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Abstract

As large language models become increasingly001
integrated into daily life, detecting implicit tox-002
icity across diverse contexts is crucial. To this003
end, we introduce LifeTox, a dataset designed004
for identifying implicit toxicity within a broad005
range of advice-seeking scenarios. Unlike ex-006
isting safety datasets, LifeTox comprises di-007
verse contexts derived from personal experi-008
ences through open-ended questions. Our exper-009
iments demonstrate that RoBERTa fine-tuned010
on LifeTox matches or surpasses the zero-shot011
performance of large language models in tox-012
icity classification tasks. These results under-013
score the efficacy of LifeTox in addressing the014
complex challenges inherent in implicit toxicity.015

1 Introduction016

As large language models (LLMs) continue to be017

integrated into our daily lives, ensuring their safety018

is becoming increasingly crucial (Bommasani et al.,019

2021; Kasneci et al., 2023; Moor et al., 2023).020

While LLMs could play a pivotal role in offering021

helpful advice for daily lives, there’s a critical need022

to safeguard against socially risky advice. How-023

ever, existing safety benchmarks and red teaming024

prompts (Hartvigsen et al., 2022; Ganguli et al.,025

2022) often fail to capture the implicit toxicity in026

complex real-life advice-seeking scenarios. This027

results in a gap where the nuanced and context-028

specific risks inherent in LLM responses are not ad-029

equately addressed (Pavlopoulos et al., 2020; Wie-030

gand et al., 2021; Deshpande et al., 2023).031

To bridge this gap, we introduce LifeTox, a032

dataset of 87,510 real-life scenarios and respec-033

tive advice crawled from two twin subreddit fo-034

rums: LifeProTips (LPT)1 and UnethicalLifePro-035

Tips (ULPT)2. These platforms serve as venues for036

users to discuss problems in their personal lives and037

1https://www.reddit.com/r/LifeProTips/
2https://www.reddit.com/r/

UnethicalLifeProTips/

🙎

😈
Life Advice: Go buy a cheap garage sale antique that 
is very breakable. Then place it right next to the door 
almost in front of it and place the antique right at the 
edge of the table. She will come in and destroy it. 
Then cry and embarrass her outta your room forever. 

Also get a months free rent at least. Bonus points if you 
fill it with dust and claim it was your beloved family 

members cremated remains

Advice-seeking Prompts: Landlord walks in without 
notice. Please help me stop her. I just started renting 
and my landlord walks in without letting me know. She 
says because she’s a woman I shouldn’t be scared of 
her, but I think that’s crazy and I don’t want her in my 

apartment regardless. In the lease, it states i should get 
a 24 hour notice. How can I prevent this?

❓

Figure 1: ULPT user feels stressed by the landlord enter-
ing the room without prior notice and is seeking advice
to prevent it. ULPT advisor suggests setting traps to de-
ceive the landlord into causing damage, which could be
used as a pretext to bar entry. This strategy, embodying
manipulation and deceit, justifies its ‘unsafe’ label.

request helpful tips. Strict guidelines dictate that 038

LPT is reserved for exchanging ethical living tips, 039

whereas ULPT permits unethical advice only, as 040

illustrated in Figure 1. Leveraging these subreddits, 041

LifeTox is designed to capture implicit toxicity 042

in advice for various personal advice-seeking con- 043

texts, thereby facilitating the training of robust and 044

generalizable toxicity detectors3. 045

LifeTox distinctively stands out from previous 046

safety benchmarks with its unique features. First, it 047

integrates questions that vividly describe detailed 048

personal experiences, thereby providing a long and 049

in-depth context for the advice sought. This is 050

demonstrated by the extensive average length of 051

the questions and the breadth of vocabulary, as 052

shown in Table 1. Second, LifeTox-trained mod- 053

els probes into implicit toxicity (ElSherief et al., 054

2021; Hartvigsen et al., 2022)—more subtle aspect 055

of whether the advice promotes socially inappropri- 056

ate or harmful behaviors, independent of explicit 057

profanity uses. Such focus on the underlying in- 058

3Please refer to A.1 for the complete guidelines and Figure
4 for the distribution of topics.
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tent and societal impact of the advice differentiates059

