ`(f, y) + σθzθ, (1)
where σθ > 0, zθ ∈ R1×p and zθ ∼ N (0, Ip×p).

Gaussian noise on the gradient of loss w.r.t. the model output. Taking a step further, HaoChen
et al. (2020) study SGD noise induced by label noise on a quadratically-parameterized regression
model, whereas for classification, they add mean-zero noise to∇f `(f, y) as follow,

∇̃θ`(f, y) = (∇f `(f, y) + σfzf ) · ∇θf, (2)

where σf > 0, zf ∈ R1×c and zf ∼ N (0, Ic×c).

Noise induced by SLN. The label perturbation is a common technique (Xie et al., 2016), while we
provide new insights by analyzing the effects from the lens of SGD noise. Our SLN adds mean-zero
Gaussian noise to the one-hot labels, where the noise is independently sampled for each instance in
each training step.

∇̃θ`(f, y) = ∇θ`(f, y + σyzy), (3)
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where σy > 0, zy ∈ Rc and zy ∼ N (0, Ic×c). Here, σyzy is the SLN on the label y.

In above Eq. (1-3), the standard deviation σ is a hyperparameter. Since the SGD noise we introduce
is i.i.d for each sample, we consider each single sample (x, y) independently in the following propo-
sitions. For convenience, we use f , S to indicate the model output f(x; θ) and the softmax output
S(f(x; θ)) on a sample. The proofs are presented in Appendix A.
Proposition 1. Compared with Eq. (1), Eq. (2) induces noise z ∼ N (0, σ2

fM) on ∇θ`(f, y), s.t.,
M ∈ Rp×p and Mi,j = (∇θif)T∇θjf , ∀i, j ∈ {1, · · · , p}. Note that the standard deviation of
noise on the i-th parameter θi is σf‖∇θif‖2, where ‖·‖2 denotes the L2 norm.
Proposition 2. For the cross-entropy loss, compared with Eq. (2), Eq. (3) induces noise z ∼
N (0, σ2

yM) on ∇f `(f, y), s.t., M ∈ Rc×c, Mi,i = c(Si − 1/c)2 + (c − 1)/c and Mi,j =
c · SiSj − Si − Sj , if i 6= j. Note that the standard deviation of noise on the i-th entry is
σy
√
c(Si − 1/c)2 + (c− 1)/c.

Proposition 3. For the cross-entropy loss, compared with Eq. (1), Eq. (3) induces noise z ∼
N (0, σ2

yM) on∇θ`(f, y), s.t., M ∈ Rp×p and Mi,j = (
∇θiS
S )T

∇θjS
S , ∀i, j ∈ {1, · · · , p}, where ·S

denotes the element-wise division. Note that the standard deviation of noise on the i-th parameter
θi is σy

∥∥∥∇θiSS ∥∥∥
2
.

3.2 THE EFFECTS OF SGD NOISE

Xie et al. (2016) discuss the effect of label perturbations as implicit ensemble. In this paper, based on
Proposition 1-3, we show that SLN induces SGD noise of high variance when the output landscape
is sharp or the prediction confidence is high. In this way, SLN helps escape from sharp minima and
prevents overconfidence. It was discussed that flat minima generalize well (Hochreiter & Schmidhu-
ber, 1997; Keskar et al., 2017; Neyshabur et al., 2017). Specifically, Achille & Soatto (2018) show
that flat minima have lower mutual information between model parameters and training data, which
leads to better generalization. The finding motivates several robust learning methods (Harutyunyan
et al., 2020; Xie et al., 2020) and also supports our method. Moreover, preventing overconfidence
can mitigate overfitting on noisy labels (Menon et al., 2020; Lukasik et al., 2020).

The SGD noise perturbs θ so that the training can not converge when the noise has high variance.
Therefore, we derive Claim 1 and Claim 2 with justifications as follows.

• For the most common spherical Gaussian noise shown in Eq. (1), its standard deviation is
a constant throughout training, independent of the landscape.

• For Eq. (2), Proposition 1 shows that the standard deviation of noise is σf‖∇θif‖2.
‖∇θif‖2 can be very large around the sharp landscape, which means the SGD noise has
high variance. The high variance makes the training difficult to converge, which helps es-
cape from sharp minima. Note that for training without SGD noise, it can converge to sharp
minima because θ always follows the direction of gradient descent, whereas the direction
of noise is random.

• For our SLN in Eq. (3), Proposition 3 shows that the standard deviation of the SGD noise is
σy ‖∇θiS/S‖2 with ∇θiS in the numerator. SLN similarly induces SGD noise with high
variance around the sharp landscape. Hence we have Claim 1.

• Moreover, Proposition 2 shows that SLN induces SGD noise dependent on the confidence
of S. The standard deviation of noise on an entry of ∇f `(f, y) is minimized if Si = 1/c,
maximized if Si = 1. Proposition 3 directly characterizes the equivalent noise on θ, where
S is in the denominator (element-wise division). If S is confident, s.t., the entropyH(S)→
0, which means an entry of S approaches 1 and others approach 0, then the variance will
be high since there are small numbers in the denominator. Hence we have Claim 2.