LifeTox from existing works; This ensures that tox-060

icity detection is not just based on surface-level indi-061

cators but also the deeper social implications of the062

advice. Consequently, LifeTox offers a thorough063

approach to understanding and detecting implicit064

toxicity, grounded in the societal context and the065

real-life complexity of personal experiences.066

Our experiments show LifeTox’s effective-067

ness for training generalizable toxicity classi-068

fiers. RoBERTa (Liu et al., 2019) fine-tuned on069

LifeTox demonstrates strong generalization capa-070

bility across various out-of-domain safety bench-071

marks such as HHH Alignments (Askell et al.,072

2021), HarmfulQ (Shaikh et al., 2023), and Beaver-073

Tails (Ji et al., 2023). It matches or exceeds the zero-074

shot results of large language models (>7B). It also075

exhibits superior performance on unseen bench-076

marks. This validates the significance of LifeTox077

as a resource for better addressing implicit toxicity078

in real-life advice-seeking scenarios.079

2 Related Works080

As LLMs became more integrated into daily081

life (OpenAI, 2023), there was a growing focus on082

implicit abusive language (Pavlopoulos et al., 2020;083

ElSherief et al., 2021; Hartvigsen et al., 2022), not084

only direct use of profanity. Some analyses MacA-085

vaney et al. (2019); Wiegand et al. (2019, 2021)086

indicated that existing datasets are struggling to087

handle this issue. Consequently, studies explored088

whether specific statements held implicit harmful089

intent (ElSherief et al., 2021) or dealt with im-090

plicit toxicity related to minorities (Hartvigsen et al.,091

2022; Wiegand et al., 2022) and demographics (Bre-092

itfeller et al., 2019). However, implicit scenarios093

in open-ended questions remain unaddressed (Garg094

et al., 2023; Gallegos et al., 2023; Yang et al., 2023;095

Kim et al., 2023a; Wen et al., 2023).096

For this vulnerability, numerous red teaming097

prompts have been discovered to trigger harm-098

ful responses from LLMs through implicitly toxic099

questions (Ganguli et al., 2022; Perez et al., 2022;100

Shaikh et al., 2023; Lee et al., 2023a; Bhardwaj and101

Poria, 2023). Given the widespread use of LLMs,102

there is an urgent need to prevent such scenarios.103

The prevailing approach aligns LLMs with human104

values on safety (Ouyang et al., 2022; Bai et al.,105

2022). Active research efforts are currently directed106

towards creating preference datasets through human107

annotation of machine-generated texts in response108

to these red teaming prompts (Askell et al., 2021; Ji 109

et al., 2023; Shaikh et al., 2023; Wang et al., 2023). 110

However, these efforts face significant limitations in 111

capturing the diversity of toxicity, mainly due to the 112

narrow scope of the red teaming prompts compared 113

to daily open-ended questions (Choi et al., 2018; 114

Wen et al., 2023). Very recently, Lee et al. (2023b); 115

Sun et al. (2023) addressed the social risks in the 116

scope of daily questions. In contrast, LifeTox of- 117

fers a dataset that evaluates implicit toxicity in the 118

responses across various daily-life scenarios. 119

3 LifeTox Dataset 120

Dataset Construction The twin Reddit forums 121

LPT and ULPT feature two main types of posts: 122

1) those in which individuals share their life tips 123

and 2) those that are advice-seeking, where users 124

look for solutions to their problems. We scraped 125

posts under the latter category, along with their 126

corresponding comments. Each forum operates un- 127

der strict guidelines and managerial oversight as 128

outlined in Appendix A.1. Posts that violate these 129

safety standards are either flagged with a specific 130

watermark or removed. Detailed crawling proce- 131

dures are in Appendix A.2. Through human eval- 132

uation, we confirmed the reliability of this strict 133

management, labeling LPT comments as safe and 134

ULPT comments as unsafe4. By collecting 66,260 135

safe pairs from LPT and 21,250 unsafe ones from 136

ULPT, we have assembled LifeTox, a dataset com- 137

prising a total of 87,510 instances. 138

LifeTox Statistics This section provides a statis- 139

tical analysis of LifeTox, as illustrated in Table 1. 140

An interesting observation is that the rate of pro- 141

fanity usage is similar between the safe and unsafe 142

classes, and both are low. This suggests that by train- 143

ing with LifeTox, models can better understand the 144

context of the advice and discern whether the behav- 145

ior it induces is socially problematic, independent 146

of profanity usage. Additionally, a notable distinc- 147

tion is evident in the length of the questions. In con- 148

trast to the red teaming prompts of existing safety 149

datasets, LifeTox’s questions contain detailed de- 150

scriptions of specific experiences and personal nar- 151

ratives, resulting in a significantly higher average 152

word count than traditional datasets. This leads to 153

an impressively large vocabulary size. Even con- 154

sidering only the unsafe class, despite BeaverTail 155

having nearly twice as many instances, it maintains 156

4Detailed in Appendix A.3
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Datasets LifeTox(ours) ToxiGen Hatred HarmfulQ BeaverTails HHH
HarmlessSafe Unsafe w\o CoT with CoT

% Explicit 10.3% 13.9% 1.8% 16.2% 1.3% 6.2% 18.5% 20.7%
# words in Q 62.4 98.3 No context No context 7.9 12.9 13.3 44.4
# words in A 55.7 35.7 92.0 16.8 56.9 105.9 60.3 37.4
Vocabulary size 257,326 86,368 2,300 29,106 5,056 8,385 94,651 1,098
Size (# instances) 66,260 21,250 274,186 50,000 593 (test only) 593 (test only) 38,961 58(test only)

Table 1: ToxiGen (Hartvigsen et al., 2022) and Hatred (ElSherief et al., 2021) are for implicit toxicity detection, while
HarmfulQ (Shaikh et al., 2023), BeaverTails (Ji et al., 2023), and HHH (Askell et al., 2021) serve as LLM-safety
datasets. The ‘% Explicit’ indicates the proportion of toxic instances with profanity. Vocabulary size refers to the
number of unique unigrams in the entire dataset.