Claim 1. With SGD noise induced by Eq. (2) or Eq. (3), the training is difficult to converge when
the output (f or S) landscape is sharp.
Claim 2. With SGD noise induced by Eq. (3), the training is difficult to converge when the output
(S) is overconfident, s.t. H(S)→ 0, where H(·) is the entropy.

Fig. 2 shows visualizations of loss landscapes. The model trained with SLN converges to a flat min-
imum that has small SGD noise. More discussions on the convergence are presented in Appendix E.
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Figure 2: Loss landscapes around the local minima of converged models trained on CIFAR-10 with
symmetric noise, visualized using the technique in Li et al. (2018). We show the z-axis on the same
scale to compare the sharpness; and draw color bars separately to show the loss distribution around
each minimum. (a): The model trained with CE converges to a sharp minimum. (b): Training
with Eq. (1) yields a minimum with a higher loss, yet it is still sharp. (c)&(d): Consistent with our
analysis, the model trained with Eq. (2) or Eq. (3) converges to a flat minimum.
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Figure 3: Samples density w.r.t. the prediction probabilities (the softmax outputs on the labeled
class). SLN reduces overconfidence mostly on noisy samples, while clean samples are less affected.

In terms of escaping from sharp minima, there are previous works (Zhu et al., 2019; Daneshmand
et al., 2018) that study the inheret noise in SGD, showing that the noise covariance containing cur-
vature information performs better. They use the second-order approximation near the minima and
apply integral to training steps to characterize the ability of escaping from sharp minima. In this
paper, we study the noise induced by SLN and draw a more direct intuition between the noise co-
variance and the ability of escaping from sharp minima. Moreover, the dependency between the
noise induced by SLN and the confidence of output probability further provides an intuition on
avoiding overfitting under noisy labels. In terms of preventing overconfidence, we shall discuss la-
bel smoothing (LS) (Lukasik et al., 2020). It smooths the given one-hot label y into a soft one ỹ, s.t.,
ỹ = (1−α)y+αe/c, where e is an all-one vector and α > 0. In this way, LS introduces a fixed and
biased perturbation on the label, whereas SLN introduces dynamic and mean-zero perturbations. LS
does not introduce noise in each training step, while SLN adaptively perturbs the parameter once the
landscape is sharp or the prediction is overconfident. Hence, the robustness of SLN may not result
from preventing overconfidence alone, but also escaping from sharp minima. In Fig. 3, we plot the
sample density w.r.t. predictions on the labeled class, using CIFAR-10 with 40% symmetric noise as
an example. It shows that SLN does reduce overconfidence, while it mostly affects noisy samples.

3.3 A DISSECTION ON TRAINING SAMPLES

In this section, we show that SLN boosts popular robust training methods, including sample selec-
tion and label correction. Many methods, demonstrated to work well, select or add higher weight
on small-loss samples (Han et al., 2018b; Jiang et al., 2018; Li et al., 2020), or use the model’s
predictions to correct noisy labels (Tanaka et al., 2018; Arazo et al., 2019). A warm-up phase is
usually required to initialize the model before sample selection or label correction, yet the model
will memorize noise if the warm-up phase is too long. With SLN, we can simply train the model
until convergence. In Fig. 4, we compare converged models on CIFAR-10, where the model is
trained with/without SLN. The detailed noise setting can be found in Section 4. We first sort train-
ing samples in ascending order of loss, then uniformly divide them into 1000 samples per interval,
and finally obtain the number of four types of samples in each interval based on the correctness
of the given label and the prediction. When trained with CE, there are many small-loss samples
with incorrect labels (the blue region), then selecting small-loss samples is not reliable. The model
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Figure 4: Training samples are sorted in ascending order of loss, uniformly divided into 1000 sam-
ples per interval, and dissected according to the correctness of the given label and the prediction.

trained with SLN largely addresses the issue. Moreover, SLN is suitable for label correction since it
yields correct predictions for many originally incorrect samples (the orange region).

As a concrete example, we present an enhanced algorithm by applying SLN to label correction.
With SLN, we train the model for sufficient epochs until convergence, without the need of carefully
tuning a warm-up phase. Then we start label correction using ycorrection = ω · y + (1 − ω) · S,
where S is the softmax prediction, ω ∈ [0, 1] is the weight obtained by normalizing the training loss,
s.t., for the i-th training sample, ωi = (`i − `min)/(`max − `min). More discussions on the label
correction are presented in Appendix D.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

We comprehensively verify the utility of SLN on different types of label noise, including symmetric
noise, asymmetric noise (Zhang & Sabuncu, 2018), instance-dependent noise (Chen et al., 2020a)
and open-set noise (Wang et al., 2018) synthesized on CIFAR-10 and CIFAR-100 and real-world
noise on Clothing1M (Xiao et al., 2015).

• Symmetric noise assumes each label has the same probability of flipping to any other class.
We uniformly flip the label to other classes with an overall probability 40%.