nearly the same number of unique unigrams; includ-157

ing the safe class further enhances this richness sig-158

nificantly. Thus, the storylines covered by LifeTox159

are considerably more extensive, as visualized in160

Figure 4. And detecting the potential danger in161

LifeTox advice requires a deep understanding of162

its societal impact, beyond mere reliance on indi-163

cators like profanity usage. Consequently, training164

with LifeTox contributes to developing a more ro-165

bust and generalizable implicit toxicity detector.166

4 Experiments167

LifeTox enhances understanding of implicit toxic-168

ity through diverse advice-seeking contexts. This169

section explores how training on LifeTox con-170

tributes to the generalizability of LLM-safeguard.171

Therefore, we compare and analyze the LifeTox-172

trained model against various baselines in out-of-173

domain LLM-safety benchmarks, primarily focus-174

ing on generalization capability.175

Benchmarks In this experiment, we use four176

benchmarks. In addition to the LifeTox test set, the177

selected out-of-domain benchmarks include LLM-178

safety datasets such as HarmfulQ (Shaikh et al.,179

2023) , BeaverTails (Ji et al., 2023), and HHH180

Alignment (Askell et al., 2021). Both HarmfulQ181

and BeaverTails classify harmlessness in machine-182

generated texts from red teaming prompts. Re-183

sponses in HarmfulQ are categorized into two types:184

generated without Chain of Thought (CoT) (Wei185

et al., 2023) and with CoT. HHH Alignment, a186

widely utilized reward-model test bed, involves the187

identification of the human-preferred response be-188

tween two options; this experiment helps to gauge189

how well LifeTox aligns with human values.190

Models To analyze the LifeTox-trained models,191

we utilized both moderation APIs and implicit tox-192

icity datasets. Furthermore, to evaluate the zero-193

shot performance on unseen datasets of LifeTox-194

trained models, we conduct experiments on large195

language models’ zero-shot inference. For modera- 196

tion APIs, we utilized two most widely used APIs: 197

Perspective API5 and OpenAI moderation6. For 198

fair comparisons, we trained the same RoBERTa- 199

large (350M) (Liu et al., 2019) on implicit toxic- 200

ity datasets, Hatred (ElSherief et al., 2021), Toxi- 201

Gen (Hartvigsen et al., 2022), and LifeTox7. For 202

large language models, which have recently be- 203

come the de facto standard in long-form QA evalu- 204

ations with strong generalization ability (Kim et al., 205

2023b), we use Llama-2-chat (7B, 13B) (Touvron 206

et al., 2023) and GPT-3.5 (Ouyang et al., 2022)8. 207

5 Results & Analysis 208

Results In Table 2, notable differences were ob- 209

served between the predictions of safety APIs and 210

implicit toxicity models. Without explicit cues, 211

APIs tended to classify all content as safe. Con- 212

versely, both RoBERTa fine-tuned on Hatred and 213

ToxiGen struggle with contextual understanding, 214

perceiving negative grounded contexts as toxic- 215

ity and erroneously marking unsafe. RoBERTa- 216

LifeTox, in contrast, exhibits exceptional perfor- 217

mance across all benchmarks of the same scale 218

by leveraging a rich array of open-ended ques- 219

tions and answers within LifeTox. Large language 220

models surpass existing implicit toxicity models, 221

with increased scale contributing to enhanced con- 222

text comprehension, as evidenced by their aver- 223

age scores. Therefore, GPT-3.5 showcases the 224

highest average score with its 175B parameters. 225

Impressively, RoBERTa-LifeTox, despite being 226

20 times smaller, outperforms Llama-2-Chat (7B) 227

in all toxic classification benchmarks and even 228

beats Llama-2-Chat (13B) in the overall average 229

Macro F1-score. Even when the LifeTox test set 230

5https://perspectiveapi.com/
6https://platform.openai.com/docs/guides/

moderation
7Detailed training process is described in Appendix B.1.
8We use text-davinci-003 for GPT-3.5
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Models LifeTox (ours)
test set

HarmfulQ BeaverTails Average HHH
Harmlessw\o CoT with CoT

Safety APIs
Perspective API 38.2 (67.3 09.1) 27.9 (54.4 01.3) 20.7 (28.1 13.2) 33.7 (59.9 07.5) 30.1 0.621
OpenAI moderation 37.4 (64.7 00.1) 29.6 (56.0 03.2) 23.1 (32.9 13.2) 38.0 (69.0 06.9) 32.0 0.707
Fine-tuned on Implicit Toxicity Datasets
RoBERTa-Hatred (350M) 38.5 (11.0 66.0) 38.1 (00.0 76.1) 44.7 (00.0 89.4) 31.1 (02.4, 59.8) 38.1 0.604
RoBERTa-ToxiGen (350M) 37.4 (24.9 49.9) 38.5 (01.7, 75.2) 46.0 (02.4, 89.6) 37.6 (08.3, 66.8) 39.8 0.586
RoBERTa-LifeTox (350M) 96.5 (96.4 96.6) 56.3 (38.3 74.2) 68.5 (49.8 87.2) 63.0 (60.0 66.0) 71.1 0.845
Large Language Models
Llama-2-Chat (7B) 48.0 (25.8 70.1) 45.3 (16.0 74.6) 32.3 (00.1 64.4) 57.6 (42.7 72.4) 45.8 0.810
Llama-2-Chat (13B) 60.1 (53.2 67.0) 63.5 (47.2 78.9) 55.5 (32.9 78.1) 69.6 (66.2 72.9) 62.2 0.879
GPT-3.5 (175B) 74.4 (76.3 72.5) 71.2 (79.4 62.9) 77.4 (87.5 67.3) 65.7 (70.8 60.5) 72.2 0.879

Table 2: The performance of the classification task is denoted by the “Macro-F1 score (F1 with respect to the Safe
class, F1 with respect to the Unsafe class)”. Majorities show biased prediction to either safe or unsafe classes. HHH
Alignment has been separately categorized because it is a task that predicts human preferences between two different
responses. Bold font indicates the highest score, and underline indicates the second highest score.

is excluded to evaluate pure zero-shot capabilities,231

where RoBERTa-LifeTox scores 62.6, similar to232

Llama-2-Chat (13B) at 62.9, indicating their com-233

petitive generalization performance.234

Existing implicit toxicity models, designed for235

classification, generally underperform compared to236

APIs in the HHH Alignment task, which requires237

models to predict human-preferred responses be-238

tween two options. In contrast, RoBERTa-LifeTox239

verifies comparable performance to large language240

models that have already been fine-tuned to align241

with human preferences.242

Analysis In this section, our analysis goes beyond243

the numerical results in the previous section. Com-244

pared to other datasets, LifeTox typically features245

much longer contexts, as indicated in Table 1. This246

characteristic makes RoBERTa-LifeTox particu-247

larly well-suited for long-form QA.248

Therefore, we analyzed performance across var-249

ious QA lengths to examine the characteristics of250

RoBERTa-LifeTox and LLMs. As Figure 2 de-251

picts, both GPT-3.5 and Llama-2-Chat (13B) show252

a decline in performance as the context length253

increases. In contrast, RoBERTa-LifeTox’s per-254

formance improves with longer contexts. While255

LLMs typically perform better in shorter contexts,256

RoBERTa-LifeTox surpasses GPT-3.5 in more257

long-form QA when the word count exceeds 75.258

This finding suggests that LifeTox’s relative nu-259

merical underperformance compared to LLMs, as260

shown in Table 2, is not due to inferior zero-shot261

performance. Rather, it is attributable to the shorter262

contexts predominating in BeaverTails instances.263

In Table 1, the average QA length in BeaverTails is264

73.6 words, whereas in LifeTox, it is nearly 120.265

0 20 40 60 80 100 120 140
QA Length in BeaverTails
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RoBERTa-LifeTox
GPT-3.5
Llama-2-Chat-13B
Random

Figure 2: Accuracy of the RoBERTa-LifeTox, Llama-2-
Chat-13B, and GPT-3.5 in BeaverTails across different
QA length with # words.

A similar phenomenon is observed in the Harm- 266

fulQ dataset. In Table 2, Llama-2-chat (13B) out- 267

performs RoBERTa-LifeTox in w\o CoT. However, 268

with longer answers from CoT, RoBERTa-LifeTox 269

excels. The analysis goes beyond mere numerical 270

results, indicating that the LifeTox model demon- 271

strates superior comprehension in complex, long- 272

form QAs compared to LLMs. 273

6 Conclusion 274

We introduce the LifeTox dataset, which sig- 275

nificantly extends the scope of implicit toxicity 276

detection in advice-seeking scenarios. LifeTox 277

features a broad range of open-ended questions, 278

sourced from twin Reddit forums, encompassing a 279

rich variety of personal experiences and concerns. 280

Our extensive validation experiments demonstrate 281

that RoBERTa, when trained solely on LifeTox, 282

achieves performance levels comparable to or even 283

exceeding those of LLMs. More than just numeri- 284

cal metrics, our analysis highlights LifeTox’s supe- 285

rior ability to handle complex, long-form question- 286

and-answer scenarios, outperforming LLMs. With 287

LifeTox, we aim to contribute to the safer integra- 288

tion of LLMs into everyday human interactions. 289

4



Limitations290

LifeTox targets implicit toxicity within advice-291

seeking question-answering across diverse story-292

lines. However, the scope of social risks it en-293

compasses is limited to the LifeProTips and Un-294

ethicalLifeProTips Reddit forums. Consequently,295

LifeTox may not capture unintended biases or296

stereotypes absent from discussions of these plat-297

forms. Hence, should LifeTox be integrated into a298

safety pipeline, it ought not to be deployed in isola-299

tion but rather in combination with complementary300

datasets such as ETHICS (Hendrycks et al., 2023),301

StereoSet (Nadeem et al., 2021), Social Bias Infer-302

ence Corpus (Sap et al., 2020), DELPHI (Sun et al.,303

2023), and SQuARe (Lee et al., 2023b) to ensure a304

more comprehensive approach.305

Ethical Statement306

We acknowledge that LifeTox includes storylines307

capable of triggering various social risks. However,308

it is crucial to learn about diverse implicit toxici-309

ties to identify and understand a wider spectrum310

of social risks. Therefore, LifeTox serves a dual311

purpose: it not only introduces a dataset but also312

suggests methodologies for employing this data in313

enhancing LLM-human safety training.314
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A LifeTox Construction Details543