• Asymmetric noise contains noisy labels flipped between similar classes. Following Zhang
& Sabuncu (2018), on CIFAR-10, we flip labels between TRUCK→AUTOMOBILE,
BIRD→AIRPLANE, DEER→HORSE, and CAT↔DOG, with a probability 40%; on
CIFAR-100, we flip each class into the next class circularly with a probability 40%.

• Instance-dependent noise is challenging since the mislabeling probability should be depen-
dent on each instance’s input features (Xia et al., 2020; Chen et al., 2020a). We use the
instance-dependent noise from Chen et al. (2020a) with a noise ratio 40%, where the noise
is synthetized based on the DNN prediction error.

• Open-set noise contains samples that do not belong to any class considered in the classi-
fication task. Following Wang et al. (2018), we yield CIFAR-10 with open-set noise by
randomly replacing 40% of its training images with images from CIFAR-100.
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Figure 5: Performance of SGD noise variants on CIFAR-10. The accuracy is averaged in 5 runs.

• For real-world noise, we use the large-scale benchmark Clothing1M, which contains 1M
training images with noisy labels from online shops.

We use the backbone wide ResNet-28-2 (Zagoruyko & Komodakis, 2016) on CIFAR-10 and
CIFAR-100 and ResNet-50 on Clothing1M. More training details can be found in Appendix B.
Apart from SLN, we introduce a momentum (MO) model (Tarvainen & Valpola, 2017) and la-
bel correction (LC), with which we get SLN-MO and SLN-MO-LC. Parameters of the momentum
model (θ′) is updated as a moving average of the the training model (θ). At t-th training step,
θ′(t) = αθ′(t−1) + (1 − α)θ(t). We use α = 0.999 in all experiments. For SLN-MO-LC, we have
discussed in Section 3.3 that SLN is reliable when applied to label correction.

4.2 COMPARING SGD NOISE VARIANTS

We first show that compared with other variants, SLN stands out in mitigating the effects of label
noise. The SGD noise variants have been formalized in Eq. (1-3), including zθ directly added to
∇θ`, zf on∇f ` and our SLN (zy). For SLN, the standard deviation is σ = 1 under symmetric label
noise and σ = 0.5 in all other cases. For other SGD noise, the standard deviation is equally tuned
and the performance under three different σ is separately shown in Fig. 5. SLN significant improves
the generalization, while other SGD noise variants can not achieve such impressive performance
even if σ is heavily tuned. It is worth noting that for all these variants, when σ is too small, the
model overfits noise since the training is similar to merely using CE loss; when σ is too large, the
model fails to fit the training data since the SGD noise is too high.

4.3 CIFAR-10 AND CIFAR-100

On CIFAR-10 and CIFAR-100, we compare with the following baselines: 1) standard cross-
entropy (CE) loss, 2) Generalized Cross-Entropy (GCE) (Zhang & Sabuncu, 2018) loss, 3) Co-
Teaching (Han et al., 2018b) that uses co-training and sample selection, 4) PHuber-CE (Menon
et al., 2020) that uses gradient clipping and 5) label-smoothing (LS) Lukasik et al. (2020) that clips
the label to be less confident before training. We use 5k noisy samples as the validation to tune
hyperparameters, then train the model on the full training set and report the test accuracy at the last
epoch. SLN simply requires tuning the standard deviation σ, which is tuned in {0.1, 0.2, 0.5, 1}. On
CIFAR-10, the best σ is 1 under symmetric noise and 0.5 otherwise; On CIFAR-100, it is 0.1 under
instance-dependent noise and 0.2 otherwise. The label correction in SLN-MO-LC is applied in the
last 50 epochs. The softmax prediction is converted into one-hot label in correction. We repeat each
experiment 5 times.

The average test accuracy at the last epoch is reported in Table 1 and Table 2. To illustrate the
influence of σ, an ablation study is presented in Fig. 6. In the tables, we mark the top-3 results in bold
and present the average training time of each method, evaluated on a single V100 GPU. Without the
momentum model and label correction, vanilla SLN achieves impressive test performance, which is
consistent with results in Fig. 1. In Section 3.3, we have analyzed that SLN can boost popular robust
training methods, based on a detailed dissection on DNNs’ predictions. As expected, we obtain
further improvement with SLN-MO and SLN-MO-LC. Notably, SLN, SLN-MO and SLN-MO-LC
sweep the top-3 results in almost all cases and require low computational cost. We do not expect
vanilla SLN to achieve state-of-the-art performance compared with many integrated methods. Still,
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Table 1: Test accuracy (mean±std in 5 runs) on CIFAR-10. The Open-Set noise is generated by
randomly replacing 40% images of CIFAR-10 with images from CIFAR-100. In Appendix C.1,
Table 4 shows that SLN can improve many robust learning methods.

Method Symmetric Asymmetric Dependent Open-Set Training time

CE 53.16±1.64 72.72±1.35 72.33±0.50 77.74±0.84 1.18±0.03h
GCE 79.27±0.54 70.90±2.98 73.05±0.24 81.56±0.41 1.19±0.03h
Co-Teaching 82.37±0.32 79.61±1.06 76.69±0.66 85.21±0.35 2.22±0.06h
PHuber-CE 80.58±0.34 73.01±1.28 72.70±0.24 81.62±0.52 1.20±0.04h
LS 66.59±1.25 66.96±2.02 72.79±0.27 77.06±0.37 1.20±0.02h

SLN 80.00±0.61 80.63±0.61 78.48±0.28 85.33±0.52 1.24±0.05h
SLN-MO 84.71±0.43 84.80±0.27 80.56±0.16 89.16±0.31 1.30±0.03h
SLN-MO-LC 87.00±0.27 87.85±0.41 81.76±0.16 88.47±0.22 1.31±0.04h

Table 2: Test accuracy (mean±std in 5 runs) on CIFAR-100.

Method Symmetric Asymmetric Dependent Training time

CE 31.63±0.83 36.26±0.65 55.59±0.43 1.22±0.04h
GCE 44.07±0.56 36.75±1.07 54.51±0.26 1.23±0.05h
Co-Teaching 53.05±1.11 39.78±0.52 47.06±0.44 2.23±0.07h
PHuber-CE 48.76±1.28 35.13±0.38 55.11±0.29 1.29±0.04h
LS 40.57±0.68 43.51±0.48 53.89±0.39 1.23±0.03h

SLN 50.24±0.41 44.43±0.19 57.47±0.30 1.28±0.04h
SLN-MO 56.57±0.38 50.59±0.35 61.24±0.27 1.32±0.02h
SLN-MO-LC 58.64±0.37 63.90±0.46 61.14±0.39 1.35±0.03h

SLN can be a promising option in the family of robust learning methods. In Appendix C.1, we show
that SLN can improve many existing methods.
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Ablation: the performance of SLN w.r.t. 
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Figure 6: Test accuracy (mean±std in 5 runs) of SLN on CIFAR-10 w.r.t. σ. A small σ results
overfitting while a large σ yields underfitting. In Appendix C.2, we visualize the embedding of
overfitting/underfitting. For results reported in Table 1 and Table 2, following Zhang & Sabuncu
(2018); Chen et al. (2020b), we use 5k noisy samples as the validation to tune σ ∈ {0.1, 0.2, 0.5, 1}.

4.4 CLOTHING1M

Clothing1M (Xiao et al., 2015) is a large-scale benchmark of clothing images from online shops with
14 classes, containing real-world label noise. It has 1 million noisy samples for training, 14k and 10k
clean samples for validation and test. The number of images labeled as each class is unbalanced,
ranging from 18976 to 88588 in the noisy training set. In previous works, some experiments are
conducted by sampling a class-balanced training subset in each epoch (Li et al., 2020), while others
directly train on the full training set (Patrini et al., 2017). Since the balanced training sampling
itself affects the test performance, it is difficult to compare results across papers. Therefore, we
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Table 3: Test accuracy (mean±std in 3 runs) on Clothing1M. The star∗ marks results copied from Pa-
trini et al. (2017). The result of DivideMix (Li et al., 2020) is reproduced from its official imple-
mentation, which uses class-balanced training sampling.

Training sampling Standard Noisy-class-balanced

Method Test accuracy Training time Test accuracy Training time

CE 68.94∗ - 71.12±0.32 2.61±0.08h
Forward 69.84∗ - 71.28±0.27 2.74±0.05h
Backward 69.13∗ - 71.03±0.33 2.72±0.09h
Co-Teaching 70.19±0.28 15.06±0.33h 72.14±0.28 4.51±0.17h
DivideMix - - 73.81±0.41 18.78±0.32h

SLN 70.42±0.34 9.25±0.12h 72.95±0.31 2.73±0.05h
SLN-MO 71.15±0.21 9.31±0.09h 72.98±0.15 2.78±0.07h
SLN-MO-LC 72.61±0.23 11.59±0.23h 74.08±0.18 3.31±0.03h

make it clear here and conduct experiments in both setting, including the standard sampling and the
noisy-class-balanced sampling. For the latter, in each epoch, 18976 instances per class are randomly
sampled from the noisy training set. Other training details strictly follow the standard benchmark
setting (Patrini et al., 2017), presented in Appendix B. We set the standard deviation of SLN as
σ = 0.2. For SLN-MO-LC, the label correction is applied since the first epoch. Results are listed in
Table 3, with the best result in bold and previous published results marked by a star. DivideMix trains
two models in each run and we average their test accuracy, rather than using additional ensemble
of two models. Our SLN outperforms many baselines. The variants SLN-MO and SLN-MO-LC
further achieve higher test accuracy. Specifically, SLN-MO-LC achieves the best test accuracy in
both settings. Our methods also stand out for training efficiency.