A.1 Community Advice Rules544

LifeProTips community advice rules:545

1. No rude, offensive, racist, homophobic, sexist,546

aggressive, or hateful posts/comments.547

2. Do not post tips that could be considered com-548

mon sense, common courtesy, unethical, or549

illegal.550

3. Do not post tips that are based on spurious,551

unsubstantiated, or anecdotal claims.552

4. Posts/comments that troll and/or do not sub-553

stantially contribute to the discussion may be554

removed. Moderators may remove posts or555

comments at their discretion for being low-556

quality or low-effort.557

UnethicalLifeProTips community advice rules:558

1. Tips must be unethical, tips that are ethical559

will be removed.560

2. No tips that are just clever ways of being a dick561

Tips must provide some benefit to you. Posts562

that are just clever ways of being a dick will563

be removed.564

3. Geneva Conventions: No tips about rape, mur-565

der, suicide, or in general any tip that would566

violate the Geneva Convention laws.567

4. Posts/comments that troll and/or do not sub-568

stantially contribute to the discussion may be569

removed. Moderators may remove posts or570

comments at their discretion for being low-571

quality or low-effort.572

A.2 Dataset Crawling573

In LPT and ULPT, all posts seeking advice have574

a prefix in their titles, either ‘LPT Request:’ or575

‘ULPT Request:.’ By combining the title and body576

of the post, it forms an open-ended question, with577

the attached comments serving as answers, thereby578

creating QA pairs. Additionally, if comments vio-579

late the specific community rules regarding safe or580

unsafe manners, they are removed by moderators581

using a particular watermark. Such answers were582

excluded from our dataset. Furthermore, if a post583

or comment is edited, it is appended with an ’Edit:’584

marker. Any text that appears after this marker has585

also been removed for clean classification. For the586

purpose of designing a test set with meaningful 587

quality, we randomly sampled comments from the 588

top 4 upvoted pieces of advice in the most popular 589

posts, resulting in a total of 3000 instances: 1500 590

from LPT and 1500 from ULPT. 591

A.3 Human Evaluation 592

Figure 3: An example instruction page shown to Amazon
MTurk annotators for human evaluation.

Figure 3 is the Amazon Mechanical Turk inter- 593

face for human evaluation. We pay MTurk workers 594

a competitive pay of more than $10 an hour. We 595

hire workers whose nations are in one of the US, 596

CA, UK, AU, NZ. We restrict the annotators whose 597

HIT minimum hits are over 4000 and whose HIT 598

rates are higher than 96%. We run human eval- 599

uation on 100 samples in LifeTox and conduct 3 600

annotators per sample. As a result, 87% agreements 601

are correct to ground-truth labels. 602

B LifeTox Experimental Details 603

B.1 Training LifeTox 604

For the purpose of clean implicit toxicity detec- 605

tion, we filtered and trained on the four top-upvoted 606

comments per question. To balance the classes, 607

we randomly sampled from the safe class instances 608

to match the smaller quantity of unsafe class in- 609

stances. When training RoBERTa-large on Long- 610

Tox, we used the AdamW optimizer (Loshchilov 611

and Hutter, 2019) with a learning rate 1e-5 and set 612

the batch size to 8. 613

B.2 Instruction for LLMs 614

[INST] Evaluate the toxicity of answer 615

for given questions. Only label ’unsafe’ 616

or ’safe’ [/INST] 617

Question: [Input query] 618

Answer: [Input Answer] 619

Label: [Inference Result] 620
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Figure 4: Visualization of Topic Distributions in LifeTox
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