5 CONCLUSION

In this paper, we establish that SLN induces SGD noise dependent on the sharpness of output land-
scape and the confidence of output probability and analyze the effects of escaping from sharp local
minima and preventing overconfidence. This partially explains the robustness of SLN under noisy
labels since various works show that flat minima typically generalize well and preventing overconfi-
dence helps mitigate overfitting on noisy labels. We empirically verify the robustness of SLN under
various synthetic label noise and real-world noise. Moreover, we show that SLN boosts popular ro-
bust training methods, including sample selection and label correction. In particular, we justify that
SLN can enhance existing methods based on a detailed dissection on training samples, then present
a practical algorithm by applying SLN to label correction.
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A PROOFS

Proposition 1. Compared with Eq. (1), Eq. (2) induces noise z ∼ N (0, σ2
fM) on ∇θ`(f, y), s.t.,

M ∈ Rp×p and Mi,j = (∇θif)T∇θjf , ∀i, j ∈ {1, · · · , p}. Note that the standard deviation of
noise on the i-th parameter θi is σf‖∇θif‖2, where ‖·‖2 denotes the L2 norm.

Proof. Dimension: zf ∈ R1×c,∇θ` ∈ R1×p, ∇f ` ∈ R1×c,∇θf ∈ Rc×p,∇θif ∈ Rc.

For Eq. (2), the noisy gradient is

∇̃θ`(f, y) = (∇f `(f, y) + σfzf ) · ∇θf = ∇θ`(f, y) + σfzf · ∇θf (4)

The noise on ∇θ`(f, y) is z = σfzf · ∇θf ∈ R1×p. Note that zf ∼ N (0, Ic×c), let zi be the i-th
entry of z, we have

zi = σf

c∑
k=1

∂fk
∂θi

zfk . (5)

Hence,
E[z2i ] = σ2

f‖∇θif‖22, E[zizj ] = σ2
f (∇θif)T∇θjf. (6)

Proposition 2. For the cross-entropy loss, compared with Eq. (2), Eq. (3) induces noise z ∼
N (0, σ2

yM) on ∇f `(f, y), s.t., M ∈ Rc×c Mi,i = c(Si − 1/c)2 + (c − 1)/c, and Mi,j =
c · SiSj − Si − Sj , if i 6= j. Note that the standard deviation of noise on the i-th entry is
σy
√
c(Si − 1/c)2 + (c− 1)/c.

Proof. Dimension: y ∈ Rc, zy ∈ Rc, S ∈ Rc,∇f ` ∈ R1×c,∇S` ∈ R1×c,∇fS ∈ Rc×c.

Firstly, for the softmax function S = S(f(x)), we have the derivative matrix

∇fS = Λ(S)− S · ST , (7)

where Λ(S) is a diagonal matrix with Si on its i-th diagonal element and 0 otherwise.

For the cross-entropy loss, `(f, y) = −
∑c
k=1 yk logSk. Let ·S denote element-wise division, we

have

∇f `(f, y + σyzy) = ∇S`(f, y + σyzy) · ∇fS = −
(
y + σyzy

S

)T
· ∇fS

= −
( y
S

)T
· ∇fS −

(σyzy
S

)T
· ∇fS

= ∇f `(f, y)−
(σyzy

S

)T
· (Λ(S)− S · ST )

= ∇f `(f, y)− σy

(
zy −

c∑
k=1

zyk · S

)T
(8)

Then it is equivalent to induce noise z = −σy(zy −
∑c
k=1 zyk · S) on ∇f `(f, y), whose i-th entry

is zi = −σy(zyi −
∑c
k=1 zyk · Si). Note that zy ∼ N (0, Ic×c), then we can derive for i = j,

E[z2i ] = σ2
y(1− 2Si + c · S2

i ) = σ2
y(c(Si − 1/c)2 + (c− 1)/c), (9)

and for i 6= j,
E[zizj ] = σ2

y(c · SiSj − Si − Sj). (10)

Proposition 3. For the cross-entropy loss, compared with Eq. (1), Eq. (3) induces noise z ∼
N (0, σ2

yM) on∇θ`(f, y), s.t., M ∈ Rp×p and Mi,j = (
∇θiS
S )T

∇θjS
S , ∀i, j ∈ {1, · · · , p}, where ·S

denotes the element-wise division. Note that the standard deviation of noise on the i-th parameter
θi is σy

∥∥∥∇θiSS ∥∥∥
2
.
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Proof. Dimension: zy ∈ Rc,∇θ` ∈ R1×p,∇S` ∈ R1×c,∇θS ∈ Rc×p,∇θiS ∈ Rc.

For Eq. (3), the noisy gradient is

∇̃θ`(f, y) = ∇θ`(f, y + σyzy) = ∇S`(f, y + σyzy) · ∇θS = −
(
y + σyzy

S

)T
· ∇θS

= −
( y
S

)T
· ∇θS −

(σyzy
S

)T
· ∇θS = ∇θ`(f, y)−

(σyzy
S

)T
· ∇θS.

(11)

The noise on∇θ`(f, y) is z = −
(σyzy

S

)T ·∇θS. Note that zy ∼ N (0, Ic×c), let zi be the i-th entry
of z, we have

zi = −σy
c∑

k=1

∂Sk
∂θi

zyk
Sk

= −σy
c∑

k=1

∇θiSk
Sk

zyk . (12)

Hence,

E[z2i ] = σ2
y

∥∥∥∥∇θiSS
∥∥∥∥2
2

, E[zizj ] = σ2
y

(
∇θiS
S

)T ∇θjS
S

. (13)

B MORE DETAILS ON EXPERIMENT SETUP

B.1 CIFAR-10 AND CIFAR-100

The backbone and general training hyperparameters. In all experiments on CIFAR-10 and
CIFAR-100, we train wide ResNet-28-2 (Zagoruyko & Komodakis, 2016) for 300 epochs using
the SGD optimizer with learning rate 0.001, momentum 0.9, weight decay 5 × 10−4, and a batch-
size of 128. Standard data augmentation is applied, including per-pixel normalization, horizontal
random flip and 32 × 32 random crop after padding with 4 pixels on each side. The criterion for
setting the training hyperparameters includes 1) all methods should converge (the training accuracy
converges), 2) all methods share the same general training hyperparameters for a fair comparison.

Method-specific hyperparameters. The backbone is not unified in previous papers and we reim-
plement all methods in the same backbone for a fair comparison. Regarding this, we may not directly
follow the default hyperparameters. Following Zhang & Sabuncu (2018), we use 5k noisy samples
(10% of the training data) as the validation set to tune method-specific hyperparameters. We then
train the model on the full training set and report the test accuracy at the last epoch.

• SLN/SLN-MO/SLN-MO-LC (ours). We tune σ ∈ {0.1, 0.2, 0.5, 1}. On CIFAR-10, we
use σ = 1 for symmetric noise and σ = 0.5 otherwise; On CIFAR-100, we use σ = 0.1
for instance-dependent noise and σ = 0.2 otherwise. The momentum model is introduced
with hyperparemeter 0.999 without tuning. The label correction (LC) is applied after con-
vergence of training with SLN. All models are trained for 300 epochs and we introduce LC
at the 250th epoch without tuning beacuse the training accuracy does not increase much
after the 250th epoch. In this way, we do not increase the computation cost.

• GCE (Zhang & Sabuncu, 2018). GCE loss is applied as the training starts and there is a
warm epoch after which truncated GCE loss is applied every 10 epochs. We tune the warm
epoch in {0, 50, 100, 150, 200} and use 50 for CIFAR-10, 150 for CIFAR-100. There is a
hyperparameter q for the GCE loss. We set q = 0.7 since it is used in all experiments on
CIFAR-10 and CIFAR-100 in its original paper (Zhang & Sabuncu, 2018).

• Co-Teaching (Han et al., 2018b). The rate of selecting small-loss samples is linearly de-
creased from 1 to 1− ε at the first 10 epochs, where ε is the noise rate. This setting is used
in all experiments in the original paper (Han et al., 2018b) and it works well in our setting.

• PHuber-CE (Menon et al., 2020). There is a hyperparameter τ that controls the gradient
clipping. The original paper (Menon et al., 2020) uses τ = 2 on CIFAR-10 and τ = 10 on
CIFAR-100, but the default setting does not work well in our experiments. Hence, we tune
τ ∈ {2, 5, 10, 30, 50} and finally, on CIFAR-10, we use τ = 10 for asymmetric noise and
τ = 2 otherwise; on CIFAR-100, we use τ = 30.
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• LS (Lukasik et al., 2020). There is a hyperparameter α that controls how much the label
is smoothed. We tune α ∈ {0.2, 0.5, 0.8} and finally, on CIFAR-10, we use α = 0.5 for
asymmetric noise and α = 0.8 otherwise; on CIFAR-100, we use α = 0.8.

• SIGUA (Han et al., 2020). The hyperpramemeter γ is a factor that is multiplied on the
loss on ‘bad’ samples. We tune it in {0.01, 0.001, 0.0001} and finally use γ = 0.001 in all
experiments.

• DivideMix (Li et al., 2020). We tune the warm-up epoch and λu - the weight for unsu-
pervised loss. In the official implementation, the warm-up epoch is 10 on CIFAR-10 and
30 on CIFAR-100. The default hyperparameters do not work well in our experiments (we
observe a decrease of test accuracy after warm-up). Hence we tune the warm-up epoch
in {10, 30, 50, 100} but the performance does not improve compared with the default set-
tings. Hence we use the default warm-up and tune λu ∈ {0, 1, 5, 10, 25}. Finally, we
obtain impressive results with λu = 0 in all experiments.

B.2 CLOTHING1M

The backbone and general training hyperparameters. On Clothing1M, following the common
setting (Patrini et al., 2017), we train an Imagenet-pretrained ResNet-50 using the SGD optimizer
with momentum 0.9, weight decay 10−3 and batchsize 32. The initial learning rate is 10−3 and
decreased to 10−4 after 5 epochs. We use standard data augmentation with per-pixel normalization,
horizontal random flip and 224 × 224 random crop. Note that DivideMix uses the same backbone
ResNet-50 but a different training schedule, and we follow its official implementation released on
the GitHub.

Method-specific hyperparameters. Since the backbone ResNet-50 is used by default for most pub-
lished results (Patrini et al., 2017; Li et al., 2020), we can easily follow the default hyperparameters.

• SLN/SLN-MO/SLN-MO-LC (ours). Following previous methods (Patrini et al., 2017;
Li et al., 2020), the validation set cobtaining 14k clean samples is adopted to tune our
hyperparameters. We tune σ ∈ {0.1, 0.2, 0.5} and choose σ = 0.2. The momentum model
is implemented with hyperparemeter 0.999 without tuning. We fix the overall training
epoch as 10 and tune the epoch for applying label correction in {1, 5, 9}. Finally, we apply
label correction after the first epoch in all experiments.

• Forward/Backword (Patrini et al., 2017). The results is reproduced by reimplementing
the method exactly following hyperparameters in Patrini et al. (2017).

• Co-Teaching (Han et al., 2018b). On Clothing1M, the estimated noise rate is around
0.4 (Xiao et al., 2015). Hence, we linearly reduce the rate of selecting small-loss sam-
ples from 1 to 0.6 in 10 epochs.

• DivideMix (Li et al., 2020). The result is reproduced from its official implementation.

C MORE EMPIRICAL RESULTS AND DISCUSSIONS

C.1 SLN ENHANCES EXISTING METHODS

With a detailed dissection on predictions of DNNs trained with SLN (Section 3.3), we have shown
that SLN can boost popular robust training methods such as label correction and sample selection.
In this section, we verify this by integrating SLN with the following methods.

• Co-teaching (Han et al., 2018b). It uses co-training and sample selection. Two modes select
small-loss samples to train each other.

• Stochastic integrated gradient underweighted ascent (SIGUA) (Han et al., 2020). It adopts
gradient descent on good data as usual, and learning-rate-reduced gradient ascent on bad
data.

• DivideMix (Li et al., 2020). It combines co-training of two models, sample selection based
on the loss, label correction/guessing based on semi-supervised learning MixMatch (Berth-
elot et al., 2019), and other techniques including regularization, augmenting each image
twice.
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Table 4: Testing accuracy (mean±std in 5 runs) on CIFAR-10. SLN consistently improves many
robust learning methods. All methods are fairly compared using the same backbone wide ResNet-
28-2 and training hyperparameters (Appendix B).

Method Symmetric Asymmetric Dependent Open-Set

Co-Teaching 82.37±0.32 79.61±1.06 76.69±0.66 85.21±0.35
SLN-Co-Teaching 84.22±0.43 87.79±0.17 80.37±0.22 90.37±0.32
Improvement +1.85 +8.18 +3.68 +5.16
SIGUA 83.76±0.67 78.24±1.41 76.67±0.97 86.70±0.62
SLN-SIGUA 84.27±0.41 87.65±0.94 80.09±0.68 90.38±0.24
Improvement +0.51 +9.41 +3.42 +3.68
DivideMix 90.38±0.34 87.88±0.45 82.21±0.37 90.49±0.62
SLN-DivideMix 90.87±0.28 89.31±0.39 82.86±0.41 91.65±0.59
Improvement +0.49 +1.43 +0.65 +1.16

Figure 7: The t-SNE visualization of features on the model’s penultimate layer.

Specifically, we use models trained with SLN as the initialization of these methods. As shown in
Table 4, all methods obtain consistent improvement when integrated with SLN. Moreover, with SLN
as initialization, we do not need to tune the warm-up phase for methods like DivideMix, because
we can train with SLN until convergence. In contrast, without SLN, we need to carefully warm up
the model so that it learns enough correct patterns and does not memorize too much noise. Note
that better results for DivideMix are reported in the original paper with a different backbone and
carefully scheduled learning rate. We focus on fairly comparing the robustness of all methods: in
all experiments, we train the same backbone wide ResNet-28-2 for 300 epochs without learning rate
change. Detailed training settings are presented in Appendix B.

C.2 T-SNE VISUALIZATION OF FEATURES ON THE MODEL’S PENULTIMATE LAYER

In Fig. 7, we show the t-SNE visualization of features on the model’s penultimate layer, taking
all training samples as input. We visualize the embedding on CIFAR-10 with symmetric noise
since the noise yields the most severe damage to the generalization and SLN provides a significant
improvement. Fig. 7 shows that the model trained with SLN can yield a better embedding. It also
demonstrates overfitting and underfitting when σ is too small or too large.

C.3 TEST ACCURACY W.R.T. TRAINING EFFICIENCY

In Fig. 8, we visualize the training efficiency and test accuracy. The figure clearly illustrates the
superior generalization performance and high efficiency of our methods.

D LABEL CORRECTION

The convergence issue in label correction. When using the model’s prediction to correct noisy
labels, we find a convergence issue such that the test accuracy decreases, as shown in Fig. 10. The
convergence issue is also reported in Arazo et al. (2019), but it has not been widely discussed. In

18



Published as a conference paper at ICLR 2021

0.0 0.2 0.4 0.6 0.8 1.0
1/time (h 1)

55
60
65
70
75
80
85

Te
st

 A
cc

ur
ac

y

CE

GCE
Co-Teaching PHuber-CE

LS

SLN
SLN-MO

SLN-MO-LC
Symmetric

0.0 0.2 0.4 0.6 0.8 1.0
1/time (h 1)

70

75

80

85

Te
st

 A
cc

ur
ac

y

CE
GCE

Co-Teaching

PHuber-CE

LS

SLN

SLN-MO
SLN-MO-LC

Asymmetric

0.0 0.2 0.4 0.6 0.8 1.0
1/time (h 1)

72

74

76

78

80

82

Te
st

 A
cc

ur
ac

y

CE
GCE

Co-Teaching

PHuber-CE LS

SLN

SLN-MO
SLN-MO-LC

Dependent

0.0 0.2 0.4 0.6 0.8 1.0
1/time (h 1)

78

80

82

84

86

88

Te
st

 A
cc

ur
ac

y

CE

GCE

Co-Teaching

PHuber-CE

LS

SLN

SLN-MOSLN-MO-LC

Open-Set

Figure 8: Test accuracy w.r.t. training efficiency (1/time) on CIFAR-10.
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Figure 9: Training samples are sorted in ascending order of loss, uniformly divided into 1000 sam-
ples per interval, and dissected according to the correctness of the given label and the prediction.
This figure is exactly the same as Fig. 4 in the main paper. We present it here for your convenience
since we refer to the figure in Section D.

this section, we provide an intuitive hypothesis. We can analyze the effect of label correction on the
four types of samples, as shown in Fig. 9.

• 1) label ×, prediction ×. Label correction can not correct these samples, yet may even
make the case worse because the prediction error should be easier for the model to overfit
compared to given noisy labels.

• 2) label ×, prediction X. These samples benefit from label correction.

• 3) label X, prediction ×. Label correction is harmful for these samples.

• 4) label X, prediction X. Label correction does not significantly impact these samples
because both the prediction and the label are correct.

In a word, there exist samples of case 1) and case 3) that are not desired in label correction, but they
are unavoidable since we do not expect a model with 100% prediction accuracy. In label correction,
when trained with modified labels obtained from wrong predictions, the model may accumulate its
own error due to a positive feedback: yielding worse predictions after training on prediction errors.
Therefore, we hypothesize that samples of case 1) and case 3) result in the convergence issue.
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Figure 10: The test accuracy on CIFAR-10, averaged in 5 runs. We zoom in to focus on the effects
of label correction applied in the last 50 epochs. The open-set noise involves samples that do not
belong to any class considered in the task, for which label correction can not address.

How do we assign weights in label correction? We use ycorrection = ω · y + (1 − ω) · S, as
opposed to ycorrection = (1 − ω) · y + ω · S, where ω is an instance-dependent weight positive
correlated with the loss. We observe that our scheme mitigates the convergence issue, as shown
in Fig. 10. Our intuition that - samples that need correction have large losses - is consistent with
the method of Arazo et al. (2019), but this does not mean that the weight on S should be positive
correlated with the loss. We can consider the following cases.

• For small-loss samples, we have S ≈ y, as illustrated by the red region in Fig. 9. Label
correction does not affect these samples much regardless of the weight. Hence, we simply
need to consider the effects of label correction on large-loss samples.

• Large-loss samples of case 2) can benefit from label correction, as illustrated by the orange
region in Fig. 9. However, in this case, a higher loss does not mean that it requires a higher
weight on S for label correction 4.

• There exist large-loss samples of case 1) and case 3) for which label correction can be
harmful, as has been discussed in the above paragraph and illustrated by the blue and green
regions in Fig. 9.

Therefore, we assign a small weight of 1 − ω on S for large-loss samples. In this way, samples of
case 2) still benefit from label correction, while we mitigate the undesired effects on other large-loss
samples for which label correction can be harmful. The effectiveness of our scheme is verified in
Fig. 10.

E THE CONVERGENCE

In Fig. 2, the visualizations of loss landscapes show that the model trained with SLN converges to a
solution that has small SGD noise. The center point on the visualized landscape (i.e., the loss of the
given model) is a local minimum. From Fig. 2 (d), we observe that the minimum has the following
properties.

• The gradient around the minimum is small since it is flat.
• The predictions do not approach one-hot labels because the loss at the local minimum is

high. As shown in Fig. 3, the prediction probabilities are much lower than 1.

With the above two properties, Proposition 3 implies that around the flat minimum illustrated in
Fig. 2 (d), the noise on gradients is small. Therefore, the model can converge in the local flat
minimum.

4For example, considering two samples with the wrong label y1 = y2 = [1, 0, 0] and the latent true label
[0, 1, 0]. Imaging the predictions are S1 = [0.4, 0.6, 0], S2 = [0.3, 0.4, 0.3]. Then the cross-entropy loss is
`(y1, S1) < `(y2, S2), while for the weight on S, we want w1 > w2 because S1 is more correct compared with
S2 (the second entry 0.6 > 0.4). This example implies that for samples that can benefit from label correction,
a higher loss does not mean that it requires a higher weight on S for label correction.
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